datastock 0.0.35__py3-none-any.whl → 0.0.37__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- datastock/_class1.py +88 -127
- datastock/_class1_check.py +1 -98
- datastock/_class1_compute.py +203 -43
- datastock/_class1_domain.py +2 -2
- datastock/_class1_interpolate.py +8 -8
- datastock/_class1_show.py +406 -0
- datastock/_class1_uniformize.py +37 -19
- datastock/_class2.py +4 -48
- datastock/_class3.py +14 -6
- datastock/_generic_check.py +41 -43
- datastock/_generic_utils.py +11 -1
- datastock/_generic_utils_plot.py +76 -3
- datastock/_plot_BvsA_as_distribution_check.py +9 -5
- datastock/_plot_as_array.py +368 -2523
- datastock/_plot_as_array_1d.py +298 -0
- datastock/_plot_as_array_234d.py +786 -0
- datastock/_plot_as_mobile_lines.py +18 -13
- datastock/_plot_as_profile1d.py +27 -12
- datastock/_saveload.py +2 -0
- datastock/tests/test_01_DataStock.py +102 -27
- datastock/version.py +1 -1
- {datastock-0.0.35.dist-info → datastock-0.0.37.dist-info}/METADATA +1 -1
- datastock-0.0.37.dist-info/RECORD +42 -0
- datastock-0.0.35.dist-info/RECORD +0 -39
- /datastock/{_plot_misc.py → _plot_old_backup.py} +0 -0
- {datastock-0.0.35.dist-info → datastock-0.0.37.dist-info}/LICENSE +0 -0
- {datastock-0.0.35.dist-info → datastock-0.0.37.dist-info}/WHEEL +0 -0
- {datastock-0.0.35.dist-info → datastock-0.0.37.dist-info}/top_level.txt +0 -0
datastock/_plot_as_array.py
CHANGED
@@ -3,58 +3,62 @@
|
|
3
3
|
|
4
4
|
# Common
|
5
5
|
import numpy as np
|
6
|
-
import matplotlib.pyplot as plt
|
7
|
-
from matplotlib import gridspec
|
8
6
|
import matplotlib.colors as mcolors
|
9
7
|
|
10
8
|
|
11
9
|
# library-specific
|
12
10
|
from . import _generic_check
|
13
|
-
from . import _plot_text
|
14
11
|
from . import _class1_compute
|
12
|
+
from . import _generic_utils_plot as _uplot
|
13
|
+
from . import _plot_as_array_1d
|
14
|
+
from . import _plot_as_array_234d
|
15
15
|
|
16
16
|
|
17
17
|
__all__ = ['plot_as_array']
|
18
18
|
|
19
19
|
|
20
|
-
|
21
|
-
|
20
|
+
# ###############################################################
|
21
|
+
# ###############################################################
|
22
|
+
# DEFAULTS
|
23
|
+
# ###############################################################
|
22
24
|
|
23
25
|
|
24
26
|
_CONNECT = True
|
25
|
-
|
26
|
-
|
27
|
-
_LCOLOR_DICT = [
|
27
|
+
_LCOLOR = [
|
28
28
|
[
|
29
|
-
'tab:blue', 'tab:orange', 'tab:green',
|
30
|
-
'tab:
|
29
|
+
'tab:blue', 'tab:orange', 'tab:green',
|
30
|
+
'tab:red', 'tab:purple', 'tab:brown',
|
31
|
+
'tab:pink', 'tab:gray', 'tab:olive',
|
32
|
+
'tab:cyan',
|
31
33
|
],
|
32
34
|
['r', 'g', 'b'],
|
33
35
|
['m', 'y', 'c'],
|
34
36
|
]
|
35
37
|
|
36
38
|
|
37
|
-
#
|
38
|
-
#
|
39
|
+
# ###############################################################
|
40
|
+
# ###############################################################
|
39
41
|
# generic entry point
|
40
|
-
#
|
42
|
+
# ###############################################################
|
41
43
|
|
42
44
|
|
43
45
|
def plot_as_array(
|
44
|
-
#
|
46
|
+
# resource
|
45
47
|
coll=None,
|
48
|
+
# data
|
46
49
|
key=None,
|
47
50
|
keyX=None,
|
48
51
|
keyY=None,
|
49
52
|
keyZ=None,
|
50
53
|
keyU=None,
|
54
|
+
# index
|
51
55
|
ind=None,
|
52
|
-
|
53
|
-
|
56
|
+
# scales
|
57
|
+
dvminmax=None,
|
58
|
+
dscale=None,
|
54
59
|
cmap=None,
|
55
|
-
ymin=None,
|
56
|
-
ymax=None,
|
57
60
|
aspect=None,
|
61
|
+
# interactivity
|
58
62
|
nmax=None,
|
59
63
|
uniform=None,
|
60
64
|
color_dict=None,
|
@@ -70,233 +74,116 @@ def plot_as_array(
|
|
70
74
|
dax=None,
|
71
75
|
dmargin=None,
|
72
76
|
fs=None,
|
77
|
+
wintit=None,
|
78
|
+
tit=None,
|
73
79
|
dcolorbar=None,
|
74
80
|
dleg=None,
|
75
81
|
label=None,
|
76
82
|
connect=None,
|
77
83
|
inplace=None,
|
84
|
+
# unused
|
85
|
+
**kwdargs,
|
78
86
|
):
|
79
87
|
|
80
|
-
|
81
|
-
# ------------
|
88
|
+
# --------------
|
82
89
|
# check inputs
|
90
|
+
# --------------
|
83
91
|
|
84
92
|
# check key, inplace flag and extract sub-collection
|
85
|
-
|
86
|
-
|
87
|
-
|
93
|
+
lk = [kk for kk in [keyX, keyY, keyZ, keyU] if kk is not None]
|
94
|
+
coll2, key = coll.extract(
|
95
|
+
[key] + lk,
|
96
|
+
inc_monot=False,
|
97
|
+
inc_vectors=False,
|
98
|
+
inc_allrefs=False,
|
99
|
+
return_keys=True,
|
88
100
|
inplace=inplace,
|
89
101
|
)
|
90
|
-
key = key[0]
|
91
|
-
ndim = coll2.
|
102
|
+
key = [kk for kk in key if kk not in lk][0]
|
103
|
+
ndim = coll2.ddata[key]['data'].ndim
|
92
104
|
|
93
105
|
# --------------
|
94
106
|
# check input
|
107
|
+
# --------------
|
95
108
|
|
96
109
|
(
|
97
|
-
key,
|
98
|
-
|
99
|
-
keyY, refY, islogY,
|
100
|
-
keyZ, refZ, islogZ,
|
101
|
-
keyU, refU, islogU,
|
110
|
+
key, lab,
|
111
|
+
dkeys,
|
102
112
|
sameref, ind,
|
103
|
-
|
104
|
-
|
105
|
-
aspect, nmax,
|
113
|
+
dscale, dvminmax,
|
114
|
+
cmap, aspect, nmax,
|
106
115
|
color_dict,
|
107
116
|
rotation,
|
108
117
|
inverty,
|
109
118
|
bck,
|
110
119
|
interp,
|
120
|
+
wintit, tit,
|
111
121
|
dcolorbar, dleg, label, connect,
|
112
|
-
) =
|
113
|
-
ndim=ndim,
|
114
|
-
coll=coll2,
|
115
|
-
key=key,
|
116
|
-
keyX=keyX,
|
117
|
-
keyY=keyY,
|
118
|
-
keyZ=keyZ,
|
119
|
-
keyU=keyU,
|
120
|
-
ind=ind,
|
121
|
-
cmap=cmap,
|
122
|
-
vmin=vmin,
|
123
|
-
vmax=vmax,
|
124
|
-
ymin=ymin,
|
125
|
-
ymax=ymax,
|
126
|
-
aspect=aspect,
|
127
|
-
nmax=nmax,
|
128
|
-
uniform=uniform,
|
129
|
-
color_dict=color_dict,
|
130
|
-
rotation=rotation,
|
131
|
-
inverty=inverty,
|
132
|
-
bck=bck,
|
133
|
-
interp=interp,
|
134
|
-
# figure
|
135
|
-
dcolorbar=dcolorbar,
|
136
|
-
dleg=dleg,
|
137
|
-
label=label,
|
138
|
-
connect=connect,
|
139
|
-
)
|
122
|
+
) = _check(**locals())
|
140
123
|
|
141
124
|
# --------------------------------
|
142
125
|
# Particular case: same references
|
126
|
+
# --------------------------------
|
143
127
|
|
144
128
|
if sameref:
|
145
129
|
from ._class import DataStock
|
146
130
|
cc = DataStock()
|
147
|
-
|
148
|
-
|
149
|
-
for ii,
|
150
|
-
cc.add_ref(
|
151
|
-
|
131
|
+
lk = ['keyX', 'keyY', 'keyZ', 'keyU']
|
132
|
+
lk = [k0 for k0 in lk if dkeys[k0]['ref'] is not None]
|
133
|
+
for ii, k0 in enumerate(lk):
|
134
|
+
cc.add_ref(
|
135
|
+
key=f"{dkeys[k0]['ref']}_{ii}",
|
136
|
+
size=coll.dref[dkeys[k0]['ref']]['size'],
|
137
|
+
)
|
138
|
+
ref = tuple([f"{dkeys[k0]['ref']}_{ii}" for ii, k0 in enumerate(lk)])
|
152
139
|
cc.add_data(key=key, data=coll2.ddata[key]['data'], ref=ref)
|
153
140
|
return cc.plot_as_array()
|
154
141
|
|
155
142
|
# -------------------------
|
156
143
|
# call appropriate routine
|
144
|
+
# -------------------------
|
157
145
|
|
158
146
|
if ndim == 1:
|
159
|
-
|
160
|
-
# parameters
|
161
|
-
coll=coll2,
|
162
|
-
key=key,
|
163
|
-
keyX=keyX,
|
164
|
-
refX=refX,
|
165
|
-
islogX=islogX,
|
166
|
-
ind=ind,
|
167
|
-
vmin=vmin,
|
168
|
-
vmax=vmax,
|
169
|
-
cmap=cmap,
|
170
|
-
ymin=ymin,
|
171
|
-
ymax=ymax,
|
172
|
-
aspect=aspect,
|
173
|
-
nmax=nmax,
|
174
|
-
color_dict=color_dict,
|
175
|
-
lkeys=lkeys,
|
176
|
-
bstr_dict=bstr_dict,
|
177
|
-
rotation=rotation,
|
178
|
-
# figure-specific
|
179
|
-
dax=dax,
|
180
|
-
dmargin=dmargin,
|
181
|
-
fs=fs,
|
182
|
-
dcolorbar=dcolorbar,
|
183
|
-
dleg=dleg,
|
184
|
-
)
|
147
|
+
func = _plot_as_array_1d.main
|
185
148
|
|
186
|
-
elif ndim
|
187
|
-
|
188
|
-
# parameters
|
189
|
-
coll=coll2,
|
190
|
-
key=key,
|
191
|
-
keyX=keyX,
|
192
|
-
keyY=keyY,
|
193
|
-
refX=refX,
|
194
|
-
refY=refY,
|
195
|
-
islogX=islogX,
|
196
|
-
islogY=islogY,
|
197
|
-
ind=ind,
|
198
|
-
vmin=vmin,
|
199
|
-
vmax=vmax,
|
200
|
-
cmap=cmap,
|
201
|
-
ymin=ymin,
|
202
|
-
ymax=ymax,
|
203
|
-
aspect=aspect,
|
204
|
-
nmax=nmax,
|
205
|
-
color_dict=color_dict,
|
206
|
-
lkeys=lkeys,
|
207
|
-
bstr_dict=bstr_dict,
|
208
|
-
rotation=rotation,
|
209
|
-
inverty=inverty,
|
210
|
-
interp=interp,
|
211
|
-
# figure-specific
|
212
|
-
dax=dax,
|
213
|
-
dmargin=dmargin,
|
214
|
-
fs=fs,
|
215
|
-
dcolorbar=dcolorbar,
|
216
|
-
dleg=dleg,
|
217
|
-
)
|
149
|
+
elif ndim >= 2:
|
150
|
+
func = _plot_as_array_234d.main
|
218
151
|
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
coll=coll2,
|
223
|
-
key=key,
|
224
|
-
keyX=keyX,
|
225
|
-
keyY=keyY,
|
226
|
-
keyZ=keyZ,
|
227
|
-
refX=refX,
|
228
|
-
refY=refY,
|
229
|
-
refZ=refZ,
|
230
|
-
islogX=islogX,
|
231
|
-
islogY=islogY,
|
232
|
-
islogZ=islogZ,
|
233
|
-
ind=ind,
|
234
|
-
vmin=vmin,
|
235
|
-
vmax=vmax,
|
236
|
-
cmap=cmap,
|
237
|
-
ymin=ymin,
|
238
|
-
ymax=ymax,
|
239
|
-
aspect=aspect,
|
240
|
-
nmax=nmax,
|
241
|
-
color_dict=color_dict,
|
242
|
-
lkeys=lkeys,
|
243
|
-
bstr_dict=bstr_dict,
|
244
|
-
rotation=rotation,
|
245
|
-
inverty=inverty,
|
246
|
-
bck=bck,
|
247
|
-
interp=interp,
|
248
|
-
# figure-specific
|
249
|
-
dax=dax,
|
250
|
-
dmargin=dmargin,
|
251
|
-
fs=fs,
|
252
|
-
dcolorbar=dcolorbar,
|
253
|
-
dleg=dleg,
|
254
|
-
label=label,
|
255
|
-
)
|
152
|
+
# -------------------------
|
153
|
+
# call appropriate function
|
154
|
+
# -------------------------
|
256
155
|
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
bstr_dict=bstr_dict,
|
285
|
-
rotation=rotation,
|
286
|
-
inverty=inverty,
|
287
|
-
bck=bck,
|
288
|
-
interp=interp,
|
289
|
-
# figure-specific
|
290
|
-
dax=dax,
|
291
|
-
dmargin=dmargin,
|
292
|
-
fs=fs,
|
293
|
-
dcolorbar=dcolorbar,
|
294
|
-
dleg=dleg,
|
295
|
-
label=label,
|
296
|
-
)
|
156
|
+
coll2, dax, dgroup = func(
|
157
|
+
# parameters
|
158
|
+
coll=coll2,
|
159
|
+
key=key,
|
160
|
+
lab=lab,
|
161
|
+
dkeys=dkeys,
|
162
|
+
ind=ind,
|
163
|
+
dvminmax=dvminmax,
|
164
|
+
dscale=dscale,
|
165
|
+
cmap=cmap,
|
166
|
+
aspect=aspect,
|
167
|
+
nmax=nmax,
|
168
|
+
color_dict=color_dict,
|
169
|
+
lkeys=lkeys,
|
170
|
+
bstr_dict=bstr_dict,
|
171
|
+
rotation=rotation,
|
172
|
+
inverty=inverty,
|
173
|
+
bck=bck,
|
174
|
+
interp=interp,
|
175
|
+
# figure-specific
|
176
|
+
dax=dax,
|
177
|
+
dmargin=dmargin,
|
178
|
+
fs=fs,
|
179
|
+
dcolorbar=dcolorbar,
|
180
|
+
dleg=dleg,
|
181
|
+
label=label,
|
182
|
+
)
|
297
183
|
|
298
|
-
#
|
299
|
-
# add axes
|
184
|
+
# ----------------------------
|
185
|
+
# add axes for interactivity
|
186
|
+
# ----------------------------
|
300
187
|
|
301
188
|
# add axes
|
302
189
|
for ii, kax in enumerate(dax.keys()):
|
@@ -319,7 +206,10 @@ def plot_as_array(
|
|
319
206
|
)
|
320
207
|
raise Exception(msg)
|
321
208
|
|
322
|
-
#
|
209
|
+
# ----------------------
|
210
|
+
# connect interactivity
|
211
|
+
# ----------------------
|
212
|
+
|
323
213
|
if connect is True:
|
324
214
|
coll2.setup_interactivity(kinter='inter0', dgroup=dgroup, dinc=dinc)
|
325
215
|
coll2.disconnect_old()
|
@@ -331,10 +221,10 @@ def plot_as_array(
|
|
331
221
|
return coll2, dgroup
|
332
222
|
|
333
223
|
|
334
|
-
#
|
335
|
-
#
|
224
|
+
# ##############################################################
|
