datastock 0.0.35__py3-none-any.whl → 0.0.37__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- datastock/_class1.py +88 -127
- datastock/_class1_check.py +1 -98
- datastock/_class1_compute.py +203 -43
- datastock/_class1_domain.py +2 -2
- datastock/_class1_interpolate.py +8 -8
- datastock/_class1_show.py +406 -0
- datastock/_class1_uniformize.py +37 -19
- datastock/_class2.py +4 -48
- datastock/_class3.py +14 -6
- datastock/_generic_check.py +41 -43
- datastock/_generic_utils.py +11 -1
- datastock/_generic_utils_plot.py +76 -3
- datastock/_plot_BvsA_as_distribution_check.py +9 -5
- datastock/_plot_as_array.py +368 -2523
- datastock/_plot_as_array_1d.py +298 -0
- datastock/_plot_as_array_234d.py +786 -0
- datastock/_plot_as_mobile_lines.py +18 -13
- datastock/_plot_as_profile1d.py +27 -12
- datastock/_saveload.py +2 -0
- datastock/tests/test_01_DataStock.py +102 -27
- datastock/version.py +1 -1
- {datastock-0.0.35.dist-info → datastock-0.0.37.dist-info}/METADATA +1 -1
- datastock-0.0.37.dist-info/RECORD +42 -0
- datastock-0.0.35.dist-info/RECORD +0 -39
- /datastock/{_plot_misc.py → _plot_old_backup.py} +0 -0
- {datastock-0.0.35.dist-info → datastock-0.0.37.dist-info}/LICENSE +0 -0
- {datastock-0.0.35.dist-info → datastock-0.0.37.dist-info}/WHEEL +0 -0
- {datastock-0.0.35.dist-info → datastock-0.0.37.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,786 @@
|
|
1
|
+
# coding utf-8
|
2
|
+
|
3
|
+
|
4
|
+
# Common
|
5
|
+
import numpy as np
|
6
|
+
import matplotlib.pyplot as plt
|
7
|
+
from matplotlib import gridspec
|
8
|
+
|
9
|
+
|
10
|
+
# library-specific
|
11
|
+
from . import _generic_check
|
12
|
+
from . import _class1_compute
|
13
|
+
from . import _plot_text
|
14
|
+
|
15
|
+
|
16
|
+
# #############################################################
|
17
|
+
# #############################################################
|
18
|
+
# Main
|
19
|
+
# #############################################################
|
20
|
+
|
21
|
+
|
22
|
+
def main(
|
23
|
+
# parameters
|
24
|
+
coll=None,
|
25
|
+
key=None,
|
26
|
+
lab=None,
|
27
|
+
dkeys=None,
|
28
|
+
dscale=None,
|
29
|
+
dvminmax=None,
|
30
|
+
ind=None,
|
31
|
+
cmap=None,
|
32
|
+
aspect=None,
|
33
|
+
nmax=None,
|
34
|
+
color_dict=None,
|
35
|
+
lkeys=None,
|
36
|
+
bstr_dict=None,
|
37
|
+
rotation=None,
|
38
|
+
inverty=None,
|
39
|
+
bck=None,
|
40
|
+
interp=None,
|
41
|
+
# figure-specific
|
42
|
+
dax=None,
|
43
|
+
dmargin=None,
|
44
|
+
fs=None,
|
45
|
+
dcolorbar=None,
|
46
|
+
dleg=None,
|
47
|
+
label=None,
|
48
|
+
# unused
|
49
|
+
**kwdargs,
|
50
|
+
):
|
51
|
+
|
52
|
+
# --------------
|
53
|
+
# Prepare data
|
54
|
+
# --------------
|
55
|
+
|
56
|
+
data = coll.ddata[key]['data']
|
57
|
+
if hasattr(data, 'nnz'):
|
58
|
+
data = data.toarray()
|
59
|
+
ndim = data.ndim
|
60
|
+
|
61
|
+
# safety check
|
62
|
+
if (ndim != len(coll.ddata[key]['ref'])) or (ndim < 2 or ndim > 4):
|
63
|
+
msg = (
|
64
|
+
"Wrong ndim for plot_as_array()!\n"
