careamics 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of careamics might be problematic. Click here for more details.

Files changed (155) hide show
  1. careamics/__init__.py +6 -1
  2. careamics/careamist.py +729 -0
  3. careamics/config/__init__.py +39 -0
  4. careamics/config/architectures/__init__.py +17 -0
  5. careamics/config/architectures/architecture_model.py +37 -0
  6. careamics/config/architectures/custom_model.py +162 -0
  7. careamics/config/architectures/lvae_model.py +174 -0
  8. careamics/config/architectures/register_model.py +103 -0
  9. careamics/config/architectures/unet_model.py +118 -0
  10. careamics/config/callback_model.py +123 -0
  11. careamics/config/configuration_factory.py +583 -0
  12. careamics/config/configuration_model.py +604 -0
  13. careamics/config/data_model.py +527 -0
  14. careamics/config/fcn_algorithm_model.py +147 -0
  15. careamics/config/inference_model.py +239 -0
  16. careamics/config/likelihood_model.py +43 -0
  17. careamics/config/nm_model.py +101 -0
  18. careamics/config/optimizer_models.py +187 -0
  19. careamics/config/references/__init__.py +45 -0
  20. careamics/config/references/algorithm_descriptions.py +132 -0
  21. careamics/config/references/references.py +39 -0
  22. careamics/config/support/__init__.py +31 -0
  23. careamics/config/support/supported_activations.py +27 -0
  24. careamics/config/support/supported_algorithms.py +33 -0
  25. careamics/config/support/supported_architectures.py +17 -0
  26. careamics/config/support/supported_data.py +109 -0
  27. careamics/config/support/supported_loggers.py +10 -0
  28. careamics/config/support/supported_losses.py +29 -0
  29. careamics/config/support/supported_optimizers.py +57 -0
  30. careamics/config/support/supported_pixel_manipulations.py +15 -0
  31. careamics/config/support/supported_struct_axis.py +21 -0
  32. careamics/config/support/supported_transforms.py +11 -0
  33. careamics/config/tile_information.py +65 -0
  34. careamics/config/training_model.py +72 -0
  35. careamics/config/transformations/__init__.py +15 -0
  36. careamics/config/transformations/n2v_manipulate_model.py +64 -0
  37. careamics/config/transformations/normalize_model.py +60 -0
  38. careamics/config/transformations/transform_model.py +45 -0
  39. careamics/config/transformations/xy_flip_model.py +43 -0
  40. careamics/config/transformations/xy_random_rotate90_model.py +35 -0
  41. careamics/config/vae_algorithm_model.py +171 -0
  42. careamics/config/validators/__init__.py +5 -0
  43. careamics/config/validators/validator_utils.py +101 -0
  44. careamics/conftest.py +39 -0
  45. careamics/dataset/__init__.py +17 -0
  46. careamics/dataset/dataset_utils/__init__.py +19 -0
  47. careamics/dataset/dataset_utils/dataset_utils.py +101 -0
  48. careamics/dataset/dataset_utils/file_utils.py +141 -0
  49. careamics/dataset/dataset_utils/iterate_over_files.py +83 -0
  50. careamics/dataset/dataset_utils/running_stats.py +186 -0
  51. careamics/dataset/in_memory_dataset.py +310 -0
  52. careamics/dataset/in_memory_pred_dataset.py +88 -0
  53. careamics/dataset/in_memory_tiled_pred_dataset.py +129 -0
  54. careamics/dataset/iterable_dataset.py +295 -0
  55. careamics/dataset/iterable_pred_dataset.py +122 -0
  56. careamics/dataset/iterable_tiled_pred_dataset.py +140 -0
  57. careamics/dataset/patching/__init__.py +1 -0
  58. careamics/dataset/patching/patching.py +299 -0
  59. careamics/dataset/patching/random_patching.py +201 -0
  60. careamics/dataset/patching/sequential_patching.py +212 -0
  61. careamics/dataset/patching/validate_patch_dimension.py +64 -0
  62. careamics/dataset/tiling/__init__.py +10 -0
  63. careamics/dataset/tiling/collate_tiles.py +33 -0
  64. careamics/dataset/tiling/lvae_tiled_patching.py +282 -0
  65. careamics/dataset/tiling/tiled_patching.py +164 -0