225
|
+
# ##############################################################
|
336
226
|
# check
|
337
|
-
#
|
227
|
+
# ##############################################################
|
338
228
|
|
339
229
|
|
340
230
|
def _check_uniform_lin(k0=None, ddata=None):
|
@@ -381,6 +271,7 @@ def _check_keyXYZ(
|
|
381
271
|
ndim=None,
|
382
272
|
dim_min=None,
|
383
273
|
uniform=None,
|
274
|
+
monot=None,
|
384
275
|
already=None,
|
385
276
|
):
|
386
277
|
""" Ensure keyX refers to a monotonic and (optionally) uniform data
|
@@ -388,7 +279,7 @@ def _check_keyXYZ(
|
|
388
279
|
"""
|
389
280
|
|
390
281
|
if uniform is None:
|
391
|
-
uniform =
|
282
|
+
uniform = False
|
392
283
|
|
393
284
|
refX = None
|
394
285
|
islog = False
|
@@ -399,12 +290,16 @@ def _check_keyXYZ(
|
|
399
290
|
k0 for k0, v0 in coll._ddata.items()
|
400
291
|
if len(v0['ref']) == 1
|
401
292
|
and v0['ref'][0] in refs
|
402
|
-
and (
|
403
|
-
v0['data'].dtype.type == np.str_
|
404
|
-
or v0['monot'] == (True,)
|
405
|
-
)
|
406
293
|
]
|
407
294
|
|
295
|
+
# optional monotonicity
|
296
|
+
if monot:
|
297
|
+
lok = [
|
298
|
+
k0 for k0 in lok
|
299
|
+
if coll.ddata[k0]['data'].dtype.type == np.str_
|
300
|
+
or coll.ddata[k0]['monot'] == (True,)
|
301
|
+
]
|
302
|
+
|
408
303
|
# optional uniformity
|
409
304
|
if uniform:
|
410
305
|
lok = [
|
@@ -420,9 +315,19 @@ def _check_keyXYZ(
|
|
420
315
|
)
|
421
316
|
except Exception as err:
|
422
317
|
msg = (
|
423
|
-
|
424
|
-
|
318
|
+
f"plot_as_array() requires '{keyXstr}' to be:\n"
|
319
|
+
f"\t- 1d: {coll.ddata[keyX]['data'].ndim == 1}\n"
|
320
|
+
f"\t- refs: {coll.ddata[keyX]['ref']} vs {refs}\n"
|
425
321
|
)
|
322
|
+
if monot is True:
|
323
|
+
msg += f"\t- monot: {coll.ddata[keyX]['monot']}\n"
|
324
|
+
if uniform is True and coll.ddata[keyX]['data'].ndim == 1:
|
325
|
+
islin = _check_uniform_lin(k0=keyX, ddata=coll._ddata)
|
326
|
+
islog = _check_uniform_log(k0=keyX, ddata=coll._ddata)
|
327
|
+
msg += f"\t- uniform linear: {islin}\n"
|
328
|
+
msg += f"\t- uniform log: {islog}\n"
|
329
|
+
msg += f"Allowed values: {lok}\nProvided: '{keyX}'\n"
|
330
|
+
msg += f"Value:\n{coll.ddata[keyX]['data']}\n"
|
426
331
|
err.args = (msg,)
|
427
332
|
raise err
|
428
333
|
|
@@ -437,7 +342,7 @@ def _check_keyXYZ(
|
|
437
342
|
elif keyX == 'index':
|
438
343
|
if already is None:
|
439
344
|
refX = refs[dim_min - 1]
|
440
|
-
elif all([kk in already for kk in refs]):
|
345
|
+
elif all([kk in already for kk in refs]): # TBC
|
441
346
|
# sameref
|
442
347
|
refX = refs[dim_min - 1]
|
443
348
|
msg = (
|
@@ -460,7 +365,7 @@ def _check_keyXYZ(
|
|
460
365
|
keyX = 'index'
|
461
366
|
if already is None:
|
462
367
|
refX = refs[dim_min - 1]
|
463
|
-
elif all([kk in already for kk in refs]):
|
368
|
+
elif all([kk in already for kk in refs]): # TBC
|
464
369
|
# sameref
|
465
370
|
refX = refs[dim_min - 1]
|
466
371
|
msg = (
|
@@ -472,27 +377,43 @@ def _check_keyXYZ(
|
|
472
377
|
raise Exception(msg)
|
473
378
|
else:
|
474
379
|
refX = [kk for kk in refs if kk not in already][0]
|
380
|
+
|
381
|
+
# safety check
|
382
|
+
if refX is None or keyX is None:
|
383
|
+
msg = (
|
384
|
+
"Something wrong with ref or key\n"
|
385
|
+
f"\t- refX: {refX}\n"
|
386
|
+
f"\t- keyX: {keyX}\n"
|
387
|
+
f"\t- refs: {refs}\n"
|
388
|
+
f"\t- already: {already}\n"
|
389
|
+
f"\t- ndim: {ndim}\n"
|
390
|
+
f"\t- dim_min: {dim_min}\n"
|
391
|
+
f"\t- keyXstr: {keyXstr}\n"
|
392
|
+
)
|
393
|
+
raise Exception(msg)
|
394
|
+
|
475
395
|
else:
|
476
396
|
keyX, refX, islog = None, None, None
|
477
397
|
|
478
398
|
return keyX, refX, islog
|
479
399
|
|
480
400
|
|
481
|
-
def
|
401
|
+
def _check(
|
482
402
|
ndim=None,
|
483
403
|
coll=None,
|
404
|
+
coll2=None,
|
484
405
|
key=None,
|
485
406
|
keyX=None,
|
486
407
|
keyY=None,
|
487
408
|
keyZ=None,
|
488
409
|
keyU=None,
|
489
410
|
ind=None,
|
411
|
+
# scales
|
412
|
+
dvminmax=None,
|
413
|
+
dscale=None,
|
490
414
|
cmap=None,
|
491
|
-
vmin=None,
|
492
|
-
vmax=None,
|
493
|
-
ymin=None,
|
494
|
-
ymax=None,
|
495
415
|
aspect=None,
|
416
|
+
# interactivity
|
496
417
|
nmax=None,
|
497
418
|
uniform=None,
|
498
419
|
color_dict=None,
|
@@ -501,16 +422,20 @@ def _plot_as_array_check(
|
|
501
422
|
bck=None,
|
502
423
|
interp=None,
|
503
424
|
# figure
|
425
|
+
wintit=None,
|
426
|
+
tit=None,
|
504
427
|
dcolorbar=None,
|
505
428
|
dleg=None,
|
506
429
|
data=None,
|
507
430
|
label=None,
|
508
431
|
connect=None,
|
432
|
+
# unused
|
433
|
+
**kwdargs,
|
509
434
|
):
|
510
435
|
|
511
|
-
|
512
436
|
# --------
|
513
437
|
# groups
|
438
|
+
# --------
|
514
439
|
|
515
440
|
if ndim == 1:
|
516
441
|
groups = ['X']
|
@@ -524,19 +449,20 @@ def _plot_as_array_check(
|
|
524
449
|
msg = "ndim must be in [1, 2, 3]"
|
525
450
|
raise Exception(msg)
|
526
451
|
|
452
|
+
lk = [
|
453
|
+
(key, 'data'),
|
454
|
+
('keyX', 'X'), ('keyY', 'Y'), ('keyZ', 'Z'), ('keyU', 'U'),
|
455
|
+
]
|
456
|
+
lk = [kk for ii, kk in enumerate(lk) if ii <= ndim]
|
457
|
+
|
527
458
|
# ----------------------
|
528
459
|
# keyX, keyY, keyZ, keyU
|
460
|
+
# ----------------------
|
529
461
|
|
530
462
|
refs = coll._ddata[key]['ref']
|
531
|
-
|
532
|
-
|
533
|
-
|
534
|
-
keyY, refY, islogY,
|
535
|
-
keyZ, refZ, islogZ,
|
536
|
-
keyU, refU, islogU,
|
537
|
-
sameref,
|
538
|
-
) = get_keyrefs(
|
539
|
-
coll=coll,
|
463
|
+
dkeys, sameref = get_keyrefs(
|
464
|
+
coll2=coll2,
|
465
|
+
key=key,
|
540
466
|
refs=refs,
|
541
467
|
keyX=keyX,
|
542
468
|
keyY=keyY,
|
@@ -546,8 +472,56 @@ def _plot_as_array_check(
|
|
546
472
|
uniform=uniform,
|
547
473
|
)
|
548
474
|
|
549
|
-
#
|
475
|
+
# ------------------
|
476
|
+
# dscale
|
477
|
+
# ------------------
|
478
|
+
|
479
|
+
# safety check
|
480
|
+
c0 = (
|
481
|
+
isinstance(dscale, dict)
|
482
|
+
and all([
|
483
|
+
k0 in ['data'] + [kk[0] for kk in lk]
|
484
|
+
and (isinstance(v0, str) and v0 in ['linear', 'log'])
|
485
|
+
for k0, v0 in dscale.items()])
|
486
|
+
)
|
487
|
+
if dscale is not None and not c0:
|
488
|
+
msg = (
|
489
|
+
"Arg dscale must be a dict of the form:\n"
|
490
|
+
"\t- 'data': 'log' or 'linear'\n"
|
491
|
+
"\t- 'keyX': 'log' or 'linear'\n"
|
492
|
+
"\t- ...etc\n"
|
493
|
+
f"Provided:\n{dscale}"
|
494
|
+
)
|
495
|
+
raise Exception(msg)
|
496
|
+
|
497
|
+
# set default if any missing
|
498
|
+
dscale2 = {}
|
499
|
+
for ii, (k0, k1) in enumerate(lk):
|
500
|
+
kk = 'data' if k1 == 'data' else k0
|
501
|
+
if dscale is None or dscale.get(kk) is None:
|
502
|
+
if k1 == 'data':
|
503
|
+
dscale2[k1] = 'linear'
|
504
|
+
else:
|
505
|
+
dscale2[k1] = 'log' if dkeys[k1]['islog'] else 'linear'
|
506
|
+
else:
|
507
|
+
dscale2[k1] = dscale[kk]
|
508
|
+
dscale = dscale2
|
509
|
+
|
510
|
+
# -------------------
|
511
|
+
# add data and labels
|
512
|
+
# -------------------
|
513
|
+
|
514
|
+
dkeys, key, lab = get_data_str(
|
515
|
+
dk=dkeys,
|
516
|
+
coll2=coll2,
|
517
|
+
key=key,
|
518
|
+
ndim=ndim,
|
519
|
+
dscale=dscale,
|
520
|
+
)
|
521
|
+
|
522
|
+
# -------------
|
550
523
|
# ind
|
524
|
+
# -------------
|
551
525
|
|
552
526
|
ind = _generic_check._check_var(
|
553
527
|
ind, 'ind',
|
@@ -568,53 +542,81 @@ def _plot_as_array_check(
|
|
568
542
|
)
|
569
543
|
raise Exception(msg)
|
570
544
|
|
571
|
-
#
|
572
|
-
# cmap
|
545
|
+
# ---------------
|
546
|
+
# dvminmax & cmap
|
547
|
+
# ---------------
|
573
548
|
|
574
|
-
|
575
|
-
|
576
|
-
|
577
|
-
|
578
|
-
|
579
|
-
|
580
|
-
|
549
|
+
# safety check
|
550
|
+
c0 = (
|
551
|
+
isinstance(dvminmax, dict)
|
552
|
+
and all([
|
553
|
+
k0 in ['data'] + [kk[0] for kk in lk]
|
554
|
+
and isinstance(v0, dict)
|
555
|
+
and all([k1 in ['min', 'max'] for k1 in v0.keys()])
|
556
|
+
for k0, v0 in dvminmax.items()
|
557
|
+
])
|
558
|
+
)
|
559
|
+
if dvminmax is not None and not c0:
|
560
|
+
msg = (
|
561
|
+
"Arg dvminmax must be a dict of the form:\n"
|
562
|
+
"\t- 'data': {'min': float, 'max': float}\n"
|
563
|
+
"\t- 'keyX': {'min': float, 'max': float}\n"
|
564
|
+
"\t- ...etc\n"
|
565
|
+
"Provided:\n{dvminmax}"
|
566
|
+
)
|
567
|
+
raise Exception(msg)
|
581
568
|
|
582
|
-
|
569
|
+
dvminmax2 = {}
|
570
|
+
for ii, (k0, k1) in enumerate(lk):
|
571
|
+
|
572
|
+
kk = 'data' if k1 == 'data' else k0
|
573
|
+
dvminmax2[k1] = {'min': None, 'max': None}
|
574
|
+
|
575
|
+
# data
|
576
|
+
kdata = key if ii == 0 else dkeys[k1]['data']
|
577
|
+
iok = np.isfinite(coll2.ddata[kdata]['data'])
|
578
|
+
nanmin = np.min(coll2.ddata[kdata]['data'][iok])
|
579
|
+
nanmax = np.max(coll2.ddata[kdata]['data'][iok])
|
583
580
|
delta = nanmax - nanmin
|
584
|
-
diverging = (
|
585
|
-
nanmin * nanmax < 0
|
586
|
-
and min(abs(nanmin), abs(nanmax)) > 0.1*delta
|
587
|
-
)
|
588
581
|
|
589
|
-
|
590
|
-
if
|
591
|
-
|
582
|
+
# diverging
|
583
|
+
if k1 == 'data':
|
584
|
+
diverging = (
|
585
|
+
nanmin * nanmax < 0
|
586
|
+
and min(abs(nanmin), abs(nanmax)) > 0.1*delta
|
587
|
+
)
|
588
|
+
|
589
|
+
if diverging and ndim >= 2:
|
590
|
+
vv = max(abs(nanmin), abs(nanmax))
|
591
|
+
nanmin = -vv
|
592
|
+
nanmax = vv
|
593
|
+
|
594
|
+
# margin on min max
|
595
|
+
if k1 in ['X', 'Y']:
|
596
|
+
margin = dkeys[k1]['d2']
|
592
597
|
else:
|
593
|
-
|
598
|
+
margin = 0.02*delta
|
594
599
|
|
595
|
-
|
596
|
-
|
600
|
+
# vmin, vmax
|
601
|
+
if dvminmax is None or dvminmax.get(kk, {}).get('min') is None:
|
602
|
+
dvminmax2[k1]['min'] = nanmin - margin
|
603
|
+
else:
|
604
|
+
dvminmax2[k1]['min'] = dvminmax[kk]['min']
|
597
605
|
|
598
|
-
|
599
|
-
if
|
600
|
-
|
601
|
-
vmin = 0
|
602
|
-
else:
|
603
|
-
vmin = -max(abs(nanmin), nanmax)
|
606
|
+
|
607
|
+
if dvminmax is None or dvminmax.get(kk, {}).get('max') is None:
|
608
|
+
dvminmax2[k1]['max'] = nanmax + margin
|
604
609
|
else:
|
605
|
-
|
610
|
+
dvminmax2[k1]['max'] = dvminmax[kk]['max']
|
606
611
|
|
607
|
-
|
612
|
+
dvminmax = dvminmax2
|
613
|
+
|
614
|
+
# cmap
|
615
|
+
if cmap is None:
|
608
616
|
if diverging:
|
609
|
-
|
617
|
+
cmap = 'seismic'
|
610
618
|
else:
|
611
|
-
|
612
|
-
|
613
|
-
# ymin, ymax
|
614
|
-
if ymin is None:
|
615
|
-
ymin = vmin
|
616
|
-
if ymax is None:
|
617
|
-
ymax = vmax
|
619
|
+
cmap = 'viridis'
|
618
620
|
|
619
621
|
# -------
|
620
622
|
# aspect
|
@@ -644,9 +646,8 @@ def _plot_as_array_check(
|
|
644
646
|
elif mcolors.is_color_like(color_dict):
|
645
647
|
color_dict = {k0: [color_dict]*nmax for k0 in groups}
|
646
648
|
|
647
|
-
|
648
649
|
cdef = {
|
649
|
-
k0:
|
650
|
+
k0: _LCOLOR[0] for ii, k0 in enumerate(groups)
|
650
651
|
}
|
651
652
|
color_dict = _generic_check._check_var(
|
652
653
|
color_dict, 'color_dict',
|
@@ -689,7 +690,7 @@ def _plot_as_array_check(
|
|
689
690
|
)
|
690
691
|
|
691
692
|
# bck
|
692
|
-
if
|
693
|
+
if coll2.ddata[key]['data'].size > 10000:
|
693
694
|
bckdef = 'envelop'
|
694
695