|
65
|
+
f"\t- ndim: {ndim}\n"
|
66
|
+
f"\t- coll.ddata['{key}']['ref']: {coll.ddata[key]['ref']}\n"
|
67
|
+
)
|
68
|
+
raise Exception(msg)
|
69
|
+
|
70
|
+
# lorder
|
71
|
+
lorder = ['X', 'Y', 'Z', 'U']
|
72
|
+
lorder = [ss for ss in lorder if dkeys[ss]['key'] is not None]
|
73
|
+
|
74
|
+
# -----------------
|
75
|
+
# prepare slicing
|
76
|
+
# -----------------
|
77
|
+
|
78
|
+
if ndim == 2:
|
79
|
+
def sliZ2(*args):
|
80
|
+
return (slice(None), slice(None))
|
81
|
+
inds = (None,)
|
82
|
+
|
83
|
+
elif ndim >= 3:
|
84
|
+
# here slice X => slice in dim Y and vice-versa
|
85
|
+
sliZ2 = _class1_compute._get_slice(
|
86
|
+
laxis=[dkeys[ss]['axis'] for ss in lorder],
|
87
|
+
ndim=ndim,
|
88
|
+
)
|
89
|
+
inds = [ind[ii] for ii in range(2, ndim)]
|
90
|
+
|
91
|
+
# check if transpose is necessary
|
92
|
+
if dkeys['X']['axis'] < dkeys['Y']['axis']:
|
93
|
+
datatype = 'data.T'
|
94
|
+
dataplot = data[sliZ2(*inds)].T
|
95
|
+
else:
|
96
|
+
datatype = 'data'
|
97
|
+
dataplot = data[sliZ2(*inds)]
|
98
|
+
|
99
|
+
# ----------------------
|
100
|
+
# labels and data
|
101
|
+
# ----------------------
|
102
|
+
|
103
|
+
extent = (
|
104
|
+
coll.ddata[dkeys['X']['data']]['data'][0] - dkeys['X']['d2'],
|
105
|
+
coll.ddata[dkeys['X']['data']]['data'][-1] + dkeys['X']['d2'],
|
106
|
+
coll.ddata[dkeys['Y']['data']]['data'][0] - dkeys['Y']['d2'],
|
107
|
+
coll.ddata[dkeys['Y']['data']]['data'][-1] + dkeys['Y']['d2'],
|
108
|
+
)
|
109
|
+
|
110
|
+
# --------------
|
111
|
+
# plot - prepare
|
112
|
+
# --------------
|
113
|
+
|
114
|
+
if dax is None:
|
115
|
+
dax = _create_axes(
|
116
|
+
fs=fs,
|
117
|
+
dmargin=dmargin,
|
118
|
+
ndim=ndim,
|
119
|
+
)
|
120
|
+
|
121
|
+
dax = _generic_check._check_dax(dax=dax, main='matrix')
|
122
|
+
|
123
|
+
# ----------------------------------
|
124
|
+
# plot fixed parts (traces envelops)
|
125
|
+
# ----------------------------------
|
126
|
+
|
127
|
+
for ss in lorder[2:]:
|
128
|
+
|
129
|
+
if dkeys[ss]['key'] is None:
|
130
|
+
continue
|
131
|
+
|
132
|
+
axis = dkeys[ss]['axis']
|
133
|
+
axtype = f'traces{ss}'
|
134
|
+
lax = [k1 for k1, v1 in dax.items() if axtype in v1['type']]
|
135
|
+
if len(lax) == 1:
|
136
|
+
kax = lax[0]
|
137
|
+
ax = dax[kax]['handle']
|
138
|
+
dat = coll.ddata[dkeys[ss]['data']]['data']
|
139
|
+
|
140
|
+
if bck == 'lines':
|
141
|
+
shap = list(data.shape)
|
142
|
+
shap[axis] = 1
|
143
|
+
nan = np.full(shap, np.nan)
|
144
|
+
bckl = np.concatenate((data, nan), axis=axis)
|
145
|
+
bckl = np.swapaxes(bckl, axis, -1).ravel()
|
146
|
+
dat = np.tile(np.r_[dat, np.nan], int(np.prod(shap)))
|
147
|
+
ax.plot(
|
148
|
+
dat,
|
149
|
+
bckl,
|
150
|
+
c=(0.8, 0.8, 0.8),
|
151
|
+
ls='-',
|
152
|
+
lw=1.,
|
153
|
+
marker='None',
|
154
|
+
)
|
155
|
+
else:
|
156
|
+
tax = tuple([
|
157
|
+
v1['axis'] for k1, v1 in dkeys.items()
|
158
|
+
if k1 != ss and v1['key'] is not None
|
159
|
+
])
|
160
|
+
bckenv = [
|
161
|