  66. careamics/dataset/zarr_dataset.py +151 -0
  67. careamics/file_io/__init__.py +15 -0
  68. careamics/file_io/read/__init__.py +12 -0
  69. careamics/file_io/read/get_func.py +56 -0
  70. careamics/file_io/read/tiff.py +58 -0
  71. careamics/file_io/read/zarr.py +60 -0
  72. careamics/file_io/write/__init__.py +15 -0
  73. careamics/file_io/write/get_func.py +63 -0
  74. careamics/file_io/write/tiff.py +40 -0
  75. careamics/lightning/__init__.py +18 -0
  76. careamics/lightning/callbacks/__init__.py +11 -0
  77. careamics/lightning/callbacks/hyperparameters_callback.py +49 -0
  78. careamics/lightning/callbacks/prediction_writer_callback/__init__.py +20 -0
  79. careamics/lightning/callbacks/prediction_writer_callback/file_path_utils.py +56 -0
  80. careamics/lightning/callbacks/prediction_writer_callback/prediction_writer_callback.py +233 -0
  81. careamics/lightning/callbacks/prediction_writer_callback/write_strategy.py +398 -0
  82. careamics/lightning/callbacks/prediction_writer_callback/write_strategy_factory.py +215 -0
  83. careamics/lightning/callbacks/progress_bar_callback.py +90 -0
  84. careamics/lightning/lightning_module.py +632 -0
  85. careamics/lightning/predict_data_module.py +333 -0
  86. careamics/lightning/train_data_module.py +680 -0
  87. careamics/losses/__init__.py +15 -0
  88. careamics/losses/fcn/__init__.py +1 -0
  89. careamics/losses/fcn/losses.py +98 -0
  90. careamics/losses/loss_factory.py +155 -0
  91. careamics/losses/lvae/__init__.py +1 -0
  92. careamics/losses/lvae/loss_utils.py +83 -0
  93. careamics/losses/lvae/losses.py +445 -0
  94. careamics/lvae_training/__init__.py +0 -0
  95. careamics/lvae_training/dataset/__init__.py +0 -0
  96. careamics/lvae_training/dataset/data_utils.py +701 -0
  97. careamics/lvae_training/dataset/lc_dataset.py +259 -0
  98. careamics/lvae_training/dataset/lc_dataset_config.py +13 -0
  99. careamics/lvae_training/dataset/vae_data_config.py +179 -0
  100. careamics/lvae_training/dataset/vae_dataset.py +1054 -0
  101. careamics/lvae_training/eval_utils.py +905 -0
  102. careamics/lvae_training/get_config.py +84 -0
  103. careamics/lvae_training/lightning_module.py +701 -0
  104. careamics/lvae_training/metrics.py +214 -0
  105. careamics/lvae_training/train_lvae.py +342 -0
  106. careamics/lvae_training/train_utils.py +121 -0
  107. careamics/model_io/__init__.py +7 -0
  108. careamics/model_io/bioimage/__init__.py +11 -0
  109. careamics/model_io/bioimage/_readme_factory.py +121 -0
  110. careamics/model_io/bioimage/bioimage_utils.py +52 -0
  111. careamics/model_io/bioimage/model_description.py +327 -0
  112. careamics/model_io/bmz_io.py +246 -0
  113. careamics/model_io/model_io_utils.py +95 -0
  114. careamics/models/__init__.py +5 -0
  115. careamics/models/activation.py +39 -0
  116. careamics/models/layers.py +493 -0
  117. careamics/models/lvae/__init__.py +3 -0
  118. careamics/models/lvae/layers.py +1998 -0
  119. careamics/models/lvae/likelihoods.py +364 -0
  120. careamics/models/lvae/lvae.py +901 -0
  121. careamics/models/lvae/noise_models.py +541 -0
  122. careamics/models/lvae/utils.py +395 -0
  123. careamics/models/model_factory.py +67 -0
  124. careamics/models/unet.py +443 -0
  125. careamics/prediction_utils/__init__.py +10 -0
  126. careamics/prediction_utils/lvae_prediction.py +158 -0
  127. careamics/prediction_utils/lvae_tiling_manager.py +362 -0
  128. careamics/prediction_utils/prediction_outputs.py +135 -0
  129. careamics/prediction_utils/stitch_prediction.py +112 -0
  130. careamics/transforms/__init__.py +20 -0
  131. careamics/transforms/compose.py +107 -0
  132. careamics/transforms/n2v_manipulate.py +146 -0
  133. careamics/transforms/normalize.py +243 -0
  134. careamics/transforms/pixel_manipulation.py +407 -0