|
else:
|
695
696
|
bckdef = 'lines'
|
@@ -707,6 +708,24 @@ def _plot_as_array_check(
|
|
707
708
|
allowed=['nearest', 'bilinear', 'bicubic']
|
708
709
|
)
|
709
710
|
|
711
|
+
# --------------------
|
712
|
+
# figure-specific
|
713
|
+
# -------------------
|
714
|
+
|
715
|
+
# wintit
|
716
|
+
if wintit is not None:
|
717
|
+
wintit = _generic_check._check_var(
|
718
|
+
wintit, 'wintit',
|
719
|
+
types=str,
|
720
|
+
)
|
721
|
+
|
722
|
+
# tit
|
723
|
+
tit = _generic_check._check_var(
|
724
|
+
tit, 'tit',
|
725
|
+
default=key,
|
726
|
+
types=str,
|
727
|
+
)
|
728
|
+
|
710
729
|
# dcolorbar
|
711
730
|
defdcolorbar = {
|
712
731
|
# 'location': 'right',
|
@@ -746,27 +765,25 @@ def _plot_as_array_check(
|
|
746
765
|
)
|
747
766
|
|
748
767
|
return (
|
749
|
-
key,
|
750
|
-
|
751
|
-
keyY, refY, islogY,
|
752
|
-
keyZ, refZ, islogZ,
|
753
|
-
keyU, refU, islogU,
|
768
|
+
key, lab,
|
769
|
+
dkeys,
|
754
770
|
sameref, ind,
|
755
|
-
|
756
|
-
|
757
|
-
aspect, nmax,
|
771
|
+
dscale, dvminmax,
|
772
|
+
cmap, aspect, nmax,
|
758
773
|
color_dict,
|
759
774
|
rotation,
|
760
775
|
inverty,
|
761
776
|
bck,
|
762
777
|
interp,
|
778
|
+
wintit, tit,
|
763
779
|
dcolorbar, dleg, label, connect,
|
764
780
|
)
|
765
781
|
|
766
782
|
|
767
783
|
def get_keyrefs(
|
768
|
-
|
784
|
+
coll2=None,
|
769
785
|
refs=None,
|
786
|
+
key=None,
|
770
787
|
keyX=None,
|
771
788
|
keyY=None,
|
772
789
|
keyZ=None,
|
@@ -776,13 +793,14 @@ def get_keyrefs(
|
|
776
793
|
):
|
777
794
|
|
778
795
|
# -----------
|
779
|
-
#
|
796
|
+
# initialize
|
797
|
+
# -----------
|
780
798
|
|
781
799
|
dk = {
|
782
|
-
'
|
783
|
-
'
|
784
|
-
'
|
785
|
-
'
|
800
|
+
'X': {'key': keyX, 'ref': None, 'islog': None, 'dim_min': 1},
|
801
|
+
'Y': {'key': keyY, 'ref': None, 'islog': None, 'dim_min': 2},
|
802
|
+
'Z': {'key': keyZ, 'ref': None, 'islog': None, 'dim_min': 3},
|
803
|
+
'U': {'key': keyU, 'ref': None, 'islog': None, 'dim_min': 4},
|
786
804
|
}
|
787
805
|
|
788
806
|
lk_in = sorted([k0 for k0, v0 in dk.items() if v0['key'] is not None])
|
@@ -791,18 +809,27 @@ def get_keyrefs(
|
|
791
809
|
|
792
810
|
# -----------
|
793
811
|
# find order
|
812
|
+
# -----------
|
794
813
|
|
795
814
|
already = []
|
796
815
|
for k0 in lk_in + lk_out:
|
797
816
|
|
817
|
+
if ndim >= 2 and k0 in ['X', 'Y']:
|
818
|
+
uniformi = True
|
819
|
+
monoti = True
|
820
|
+
else:
|
821
|
+
uniformi = uniform
|
822
|
+
monoti = False
|
823
|
+
|
798
824
|
dk[k0]['key'], dk[k0]['ref'], dk[k0]['islog'] = _check_keyXYZ(
|
799
|
-
coll=
|
825
|
+
coll=coll2,
|
800
826
|
refs=refs,
|
801
827
|
keyX=dk[k0]['key'],
|
802
|
-
keyXstr=k0,
|
828
|
+
keyXstr=f"key{k0}",
|
803
829
|
ndim=ndim,
|
804
830
|
dim_min=dk[k0]['dim_min'],
|
805
|
-
uniform=
|
831
|
+
uniform=uniformi,
|
832
|
+
monot=monoti,
|
806
833
|
already=already,
|
807
834
|
)
|
808
835
|
|
@@ -812,2253 +839,71 @@ def get_keyrefs(
|
|
812
839
|
lk_done = [v0['ref'] for k0, v0 in dk.items() if v0['key'] is not None]
|
813
840
|
sameref = len(set(lk_done)) < ndim
|
814
841
|
|
815
|
-
return
|
816
|
-
dk['keyX']['key'], dk['keyX']['ref'], dk['keyX']['islog'],
|
817
|
-
dk['keyY']['key'], dk['keyY']['ref'], dk['keyY']['islog'],
|
818
|
-
dk['keyZ']['key'], dk['keyZ']['ref'], dk['keyZ']['islog'],
|
819
|
-
dk['keyU']['key'], dk['keyU']['ref'], dk['keyU']['islog'],
|
820
|
-
sameref,
|
821
|
-
)
|
822
|
-
|
823
|
-
|
824
|
-
def _get_str_datadlab(keyX=None, nx=None, islogX=None, coll=None):
|
825
|
-
|
826
|
-
keyX2 = keyX
|
827
|
-
xstr = keyX != 'index' and coll.ddata[keyX]['data'].dtype.type == np.str_
|
828
|
-
if keyX == 'index':
|
829
|
-
dataX = np.arange(0, nx)
|
830
|
-
labX = keyX
|
831
|
-
dX2 = 0.5
|
832
|
-
elif xstr:
|
833
|
-
dataX = np.arange(0, nx)
|
834
|
-
labX = ''
|
835
|
-
dX2 = 0.5
|
836
|
-
else:
|
837
|
-
if islogX is True:
|
838
|
-
keyX2 = f"{keyX}-log10"
|
839
|
-
coll.add_data(
|
840
|
-
key=keyX2,
|
841
|
-
data=np.log10(coll.ddata[keyX]['data']),
|
842
|
-
ref=coll.ddata[keyX]['ref'],
|
843
|
-
)
|
844
|
-
labX = r"$\log_{10}$" + f"({keyX} ({coll._ddata[keyX]['units']}))"
|
845
|
-
dataX = coll.ddata[keyX2]['data']
|
846
|
-
else:
|
847
|
-
labX = f"{keyX} ({coll._ddata[keyX]['units']})"
|
848
|
-
dataX = coll.ddata[keyX]['data']
|
849
|
-
dX2 = np.nanmean(np.diff(dataX)) / 2.
|
850
|
-
|
851
|
-
return keyX2, xstr, dataX, dX2, labX
|
852
|
-
|
853
|
-
|
854
|
-
# #############################################################################
|
855
|
-
# #############################################################################
|
856
|
-
# plot_as_array: 1d
|
857
|
-
# #############################################################################
|
858
|
-
|
859
|
-
|
860
|
-
def plot_as_array_1d(
|
861
|
-
# parameters
|
862
|
-
coll=None,
|
863
|
-
key=None,
|
864
|
-
keyX=None,
|
865
|
-
refX=None,
|
866
|
-
islogX=None,
|
867
|
-
ind=None,
|
868
|
-
vmin=None,
|
869
|
-
vmax=None,
|
870
|
-
cmap=None,
|
871
|
-
ymin=None,
|
872
|
-
ymax=None,
|
873
|
-
aspect=None,
|
874
|
-
nmax=None,
|
875
|
-
color_dict=None,
|
876
|
-
lkeys=None,
|
877
|
-
bstr_dict=None,
|
878
|
-
rotation=None,
|
879
|
-
# figure-specific
|
880
|
-
dax=None,
|
881
|
-
dmargin=None,
|
882
|
-
fs=None,
|
883
|
-
dcolorbar=None,
|
884
|
-
dleg=None,
|
885
|
-
):
|
886
|
-
|
887
|
-
# --------------
|
888
|
-
# Prepare data
|
889
|
-
|
890
|
-
data = coll.ddata[key]['data']
|
891
|
-
if hasattr(data, 'nnz'):
|
892
|
-
data = data.toarray()
|
893
|
-
assert data.ndim == len(coll.ddata[key]['ref']) == 1
|
894
|
-
n0, = data.shape
|
842
|
+
return dk, sameref
|
895
843
|
|
896
|
-
keyX, xstr, dataX, dX2, labX = _get_str_datadlab(
|
897
|
-
keyX=keyX, nx=n0, islogX=islogX, coll=coll,
|
898
|
-
)
|
899
|
-
ref = coll._ddata[key]['ref'][0]
|
900
|
-
units = coll._ddata[key]['units']
|
901
|
-
lab0 = f'ind ({ref})'
|
902
|
-
lab1 = f'{key} ({units})'
|
903
|
-
|
904
|
-
# --------------
|
905
|
-
# plot - prepare
|
906
844
|
|
907
|
-
|
845
|
+
def get_data_str(dk=None, coll2=None, key=None, ndim=None, dscale=None):
|
908
846
|
|
909
|
-
|
910
|
-
|
847
|
+
# ---------------------------
|
848
|
+
# add info about axis & slicing
|
849
|
+
# ---------------------------
|
911
850
|
|
912
|
-
|
913
|
-
|
914
|
-
|
915
|
-
'bottom': 0.10, 'top': 0.90,
|
916
|
-
'hspace': 0.15, 'wspace': 0.2,
|
917
|
-
}
|
851
|
+
lorder = ['X', 'Y', 'Z', 'U']
|
852
|
+
refs = coll2.ddata[key]['ref']
|
853
|
+
for k0, v0 in dk.items():
|
918
854
|
|
919
|
-
|
920
|
-
|
921
|
-
|
922
|
-
ax0 = fig.add_subplot(gs[0, :3], aspect='auto')
|
923
|
-
ax0.set_ylabel(lab1)
|
924
|
-
ax0.set_title(key, size=14, fontweight='bold')
|
925
|
-
if xstr:
|
926
|
-
ax0.set_xticks(dataX)
|
927
|
-
ax0.set_xticklabels(
|
928
|
-
coll.ddata[keyX]['data'],
|
929
|
-
rotation=rotation,
|
930
|
-
)
|
931
|
-
else:
|
932
|
-
ax0.set_xlabel(lab0)
|
855
|
+
if v0['key'] is None:
|
856
|
+
continue
|
933
857
|
|
934
|
-
|
935
|
-
|
936
|
-
|
858
|
+
# axis and size
|
859
|
+
dk[k0]['axis'] = refs.index(v0['ref'])
|
860
|
+
dk[k0]['nn'] = coll2.ddata[key]['data'].shape[dk[k0]['axis']]
|
937
861
|
|
938
|
-
|
939
|
-
|
940
|
-
'text': {'handle': ax1},
|
941
|
-
}
|
862
|
+
# slicing and labels
|
863
|
+
for k0, v0 in dk.items():
|
942
864
|
|
943
|
-
|
865
|
+
if v0['key'] is None:
|
866
|
+
continue
|
944
867
|
|
945
|
-
|
946
|
-
|
947
|
-
|
948
|
-
|
949
|
-
|
950
|
-
|
951
|
-
|
952
|
-
|
953
|
-
ax.plot(
|
954
|
-
dataX,
|
955
|
-
data,
|
956
|
-
color='k',
|
957
|
-
marker='.',
|
958
|
-
ms=6,
|
868
|
+
laxis = [
|
869
|
+
dk[k1]['axis'] for k1 in lorder
|
870
|
+
if k1 != k0 and dk[k1]['key'] is not None
|
871
|
+
]
|
872
|
+
dk[k0]['sli'] = _class1_compute._get_slice(
|
873
|
+
laxis=laxis,
|
874
|
+
ndim=ndim,
|
959
875
|
)
|
960
876
|
|
961
|
-
#
|
962
|
-
|
963
|
-
|
964
|
-
|
965
|
-
|
966
|
-
|
967
|
-
|
968
|
-
|
969
|
-
|
970
|
-
'ref'
|
971
|
-
|
972
|
-
|
973
|
-
},
|
974
|
-
}
|
975
|
-
|
976
|
-
# ----------------
|
977
|
-
# plot mobile part
|
978
|
-
|
979
|
-
axtype = 'matrix'
|
980
|
-
lkax = [kk for kk, vv in dax.items() if axtype in vv['type']]
|
981
|
-
for kax in lkax:
|
982
|
-
ax = dax[kax]['handle']
|
983
|
-
|
984
|
-
# ind0, ind1
|
985
|
-
for ii in range(nmax):
|
986
|
-
lv = ax.axvline(ind[0], c=color_dict['X'][ii], lw=1., ls='-')
|
987
|
-
|
988
|
-
# update coll
|
989
|
-
kv = f'{key}_v{ii:02.0f}'
|
990
|
-
coll.add_mobile(
|
991
|
-
key=kv,
|
992
|
-
handle=lv,
|
993
|
-
refs=ref,
|
994
|
-
data=keyX,
|
995
|
-
dtype='xdata',
|
996
|
-
axes=kax,
|
997
|
-
ind=ii,
|
998
|
-
)
|
999
|
-
|
1000
|
-
dax[kax].update(refx=[ref], datax=[keyX])
|
1001
|
-
|
1002
|
-
# ---------
|
1003
|
-
# add text
|
1004
|
-
|
1005
|
-
kax = 'text'
|
1006
|
-
if dax.get(kax) is not None:
|
1007
|
-
ax = dax[kax]['handle']
|
1008
|
-
|
1009
|
-
_plot_text.plot_text(
|
1010
|
-
coll=coll,
|
1011
|
-
kax=kax,
|
1012
|
-
key=key,
|
1013
|
-
ax=ax,
|
1014
|
-
ref=ref,
|
1015
|
-
group='X',
|
1016
|
-
ind=ind[0],
|
1017
|
-
lkeys=lkeys,
|
1018
|
-
nmax=nmax,
|
1019
|
-
color_dict=color_dict,
|
1020
|
-
bstr_dict=bstr_dict,
|
877
|
+
# labels
|
878
|
+
(
|
879
|
+
dk[k0]['data'],
|
880
|
+
dk[k0]['str'],
|
881
|
+
dk[k0]['d2'],
|
882
|
+
dk[k0]['lab'],
|
883
|
+
) = _uplot._get_str_datadlab(
|
884
|
+
keyX=dk[k0]['key'],
|
885
|
+
nx=dk[k0]['nn'],
|
886
|
+
refX=dk[k0]['ref'],
|
887
|
+
islogX=dscale[k0] == 'log',
|
888
|
+
coll=coll2,
|
1021
889
|
)
|
1022
890
|
|
1023
|
-
|
1024
|
-
|
1025
|
-
|
1026
|
-
|
1027
|
-
|
1028
|
-
|
1029
|
-
|
1030
|
-
|
1031
|
-
|
1032
|
-
|
1033
|
-
|
1034
|
-
|
1035
|
-
|
1036
|
-
|
1037
|
-
|
1038
|
-
keyZ=None,
|
1039
|
-
refX=None,
|
1040
|
-
refY=None,
|
1041
|
-
refZ=None,
|
1042
|
-
islogX=None,
|
1043
|
-
islogY=None,
|
1044
|
-
islogZ=None,
|
1045
|
-
ind=None,
|
1046
|
-
vmin=None,
|
1047
|
-
vmax=None,
|
1048
|
-
cmap=None,
|
1049
|
-
ymin=None,
|
1050
|
-
ymax=None,
|
1051
|
-
aspect=None,
|
1052
|
-
nmax=None,
|
1053
|
-
color_dict=None,
|
1054
|
-
lkeys=None,
|
1055
|
-
bstr_dict=None,
|
1056
|
-
rotation=None,
|
1057
|
-
inverty=None,
|
1058
|
-
interp=None,
|
1059
|
-
# figure-specific
|
1060
|
-
dax=None,
|
1061
|
-
dmargin=None,
|
1062
|
-
fs=None,
|
1063
|
-
dcolorbar=None,
|
1064
|
-
dleg=None,
|
1065
|
-
interactive=None,
|
1066
|
-
):
|
1067
|
-
|
1068
|
-
# --------------
|
1069
|
-
# Prepare data
|
1070
|
-
|
1071
|
-
data = coll.ddata[key]['data']
|
1072
|
-
refs = coll.ddata[key]['ref']
|
1073
|
-
if hasattr(data, 'nnz'):
|
1074
|
-
data = data.toarray()
|
1075
|
-
assert data.ndim == len(coll.ddata[key]['ref']) == 2
|
1076
|
-
n0, n1 = data.shape
|
1077
|
-
|
1078
|
-
# check if transpose is necessary
|
1079
|
-
if refs.index(refX) == 0:
|
1080
|
-
dataplot = data.T
|
1081
|
-
nx, ny = n0, n1
|
1082
|
-
axisX, axisY = 0, 1
|
891
|
+
# -----------
|
892
|
+
# check data
|
893
|
+
|
894
|
+