+
np.nanmin(data, axis=tax),
|
162
|
+
np.nanmax(data, axis=tax),
|
163
|
+
]
|
164
|
+
ax.fill_between(
|
165
|
+
dat,
|
166
|
+
bckenv[0],
|
167
|
+
bckenv[1],
|
168
|
+
facecolor=(0.8, 0.8, 0.8, 0.8),
|
169
|
+
edgecolor='None',
|
170
|
+
)
|
171
|
+
|
172
|
+
# ----------------
|
173
|
+
# define and set dgroup
|
174
|
+
# ----------------
|
175
|
+
|
176
|
+
dgroup = {
|
177
|
+
'X': {
|
178
|
+
'ref': [dkeys['X']['ref']],
|
179
|
+
'data': ['index'],
|
180
|
+
'nmax': nmax,
|
181
|
+
},
|
182
|
+
'Y': {
|
183
|
+
'ref': [dkeys['Y']['ref']],
|
184
|
+
'data': ['index'],
|
185
|
+
'nmax': nmax,
|
186
|
+
},
|
187
|
+
}
|
188
|
+
|
189
|
+
if dkeys['Z']['key'] is not None:
|
190
|
+
dgroup['Z'] = {
|
191
|
+
'ref': [dkeys['Z']['ref']],
|
192
|
+
'data': ['index'],
|
193
|
+
'nmax': 1,
|
194
|
+
}
|
195
|
+
if dkeys['U']['key'] is not None:
|
196
|
+
dgroup['U'] = {
|
197
|
+
'ref': [dkeys['U']['ref']],
|
198
|
+
'data': ['index'],
|
199
|
+
'nmax': 1,
|
200
|
+
}
|
201
|
+
|
202
|
+
# -----------------
|
203
|
+
# plot mobile parts
|
204
|
+
# -----------------
|
205
|
+
|
206
|
+
# matrix
|
207
|
+
axtype = 'matrix'
|
208
|
+
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
209
|
+
if len(lax) == 1:
|
210
|
+
kax = lax[0]
|
211
|
+
ax = dax[kax]['handle']
|
212
|
+
refs = tuple([
|
213
|
+
dkeys[k1]['ref'] for k1 in ['Z', 'U']
|
214
|
+
if dkeys[k1]['key'] is not None
|
215
|
+
])
|
216
|
+
|
217
|
+
# image
|
218
|
+
im = ax.imshow(
|
219
|
+
dataplot,
|
220
|
+
extent=extent,
|
221
|
+
interpolation=interp,
|
222
|
+
origin='lower',
|
223
|
+
aspect=aspect,
|
224
|
+
cmap=cmap,
|
225
|
+
vmin=dvminmax['data']['min'],
|
226
|
+
vmax=dvminmax['data']['max'],
|
227
|
+
)
|
228
|
+
|
229
|
+
# if inverty is True:
|
230
|
+
# ax.invert_yaxis()
|
231
|
+
|
232
|
+
if ndim >= 3:
|
233
|
+
km = f'{key}_im'
|
234
|
+
coll.add_mobile(
|
235
|
+
key=km,
|
236
|
+
handle=im,
|
237
|
+
refs=(refs,),
|
238
|
+
data=key,
|
239
|
+
dtype=datatype,
|
240
|
+
axes=kax,
|
241
|
+
ind=0,
|
242
|
+
)
|
243
|
+
|
244
|
+
# ind0, ind1
|
245
|
+
for ii in range(nmax):
|
246
|
+
|
247
|
+
lh = ax.axhline(
|
248
|
+
coll.ddata[dkeys['Y']['data']]['data'][ind[1]],
|
249
|
+
c=color_dict['X'][ii],
|
250
|
+
lw=1.,
|
251
|
+
ls='-',
|
252
|
+
)
|
253
|
+
|
254
|
+
lv = ax.axvline(
|
255
|
+
coll.ddata[dkeys['X']['data']]['data'][ind[0]],
|
256
|
+
c=color_dict['Y'][ii],
|
257
|
+
lw=1.,
|
258
|
+
ls='-',
|
259
|
+
)
|
260
|
+
|
261
|
+
mi, = ax.plot(
|
262
|
+
coll.ddata[dkeys['X']['data']]['data'][ind[0]],
|
263
|
+
coll.ddata[dkeys['Y']['data']]['data'][ind[1]],
|
264
|
+
marker='s',
|
265
|
+
ms=6,
|
266
|
+
markeredgecolor=color_dict['X'][ii],
|
267
|
+
markerfacecolor='None',
|
268
|
+
)
|
269
|
+
|
270
|
+
# update coll
|
271
|
+
kh = f'{key}_h{ii:02.0f}'
|
272
|
+
kv = f'{key}_v{ii:02.0f}'
|
273
|
+
coll.add_mobile(
|
274
|
+
key=kh,
|
275
|
+
handle=lh,
|
276
|
+
refs=dkeys['Y']['ref'],
|
277
|
+
data=dkeys['Y']['data'],
|
278
|
+