  135. careamics/transforms/struct_mask_parameters.py +20 -0
  136. careamics/transforms/transform.py +24 -0
  137. careamics/transforms/tta.py +88 -0
  138. careamics/transforms/xy_flip.py +123 -0
  139. careamics/transforms/xy_random_rotate90.py +101 -0
  140. careamics/utils/__init__.py +19 -0
  141. careamics/utils/autocorrelation.py +40 -0
  142. careamics/utils/base_enum.py +60 -0
  143. careamics/utils/context.py +66 -0
  144. careamics/utils/logging.py +322 -0
  145. careamics/utils/metrics.py +188 -0
  146. careamics/utils/path_utils.py +26 -0
  147. careamics/utils/ram.py +15 -0
  148. careamics/utils/receptive_field.py +108 -0
  149. careamics/utils/torch_utils.py +127 -0
  150. careamics-0.0.3.dist-info/METADATA +78 -0
  151. careamics-0.0.3.dist-info/RECORD +154 -0
  152. {careamics-0.0.1.dist-info → careamics-0.0.3.dist-info}/WHEEL +1 -1
  153. {careamics-0.0.1.dist-info → careamics-0.0.3.dist-info}/licenses/LICENSE +1 -1
  154. careamics-0.0.1.dist-info/METADATA +0 -46
  155. careamics-0.0.1.dist-info/RECORD +0 -6
@@ -0,0 +1,362 @@
1
+ """Module contiaing tiling manager class."""
2
+
3
+ # # TODO: remove this file, left as a reference for now.
4
+
5
+ # from typing import Any, Optional
6
+
7
+ # import numpy as np
8
+ # from numpy.typing import NDArray
9
+
10
+ # from careamics.config.tile_information import TileInformation
11
+ # from careamics.config.validators import check_axes_validity
12
+
13
+
14
+ # def calculate_padding(
15
+ # patch_start_location: NDArray,
16
+ # patch_size: NDArray,
17
+ # data_shape: NDArray,
18
+ # ) -> NDArray:
19
+ # patch_end_location = patch_start_location + patch_size
20
+
21
+ # pad_before = np.zeros_like(patch_start_location)
22
+ # start_out_of_bounds = patch_start_location < 0
23
+ # pad_before[start_out_of_bounds] = -patch_start_location[start_out_of_bounds]
24
+
25
+ # pad_after = np.zeros_like(patch_start_location)
26
+ # end_out_of_bounds = patch_end_location > data_shape
27
+ # pad_after[end_out_of_bounds] = (
28
+ # patch_end_location - data_shape
29
+ # )[end_out_of_bounds]
30
+
31
+ # return np.stack([pad_before, pad_after], axis=1)
32
+
33
+
34
+ # def extract_tile(
35
+ # img: np.ndarray,
36
+ # grid_start_loc: tuple[int, ...],
37
+ # patch_size: tuple[int, ...],
38
+ # overlap: tuple[int, ...],
39
+ # padding: bool,
40
+ # padding_kwargs: Optional[dict[str, Any]] = None,
41
+ # ) -> NDArray:
42
+ # if padding_kwargs is None:
43
+ # padding_kwargs = {}
44
+
45
+ # data_shape = img.shape
46
+ # patch_start_loc = np.array(grid_start_loc) - np.array(overlap) // 2
47
+ # crop_slices = tuple(
48
+ # slice(max(0, start), min(start + size, dim_shape))
49
+ # for start, size, dim_shape in zip(patch_start_loc, patch_size, data_shape)
50
+ # )
51
+ # crop = img[crop_slices]
52
+ # if padding:
53
+ # pad = calculate_padding(
54
+ # patch_start_location=patch_start_loc,
55
+ # patch_size=patch_size,
56
+ # data_shape=data_shape,
57
+ # )
58
+ # crop = np.pad(crop, pad, **padding_kwargs)
59
+
60
+ # return crop
61
+
62
+
63
+ # class TilingManager:
64
+
65
+ # def __init__(
66
+ # self,
67
+ # data_shape: tuple[int, ...],
68
+ # tile_size: tuple[int, ...],
69
+ # overlaps: tuple[int, ...],
70
+ # trim_boundary: tuple[int, ...],
71
+ # ):
72
+ # # --- validation
73
+ # if len(data_shape) != len(tile_size):
74
+ # raise ValueError(
75
+ # f"Data shape:{data_shape} and tile size:{tile_size} must have the "
76
+ # "same dimension"
77
+ # )
78
+ # if len(data_shape) != len(overlaps):
79
+ # raise ValueError(
80
+ # f"Data shape:{data_shape} and tile overlaps:{overlaps} must have the "
81
+ # "same dimension"
82
+ # )
83
+ # # overlaps = np.array(tile_size) - np.array(grid_shape)
84
+ # if (np.array(overlaps) < 0).any():
85
+ # raise ValueError(
86
+ # "Tile overlap must be positive or zero in all dimension."