units = str(coll2.ddata[key]['units'])
|
895
|
+
if dscale['data'] == 'log':
|
896
|
+
key2 = f"{key}_log10"
|
897
|
+
coll2.add_data(
|
898
|
+
key=key2,
|
899
|
+
data=np.log10(coll2.ddata[key]['data']),
|
900
|
+
ref=coll2.ddata[key]['ref'],
|
901
|
+
units=units,
|
902
|
+
)
|
903
|
+
coll2.remove_data(key, propagate=False)
|
904
|
+
lab = r"$\log_{10}$" + f"({key} ({units}))"
|
905
|
+
key = key2
|
1083
906
|
else:
|
1084
|
-
|
1085
|
-
nx, ny = n1, n0
|
1086
|
-
axisX, axisY = 1, 0
|
1087
|
-
|
1088
|
-
# -----------------
|
1089
|
-
# prepare slicing
|
1090
|
-
|
1091
|
-
# here slice X => slice in dim Y and vice-versa
|
1092
|
-
sliX = _class1_compute._get_slice(laxis=[1-axisX], ndim=2)
|
1093
|
-
sliY = _class1_compute._get_slice(laxis=[1-axisY], ndim=2)
|
1094
|
-
|
1095
|
-
# ----------------------
|
1096
|
-
# labels and data
|
1097
|
-
|
1098
|
-
keyX, xstr, dataX, dX2, labX = _get_str_datadlab(
|
1099
|
-
keyX=keyX, nx=nx, islogX=islogX, coll=coll,
|
1100
|
-
)
|
1101
|
-
keyY, ystr, dataY, dY2, labY = _get_str_datadlab(
|
1102
|
-
keyX=keyY, nx=ny, islogX=islogY, coll=coll,
|
1103
|
-
)
|
1104
|
-
|
1105
|
-
extent = (
|
1106
|
-
dataX[0] - dX2, dataX[-1] + dX2,
|
1107
|
-
dataY[0] - dY2, dataY[-1] + dY2,
|
1108
|
-
)
|
1109
|
-
|
1110
|
-
# --------------
|
1111
|
-
# plot - prepare
|
1112
|
-
|
1113
|
-
if dax is None:
|
1114
|
-
|
1115
|
-
if fs is None:
|
1116
|
-
fs = (14, 8)
|
1117
|
-
|
1118
|
-
if dmargin is None:
|
1119
|
-
dmargin = {
|
1120
|
-
'left': 0.05, 'right': 0.95,
|
1121
|
-
'bottom': 0.06, 'top': 0.90,
|
1122
|
-
'hspace': 0.2, 'wspace': 0.3,
|
1123
|
-
}
|
1124
|
-
|
1125
|
-
fig = plt.figure(figsize=fs)
|
1126
|
-
fig.suptitle(key, size=14, fontweight='bold')
|
1127
|
-
gs = gridspec.GridSpec(ncols=4, nrows=6, **dmargin)
|
1128
|
-
|
1129
|
-
# axes for image
|
1130
|
-
ax0 = fig.add_subplot(gs[:4, :2], aspect='auto')
|
1131
|
-
ax0.tick_params(
|
1132
|
-
axis="x",
|
1133
|
-
bottom=False, top=True,
|
1134
|
-
labelbottom=False, labeltop=True,
|
1135
|
-
)
|
1136
|
-
ax0.xaxis.set_label_position('top')
|
1137
|
-
|
1138
|
-
# axes for vertical profile
|
1139
|
-
ax1 = fig.add_subplot(gs[:4, 2], sharey=ax0)
|
1140
|
-
ax1.set_xlabel('data')
|
1141
|
-
ax1.set_ylabel(labY)
|
1142
|
-
ax1.tick_params(
|
1143
|
-
axis="y",
|
1144
|
-
left=False, right=True,
|
1145
|
-
labelleft=False, labelright=True,
|
1146
|
-
)
|
1147
|
-
ax1.tick_params(
|
1148
|
-
axis="x",
|
1149
|
-
bottom=False, top=True,
|
1150
|
-
labelbottom=False, labeltop=True,
|
1151
|
-
)
|
1152
|
-
ax1.yaxis.set_label_position('right')
|
1153
|
-
ax1.xaxis.set_label_position('top')
|
1154
|
-
|
1155
|
-
# axes for horizontal profile
|
1156
|
-
ax2 = fig.add_subplot(gs[4:, :2], sharex=ax0)
|
1157
|
-
ax2.set_ylabel('data')
|
1158
|
-
ax2.set_xlabel(labX)
|
1159
|
-
|
1160
|
-
if np.isfinite(ymin):
|
1161
|
-
ax1.set_xlim(left=ymin)
|
1162
|
-
ax2.set_ylim(bottom=ymin)
|
1163
|
-
if np.isfinite(ymax):
|
1164
|
-
ax1.set_xlim(right=ymax)
|
1165
|
-
ax2.set_ylim(top=ymax)
|
1166
|
-
|
1167
|
-
|
1168
|
-
# axes for text
|
1169
|
-
ax3 = fig.add_subplot(gs[:3, 3], frameon=False)
|
1170
|
-
ax3.set_xticks([])
|
1171
|
-
ax3.set_yticks([])
|
1172
|
-
ax4 = fig.add_subplot(gs[3:, 3], frameon=False)
|
1173
|
-
ax4.set_xticks([])
|
1174
|
-
ax4.set_yticks([])
|
1175
|
-
|
1176
|
-
if xstr:
|
1177
|
-
ax0.set_xticks(dataX)
|
1178
|
-
ax0.set_xticklabels(
|
1179
|
-
coll.ddata[keyX]['data'],
|
1180
|
-
rotation=rotation,
|
1181
|
-
horizontalalignment='left',
|
1182
|
-
verticalalignment='bottom',
|
1183
|
-
)
|
1184
|
-
ax2.set_xticks(dataX)
|
1185
|
-
ax2.set_xticklabels(
|
1186
|
-
coll.ddata[keyX]['data'],
|
1187
|
-
rotation=rotation,
|
1188
|
-
horizontalalignment='right',
|
1189
|
-
verticalalignment='top',
|
1190
|
-
)
|
1191
|
-
else:
|
1192
|
-
ax0.set_xlabel(labX)
|
1193
|
-
ax2.set_xlabel(labX)
|
1194
|
-
|
1195
|
-
if ystr:
|
1196
|
-
ax0.set_yticks(dataY)
|
1197
|
-
ax0.set_yticklabels(
|
1198
|
-
coll.ddata[keyY]['data'],
|
1199
|
-
rotation=rotation,
|
1200
|
-
horizontalalignment='right',
|
1201
|
-
verticalalignment='top',
|
1202
|
-
)
|
1203
|
-
ax1.set_yticks(dataY)
|
1204
|
-
ax1.set_yticklabels(
|
1205
|
-
coll.ddata[keyY]['data'],
|
1206
|
-
rotation=rotation,
|
1207
|
-
horizontalalignment='left',
|
1208
|
-
verticalalignment='bottom',
|
1209
|
-
)
|
1210
|
-
else:
|
1211
|
-
ax0.set_ylabel(labY)
|
1212
|
-
ax1.set_ylabel(labY)
|
1213
|
-
|
1214
|
-
dax = {
|
1215
|
-
# data
|
1216
|
-
'matrix': {'handle': ax0, 'inverty': inverty},
|
1217
|
-
'vertical': {'handle': ax1, 'inverty': inverty},
|
1218
|
-
'horizontal': {'handle': ax2},
|
1219
|
-
# text
|
1220
|
-
'text0': {'handle': ax3},
|
1221
|
-
'text1': {'handle': ax4},
|
1222
|
-
}
|
1223
|
-
|
1224
|
-
dax = _generic_check._check_dax(dax=dax, main='matrix')
|
1225
|
-
|
1226
|
-
# ---------------
|
1227
|
-
# plot fixed part
|
1228
|
-
|
1229
|
-
axtype = 'matrix'
|
1230
|
-
kax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
1231
|
-
if len(kax) == 1:
|
1232
|
-
kax = kax[0]
|
1233
|
-
ax = dax[kax]['handle']
|
1234
|
-
|
1235
|
-
im = ax.imshow(
|
1236
|
-
dataplot,
|
1237
|
-
extent=extent,
|
1238
|
-
interpolation=interp,
|
1239
|
-
origin='lower',
|
1240
|
-
aspect=aspect,
|
1241
|
-
cmap=cmap,
|
1242
|
-
vmin=vmin,
|
1243
|
-
vmax=vmax,
|
1244
|
-
)
|
1245
|
-
if inverty is True:
|
1246
|
-
ax.invert_yaxis()
|
1247
|
-
|
1248
|
-
# ----------------
|
1249
|
-
# define and set dgroup
|
1250
|
-
|
1251
|
-
dgroup = {
|
1252
|
-
'X': {
|
1253
|
-
'ref': [refX],
|
1254
|
-
'data': ['index'],
|
1255
|
-
'nmax': nmax,
|
1256
|
-
},
|
1257
|
-
'Y': {
|
1258
|
-
'ref': [refY],
|
1259
|
-
'data': ['index'],
|
1260
|
-
'nmax': nmax,
|
1261
|
-
},
|
1262
|
-
}
|
1263
|
-
|
1264
|
-
# ----------------
|
1265
|
-
# plot mobile part
|
1266
|
-
|
1267
|
-
axtype = 'matrix'
|
1268
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
1269
|
-
if len(lax) == 1:
|
1270
|
-
kax = lax[0]
|
1271
|
-
ax = dax[kax]['handle']
|
1272
|
-
|
1273
|
-
# ind0, ind1
|
1274
|
-
axtype = 'vertical'
|
1275
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
1276
|
-
if len(lax) == 1:
|
1277
|
-
for ii in range(nmax):
|
1278
|
-
lh = ax.axhline(
|
1279
|
-
dataY[ind[1]], c=color_dict['X'][ii], lw=1., ls='-',
|
1280
|
-
)
|
907
|
+
lab = f"{key} ({units})"
|
1281
908
|
|
1282
|
-
|
1283
|
-
kh = f'{key}_h{ii:02.0f}'
|
1284
|
-
coll.add_mobile(
|
1285
|
-
key=kh,
|
1286
|
-
handle=lh,
|
1287
|
-
refs=refY,
|
1288
|
-
data=keyY,
|
1289
|
-
dtype='ydata',
|
1290
|
-
axes=kax,
|
1291
|
-
ind=ii,
|
1292
|
-
)
|
1293
|
-
|
1294
|
-
# for ax clic
|
1295
|
-
ax_refx = [refX]
|
1296
|
-
ax_datax = [keyX]
|
1297
|
-
else:
|
1298
|
-
# for ax clic
|
1299
|
-
ax_refx = None
|
1300
|
-
ax_datax = None
|
1301
|
-
|
1302
|
-
# ind0
|
1303
|
-
axtype = 'horizontal'
|
1304
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
1305
|
-
if len(lax) == 1:
|
1306
|
-
for ii in range(nmax):
|
1307
|
-
lv = ax.axvline(
|
1308
|
-
dataX[ind[0]], c=color_dict['Y'][ii], lw=1., ls='-',
|
1309
|
-
)
|
1310
|
-
|
1311
|
-
# update coll
|
1312
|
-
kv = f'{key}_v{ii:02.0f}'
|
1313
|
-
coll.add_mobile(
|
1314
|
-
key=kv,
|
1315
|
-
handle=lv,
|
1316
|
-
refs=refX,
|
1317
|
-
data=keyX,
|
1318
|
-
dtype='xdata',
|
1319
|
-
axes=kax,
|
1320
|
-
ind=ii,
|
1321
|
-
)
|
1322
|
-
|
1323
|
-
# for ax clic
|
1324
|
-
ax_refy = [refY]
|
1325
|
-
ax_datay = [keyY]
|
1326
|
-
else:
|
1327
|
-
# for ax clic
|
1328
|
-
ax_refy = None
|
1329
|
-
ax_datay = None
|
1330
|
-
|
1331
|
-
dax[kax].update(
|
1332
|
-
refx=ax_refx,
|
1333
|
-
datax=ax_datax,
|
1334
|
-
refy=ax_refy,
|
1335
|
-
datay=ax_datay,
|
1336
|
-
)
|
1337
|
-
|
1338
|
-
axtype = 'vertical'
|
1339
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
1340
|
-
if len(lax) == 1:
|
1341
|
-
kax = lax[0]
|
1342
|
-
ax = dax[kax]['handle']
|
1343
|
-
|
1344
|
-
for ii in range(nmax):
|
1345
|
-
l0, = ax.plot(
|
1346
|
-
data[sliY(ind[0])],
|
1347
|
-
dataY,
|
1348
|
-
ls='-',
|
1349
|
-
marker='.',
|
1350
|
-
lw=1.,
|
1351
|
-
color=color_dict['Y'][ii],
|
1352
|
-
label=f'ind0 = {ind[0]}',
|
1353
|
-
)
|
1354
|
-
|
1355
|
-
km = f'{key}_vprof{ii:02.0f}'
|
1356
|
-
coll.add_mobile(
|
1357
|
-
key=km,
|
1358
|
-
handle=l0,
|
1359
|
-
refs=(refX,),
|
1360
|
-
data=key,
|
1361
|
-
dtype='xdata',
|
1362
|
-
axes=kax,
|
1363
|
-
ind=ii,
|
1364
|
-
)
|
1365
|
-
|
1366
|
-
l0 = ax.axhline(
|
1367
|
-
dataY[ind[1]],
|
1368
|
-
c=color_dict['X'][ii],
|
1369
|
-
)
|
1370
|
-
km = f'{key}_lh-v{ii:02.0f}'
|
1371
|
-
coll.add_mobile(
|
1372
|
-
key=km,
|
1373
|
-
handle=l0,
|
1374
|
-
refs=(refY,),
|
1375
|
-
data=keyY,
|
1376
|
-
dtype='ydata',
|
1377
|
-
axes=kax,
|
1378
|
-
ind=ii,
|
1379
|
-
)
|
1380
|
-
|
1381
|
-
dax[kax].update(refy=[refY], datay=[keyY])
|
1382
|
-
|
1383
|
-
axtype = 'horizontal'
|
1384
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
1385
|
-
if len(lax) == 1:
|
1386
|
-
kax = lax[0]
|
1387
|
-
ax = dax[kax]['handle']
|
1388
|
-
|
1389
|
-
for ii in range(nmax):
|
1390
|
-
l1, = ax.plot(
|
1391
|
-
dataX,
|
1392
|
-
data[sliX(ind[1])],
|
1393
|
-
ls='-',
|
1394
|
-
marker='.',
|
1395
|
-
lw=1.,
|
1396
|
-
color=color_dict['X'][ii],
|
1397
|
-
label=f'ind1 = {ind[1]}',
|
1398
|
-
)
|
1399
|
-
|
1400
|
-
km = f'{key}_hprof{ii:02.0f}'
|
1401
|
-
coll.add_mobile(
|
1402
|
-
key=km,
|
1403
|
-
handle=l1,
|
1404
|
-
refs=(refY,),
|
1405
|
-
data=[key],
|
1406
|
-
dtype='ydata',
|
1407
|
-
axes=kax,
|
1408
|
-
ind=ii,
|
1409
|
-
)
|
1410
|
-
|
1411
|
-
l0 = ax.axvline(
|
1412
|
-
dataX[ind[0]],
|
1413
|
-
c=color_dict['Y'][ii],
|
1414
|
-
)
|
1415
|
-
km = f'{key}_lv-h{ii:02.0f}'
|
1416
|
-
coll.add_mobile(
|
1417
|
-
key=km,
|
1418
|
-
handle=l0,
|
1419
|
-
refs=(refX,),
|
1420
|
-
data=keyX,
|
1421
|
-
dtype='xdata',
|
1422
|
-
axes=kax,
|
1423
|
-
ind=ii,
|
1424
|
-
)
|
1425
|
-
|
1426
|
-
dax[kax].update(refx=[refX], datax=[keyX])
|
1427
|
-
|
1428
|
-
# ---------
|
1429
|
-
# add text
|
1430
|
-
|
1431
|
-
axtype = 'text0'
|
1432
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
1433
|
-
if len(lax) == 1:
|
1434
|
-
kax = lax[0]
|
1435
|
-
ax = dax[kax]['handle']
|
1436
|
-
|
1437
|
-
_plot_text.plot_text(
|
1438
|
-
coll=coll,
|
1439
|
-
kax=kax,
|
1440
|
-
key=key,
|
1441
|
-
ax=ax,
|
1442
|
-
ref=refX,
|
1443
|
-
group='X',
|
1444
|
-
ind=ind[0],
|
1445
|
-
lkeys=lkeys,
|
1446
|
-
nmax=nmax,
|
1447
|
-
color_dict=color_dict,
|
1448
|
-
bstr_dict=bstr_dict,
|
1449
|
-
)
|
1450
|
-
|
1451
|
-
axtype = 'text1'
|
1452
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
1453
|
-
if len(lax) == 1:
|
1454
|
-
kax = lax[0]
|
1455
|
-
ax = dax[kax]['handle']
|
1456
|
-
|
1457
|
-
_plot_text.plot_text(
|
1458
|
-
coll=coll,
|
1459
|
-
kax=kax,
|
1460
|
-
key=key,
|
1461
|
-
ax=ax,
|
1462
|
-
ref=refY,
|
1463
|
-
group='Y',
|
1464
|
-
ind=ind[1],
|
1465
|
-