dtype='ydata',
|
279
|
+
axes=kax,
|
280
|
+
ind=ii,
|
281
|
+
)
|
282
|
+
coll.add_mobile(
|
283
|
+
key=kv,
|
284
|
+
handle=lv,
|
285
|
+
refs=dkeys['X']['ref'],
|
286
|
+
data=dkeys['X']['data'],
|
287
|
+
dtype='xdata',
|
288
|
+
axes=kax,
|
289
|
+
ind=ii,
|
290
|
+
)
|
291
|
+
km = f'{key}_m{ii:02.0f}'
|
292
|
+
coll.add_mobile(
|
293
|
+
key=km,
|
294
|
+
handle=mi,
|
295
|
+
refs=[dkeys['X']['ref'], dkeys['Y']['ref']],
|
296
|
+
data=[dkeys['X']['data'], dkeys['Y']['data']],
|
297
|
+
dtype=['xdata', 'ydata'],
|
298
|
+
axes=kax,
|
299
|
+
ind=ii,
|
300
|
+
)
|
301
|
+
|
302
|
+
dax[kax].update(
|
303
|
+
refx=[dkeys['X']['ref']],
|
304
|
+
refy=[dkeys['Y']['ref']],
|
305
|
+
datax=[dkeys['X']['data']],
|
306
|
+
datay=[dkeys['Y']['data']],
|
307
|
+
)
|
308
|
+
|
309
|
+
# --------------
|
310
|
+
# slices
|
311
|
+
# --------------
|
312
|
+
|
313
|
+
lslices = [('X', 'horizontal'), ('Y', 'vertical')]
|
314
|
+
for i0, (ss, axtype) in enumerate(lslices):
|
315
|
+
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
316
|
+
if len(lax) == 1:
|
317
|
+
kax = lax[0]
|
318
|
+
ax = dax[kax]['handle']
|
319
|
+
sli = dkeys[ss]['sli']
|
320
|
+
iind = i0
|
321
|
+
args = [ind[jj] for jj in range(ndim) if jj != iind]
|
322
|
+
refs = tuple([dkeys[k1]['ref'] for k1 in lorder if k1 != ss])
|
323
|
+
dat = coll.ddata[dkeys[ss]['data']]['data']
|
324
|
+
|
325
|
+
for ii in range(nmax):
|
326
|
+
if ss == 'Y':
|
327
|
+
l0, = ax.plot(
|
328
|
+
data[sli(*args)],
|
329
|
+
dat,
|
330
|
+
ls='-',
|
331
|
+
marker='.',
|
332
|
+
lw=1.,
|
333
|
+
color=color_dict[ss][ii],
|
334
|
+
label=f'ind0 = {ind[iind]}',
|
335
|
+
)
|
336
|
+
xydata = 'xdata'
|
337
|
+
km = f'{key}_vprof{ii:02.0f}'
|
338
|
+
else:
|
339
|
+
l0, = ax.plot(
|
340
|
+
dat,
|
341
|
+
data[sli(*args)],
|
342
|
+
ls='-',
|
343
|
+
marker='.',
|
344
|
+
lw=1.,
|
345
|
+
color=color_dict[ss][ii],
|
346
|
+
label=f'ind0 = {ind[iind]}',
|
347
|
+
)
|
348
|
+
xydata = 'ydata'
|
349
|
+
km = f'{key}_vhor{ii:02.0f}'
|
350
|
+
|
351
|
+
coll.add_mobile(
|
352
|
+
key=km,
|
353
|
+
handle=l0,
|
354
|
+
refs=(refs,),
|
355
|
+
data=[key],
|
356
|
+
dtype=[xydata],
|
357
|
+
group_vis=lslices[1-i0][0], # 'X' <-> 'Y'
|
358
|
+
axes=kax,
|
359
|
+
ind=ii,
|
360
|
+
)
|
361
|
+
|
362
|
+
#
|
363
|
+
axline = ax.axhline if ss == 'Y' else ax.axvline
|
364
|
+
l0 = axline(
|
365
|
+
dat[ind[iind]],
|
366
|
+
c=color_dict[lslices[1-i0][0]][ii], # 'X' <-> 'Y'
|
367
|
+
)
|
368
|
+
|
369
|
+
if ss == 'Y':
|
370
|
+
xydata = 'ydata'
|
371
|
+
km = f'{key}_lh-v{ii:02.0f}'
|
372
|
+
else:
|
373
|
+
xydata = 'xdata'
|
374
|
+
km = f'{key}_lv-h{ii:02.0f}'
|
375
|
+
coll.add_mobile(
|
376
|
+
key=km,
|
377
|
+
handle=l0,
|
378
|
+
refs=(dkeys[ss]['ref'],),
|
379
|
+
data=dkeys[ss]['data'],
|
380
|
+
dtype=xydata,
|
381
|
+
group_vis=ss,
|
382
|
+
axes=kax,
|
383
|
+
ind=ii,
|
384
|
+
)
|
385
|
+
|
386
|
+
if ss == 'Y':
|
387
|
+
dax[kax].update(
|
388
|
+
refy=[dkeys[ss]['ref']],
|