87
+ # )
88
+ # if ((np.array(overlaps) % 2) != 0).any():
89
+ # # TODO: currently not required by CAREamics tiling,
90
+ # # -> because floor divide is used.
91
+ # raise ValueError("Tile overlaps must be even.")
92
+
93
+ # # initialize attributes
94
+ # self.data_shape = data_shape
95
+ # self.overlaps = overlaps
96
+ # self.grid_shape = tuple(np.array(tile_size) - np.array(overlaps))
97
+ # self.patch_shape = tile_size
98
+ # self.trim_boundary = trim_boundary
99
+
100
+ # def compute_tile_info(self, index: int, axes: str):
101
+
102
+ # # TODO: better axis validation, data should already be in the form SC(Z)YX
103
+
104
+ # # validate axes
105
+ # check_axes_validity(axes)
106
+ # # z will be -1 if not present
107
+ # spatial_axes = [axes.find("Z"), axes.find("Y"), axes.find("X")]
108
+
109
+ # # convert to numpy for convenience
110
+ # data_shape = np.array(self.data_shape)
111
+ # patch_shape = np.array(self.patch_shape)
112
+
113
+ # # --- calculate stitch coords
114
+ # stitch_coords_start = np.array(self.get_location_from_dataset_idx(index))
115
+ # stitch_coords_end = stitch_coords_start + np.array(self.grid_shape)
116
+
117
+ # # --- patch coords
118
+ # patch_coords_start = stitch_coords_start - np.array(self.overlaps) // 2
119
+ # patch_coords_end = patch_coords_start + patch_shape
120
+
121
+ # # --- replace out of bounds indices
122
+
123
+ # out_of_lower_bound = stitch_coords_start < 0
124
+ # out_of_upper_bound = stitch_coords_end > data_shape
125
+
126
+ # stitch_coords_start[out_of_lower_bound] = 0
127
+ # stitch_coords_end[out_of_upper_bound] = data_shape[out_of_upper_bound]
128
+
129
+ # # --- calculate overlap crop coords
130
+ # overlap_crop_coords_start = stitch_coords_start - patch_coords_start
131
+ # overlap_crop_coords_end = overlap_crop_coords_start + (
132
+ # stitch_coords_end - stitch_coords_start
133
+ # )
134
+
135
+ # # --- combine start and end
136
+ # stitch_coords = tuple(
137
+ # (stitch_coords_start[axis], stitch_coords_end[axis])
138
+ # for axis in spatial_axes
139
+ # if axis != -1
140
+ # )
141
+ # overlap_crop_coords = tuple(
142
+ # (overlap_crop_coords_start[axis], overlap_crop_coords_end[axis])
143
+ # for axis in spatial_axes
144
+ # if axis != -1
145
+ # )
146
+
147
+ # channel_axis = axes.find("C")
148
+ # array_shape_processed = tuple(
149
+ # data_shape[axis] for axis in [channel_axis, *spatial_axes] if axis != -1
150
+ # )
151
+
152
+ # tile_info = TileInformation(
153
+ # array_shape=array_shape_processed,
154
+ # last_tile=index == self.total_grid_count() - 1,
155
+ # overlap_crop_coords=overlap_crop_coords,
156
+ # stitch_coords=stitch_coords,
157
+ # sample_id=0, # TODO: in iterable dataset this is also always 0 pretty sure
158
+ # )
159
+ # return tile_info
160
+
161
+ # def patch_offset(self):
162
+ # return (np.array(self.patch_shape) - np.array(self.grid_shape)) // 2
163
+
164
+ # def get_individual_dim_grid_count(self, dim: int):
165
+ # """
166
+ # Returns the number of the grid in the specified dimension, ignoring all other
167
+ # dimensions.