lkeys=lkeys,
|
1466
|
-
nmax=nmax,
|
1467
|
-
color_dict=color_dict,
|
1468
|
-
bstr_dict=bstr_dict,
|
1469
|
-
)
|
1470
|
-
|
1471
|
-
return coll, dax, dgroup
|
1472
|
-
|
1473
|
-
|
1474
|
-
# #############################################################################
|
1475
|
-
# #############################################################################
|
1476
|
-
# plot_as_array: 3d
|
1477
|
-
# #############################################################################
|
1478
|
-
|
1479
|
-
|
1480
|
-
def plot_as_array_3d(
|
1481
|
-
# parameters
|
1482
|
-
coll=None,
|
1483
|
-
key=None,
|
1484
|
-
keyX=None,
|
1485
|
-
keyY=None,
|
1486
|
-
keyZ=None,
|
1487
|
-
refX=None,
|
1488
|
-
refY=None,
|
1489
|
-
refZ=None,
|
1490
|
-
islogX=None,
|
1491
|
-
islogY=None,
|
1492
|
-
islogZ=None,
|
1493
|
-
ind=None,
|
1494
|
-
vmin=None,
|
1495
|
-
vmax=None,
|
1496
|
-
cmap=None,
|
1497
|
-
ymin=None,
|
1498
|
-
ymax=None,
|
1499
|
-
aspect=None,
|
1500
|
-
nmax=None,
|
1501
|
-
color_dict=None,
|
1502
|
-
lkeys=None,
|
1503
|
-
bstr_dict=None,
|
1504
|
-
rotation=None,
|
1505
|
-
inverty=None,
|
1506
|
-
bck=None,
|
1507
|
-
interp=None,
|
1508
|
-
# figure-specific
|
1509
|
-
dax=None,
|
1510
|
-
dmargin=None,
|
1511
|
-
fs=None,
|
1512
|
-
dcolorbar=None,
|
1513
|
-
dleg=None,
|
1514
|
-
label=None,
|
1515
|
-
):
|
1516
|
-
|
1517
|
-
# --------------
|
1518
|
-
# Prepare data
|
1519
|
-
|
1520
|
-
data = coll.ddata[key]['data']
|
1521
|
-
refs = coll.ddata[key]['ref']
|
1522
|
-
if hasattr(data, 'nnz'):
|
1523
|
-
data = data.toarray()
|
1524
|
-
assert data.ndim == len(coll.ddata[key]['ref']) == 3
|
1525
|
-
n0, n1, n2 = data.shape
|
1526
|
-
|
1527
|
-
# check if transpose is necessary
|
1528
|
-
[axX, axY, axZ] = [refs.index(rr) for rr in [refX, refY, refZ]]
|
1529
|
-
[nx, ny, nz] = [data.shape[aa] for aa in [axX, axY, axZ]]
|
1530
|
-
|
1531
|
-
# -----------------
|
1532
|
-
# prepare slicing
|
1533
|
-
|
1534
|
-
# here slice X => slice in dim Y and vice-versa
|
1535
|
-
sliX = _class1_compute._get_slice(laxis=[axY, axZ], ndim=3)
|
1536
|
-
sliY = _class1_compute._get_slice(laxis=[axX, axZ], ndim=3)
|
1537
|
-
sliZ = _class1_compute._get_slice(laxis=[axX, axY], ndim=3)
|
1538
|
-
sliZ2 = _class1_compute._get_slice(laxis=[axZ], ndim=3)
|
1539
|
-
|
1540
|
-
if axX < axY:
|
1541
|
-
datatype = 'data.T'
|
1542
|
-
dataplot = data[sliZ2(ind[2])].T
|
1543
|
-
else:
|
1544
|
-
datatype = 'data'
|
1545
|
-
dataplot = data[sliZ2(ind[2])]
|
1546
|
-
|
1547
|
-
# ----------------------
|
1548
|
-
# labels and data
|
1549
|
-
|
1550
|
-
keyX, xstr, dataX, dX2, labX = _get_str_datadlab(
|
1551
|
-
keyX=keyX, nx=nx, islogX=islogX, coll=coll,
|
1552
|
-
)
|
1553
|
-
keyY, ystr, dataY, dY2, labY = _get_str_datadlab(
|
1554
|
-
keyX=keyY, nx=ny, islogX=islogY, coll=coll,
|
1555
|
-
)
|
1556
|
-
|
1557
|
-
keyZ, zstr, dataZ, dZ2, labZ = _get_str_datadlab(
|
1558
|
-
keyX=keyZ, nx=nz, islogX=islogZ, coll=coll,
|
1559
|
-
)
|
1560
|
-
|
1561
|
-
extent = (
|
1562
|
-
dataX[0] - dX2, dataX[-1] + dX2,
|
1563
|
-
dataY[0] - dY2, dataY[-1] + dY2,
|
1564
|
-
)
|
1565
|
-
|
1566
|
-
# --------------
|
1567
|
-
# plot - prepare
|
1568
|
-
|
1569
|
-
if dax is None:
|
1570
|
-
dax = _plot_as_array_3d_create_axes(
|
1571
|
-
fs=fs,
|
1572
|
-
dmargin=dmargin,
|
1573
|
-
)
|
1574
|
-
|
1575
|
-
dax = _generic_check._check_dax(dax=dax, main='matrix')
|
1576
|
-
|
1577
|
-
if label:
|
1578
|
-
_plot_as_array_3d_label_axes(
|
1579
|
-
coll=coll,
|
1580
|
-
dax=dax,
|
1581
|
-
key=key,
|
1582
|
-
labX=labX,
|
1583
|
-
labY=labY,
|
1584
|
-
labZ=labZ,
|
1585
|
-
ymin=ymin,
|
1586
|
-
ymax=ymax,
|
1587
|
-
xstr=xstr,
|
1588
|
-
ystr=ystr,
|
1589
|
-
zstr=zstr,
|
1590
|
-
keyX=keyX,
|
1591
|
-
keyY=keyY,
|
1592
|
-
keyZ=keyZ,
|
1593
|
-
dataX=dataX,
|
1594
|
-
dataY=dataY,
|
1595
|
-
dataZ=dataZ,
|
1596
|
-
inverty=inverty,
|
1597
|
-
rotation=rotation,
|
1598
|
-
)
|
1599
|
-
|
1600
|
-
# ---------------
|
1601
|
-
# plot fixed part
|
1602
|
-
|
1603
|
-
axtype = 'tracesZ'
|
1604
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
1605
|
-
if len(lax) == 1:
|
1606
|
-
kax = lax[0]
|
1607
|
-
ax = dax[kax]['handle']
|
1608
|
-
|
1609
|
-
if bck == 'lines':
|
1610
|
-
shap = list(data.shape)
|
1611
|
-
shap[axZ] = 1
|
1612
|
-
bckl = np.concatenate((data, np.full(shap, np.nan)), axis=axZ)
|
1613
|
-
bckl = np.swapaxes(bckl, axZ, -1).ravel()
|
1614
|
-
zdat = np.tile(np.r_[dataZ, np.nan], nx*ny)
|
1615
|
-
ax.plot(
|
1616
|
-
zdat,
|
1617
|
-
bckl,
|
1618
|
-
c=(0.8, 0.8, 0.8),
|
1619
|
-
ls='-',
|
1620
|
-
lw=1.,
|
1621
|
-
marker='None',
|
1622
|
-
)
|
1623
|
-
else:
|
1624
|
-
bckenv = [
|
1625
|
-
np.nanmin(data, axis=(axX, axY)),
|
1626
|
-
np.nanmax(data, axis=(axX, axY)),
|
1627
|
-
]
|
1628
|
-
zdat = dataZ
|
1629
|
-
ax.fill_between(
|
1630
|
-
zdat,
|
1631
|
-
bckenv[0],
|
1632
|
-
bckenv[1],
|
1633
|
-
facecolor=(0.8, 0.8, 0.8, 0.8),
|
1634
|
-
edgecolor='None',
|
1635
|
-
)
|
1636
|
-
|
1637
|
-
# ----------------
|
1638
|
-
# define and set dgroup
|
1639
|
-
|
1640
|
-
dgroup = {
|
1641
|
-
'X': {
|
1642
|
-
'ref': [refX],
|
1643
|
-
'data': ['index'],
|
1644
|
-
'nmax': nmax,
|
1645
|
-
},
|
1646
|
-
'Y': {
|
1647
|
-
'ref': [refY],
|
1648
|
-
'data': ['index'],
|
1649
|
-
'nmax': nmax,
|
1650
|
-
},
|
1651
|
-
'Z': {
|
1652
|
-
'ref': [refZ],
|
1653
|
-
'data': ['index'],
|
1654
|
-
'nmax': 1,
|
1655
|
-
},
|
1656
|
-
}
|
1657
|
-
|
1658
|
-
# ----------------
|
1659
|
-
# plot mobile part
|
1660
|
-
|
1661
|
-
axtype = 'matrix'
|
1662
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
1663
|
-
if len(lax) == 1:
|
1664
|
-
kax = lax[0]
|
1665
|
-
ax = dax[kax]['handle']
|
1666
|
-
|
1667
|
-
# image
|
1668
|
-
im = ax.imshow(
|
1669
|
-
dataplot,
|
1670
|
-
extent=extent,
|
1671
|
-
interpolation=interp,
|
1672
|
-
origin='lower',
|
1673
|
-
aspect=aspect,
|
1674
|
-
cmap=cmap,
|
1675
|
-
vmin=vmin,
|
1676
|
-
vmax=vmax,
|
1677
|
-
)
|
1678
|
-
|
1679
|
-
km = f'{key}_im'
|
1680
|
-
coll.add_mobile(
|
1681
|
-
key=km,
|
1682
|
-
handle=im,
|
1683
|
-
refs=refZ,
|
1684
|
-
data=key,
|
1685
|
-
dtype=datatype,
|
1686
|
-
axes=kax,
|
1687
|
-
ind=0,
|
1688
|
-
harmonize=False,
|
1689
|
-
)
|
1690
|
-
|
1691
|
-
if inverty is True:
|
1692
|
-
ax.invert_yaxis()
|
1693
|
-
|
1694
|
-
# ind0, ind1
|
1695
|
-
for ii in range(nmax):
|
1696
|
-
lh = ax.axhline(
|
1697
|
-
dataY[ind[1]], c=color_dict['X'][ii], lw=1., ls='-',
|
1698
|
-
)
|
1699
|
-
lv = ax.axvline(
|
1700
|
-
dataX[ind[0]], c=color_dict['Y'][ii], lw=1., ls='-',
|
1701
|
-
)
|
1702
|
-
mi, = ax.plot(
|
1703
|
-
dataX[ind[0]],
|
1704
|
-
dataY[ind[1]],
|
1705
|
-
marker='s',
|
1706
|
-
ms=6,
|
1707
|
-
markeredgecolor=color_dict['X'][ii],
|
1708
|
-
markerfacecolor='None',
|
1709
|
-
)
|
1710
|
-
|
1711
|
-
# update coll
|
1712
|
-
kh = f'{key}_h{ii:02.0f}'
|
1713
|
-
kv = f'{key}_v{ii:02.0f}'
|
1714
|
-
coll.add_mobile(
|
1715
|
-
key=kh,
|
1716
|
-
handle=lh,
|
1717
|
-
refs=refY,
|
1718
|
-
data=keyY,
|
1719
|
-
dtype='ydata',
|
1720
|
-
axes=kax,
|
1721
|
-
ind=ii,
|
1722
|
-
harmonize=False,
|
1723
|
-
)
|
1724
|
-
coll.add_mobile(
|
1725
|
-
key=kv,
|
1726
|
-
handle=lv,
|
1727
|
-
refs=refX,
|
1728
|
-
data=keyX,
|
1729
|
-
dtype='xdata',
|
1730
|
-
axes=kax,
|
1731
|
-
ind=ii,
|
1732
|
-
harmonize=False,
|
1733
|
-
)
|
1734
|
-
km = f'{key}_m{ii:02.0f}'
|
1735
|
-
coll.add_mobile(
|
1736
|
-
key=km,
|
1737
|
-
handle=mi,
|
1738
|
-
refs=[refX, refY],
|
1739
|
-
data=[keyX, keyY],
|
1740
|
-
dtype=['xdata', 'ydata'],
|
1741
|
-
axes=kax,
|
1742
|
-
ind=ii,
|
1743
|
-
harmonize=False,
|
1744
|
-
)
|
1745
|
-
|
1746
|
-
dax[kax].update(
|
1747
|
-
refx=[refX],
|
1748
|
-
refy=[refY],
|
1749
|
-
datax=[keyX],
|
1750
|
-
datay=[keyY],
|
1751
|
-
)
|
1752
|
-
|
1753
|
-
axtype = 'vertical'
|
1754
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
1755
|
-
if len(lax) == 1:
|
1756
|
-
kax = lax[0]
|
1757
|
-
ax = dax[kax]['handle']
|
1758
|
-
|
1759
|
-
for ii in range(nmax):
|
1760
|
-
l0, = ax.plot(
|
1761
|
-
data[sliY(ind[0], ind[2])],
|
1762
|
-
dataY,
|
1763
|
-
ls='-',
|
1764
|
-
marker='.',
|
1765
|
-
lw=1.,
|
1766
|
-
color=color_dict['Y'][ii],
|
1767
|
-
label=f'ind0 = {ind[0]}',
|
1768
|
-
)
|
1769
|
-
|
1770
|
-
km = f'{key}_vprof{ii:02.0f}'
|
1771
|
-
coll.add_mobile(
|
1772
|
-
key=km,
|
1773
|
-
handle=l0,
|
1774
|
-
refs=((refX, refZ),),
|
1775
|
-
data=[key],
|
1776
|
-
dtype=['xdata'],
|
1777
|
-
group_vis='X',
|
1778
|
-
axes=kax,
|
1779
|
-
ind=ii,
|
1780
|
-
harmonize=False,
|
1781
|
-
)
|
1782
|
-
|
1783
|
-
l0 = ax.axhline(
|
1784
|
-
dataY[ind[1]],
|
1785
|
-
c=color_dict['X'][ii],
|
1786
|
-
)
|
1787
|
-
km = f'{key}_lh-v{ii:02.0f}'
|
1788
|
-
coll.add_mobile(
|
1789
|
-
key=km,
|
1790
|
-
handle=l0,
|
1791
|
-
refs=(refY,),
|
1792
|
-
data=keyY,
|
1793
|
-
dtype='ydata',
|
1794
|
-
group_vis='Y',
|
1795
|
-
axes=kax,
|
1796
|
-
ind=ii,
|
1797
|
-
harmonize=False,
|
1798
|
-
)
|
1799
|
-
|
1800
|
-
dax[kax].update(refy=[refY], datay=[keyY])
|
1801
|
-
|
1802
|
-
axtype = 'horizontal'
|
1803
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
1804
|
-
if len(lax) == 1:
|
1805
|
-
kax = lax[0]
|
1806
|
-
ax = dax[kax]['handle']
|
1807
|
-
|
1808
|
-
for ii in range(nmax):
|
1809
|
-
l1, = ax.plot(
|
1810
|
-
dataX,
|
1811
|
-
data[sliX(ind[1], ind[2])],
|
1812
|
-
ls='-',
|
1813
|
-
marker='.',
|
1814
|
-
lw=1.,
|
1815
|
-
color=color_dict['X'][ii],
|
1816
|
-
)
|
1817
|
-
|
1818
|
-
km = f'{key}_hprof{ii:02.0f}'
|
1819
|
-
coll.add_mobile(
|
1820
|
-
key=km,
|
1821
|
-
handle=l1,
|
1822
|
-
refs=((refY, refZ),),
|
1823
|
-
data=[key],
|
1824
|
-
dtype=['ydata'],
|
1825
|
-
group_vis='Y',
|
1826
|
-
axes=kax,
|
1827
|
-
ind=ii,
|
1828
|
-
harmonize=False,
|
1829
|
-
)
|
1830
|
-
|
1831
|
-
l0 = ax.axvline(
|
1832
|
-
dataX[ind[0]],
|
1833
|
-
c=color_dict['Y'][ii],
|
1834
|
-
)
|
1835
|
-
km = f'{key}_lv-h{ii:02.0f}'
|
1836
|
-
coll.add_mobile(
|
1837
|
-
key=km,
|
1838
|
-
handle=l0,
|
1839
|
-
refs=(refX,),
|
1840
|
-
data=keyX,
|
1841
|
-
dtype='xdata',
|
1842
|
-
group_vis='X',
|
1843
|
-
axes=kax,
|
1844
|
-
ind=ii,
|
1845
|
-
harmonize=False,
|
1846
|
-
)
|
1847
|
-
|
1848
|
-
dax[kax].update(refx=[refX], datax=[keyX])
|
1849
|
-
|
1850
|
-
# traces
|
1851
|
-
axtype = 'tracesZ'
|
1852
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
1853
|
-
if len(lax) == 1:
|
1854
|
-
kax = lax[0]
|
1855
|
-
ax = dax[kax]['handle']
|
1856
|
-
|
1857
|
-
for ii in range(nmax):
|
1858
|
-
l1, = ax.plot(
|
1859
|
-
dataZ,
|
1860
|
-
data[sliZ(ind[0], ind[1])],
|
1861
|
-
ls='-',
|
1862
|
-
marker='None',
|
1863
|
-
color=color_dict['X'][ii],
|
1864
|
-
)
|
1865
|
-
|
1866
|
-
km = f'{key}_traceZ{ii:02.0f}'
|
1867
|
-
coll.add_mobile(
|
1868
|
-
key=km,
|
1869
|
-
handle=l1,
|
1870
|
-
refs=((refX, refY),),
|
1871
|
-
data=[key],
|
1872
|
-
dtype=['ydata'],