389
|
+
datay=[dkeys[ss]['data']],
|
390
|
+
)
|
391
|
+
else:
|
392
|
+
dax[kax].update(
|
393
|
+
refx=[dkeys[ss]['ref']],
|
394
|
+
datax=[dkeys[ss]['data']],
|
395
|
+
)
|
396
|
+
|
397
|
+
# -----------------
|
398
|
+
# traces Z & U
|
399
|
+
# -----------------
|
400
|
+
|
401
|
+
for i0, ss in enumerate(lorder[2:]):
|
402
|
+
|
403
|
+
if dkeys[ss]['key'] is None:
|
404
|
+
continue
|
405
|
+
|
406
|
+
axtype = f'traces{ss}'
|
407
|
+
lax = [k1 for k1, v1 in dax.items() if axtype in v1['type']]
|
408
|
+
if len(lax) == 1:
|
409
|
+
|
410
|
+
kax = lax[0]
|
411
|
+
ax = dax[kax]['handle']
|
412
|
+
dat = coll.ddata[dkeys[ss]['data']]['data']
|
413
|
+
sli = dkeys[ss]['sli']
|
414
|
+
iind = i0 + 2
|
415
|
+
args = [ind[jj] for jj in range(ndim) if jj != iind]
|
416
|
+
refs = tuple([dkeys[k1]['ref'] for k1 in lorder if k1 != ss])
|
417
|
+
|
418
|
+
# individual time traces
|
419
|
+
for ii in range(nmax):
|
420
|
+
l1, = ax.plot(
|
421
|
+
dat,
|
422
|
+
data[sli(*args)],
|
423
|
+
ls='-',
|
424
|
+
marker='None',
|
425
|
+
color=color_dict[ss][ii],
|
426
|
+
)
|
427
|
+
|
428
|
+
km = f'{key}_trace{ss}{ii:02.0f}'
|
429
|
+
coll.add_mobile(
|
430
|
+
key=km,
|
431
|
+
handle=l1,
|
432
|
+
refs=(refs,),
|
433
|
+
data=[key],
|
434
|
+
dtype=['ydata'],
|
435
|
+
group_vis=('X', 'Y'), # 'X' <-> 'Y'
|
436
|
+
axes=kax,
|
437
|
+
ind=ii,
|
438
|
+
)
|
439
|
+
|
440
|
+
# vlines for single index selection
|
441
|
+
l0 = ax.axvline(
|
442
|
+
dat[ind[iind]],
|
443
|
+
c='k',
|
444
|
+
)
|
445
|
+
km = f'{key}_lv_{ss}'
|
446
|
+
coll.add_mobile(
|
447
|
+
key=km,
|
448
|
+
handle=l0,
|
449
|
+
refs=(dkeys[ss]['ref'],),
|
450
|
+
data=dkeys[ss]['data'],
|
451
|
+
dtype='xdata',
|
452
|
+
axes=kax,
|
453
|
+
ind=0,
|
454
|
+
)
|
455
|
+
|
456
|
+
dax[kax].update(refx=[dkeys[ss]['ref']], datax=[dkeys[ss]['data']])
|
457
|
+
|
458
|
+
# ---------
|
459
|
+
# add text
|
460
|
+
# ---------
|
461
|
+
|
462
|
+
for ii, ss in enumerate(lorder):
|
463
|
+
|
464
|
+
axtype = f'text{ss}'
|
465
|
+
lax = [k1 for k1, v1 in dax.items() if axtype in v1['type']]
|
466
|
+
if len(lax) == 1:
|
467
|
+
kax = lax[0]
|
468
|
+
ax = dax[kax]['handle']
|
469
|
+
|
470
|
+
_plot_text.plot_text(
|
471
|
+
coll=coll,
|
472
|
+
kax=kax,
|
473
|
+
key=key,
|
474
|
+
ax=ax,
|
475
|
+
ref=dkeys[ss]['ref'],
|
476
|
+
group=ss,
|
477
|
+
ind=ind[ii],
|
478
|
+
lkeys=lkeys,
|
479
|
+
nmax=nmax,
|
480
|
+
color_dict=color_dict,
|
481
|
+
bstr_dict=bstr_dict,
|
482
|
+
)
|
483
|
+
|
484
|
+
# -------------------
|
485
|
+
# labeling and limits
|
486
|
+
# -------------------
|
487
|
+
|
488
|
+
if label:
|
489
|
+
_label_axes(
|
490
|
+
coll=coll,
|
491
|
+
data_lab=lab,
|
492
|
+
dax=dax,
|
493
|
+
key=key,
|
494
|
+
dkeys=dkeys,
|
495
|
+
lorder=lorder,
|
496
|
+
dvminmax=dvminmax,
|
497
|
+
inverty=inverty,
|
498
|
+
rotation=rotation,
|
499
|
+
)
|
500
|
+
|
501
|
+
return coll, dax, dgroup
|
502
|
+
|
503
|
+
|
504
|
+