168
+ # """
169
+ # assert dim < len(
170
+ # self.data_shape
171
+ # ), f"Dimension {dim} is out of bounds for data shape {self.data_shape}"
172
+ # assert dim >= 0, "Dimension must be greater than or equal to 0"
173
+
174
+ # if self.grid_shape[dim] == 1 and self.patch_shape[dim] == 1:
175
+ # return self.data_shape[dim]
176
+ # elif self.trim_boundary is False:
177
+ # return int(np.ceil(self.data_shape[dim] / self.grid_shape[dim]))
178
+ # else:
179
+ # excess_size = self.patch_shape[dim] - self.grid_shape[dim]
180
+ # return int(
181
+ # np.floor((self.data_shape[dim] - excess_size) / self.grid_shape[dim])
182
+ # )
183
+
184
+ # def total_grid_count(self):
185
+ # """
186
+ # Returns the total number of grids in the dataset.
187
+ # """
188
+ # return self.grid_count(0) * self.get_individual_dim_grid_count(0)
189
+
190
+ # def grid_count(self, dim: int):
191
+ # """
192
+ # Returns the total number of grids for one value in the specified dimension.
193
+ # """
194
+ # assert dim < len(
195
+ # self.data_shape
196
+ # ), f"Dimension {dim} is out of bounds for data shape {self.data_shape}"
197
+ # assert dim >= 0, "Dimension must be greater than or equal to 0"
198
+ # if dim == len(self.data_shape) - 1:
199
+ # return 1
200
+
201
+ # return self.get_individual_dim_grid_count(dim + 1) * self.grid_count(dim + 1)
202
+
203
+ # def get_grid_index(self, dim: int, coordinate: int):
204
+ # """
205
+ # Returns the index of the grid in the specified dimension.
206
+ # """
207
+ # assert dim < len(
208
+ # self.data_shape
209
+ # ), f"Dimension {dim} is out of bounds for data shape {self.data_shape}"
210
+ # assert dim >= 0, "Dimension must be greater than or equal to 0"
211
+ # assert (
212
+ # coordinate < self.data_shape[dim]
213
+ # ), (
214
+ # f"Coordinate {coordinate} is out of bounds for data "
215
+ # f"shape {self.data_shape}"
216
+ # )
217
+ # if self.grid_shape[dim] == 1 and self.patch_shape[dim] == 1:
218
+ # return coordinate
219
+ # elif self.trim_boundary is False:
220
+ # return np.floor(coordinate / self.grid_shape[dim])
221
+ # else:
222
+ # excess_size = (self.patch_shape[dim] - self.grid_shape[dim]) // 2
223
+ # # can be <0 if coordinate is in [0,grid_shape[dim]]
224
+ # return max(0, np.floor((coordinate - excess_size) / self.grid_shape[dim]))
225
+
226
+ # def dataset_idx_from_grid_idx(self, grid_idx: tuple):
227
+ # """
228
+ # Returns the index of the grid in the dataset.
229
+ # """
230
+ # assert len(grid_idx) == len(
231
+ # self.data_shape
232
+ # ), (
233
+ # f"Dimension indices {grid_idx} must have the same dimension as data "
234
+ # f"shape {self.data_shape}"
235
+ # )
236
+ # index = 0
237
+ # for dim in range(len(grid_idx)):
238
+ # index += grid_idx[dim] * self.grid_count(dim)
239
+ # return index
240
+
241
+ # def get_patch_location_from_dataset_idx(self, dataset_idx: int):
242
+ # """
243
+ # Returns the patch location of the grid in the dataset.
244
+ # """
245
+ # location = self.get_location_from_dataset_idx(dataset_idx)
246
+ # offset = self.patch_offset()
247
+ # return tuple(np.array(location) - np.array(offset))
248
+
249
+ # def get_dataset_idx_from_grid_location(self, location: tuple):
250
+ # assert len(location) == len(
251
+ # self.data_shape
252
+ # ), (
253
+ # f"Location {location} must have the same dimension as data shape "
254
+ # f"{self.data_shape}"
255
+ # )
256
+ # grid_idx = [
257
+ # self.get_grid_index(dim, location[dim]) for dim in range(len(location))
258
+ # ]
259
+ # return self.dataset_idx_from_grid_idx(tuple(grid_idx))
260
+
261
+ # def get_gridstart_location_from_dim_index(self, dim: int, dim_index: int):
262
+ # """
263
+ # Returns the grid-start coordinate of the grid in the specified dimension.