|
1873
|
-
axes=kax,
|
1874
|
-
ind=ii,
|
1875
|
-
harmonize=False,
|
1876
|
-
)
|
1877
|
-
|
1878
|
-
l0 = ax.axvline(
|
1879
|
-
dataZ[ind[2]],
|
1880
|
-
c='k',
|
1881
|
-
)
|
1882
|
-
km = f'{key}_lv-z'
|
1883
|
-
coll.add_mobile(
|
1884
|
-
key=km,
|
1885
|
-
handle=l0,
|
1886
|
-
refs=(refZ,),
|
1887
|
-
data=keyZ,
|
1888
|
-
dtype='xdata',
|
1889
|
-
axes=kax,
|
1890
|
-
ind=0,
|
1891
|
-
harmonize=False,
|
1892
|
-
)
|
1893
|
-
|
1894
|
-
dax[kax].update(refx=[refZ], datax=[keyZ])
|
1895
|
-
|
1896
|
-
# ---------
|
1897
|
-
# add text
|
1898
|
-
|
1899
|
-
axtype = 'textX'
|
1900
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
1901
|
-
if len(lax) == 1:
|
1902
|
-
kax = lax[0]
|
1903
|
-
ax = dax[kax]['handle']
|
1904
|
-
|
1905
|
-
_plot_text.plot_text(
|
1906
|
-
coll=coll,
|
1907
|
-
kax=kax,
|
1908
|
-
key=key,
|
1909
|
-
ax=ax,
|
1910
|
-
ref=refX,
|
1911
|
-
group='X',
|
1912
|
-
ind=ind[0],
|
1913
|
-
lkeys=lkeys,
|
1914
|
-
nmax=nmax,
|
1915
|
-
color_dict=color_dict,
|
1916
|
-
bstr_dict=bstr_dict,
|
1917
|
-
)
|
1918
|
-
|
1919
|
-
axtype = 'textY'
|
1920
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
1921
|
-
if len(lax) == 1:
|
1922
|
-
kax = lax[0]
|
1923
|
-
ax = dax[kax]['handle']
|
1924
|
-
|
1925
|
-
_plot_text.plot_text(
|
1926
|
-
coll=coll,
|
1927
|
-
kax=kax,
|
1928
|
-
key=key,
|
1929
|
-
ax=ax,
|
1930
|
-
ref=refY,
|
1931
|
-
group='Y',
|
1932
|
-
ind=ind[1],
|
1933
|
-
lkeys=lkeys,
|
1934
|
-
nmax=nmax,
|
1935
|
-
color_dict=color_dict,
|
1936
|
-
bstr_dict=bstr_dict,
|
1937
|
-
)
|
1938
|
-
|
1939
|
-
axtype = 'textZ'
|
1940
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
1941
|
-
if len(lax) == 1:
|
1942
|
-
kax = lax[0]
|
1943
|
-
ax = dax[kax]['handle']
|
1944
|
-
|
1945
|
-
_plot_text.plot_text(
|
1946
|
-
coll=coll,
|
1947
|
-
kax=kax,
|
1948
|
-
key=key,
|
1949
|
-
ax=ax,
|
1950
|
-
ref=refZ,
|
1951
|
-
group='Z',
|
1952
|
-
ind=ind[2],
|
1953
|
-
lkeys=lkeys,
|
1954
|
-
nmax=nmax,
|
1955
|
-
color_dict=color_dict,
|
1956
|
-
bstr_dict=bstr_dict,
|
1957
|
-
)
|
1958
|
-
|
1959
|
-
return coll, dax, dgroup
|
1960
|
-
|
1961
|
-
|
1962
|
-
def _plot_as_array_3d_create_axes(
|
1963
|
-
fs=None,
|
1964
|
-
dmargin=None,
|
1965
|
-
):
|
1966
|
-
|
1967
|
-
if fs is None:
|
1968
|
-
fs = (15, 9)
|
1969
|
-
|
1970
|
-
if dmargin is None:
|
1971
|
-
dmargin = {
|
1972
|
-
'left': 0.05, 'right': 0.95,
|
1973
|
-
'bottom': 0.06, 'top': 0.90,
|
1974
|
-
'hspace': 0.2, 'wspace': 0.3,
|
1975
|
-
}
|
1976
|
-
|
1977
|
-
fig = plt.figure(figsize=fs)
|
1978
|
-
gs = gridspec.GridSpec(ncols=6, nrows=6, **dmargin)
|
1979
|
-
|
1980
|
-
# axes for image
|
1981
|
-
ax0 = fig.add_subplot(gs[:4, 2:4], aspect='auto')
|
1982
|
-
|
1983
|
-
# axes for vertical profile
|
1984
|
-
ax1 = fig.add_subplot(gs[:4, 4], sharey=ax0)
|
1985
|
-
|
1986
|
-
# axes for horizontal profile
|
1987
|
-
ax2 = fig.add_subplot(gs[4:, 2:4], sharex=ax0)
|
1988
|
-
|
1989
|
-
# axes for traces
|
1990
|
-
ax3 = fig.add_subplot(gs[:3, :2])
|
1991
|
-
|
1992
|
-
# axes for text
|
1993
|
-
ax4 = fig.add_subplot(gs[:3, 5], frameon=False)
|
1994
|
-
ax5 = fig.add_subplot(gs[3:, 5], frameon=False)
|
1995
|
-
ax6 = fig.add_subplot(gs[4:, :2], frameon=False)
|
1996
|
-
|
1997
|
-
# dax
|
1998
|
-
dax = {
|
1999
|
-
# data
|
2000
|
-
'matrix': {'handle': ax0},
|
2001
|
-
'vertical': {'handle': ax1},
|
2002
|
-
'horizontal': {'handle': ax2},
|
2003
|
-
'tracesZ': {'handle': ax3},
|
2004
|
-
# text
|
2005
|
-
'textX': {'handle': ax4},
|
2006
|
-
'textY': {'handle': ax5},
|
2007
|
-
'textZ': {'handle': ax6},
|
2008
|
-
}
|
2009
|
-
return dax
|
2010
|
-
|
2011
|
-
|
2012
|
-
def _plot_as_array_3d_label_axes(
|
2013
|
-
coll=None,
|
2014
|
-
dax=None,
|
2015
|
-
key=None,
|
2016
|
-
labX=None,
|
2017
|
-
labY=None,
|
2018
|
-
labZ=None,
|
2019
|
-
ymin=None,
|
2020
|
-
ymax=None,
|
2021
|
-
xstr=None,
|
2022
|
-
ystr=None,
|
2023
|
-
zstr=None,
|
2024
|
-
keyX=None,
|
2025
|
-
keyY=None,
|
2026
|
-
keyZ=None,
|
2027
|
-
dataX=None,
|
2028
|
-
dataY=None,
|
2029
|
-
dataZ=None,
|
2030
|
-
inverty=None,
|
2031
|
-
rotation=None,
|
2032
|
-
):
|
2033
|
-
|
2034
|
-
# fig
|
2035
|
-
fig = list(dax.values())[0]['handle'].figure
|
2036
|
-
fig.suptitle(key, size=14, fontweight='bold')
|
2037
|
-
|
2038
|
-
# axes for image
|
2039
|
-
axtype = 'matrix'
|
2040
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2041
|
-
if len(lax) == 1:
|
2042
|
-
kax = lax[0]
|
2043
|
-
ax = dax[kax]['handle']
|
2044
|
-
ax.tick_params(
|
2045
|
-
axis="x",
|
2046
|
-
bottom=False, top=True,
|
2047
|
-
labelbottom=False, labeltop=True,
|
2048
|
-
)
|
2049
|
-
ax.xaxis.set_label_position('top')
|
2050
|
-
|
2051
|
-
# x text ticks
|
2052
|
-
if xstr:
|
2053
|
-
ax.set_xticks(dataX)
|
2054
|
-
ax.set_xticklabels(
|
2055
|
-
coll.ddata[keyX]['data'],
|
2056
|
-
rotation=rotation,
|
2057
|
-
horizontalalignment='left',
|
2058
|
-
verticalalignment='bottom',
|
2059
|
-
)
|
2060
|
-
else:
|
2061
|
-
ax.set_xlabel(labX)
|
2062
|
-
|
2063
|
-
# y text ticks
|
2064
|
-
if ystr:
|
2065
|
-
ax.set_yticks(dataY)
|
2066
|
-
ax.set_yticklabels(
|
2067
|
-
coll.ddata[keyY]['data'],
|
2068
|
-
rotation=rotation,
|
2069
|
-
horizontalalignment='right',
|
2070
|
-
verticalalignment='top',
|
2071
|
-
)
|
2072
|
-
else:
|
2073
|
-
ax.set_ylabel(labY)
|
2074
|
-
|
2075
|
-
dax[kax]['inverty'] = inverty
|
2076
|
-
|
2077
|
-
# axes for vertical profile
|
2078
|
-
axtype = 'vertical'
|
2079
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2080
|
-
if len(lax) == 1:
|
2081
|
-
kax = lax[0]
|
2082
|
-
ax = dax[kax]['handle']
|
2083
|
-
ax.set_xlabel('data')
|
2084
|
-
ax.set_ylabel(labY)
|
2085
|
-
ax.tick_params(
|
2086
|
-
axis="y",
|
2087
|
-
left=False, right=True,
|
2088
|
-
labelleft=False, labelright=True,
|
2089
|
-
)
|
2090
|
-
ax.tick_params(
|
2091
|
-
axis="x",
|
2092
|
-
bottom=False, top=True,
|
2093
|
-
labelbottom=False, labeltop=True,
|
2094
|
-
)
|
2095
|
-
ax.yaxis.set_label_position('right')
|
2096
|
-
ax.xaxis.set_label_position('top')
|
2097
|
-
|
2098
|
-
if np.isfinite(ymin):
|
2099
|
-
ax.set_xlim(left=ymin)
|
2100
|
-
if np.isfinite(ymax):
|
2101
|
-
ax.set_xlim(right=ymax)
|
2102
|
-
|
2103
|
-
# y text ticks
|
2104
|
-
if ystr:
|
2105
|
-
ax.set_yticks(dataY)
|
2106
|
-
ax.set_yticklabels(
|
2107
|
-
coll.ddata[keyY]['data'],
|
2108
|
-
rotation=rotation,
|
2109
|
-
horizontalalignment='left',
|
2110
|
-
verticalalignment='bottom',
|
2111
|
-
)
|
2112
|
-
else:
|
2113
|
-
ax.set_ylabel(labY)
|
2114
|
-
|
2115
|
-
dax[kax]['inverty'] = inverty
|
2116
|
-
|
2117
|
-
# axes for horizontal profile
|
2118
|
-
axtype = 'horizontal'
|
2119
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2120
|
-
if len(lax) == 1:
|
2121
|
-
kax = lax[0]
|
2122
|
-
ax = dax[kax]['handle']
|
2123
|
-
ax.set_ylabel('data')
|
2124
|
-
ax.set_xlabel(labX)
|
2125
|
-
|
2126
|
-
if np.isfinite(ymin):
|
2127
|
-
ax.set_ylim(bottom=ymin)
|
2128
|
-
if np.isfinite(ymax):
|
2129
|
-
ax.set_ylim(top=ymax)
|
2130
|
-
|
2131
|
-
# x text ticks
|
2132
|
-
if xstr:
|
2133
|
-
ax.set_xticks(dataX)
|
2134
|
-
ax.set_xticklabels(
|
2135
|
-
coll.ddata[keyX]['data'],
|
2136
|
-
rotation=rotation,
|
2137
|
-
horizontalalignment='right',
|
2138
|
-
verticalalignment='top',
|
2139
|
-
)
|
2140
|
-
else:
|
2141
|
-
ax.set_xlabel(labX)
|
2142
|
-
|
2143
|
-
# axes for traces
|
2144
|
-
axtype = 'tracesZ'
|
2145
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2146
|
-
if len(lax) == 1:
|
2147
|
-
kax = lax[0]
|
2148
|
-
ax = dax[kax]['handle']
|
2149
|
-
ax.set_ylabel('data')
|
2150
|
-
ax.set_xlabel(labZ)
|
2151
|
-
|
2152
|
-
if np.isfinite(ymin):
|
2153
|
-
ax.set_ylim(bottom=ymin)
|
2154
|
-
if np.isfinite(ymax):
|
2155
|
-
ax.set_ylim(top=ymax)
|
2156
|
-
|
2157
|
-
# z text ticks
|
2158
|
-
if zstr:
|
2159
|
-
ax.set_yticks(dataZ)
|
2160
|
-
ax.set_yticklabels(
|
2161
|
-
coll.ddata[keyZ]['data'],
|
2162
|
-
rotation=rotation,
|
2163
|
-
horizontalalignment='right',
|
2164
|
-
verticalalignment='top',
|
2165
|
-
)
|
2166
|
-
else:
|
2167
|
-
ax.set_ylabel(labZ)
|
2168
|
-
|
2169
|
-
# axes for text
|
2170
|
-
axtype = 'textX'
|
2171
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2172
|
-
if len(lax) == 1:
|
2173
|
-
kax = lax[0]
|
2174
|
-
ax = dax[kax]['handle']
|
2175
|
-
ax.set_xticks([])
|
2176
|
-
ax.set_yticks([])
|
2177
|
-
|
2178
|
-
axtype = 'textY'
|
2179
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2180
|
-
if len(lax) == 1:
|
2181
|
-
kax = lax[0]
|
2182
|
-
ax = dax[kax]['handle']
|
2183
|
-
ax.set_xticks([])
|
2184
|
-
ax.set_yticks([])
|
2185
|
-
|
2186
|
-
axtype = 'textZ'
|
2187
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2188
|
-
if len(lax) == 1:
|
2189
|
-
kax = lax[0]
|
2190
|
-
ax = dax[kax]['handle']
|
2191
|
-
ax.set_xticks([])
|
2192
|
-
ax.set_yticks([])
|
2193
|
-
|
2194
|
-
return dax
|
2195
|
-
|
2196
|
-
|
2197
|
-
# #############################################################################
|
2198
|
-
# #############################################################################
|
2199
|
-
# plot_as_array: 4d
|
2200
|
-
# #############################################################################
|
2201
|
-
|
2202
|
-
|
2203
|
-
def plot_as_array_4d(
|
2204
|
-
# parameters
|
2205
|
-
coll=None,
|
2206
|
-
key=None,
|
2207
|
-
keyX=None,
|
2208
|
-
keyY=None,
|
2209
|
-
keyZ=None,
|
2210
|
-
keyU=None,
|
2211
|
-
refX=None,
|
2212
|
-
refY=None,
|
2213
|
-
refZ=None,
|
2214
|
-
refU=None,
|
2215
|
-
islogX=None,
|
2216
|
-
islogY=None,
|
2217
|
-
islogZ=None,
|
2218
|
-
islogU=None,
|
2219
|
-
ind=None,
|
2220
|
-
vmin=None,
|
2221
|
-
vmax=None,
|
2222
|
-
cmap=None,
|
2223
|
-
ymin=None,
|
2224
|
-
ymax=None,
|
2225
|
-
aspect=None,
|
2226
|
-
nmax=None,
|
2227
|
-
color_dict=None,
|
2228
|
-
lkeys=None,
|
2229
|
-
bstr_dict=None,
|
2230
|
-
rotation=None,
|
2231
|
-
inverty=None,
|
2232
|
-
bck=None,
|
2233
|
-
interp=None,
|
2234
|
-
# figure-specific
|
2235
|
-
dax=None,
|
2236
|
-
dmargin=None,
|
2237
|
-
fs=None,
|
2238
|
-
dcolorbar=None,
|
2239
|
-
dleg=None,
|
2240
|
-
label=None,
|
2241
|
-
):
|
2242
|
-
|
2243
|
-
# --------------
|
2244
|
-
# Prepare data
|
2245
|
-
|
2246
|
-
data = coll.ddata[key]['data']
|
2247
|
-
refs = coll.ddata[key]['ref']
|
2248
|
-
if hasattr(data, 'nnz'):
|
2249
|
-
data = data.toarray()
|
2250
|
-
assert data.ndim == len(coll.ddata[key]['ref']) == 4
|
2251
|
-
n0, n1, n2, n3 = data.shape
|
2252
|
-
|
2253
|
-
# check if transpose is necessary
|
2254
|
-
[axX, axY, axZ, axU] = [refs.index(rr) for rr in [refX, refY, refZ, refU]]
|
2255
|
-
[nx, ny, nz, nu] = [data.shape[aa] for aa in [axX, axY, axZ, axU]]
|
2256
|
-
|
2257
|
-
# -----------------
|
2258
|
-
# prepare slicing
|
2259
|
-
|
2260
|
-
# here slice X => slice in dim Y and vice-versa
|
2261
|
-