# #############################################################
|
505
|
+
# #############################################################
|
506
|
+
# Create axes
|
507
|
+
# #############################################################
|
508
|
+
|
509
|
+
|
510
|
+
def _create_axes(
|
511
|
+
fs=None,
|
512
|
+
dmargin=None,
|
513
|
+
ndim=None,
|
514
|
+
):
|
515
|
+
|
516
|
+
# ---------------
|
517
|
+
# check / prepare
|
518
|
+
# ---------------
|
519
|
+
|
520
|
+
if fs is None:
|
521
|
+
fs = (17, 9)
|
522
|
+
|
523
|
+
if dmargin is None:
|
524
|
+
dmargin = {
|
525
|
+
'left': 0.05, 'right': 0.95,
|
526
|
+
'bottom': 0.06, 'top': 0.90,
|
527
|
+
'hspace': 0.5, 'wspace': 0.4,
|
528
|
+
}
|
529
|
+
|
530
|
+
dax = {}
|
531
|
+
|
532
|
+
# ---------------
|
533
|
+
# create
|
534
|
+
# ---------------
|
535
|
+
|
536
|
+
fig = plt.figure(figsize=fs)
|
537
|
+
gs = gridspec.GridSpec(ncols=7, nrows=6, **dmargin)
|
538
|
+
j0 = 0 if ndim == 2 else 2
|
539
|
+
|
540
|
+
# axes for image
|
541
|
+
ax0 = fig.add_subplot(gs[:4, j0:4], aspect='auto')
|
542
|
+
dax['matrix'] = ax0
|
543
|
+
|
544
|
+
# axes for vertical profile
|
545
|
+
ax1 = fig.add_subplot(gs[:4, 4], sharey=ax0)
|
546
|
+
dax['vertical'] = ax1
|
547
|
+
|
548
|
+
# axes for horizontal profile
|
549
|
+
ax2 = fig.add_subplot(gs[4:, j0:4], sharex=ax0)
|
550
|
+
dax['horizontal'] = ax2
|
551
|
+
|
552
|
+
# axes for tracesZ
|
553
|
+
if ndim >= 3:
|
554
|
+
ax3 = fig.add_subplot(gs[:3, :2])
|
555
|
+
dax['tracesZ'] = ax3
|
556
|
+
|
557
|
+
# axes for tracesU
|
558
|
+
if ndim >= 4:
|
559
|
+
ax4 = fig.add_subplot(gs[3:, :2])
|
560
|
+
dax['tracesU'] = ax4
|
561
|
+
|
562
|
+
# --------------
|
563
|
+
# axes for text
|
564
|
+
# --------------
|
565
|
+
|
566
|
+
if ndim == 2:
|
567
|
+
ax5 = fig.add_subplot(gs[:, 5], frameon=False)
|
568
|
+
ax6 = fig.add_subplot(gs[:, 6], frameon=False)
|
569
|
+
else:
|
570
|
+
ax5 = fig.add_subplot(gs[:3, 5], frameon=False)
|
571
|
+
ax6 = fig.add_subplot(gs[3:, 5], frameon=False)
|
572
|
+
dax['textX'] = ax5
|
573
|
+
dax['textY'] = ax6
|
574
|
+
|
575
|
+
if ndim >= 3:
|
576
|
+
ax7 = fig.add_subplot(gs[:3, 6], frameon=False)
|
577
|
+
dax['textZ'] = ax7
|
578
|
+
|
579
|
+
if ndim >= 3:
|
580
|
+
ax8 = fig.add_subplot(gs[3:, 6], frameon=False)
|
581
|
+
dax['textU'] = ax8
|
582
|
+
|
583
|
+
return dax
|
584
|
+
|
585
|
+
|
586
|
+
# #############################################################
|
587
|
+
# #############################################################
|
588
|
+
# Label axes
|
589
|
+
# #############################################################
|
590
|
+
|
591
|
+
|
592
|
+
def _label_axes(
|
593
|
+
coll=None,
|
594
|
+
data_lab=None,
|
595
|
+
dax=None,
|
596
|
+
key=None,
|
597
|
+
dkeys=None,
|
598
|
+
lorder=None,
|
599
|
+
dvminmax=None,
|
600
|
+
inverty=None,
|
601
|
+
rotation=None,
|
602
|
+
):
|
603
|
+
|
604
|
+
# ------------
|
605
|
+
# labels: fig
|
606
|
+
# ------------
|
607
|
+
|
608
|
+
fig = list(dax.values())[0]['handle'].figure