sliX = _class1_compute._get_slice(laxis=[axY, axZ, axU], ndim=4)
|
2262
|
-
sliY = _class1_compute._get_slice(laxis=[axX, axZ, axU], ndim=4)
|
2263
|
-
sliZ = _class1_compute._get_slice(laxis=[axX, axY, axU], ndim=4)
|
2264
|
-
sliU = _class1_compute._get_slice(laxis=[axX, axY, axZ], ndim=4)
|
2265
|
-
sliZ2 = _class1_compute._get_slice(laxis=[axZ, axU], ndim=4)
|
2266
|
-
|
2267
|
-
if axX < axY:
|
2268
|
-
datatype = 'data.T'
|
2269
|
-
dataplot = data[sliZ2(ind[2], ind[3])].T
|
2270
|
-
else:
|
2271
|
-
datatype = 'data'
|
2272
|
-
dataplot = data[sliZ2(ind[2], ind[3])]
|
2273
|
-
|
2274
|
-
# ----------------------
|
2275
|
-
# labels and data
|
2276
|
-
|
2277
|
-
keyX, xstr, dataX, dX2, labX = _get_str_datadlab(
|
2278
|
-
keyX=keyX, nx=nx, islogX=islogX, coll=coll,
|
2279
|
-
)
|
2280
|
-
keyY, ystr, dataY, dY2, labY = _get_str_datadlab(
|
2281
|
-
keyX=keyY, nx=ny, islogX=islogY, coll=coll,
|
2282
|
-
)
|
2283
|
-
keyZ, zstr, dataZ, dZ2, labZ = _get_str_datadlab(
|
2284
|
-
keyX=keyZ, nx=nz, islogX=islogZ, coll=coll,
|
2285
|
-
)
|
2286
|
-
keyU, ustr, dataU, dU2, labU = _get_str_datadlab(
|
2287
|
-
keyX=keyU, nx=nu, islogX=islogU, coll=coll,
|
2288
|
-
)
|
2289
|
-
|
2290
|
-
extent = (
|
2291
|
-
dataX[0] - dX2, dataX[-1] + dX2,
|
2292
|
-
dataY[0] - dY2, dataY[-1] + dY2,
|
2293
|
-
)
|
2294
|
-
|
2295
|
-
# --------------
|
2296
|
-
# plot - prepare
|
2297
|
-
|
2298
|
-
if dax is None:
|
2299
|
-
dax = _plot_as_array_4d_create_axes(
|
2300
|
-
fs=fs,
|
2301
|
-
dmargin=dmargin,
|
2302
|
-
)
|
2303
|
-
|
2304
|
-
dax = _generic_check._check_dax(dax=dax, main='matrix')
|
2305
|
-
|
2306
|
-
if label:
|
2307
|
-
_plot_as_array_4d_label_axes(
|
2308
|
-
coll=coll,
|
2309
|
-
dax=dax,
|
2310
|
-
key=key,
|
2311
|
-
labX=labX,
|
2312
|
-
labY=labY,
|
2313
|
-
labZ=labZ,
|
2314
|
-
labU=labU,
|
2315
|
-
ymin=ymin,
|
2316
|
-
ymax=ymax,
|
2317
|
-
xstr=xstr,
|
2318
|
-
ystr=ystr,
|
2319
|
-
zstr=zstr,
|
2320
|
-
ustr=ustr,
|
2321
|
-
keyX=keyX,
|
2322
|
-
keyY=keyY,
|
2323
|
-
keyZ=keyZ,
|
2324
|
-
keyU=keyU,
|
2325
|
-
dataX=dataX,
|
2326
|
-
dataY=dataY,
|
2327
|
-
dataZ=dataZ,
|
2328
|
-
dataU=dataU,
|
2329
|
-
inverty=inverty,
|
2330
|
-
rotation=rotation,
|
2331
|
-
)
|
2332
|
-
|
2333
|
-
# ---------------
|
2334
|
-
# plot fixed part
|
2335
|
-
|
2336
|
-
# tracesZ
|
2337
|
-
axtype = 'tracesZ'
|
2338
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2339
|
-
if len(lax) == 1:
|
2340
|
-
kax = lax[0]
|
2341
|
-
ax = dax[kax]['handle']
|
2342
|
-
|
2343
|
-
if bck == 'lines':
|
2344
|
-
shap = list(data.shape)
|
2345
|
-
shap[axZ] = 1
|
2346
|
-
bckl = np.concatenate((data, np.full(shap, np.nan)), axis=axZ)
|
2347
|
-
bckl = np.swapaxes(bckl, axZ, -1).ravel()
|
2348
|
-
zdat = np.tile(np.r_[dataZ, np.nan], nx*ny*nu)
|
2349
|
-
ax.plot(
|
2350
|
-
zdat,
|
2351
|
-
bckl,
|
2352
|
-
c=(0.8, 0.8, 0.8),
|
2353
|
-
ls='-',
|
2354
|
-
lw=1.,
|
2355
|
-
marker='None',
|
2356
|
-
)
|
2357
|
-
else:
|
2358
|
-
bckenv = [
|
2359
|
-
np.nanmin(data, axis=(axX, axY, axU)),
|
2360
|
-
np.nanmax(data, axis=(axX, axY, axU)),
|
2361
|
-
]
|
2362
|
-
zdat = dataZ
|
2363
|
-
ax.fill_between(
|
2364
|
-
zdat,
|
2365
|
-
bckenv[0],
|
2366
|
-
bckenv[1],
|
2367
|
-
facecolor=(0.8, 0.8, 0.8, 0.8),
|
2368
|
-
edgecolor='None',
|
2369
|
-
)
|
2370
|
-
|
2371
|
-
# tracesU
|
2372
|
-
axtype = 'tracesU'
|
2373
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2374
|
-
if len(lax) == 1:
|
2375
|
-
kax = lax[0]
|
2376
|
-
ax = dax[kax]['handle']
|
2377
|
-
|
2378
|
-
if bck == 'lines':
|
2379
|
-
shap = list(data.shape)
|
2380
|
-
shap[axU] = 1
|
2381
|
-
bckl = np.concatenate((data, np.full(shap, np.nan)), axis=axU)
|
2382
|
-
bckl = np.swapaxes(bckl, axU, -1).ravel()
|
2383
|
-
udat = np.tile(np.r_[dataU, np.nan], nx*ny*nz)
|
2384
|
-
ax.plot(
|
2385
|
-
udat,
|
2386
|
-
bckl,
|
2387
|
-
c=(0.8, 0.8, 0.8),
|
2388
|
-
ls='-',
|
2389
|
-
lw=1.,
|
2390
|
-
marker='None',
|
2391
|
-
)
|
2392
|
-
else:
|
2393
|
-
bckenv = [
|
2394
|
-
np.nanmin(data, axis=(axX, axY, axZ)),
|
2395
|
-
np.nanmax(data, axis=(axX, axY, axZ)),
|
2396
|
-
]
|
2397
|
-
udat = dataU
|
2398
|
-
ax.fill_between(
|
2399
|
-
udat,
|
2400
|
-
bckenv[0],
|
2401
|
-
bckenv[1],
|
2402
|
-
facecolor=(0.8, 0.8, 0.8, 0.8),
|
2403
|
-
edgecolor='None',
|
2404
|
-
)
|
2405
|
-
|
2406
|
-
# ----------------
|
2407
|
-
# define and set dgroup
|
2408
|
-
|
2409
|
-
dgroup = {
|
2410
|
-
'X': {
|
2411
|
-
'ref': [refX],
|
2412
|
-
'data': ['index'],
|
2413
|
-
'nmax': nmax,
|
2414
|
-
},
|
2415
|
-
'Y': {
|
2416
|
-
'ref': [refY],
|
2417
|
-
'data': ['index'],
|
2418
|
-
'nmax': nmax,
|
2419
|
-
},
|
2420
|
-
'Z': {
|
2421
|
-
'ref': [refZ],
|
2422
|
-
'data': ['index'],
|
2423
|
-
'nmax': 1,
|
2424
|
-
},
|
2425
|
-
'U': {
|
2426
|
-
'ref': [refU],
|
2427
|
-
'data': ['index'],
|
2428
|
-
'nmax': 1,
|
2429
|
-
},
|
2430
|
-
}
|
2431
|
-
|
2432
|
-
# -----------------
|
2433
|
-
# plot mobile parts
|
2434
|
-
|
2435
|
-
# matrix
|
2436
|
-
axtype = 'matrix'
|
2437
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2438
|
-
if len(lax) == 1:
|
2439
|
-
kax = lax[0]
|
2440
|
-
ax = dax[kax]['handle']
|
2441
|
-
|
2442
|
-
# image
|
2443
|
-
im = ax.imshow(
|
2444
|
-
dataplot,
|
2445
|
-
extent=extent,
|
2446
|
-
interpolation=interp,
|
2447
|
-
origin='lower',
|
2448
|
-
aspect=aspect,
|
2449
|
-
cmap=cmap,
|
2450
|
-
vmin=vmin,
|
2451
|
-
vmax=vmax,
|
2452
|
-
)
|
2453
|
-
|
2454
|
-
km = f'{key}_im'
|
2455
|
-
coll.add_mobile(
|
2456
|
-
key=km,
|
2457
|
-
handle=im,
|
2458
|
-
refs=((refZ, refU),),
|
2459
|
-
data=key,
|
2460
|
-
dtype=datatype,
|
2461
|
-
axes=kax,
|
2462
|
-
ind=0,
|
2463
|
-
)
|
2464
|
-
|
2465
|
-
if inverty is True:
|
2466
|
-
ax.invert_yaxis()
|
2467
|
-
|
2468
|
-
# ind0, ind1
|
2469
|
-
for ii in range(nmax):
|
2470
|
-
lh = ax.axhline(
|
2471
|
-
dataY[ind[1]], c=color_dict['X'][ii], lw=1., ls='-',
|
2472
|
-
)
|
2473
|
-
lv = ax.axvline(
|
2474
|
-
dataX[ind[0]], c=color_dict['Y'][ii], lw=1., ls='-',
|
2475
|
-
)
|
2476
|
-
mi, = ax.plot(
|
2477
|
-
dataX[ind[0]],
|
2478
|
-
dataY[ind[1]],
|
2479
|
-
marker='s',
|
2480
|
-
ms=6,
|
2481
|
-
markeredgecolor=color_dict['X'][ii],
|
2482
|
-
markerfacecolor='None',
|
2483
|
-
)
|
2484
|
-
|
2485
|
-
# update coll
|
2486
|
-
kh = f'{key}_h{ii:02.0f}'
|
2487
|
-
kv = f'{key}_v{ii:02.0f}'
|
2488
|
-
coll.add_mobile(
|
2489
|
-
key=kh,
|
2490
|
-
handle=lh,
|
2491
|
-
refs=refY,
|
2492
|
-
data=keyY,
|
2493
|
-
dtype='ydata',
|
2494
|
-
axes=kax,
|
2495
|
-
ind=ii,
|
2496
|
-
)
|
2497
|
-
coll.add_mobile(
|
2498
|
-
key=kv,
|
2499
|
-
handle=lv,
|
2500
|
-
refs=refX,
|
2501
|
-
data=keyX,
|
2502
|
-
dtype='xdata',
|
2503
|
-
axes=kax,
|
2504
|
-
ind=ii,
|
2505
|
-
)
|
2506
|
-
km = f'{key}_m{ii:02.0f}'
|
2507
|
-
coll.add_mobile(
|
2508
|
-
key=km,
|
2509
|
-
handle=mi,
|
2510
|
-
refs=[refX, refY],
|
2511
|
-
data=[keyX, keyY],
|
2512
|
-
dtype=['xdata', 'ydata'],
|
2513
|
-
axes=kax,
|
2514
|
-
ind=ii,
|
2515
|
-
)
|
2516
|
-
|
2517
|
-
dax[kax].update(
|
2518
|
-
refx=[refX],
|
2519
|
-
refy=[refY],
|
2520
|
-
datax=[keyX],
|
2521
|
-
datay=[keyY],
|
2522
|
-
)
|
2523
|
-
|
2524
|
-
# vertical
|
2525
|
-
axtype = 'vertical'
|
2526
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2527
|
-
if len(lax) == 1:
|
2528
|
-
kax = lax[0]
|
2529
|
-
ax = dax[kax]['handle']
|
2530
|
-
|
2531
|
-
for ii in range(nmax):
|
2532
|
-
l0, = ax.plot(
|
2533
|
-
data[sliY(ind[0], ind[2], ind[3])],
|
2534
|
-
dataY,
|
2535
|
-
ls='-',
|
2536
|
-
marker='.',
|
2537
|
-
lw=1.,
|
2538
|
-
color=color_dict['Y'][ii],
|
2539
|
-
label=f'ind0 = {ind[0]}',
|
2540
|
-
)
|
2541
|
-
|
2542
|
-
km = f'{key}_vprof{ii:02.0f}'
|
2543
|
-
coll.add_mobile(
|
2544
|
-
key=km,
|
2545
|
-
handle=l0,
|
2546
|
-
refs=((refX, refZ, refU),),
|
2547
|
-
data=[key],
|
2548
|
-
dtype=['xdata'],
|
2549
|
-
group_vis='X',
|
2550
|
-
axes=kax,
|
2551
|
-
ind=ii,
|
2552
|
-
)
|
2553
|
-
|
2554
|
-
l0 = ax.axhline(
|
2555
|
-
dataY[ind[1]],
|
2556
|
-
c=color_dict['X'][ii],
|
2557
|
-
)
|
2558
|
-
km = f'{key}_lh-v{ii:02.0f}'
|
2559
|
-
coll.add_mobile(
|
2560
|
-
key=km,
|
2561
|
-
handle=l0,
|
2562
|
-
refs=(refY,),
|
2563
|
-
data=keyY,
|
2564
|
-
dtype='ydata',
|
2565
|
-
group_vis='Y',
|
2566
|
-
axes=kax,
|
2567
|
-
ind=ii,
|
2568
|
-
)
|
2569
|
-
|
2570
|
-
dax[kax].update(refy=[refY], datay=[keyY])
|
2571
|
-
|
2572
|
-
# horizontal
|
2573
|
-
axtype = 'horizontal'
|
2574
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2575
|
-
if len(lax) == 1:
|
2576
|
-
kax = lax[0]
|
2577
|
-
ax = dax[kax]['handle']
|
2578
|
-
|
2579
|
-
for ii in range(nmax):
|
2580
|
-
l1, = ax.plot(
|
2581
|
-
dataX,
|
2582
|
-
data[sliX(ind[1], ind[2], ind[3])],
|
2583
|
-
ls='-',
|
2584
|
-
marker='.',
|
2585
|
-
lw=1.,
|
2586
|
-
color=color_dict['X'][ii],
|
2587
|
-
)
|
2588
|
-
|
2589
|
-
km = f'{key}_hprof{ii:02.0f}'
|
2590
|
-
coll.add_mobile(
|
2591
|
-
key=km,
|
2592
|
-
handle=l1,
|
2593
|
-
refs=((refY, refZ, refU),),
|
2594
|
-
data=[key],
|
2595
|
-
dtype=['ydata'],
|
2596
|
-
group_vis='Y',
|
2597
|
-
axes=kax,
|
2598
|
-
ind=ii,
|
2599
|
-
)
|
2600
|
-
|
2601
|
-
l0 = ax.axvline(
|
2602
|
-
dataX[ind[0]],
|
2603
|
-
c=color_dict['Y'][ii],
|
2604
|
-
)
|
2605
|
-
km = f'{key}_lv-h{ii:02.0f}'
|
2606
|
-
coll.add_mobile(
|
2607
|
-
key=km,
|
2608
|
-
handle=l0,
|
2609
|
-
refs=(refX,),
|
2610
|
-
data=keyX,
|
2611
|
-
dtype='xdata',
|
2612
|
-
group_vis='X',
|
2613
|
-
axes=kax,
|
2614
|
-
ind=ii,
|
2615
|
-
)
|
2616
|
-
|
2617
|
-
dax[kax].update(refx=[refX], datax=[keyX])
|
2618
|
-
|
2619
|
-
# tracesZ
|
2620
|
-
axtype = 'tracesZ'
|
2621
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2622
|
-
if len(lax) == 1:
|
2623
|
-
kax = lax[0]
|
2624
|
-
ax = dax[kax]['handle']
|
2625
|
-
|
2626
|
-
for ii in range(nmax):
|
2627
|
-
l1, = ax.plot(
|
2628
|
-
dataZ,
|
2629
|
-
data[sliZ(ind[0], ind[1], ind[3])],
|
2630
|
-
ls='-',
|
2631
|
-
marker='None',
|
2632
|
-
color=color_dict['X'][ii],
|
2633
|
-
)
|
2634
|
-
|
2635
|
-
km = f'{key}_trace{ii:02.0f}'
|
2636
|
-
coll.add_mobile(
|
2637
|
-
key=km,
|
2638
|
-
handle=l1,
|
2639
|
-
refs=((refX, refY, refU),),
|
2640
|
-
data=[key],
|
2641
|
-
dtype=['ydata'],
|
2642
|
-
axes=kax,
|
2643
|
-
ind=ii,
|
2644
|
-
)
|
2645
|
-
|
2646
|
-
l0 = ax.axvline(
|
2647
|
-
dataZ[ind[2]],
|
2648
|
-
c='k',
|
2649
|
-
)
|
2650
|
-
km = f'{key}_lv-z'
|
2651
|
-
coll.add_mobile(
|
2652
|
-
key=km,
|
2653
|
-
handle=l0,
|
2654
|
-
refs=(refZ,),
|
2655
|
-
data=keyZ,
|
2656
|
-
dtype='xdata',
|
2657
|
-
axes=kax,
|
2658
|
-
ind=0,
|
2659
|
-
)
|
2660
|
-
|
2661
|
-
dax[kax].update(refx=[refZ], datax=[keyZ])
|
2662
|
-
|
2663
|
-
# tracesU
|
2664
|
-
axtype = 'tracesU'
|
2665
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2666
|
-
if len(lax) == 1:
|
2667
|
-
kax = lax[0]
|
2668
|
-
ax = dax[kax]['handle']
|
2669
|
-
|
2670
|
-
for ii in range(nmax):
|
2671
|
-
l1, = ax.plot(
|
2672
|
-
dataU,
|
2673
|
-
data[sliU(ind[0], ind[1], ind[2])],
|
2674
|
-
ls='-',
|
2675
|
-
marker='None',
|
2676
|
-
color=color_dict['U'][ii],
|
2677
|
-
)
|
2678
|
-
|
2679
|
-
km = f'{key}_traceU{ii:02.0f}'
|
2680
|
-
coll.add_mobile(
|
2681
|
-
key=km,
|
2682
|
-
handle=l1,
|
2683
|
-
refs=((refX, refY, refZ),),
|
2684
|
-
data=[key],
|
2685
|
-
dtype=['ydata'],
|
2686
|
-
axes=kax,
|
2687
|
-
ind=ii,
|
2688
|
-
)
|
2689
|
-
|
2690
|
-
l0 = ax.axvline(
|
2691
|
-
dataU[ind[2]],
|
2692
|
-
c='k',
|
2693
|
-
)
|
2694
|
-
km = f'{key}_lv-u'
|
2695
|
-
coll.add_mobile(
|
2696
|
-
key=km,
|
2697
|
-
handle=l0,
|
2698
|
-
refs=(refU,),
|
2699
|
-
data=keyU,
|
2700
|
-
dtype='xdata',
|
2701
|
-
axes=kax,
|
2702
|
-
ind=0,
|
2703
|
-
)
|
2704
|
-
|
2705
|
-
dax[kax].update(refx=[refU], datax=[keyU])
|
2706
|
-
|
2707
|
-
# ---------
|
2708
|
-
# add text
|
2709
|
-
|
2710
|
-
# textX
|
2711
|
-
axtype = 'textX'
|
2712
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2713
|
-
if len(lax) == 1:
|
2714
|
-
kax = lax[0]
|
2715
|
-
ax = dax[kax]['handle']
|
2716
|
-
|
2717
|
-
_plot_text.plot_text(
|
2718
|
-
coll=coll,
|
2719
|
-
kax=kax,
|
2720
|
-
key=key,
|
2721
|
-
ax=ax,
|
2722
|
-
ref=refX,
|
2723
|
-
group='X',
|
2724
|
-
ind=ind[0],
|
2725
|
-
lkeys=lkeys,
|
2726
|
-
nmax=nmax,
|
2727
|
-
color_dict=color_dict,
|
2728
|
-
bstr_dict=bstr_dict,
|
2729
|
-
)
|
2730
|
-
|
2731
|
-
# textY
|
2732
|
-
axtype = 'textY'
|
2733
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2734
|
-
if len(lax) == 1:
|
2735
|
-
kax = lax[0]
|
2736
|
-
ax = dax[kax]['handle']
|
2737
|
-
|
2738
|
-
_plot_text.plot_text(
|
2739
|
-
coll=coll,
|
2740
|
-
kax=kax,
|
2741
|
-
key=key,
|
2742
|
-
ax=ax,
|
2743
|
-
ref=refY,
|
2744
|
-
group='Y',
|
2745
|
-
ind=ind[1],
|
2746
|
-
lkeys=lkeys,
|
2747
|
-
nmax=nmax,
|
2748
|
-
color_dict=color_dict,
|
2749
|
-
bstr_dict=bstr_dict,
|
2750
|
-
)
|
2751
|
-
|
2752
|
-
# textZ
|
2753
|
-
axtype = 'textZ'
|
2754
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2755
|
-
if len(lax) == 1:
|
2756
|
-
kax = lax[0]
|
2757
|
-
ax = dax[kax]['handle']
|
2758
|
-
|
2759
|
-
_plot_text.plot_text(
|
2760
|
-
coll=coll,
|
2761
|
-
kax=kax,
|
2762
|
-
key=key,
|
2763
|
-
ax=ax,
|
2764
|
-
ref=refZ,
|
2765
|
-
group='Z',
|
2766
|
-
ind=ind[2],
|
2767
|
-
lkeys=lkeys,
|
2768
|
-
nmax=nmax,
|
2769
|
-
color_dict=color_dict,
|
2770
|
-
bstr_dict=bstr_dict,
|
2771
|
-
)
|
2772
|
-
|
2773
|
-
# textU
|
2774
|
-
axtype = 'textU'
|
2775
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2776
|
-
if len(lax) == 1:
|
2777
|
-
kax = lax[0]
|
2778
|
-
ax = dax[kax]['handle']
|
2779
|
-
|
2780
|
-
_plot_text.plot_text(
|
2781
|
-
coll=coll,
|
2782
|
-
kax=kax,
|
2783
|
-
key=key,
|
2784
|
-
ax=ax,
|
2785
|
-
ref=refU,
|
2786
|
-
group='U',
|
2787
|
-
ind=ind[3],
|
2788
|
-
lkeys=lkeys,
|
2789
|
-
nmax=nmax,
|
2790
|
-
color_dict=color_dict,
|
2791
|
-
bstr_dict=bstr_dict,
|
2792
|
-
)
|
2793
|
-
|
2794
|
-
return coll, dax, dgroup
|
2795
|
-
|
2796
|
-
|
2797
|
-
def _plot_as_array_4d_create_axes(
|
2798
|
-
fs=None,
|
2799
|
-
dmargin=None,
|
2800
|
-
):
|
2801
|
-
|
2802
|
-
if fs is None:
|
2803
|
-
fs = (17, 9)
|
2804
|
-
|
2805
|
-
if dmargin is None:
|
2806
|
-
dmargin = {
|
2807
|
-
'left': 0.05, 'right': 0.95,
|
2808
|
-
'bottom': 0.06, 'top': 0.90,
|
2809
|
-
'hspace': 0.5, 'wspace': 0.4,
|
2810
|
-
}
|
2811
|
-
|
2812
|
-
fig = plt.figure(figsize=fs)
|
2813
|
-
gs = gridspec.GridSpec(ncols=7, nrows=6, **dmargin)
|
2814
|
-
|
2815
|
-
# axes for image
|
2816
|
-
ax0 = fig.add_subplot(gs[:4, 2:4], aspect='auto')
|
2817
|
-
|
2818
|
-
# axes for vertical profile
|
2819
|
-
ax1 = fig.add_subplot(gs[:4, 4], sharey=ax0)
|
2820
|
-
|
2821
|
-
# axes for horizontal profile
|
2822
|
-
ax2 = fig.add_subplot(gs[4:, 2:4], sharex=ax0)
|
2823
|
-
|
2824
|
-
# axes for tracesZ
|
2825
|
-
ax3 = fig.add_subplot(gs[:3, :2])
|
2826
|
-
|
2827
|
-
# axes for tracesU
|
2828
|
-
ax4 = fig.add_subplot(gs[3:, :2])
|
2829
|
-
|
2830
|
-
# axes for text
|
2831
|
-
ax5 = fig.add_subplot(gs[:3, 5], frameon=False)
|
2832
|
-
ax6 = fig.add_subplot(gs[3:, 5], frameon=False)
|
2833
|
-
ax7 = fig.add_subplot(gs[:3, 6], frameon=False)
|
2834
|
-
ax8 = fig.add_subplot(gs[3:, 6], frameon=False)
|
2835
|
-
|
2836
|
-
# dax
|
2837
|
-
dax = {
|
2838
|
-
# data
|
2839
|
-
'matrix': {'handle': ax0},
|
2840
|
-
'vertical': {'handle': ax1},
|
2841
|
-
'horizontal': {'handle': ax2},
|
2842
|
-
'tracesZ': {'handle': ax3},
|
2843
|
-
'tracesU': {'handle': ax4},
|
2844
|
-
# text
|
2845
|
-
'textX': {'handle': ax5},
|
2846
|
-
'textY': {'handle': ax6},
|
2847
|
-
'textZ': {'handle': ax7},
|
2848
|
-
'textU': {'handle': ax8},
|
2849
|
-
}
|
2850
|
-
return dax
|
2851
|
-
|
2852
|
-
|
2853
|
-
def _plot_as_array_4d_label_axes(
|
2854
|
-
coll=None,
|
2855
|
-
dax=None,
|
2856
|
-
key=None,
|
2857
|
-
labX=None,
|
2858
|
-
labY=None,
|
2859
|
-
labZ=None,
|
2860
|
-
labU=None,
|
2861
|
-
ymin=None,
|
2862
|
-
ymax=None,
|
2863
|
-
xstr=None,
|
2864
|
-
ystr=None,
|
2865
|
-
zstr=None,
|
2866
|
-
ustr=None,
|
2867
|
-
keyX=None,
|
2868
|
-
keyY=None,
|
2869
|
-
keyZ=None,
|
2870
|
-
keyU=None,
|
2871
|
-
dataX=None,
|
2872
|
-
dataY=None,
|
2873
|
-
dataZ=None,
|
2874
|
-
dataU=None,
|
2875
|
-
inverty=None,
|
2876
|
-
rotation=None,
|
2877
|
-
):
|
2878
|
-
|
2879
|
-
# fig
|
2880
|
-
fig = list(dax.values())[0]['handle'].figure
|
2881
|
-
fig.suptitle(key, size=14, fontweight='bold')
|
2882
|
-
|
2883
|
-
# axes for image
|
2884
|
-
axtype = 'matrix'
|
2885
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2886
|
-
if len(lax) == 1:
|
2887
|
-
kax = lax[0]
|
2888
|
-
ax = dax[kax]['handle']
|
2889
|
-
ax.tick_params(
|
2890
|
-
axis="x",
|
2891
|
-
bottom=False, top=True,
|
2892
|
-
labelbottom=False, labeltop=True,
|
2893
|
-
)
|
2894
|
-
ax.xaxis.set_label_position('top')
|
2895
|
-
|
2896
|
-
# x text ticks
|
2897
|
-
if xstr:
|
2898
|
-
ax.set_xticks(dataX)
|
2899
|
-
ax.set_xticklabels(
|
2900
|
-
coll.ddata[keyX]['data'],
|
2901
|
-
rotation=rotation,
|
2902
|
-
horizontalalignment='left',
|
2903
|
-
verticalalignment='bottom',
|
2904
|
-
)
|
2905
|
-
else:
|
2906
|
-
ax.set_xlabel(labX)
|
2907
|
-
|
2908
|
-
# y text ticks
|
2909
|
-
if ystr:
|
2910
|
-
ax.set_yticks(dataY)
|
2911
|
-
ax.set_yticklabels(
|
2912
|
-
coll.ddata[keyY]['data'],
|
2913
|
-
rotation=rotation,
|
2914
|
-
horizontalalignment='right',
|
2915
|
-
verticalalignment='top',
|
2916
|
-
)
|
2917
|
-
else:
|
2918
|
-
ax.set_ylabel(labY)
|
2919
|
-
|
2920
|
-
dax[kax]['inverty'] = inverty
|
2921
|
-
|
2922
|
-
# axes for vertical profile
|
2923
|
-
axtype = 'vertical'
|
2924
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2925
|
-
if len(lax) == 1:
|
2926
|
-
kax = lax[0]
|
2927
|
-
ax = dax[kax]['handle']
|
2928
|
-
ax.set_xlabel('data')
|
2929
|
-
ax.set_ylabel(labY)
|
2930
|
-
ax.tick_params(
|
2931
|
-
axis="y",
|
2932
|
-
left=False, right=True,
|
2933
|
-
labelleft=False, labelright=True,
|
2934
|
-
)
|
2935
|
-
ax.tick_params(
|
2936
|
-
axis="x",
|
2937
|
-
bottom=False, top=True,
|
2938
|
-
labelbottom=False, labeltop=True,
|
2939
|
-
)
|
2940
|
-
ax.yaxis.set_label_position('right')
|
2941
|
-
ax.xaxis.set_label_position('top')
|
2942
|
-
|
2943
|
-
if np.isfinite(ymin):
|
2944
|
-
ax.set_xlim(left=ymin)
|
2945
|
-
if np.isfinite(ymax):
|
2946
|
-
ax.set_xlim(right=ymax)
|
2947
|
-
|
2948
|
-
# y text ticks
|
2949
|
-
if ystr:
|
2950
|
-
ax.set_yticks(dataY)
|
2951
|
-
ax.set_yticklabels(
|
2952
|
-
coll.ddata[keyY]['data'],
|
2953
|
-
rotation=rotation,
|
2954
|
-
horizontalalignment='left',
|
2955
|
-
verticalalignment='bottom',
|
2956
|
-
)
|
2957
|
-
else:
|
2958
|
-
ax.set_ylabel(labY)
|
2959
|
-
|
2960
|
-
dax[kax]['inverty'] = inverty
|
2961
|
-
|
2962
|
-
# axes for horizontal profile
|
2963
|
-
axtype = 'horizontal'
|
2964
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2965
|
-
if len(lax) == 1:
|
2966
|
-
kax = lax[0]
|
2967
|
-
ax = dax[kax]['handle']
|
2968
|
-
ax.set_ylabel('data')
|
2969
|
-
ax.set_xlabel(labX)
|
2970
|
-
|
2971
|
-
ax.set_ylim(ymin, ymax)
|
2972
|
-
|
2973
|
-
# x text ticks
|
2974
|
-
if xstr:
|
2975
|
-
ax.set_xticks(dataX)
|
2976
|
-
ax.set_xticklabels(
|
2977
|
-
coll.ddata[keyX]['data'],
|
2978
|
-
rotation=rotation,
|
2979
|
-
horizontalalignment='right',
|
2980
|
-
verticalalignment='top',
|
2981
|
-
)
|
2982
|
-
else:
|
2983
|
-
ax.set_xlabel(labX)
|
2984
|
-
|
2985
|
-
# axes for tracesZ
|
2986
|
-
axtype = 'tracesZ'
|
2987
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
2988
|
-
if len(lax) == 1:
|
2989
|
-
kax = lax[0]
|
2990
|
-
ax = dax[kax]['handle']
|
2991
|
-
ax.set_ylabel('data')
|
2992
|
-
ax.set_xlabel(labZ)
|
2993
|
-
|
2994
|
-
ax.set_ylim(ymin, ymax)
|
2995
|
-
|
2996
|
-
# z text ticks
|
2997
|
-
if zstr:
|
2998
|
-
ax.set_yticks(dataZ)
|
2999
|
-
ax.set_yticklabels(
|
3000
|
-
coll.ddata[keyZ]['data'],
|
3001
|
-
rotation=rotation,
|
3002
|
-
horizontalalignment='right',
|
3003
|
-
verticalalignment='top',
|
3004
|
-
)
|
3005
|
-
else:
|
3006
|
-
ax.set_ylabel(labZ)
|
3007
|
-
|
3008
|
-
# axes for tracesU
|
3009
|
-
axtype = 'tracesU'
|
3010
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
3011
|
-
if len(lax) == 1:
|
3012
|
-
kax = lax[0]
|
3013
|
-
ax = dax[kax]['handle']
|
3014
|
-
ax.set_ylabel('data')
|
3015
|
-
ax.set_xlabel(labU)
|
3016
|
-
|
3017
|
-
ax.set_ylim(ymin, ymax)
|
3018
|
-
|
3019
|
-
# z text ticks
|
3020
|
-
if zstr:
|
3021
|
-
ax.set_yticks(dataU)
|
3022
|
-
ax.set_yticklabels(
|
3023
|
-
coll.ddata[keyU]['data'],
|
3024
|
-
rotation=rotation,
|
3025
|
-
horizontalalignment='right',
|
3026
|
-
verticalalignment='top',
|
3027
|
-
)
|
3028
|
-
else:
|
3029
|
-
ax.set_ylabel(labU)
|
3030
|
-
|
3031
|
-
# axes for text
|
3032
|
-
axtype = 'textX'
|
3033
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
3034
|
-
if len(lax) == 1:
|
3035
|
-
kax = lax[0]
|
3036
|
-
ax = dax[kax]['handle']
|
3037
|
-
ax.set_xticks([])
|
3038
|
-
ax.set_yticks([])
|
3039
|
-
|
3040
|
-
axtype = 'textY'
|
3041
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
3042
|
-
if len(lax) == 1:
|
3043
|
-
kax = lax[0]
|
3044
|
-
ax = dax[kax]['handle']
|
3045
|
-
ax.set_xticks([])
|
3046
|
-
ax.set_yticks([])
|
3047
|
-
|
3048
|
-
axtype = 'textZ'
|
3049
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
3050
|
-
if len(lax) == 1:
|
3051
|
-
kax = lax[0]
|
3052
|
-
ax = dax[kax]['handle']
|
3053
|
-
ax.set_xticks([])
|
3054
|
-
ax.set_yticks([])
|
3055
|
-
|
3056
|
-
axtype = 'textU'
|
3057
|
-
lax = [k0 for k0, v0 in dax.items() if axtype in v0['type']]
|
3058
|
-
if len(lax) == 1:
|
3059
|
-
kax = lax[0]
|
3060
|
-
ax = dax[kax]['handle']
|
3061
|
-
ax.set_xticks([])
|
3062
|
-
ax.set_yticks([])
|
3063
|
-
|
3064
|
-
return dax
|
909
|
+
return dk, key, lab
|