|
609
|
+
fig.suptitle(key, size=14, fontweight='bold')
|
610
|
+
|
611
|
+
# ---------------
|
612
|
+
# labels: image
|
613
|
+
# ---------------
|
614
|
+
|
615
|
+
axtype = 'matrix'
|
616
|
+
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
617
|
+
if len(lax) == 1:
|
618
|
+
kax = lax[0]
|
619
|
+
ax = dax[kax]['handle']
|
620
|
+
|
621
|
+
if inverty is True:
|
622
|
+
ax.xaxis.set_label_position('top')
|
623
|
+
ax.tick_params(
|
624
|
+
axis="x",
|
625
|
+
bottom=False, top=True,
|
626
|
+
labelbottom=False, labeltop=True,
|
627
|
+
)
|
628
|
+
|
629
|
+
# x text ticks
|
630
|
+
k0 = 'X'
|
631
|
+
if dkeys[k0]['str'] is not False:
|
632
|
+
ax.set_xticks(coll.ddata[dkeys[k0]['data']]['data'])
|
633
|
+
ax.set_xticklabels(
|
634
|
+
dkeys[k0]['str'],
|
635
|
+
rotation=rotation,
|
636
|
+
horizontalalignment='left',
|
637
|
+
verticalalignment='bottom' if inverty else 'top',
|
638
|
+
)
|
639
|
+
else:
|
640
|
+
ax.set_xlabel(dkeys[k0]['lab'], size=12, fontweight='bold')
|
641
|
+
|
642
|
+
# y text ticks
|
643
|
+
k0 = 'Y'
|
644
|
+
if dkeys[k0]['str'] is not False:
|
645
|
+
ax.set_yticks(coll.ddata[dkeys[k0]['data']]['data'])
|
646
|
+
ax.set_yticklabels(
|
647
|
+
dkeys[k0]['str'],
|
648
|
+
rotation=rotation,
|
649
|
+
horizontalalignment='left',
|
650
|
+
verticalalignment='bottom',
|
651
|
+
)
|
652
|
+
else:
|
653
|
+
ax.set_ylabel(dkeys[k0]['lab'], size=12, fontweight='bold')
|
654
|
+
|
655
|
+
dax[kax]['inverty'] = inverty
|
656
|
+
|
657
|
+
# --------------------------------
|
658
|
+
# labels: horizontal and vertical
|
659
|
+
# --------------------------------
|
660
|
+
|
661
|
+
# axes for vertical profile
|
662
|
+
axtype = 'vertical'
|
663
|
+
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
664
|
+
if len(lax) == 1:
|
665
|
+
ss = 'Y'
|
666
|
+
kax = lax[0]
|
667
|
+
ax = dax[kax]['handle']
|
668
|
+
ax.set_xlabel(data_lab, size=12, fontweight='bold')
|
669
|
+
ax.set_ylabel(dkeys[ss]['lab'], size=12, fontweight='bold')
|
670
|
+
|
671
|
+
ax.yaxis.set_label_position('right')
|
672
|
+
ax.tick_params(
|
673
|
+
axis="y",
|
674
|
+
left=False, right=True,
|
675
|
+
labelleft=False, labelright=True,
|
676
|
+
)
|
677
|
+
|
678
|
+
if inverty is True:
|
679
|
+
ax.xaxis.set_label_position('top')
|
680
|
+
ax.tick_params(
|
681
|
+
axis="x",
|
682
|
+
bottom=False, top=True,
|
683
|
+
labelbottom=False, labeltop=True,
|
684
|
+
)
|
685
|
+
|
686
|
+
if np.isfinite(dvminmax[ss]['min']):
|
687
|
+
ax.set_ylim(bottom=dvminmax[ss]['min'])
|
688
|
+
if np.isfinite(dvminmax[ss]['max']):
|
689
|
+
ax.set_ylim(top=dvminmax[ss]['max'])
|
690
|
+
|
691
|
+
if np.isfinite(dvminmax['data']['min']):
|
692
|
+
ax.set_xlim(left=dvminmax['data']['min'])
|
693
|
+
if np.isfinite(dvminmax['data']['max']):
|
694
|
+
ax.set_xlim(right=dvminmax['data']['max'])
|
695
|
+
|
696
|
+
# y text ticks
|
697
|
+
if dkeys[ss]['str'] is not False:
|
698
|
+
ax.set_yticks(coll.ddata[dkeys[ss]['data']]['data'])
|
699
|
+
ax.set_yticklabels(
|
700
|
+
dkeys[ss]['str'],
|
701
|
+
rotation=rotation,
|
702
|
+
horizontalalignment='left',
|
703
|
+
verticalalignment='bottom',
|
704
|
+
)
|
705
|
+
|
706
|
+
if inverty is True:
|
707
|
+
ax.invert_yaxis()
|
708
|
+
dax[kax]['inverty'] = inverty
|
709
|
+
|
710
|
+
# axes for horizontal profile
|
711
|
+
axtype = 'horizontal'
|
712
|
+
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
713
|
+
if len(lax) == 1:
|
714
|
+
ss = 'X'
|
715
|
+
kax = lax[0]
|
716
|
+
ax = dax[kax]['handle']
|
717
|
+
ax.set_ylabel(data_lab, size=12, fontweight='bold')
|
718
|
+
ax.set_xlabel(dkeys[ss]['lab'], size=12, fontweight='bold')
|
719
|
+
|
720
|
+
if np.isfinite(dvminmax[ss]['min']):
|
721
|
+
ax.set_xlim(left=dvminmax[ss]['min'])
|
722
|
+
if np.isfinite(dvminmax[ss]['max']):
|
723
|
+
ax.set_xlim(right=dvminmax[ss]['max'])
|
724
|
+
|
725
|
+
if np.isfinite(dvminmax['data']['min']):
|
726
|
+
ax.set_ylim(bottom=dvminmax['data']['min'])
|
727
|
+
if np.isfinite(dvminmax['data']['max']):
|
728
|
+
ax.set_ylim(top=dvminmax['data']['max'])
|
729
|
+
|
730
|
+
# x text ticks
|
731
|
+
if dkeys[ss]['str'] is not False:
|
732
|
+
ax.set_yticks(coll.ddata[dkeys[ss]['data']]['data'])
|
733
|
+
ax.set_xticklabels(
|
734
|
+
dkeys[ss]['str'],
|
735
|
+
rotation=rotation,
|
736
|
+
horizontalalignment='right',
|
737
|
+
verticalalignment='top',
|
738
|
+
)
|
739
|
+
|
740
|
+
# --------------
|
741
|
+
# labels: traces
|
742
|
+
# --------------
|
743
|
+
|
744
|
+
for ss in lorder[2:]:
|
745
|
+
axtype = f'traces{ss}'
|
746
|
+
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
747
|
+
if len(lax) == 1:
|
748
|
+
kax = lax[0]
|
749
|
+
ax = dax[kax]['handle']
|
750
|
+
ax.set_ylabel(data_lab, size=12, fontweight='bold')
|
751
|
+
ax.set_xlabel(dkeys[ss]['lab'], size=12, fontweight='bold')
|
752
|
+
|
753
|
+
if np.isfinite(dvminmax[ss]['min']):
|
754
|
+
ax.set_xlim(left=dvminmax[ss]['min'])
|
755
|
+
if np.isfinite(dvminmax[ss]['max']):
|
756
|
+
ax.set_xlim(right=dvminmax[ss]['max'])
|
757
|
+
|
758
|
+
if np.isfinite(dvminmax['data']['min']):
|
759
|
+
ax.set_ylim(bottom=dvminmax['data']['min'])
|
760
|
+
if np.isfinite(dvminmax['data']['max']):
|
761
|
+
ax.set_ylim(top=dvminmax['data']['max'])
|
762
|
+
|
763
|
+
# z text ticks
|
764
|
+
if dkeys[ss]['str'] is not False:
|
765
|
+
ax.set_yticks(coll.ddata[dkeys[ss]['data']]['data'])
|
766
|
+
ax.set_yticklabels(
|
767
|
+
dkeys[ss]['str'],
|
768
|
+
rotation=rotation,
|
769
|
+
horizontalalignment='right',
|
770
|
+
verticalalignment='top',
|
771
|
+
)
|
772
|
+
|
773
|
+
# -------------
|
774
|
+
# labels: text
|
775
|
+
# -------------
|
776
|
+
|
777
|
+
for ss in lorder:
|
778
|
+
axtype = f'text{ss}'
|
779
|
+
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
780
|
+
if len(lax) == 1:
|
781
|
+
kax = lax[0]
|
782
|
+
ax = dax[kax]['handle']
|
783
|
+
ax.set_xticks([])
|
784
|
+
ax.set_yticks([])
|
785
|
+
|
786
|
+
return dax
|