264
+ # """
265
+ # assert dim < len(
266
+ # self.data_shape
267
+ # ), f"Dimension {dim} is out of bounds for data shape {self.data_shape}"
268
+ # assert dim >= 0, "Dimension must be greater than or equal to 0"
269
+ # assert dim_index < self.get_individual_dim_grid_count(
270
+ # dim
271
+ # ), (
272
+ # f"Dimension index {dim_index} is out of bounds for data shape "
273
+ # f"{self.data_shape}"
274
+ # )
275
+
276
+ # if self.grid_shape[dim] == 1 and self.patch_shape[dim] == 1:
277
+ # return dim_index
278
+ # elif self.trim_boundary is False:
279
+ # return dim_index * self.grid_shape[dim]
280
+ # else:
281
+ # excess_size = (self.patch_shape[dim] - self.grid_shape[dim]) // 2
282
+ # return dim_index * self.grid_shape[dim] + excess_size
283
+
284
+ # def get_location_from_dataset_idx(self, dataset_idx: int):
285
+ # grid_idx = []
286
+ # for dim in range(len(self.data_shape)):
287
+ # grid_idx.append(dataset_idx // self.grid_count(dim))
288
+ # dataset_idx = dataset_idx % self.grid_count(dim)
289
+ # location = [
290
+ # self.get_gridstart_location_from_dim_index(dim, grid_idx[dim])
291
+ # for dim in range(len(self.data_shape))
292
+ # ]
293
+ # return tuple(location)
294
+
295
+ # def on_boundary(self, dataset_idx: int, dim: int):
296
+ # """
297
+ # Returns True if the grid is on the boundary in the specified dimension.
298
+ # """
299
+ # assert dim < len(
300
+ # self.data_shape
301
+ # ), f"Dimension {dim} is out of bounds for data shape {self.data_shape}"
302
+ # assert dim >= 0, "Dimension must be greater than or equal to 0"
303
+
304
+ # if dim > 0:
305
+ # dataset_idx = dataset_idx % self.grid_count(dim - 1)
306
+
307
+ # dim_index = dataset_idx // self.grid_count(dim)
308
+ # return (
309
+ # dim_index == 0 or dim_index == self.get_individual_dim_grid_count(dim) - 1
310
+ # )
311
+
312
+ # def next_grid_along_dim(self, dataset_idx: int, dim: int):
313
+ # """
314
+ # Returns the index of the grid in the specified dimension in the specified "
315
+ # "direction.
316
+ # """
317
+ # assert dim < len(
318
+ # self.data_shape
319
+ # ), f"Dimension {dim} is out of bounds for data shape {self.data_shape}"
320
+ # assert dim >= 0, "Dimension must be greater than or equal to 0"
321
+ # new_idx = dataset_idx + self.grid_count(dim)
322
+ # if new_idx >= self.total_grid_count():
323
+ # return None
324
+ # return new_idx
325
+
326
+ # def prev_grid_along_dim(self, dataset_idx: int, dim: int):
327
+ # """
328
+ # Returns the index of the grid in the specified dimension in the specified "
329
+ # "direction.
330
+ # """
331
+ # assert dim < len(
332
+ # self.data_shape
333
+ # ), f"Dimension {dim} is out of bounds for data shape {self.data_shape}"
334
+ # assert dim >= 0, "Dimension must be greater than or equal to 0"
335
+ # new_idx = dataset_idx - self.grid_count(dim)
336
+ # if new_idx < 0:
337
+ # return None
338
+
339
+
340
+ # if __name__ == "__main__":
341
+ # data_shape = (1, 1, 103, 103, 2)
342
+ # grid_shape = (1, 1, 16, 16, 2)
343
+ # patch_shape = (1, 1, 32, 32, 2)
344
+ # overlap = tuple(np.array(patch_shape) - np.array(grid_shape))
345
+
346
+ # trim_boundary = False
347
+ # manager = TilingManager(
348
+ # data_shape=data_shape,
349
+ # tile_size=patch_shape,
350
+ # overlaps=overlap,
351
+ # trim_boundary=trim_boundary,
352
+ # )
353
+ # gc = manager.total_grid_count()
354
+ # print("Grid count", gc)
355
+ # for i in range(gc):
356
+ # loc = manager.get_location_from_dataset_idx(i)
357
+ # print(i, loc)
358
+ # inferred_i = manager.get_dataset_idx_from_grid_location(loc)
359
+ # assert i == inferred_i, f"Index mismatch: {i} != {inferred_i}"
360
+
361
+ # for i in range(5):
362
+ # print(manager.on_boundary(40, i))
@@ -0,0 +1,135 @@
1
+ """Module containing functions to convert prediction outputs to desired form."""
2
+
3
+ from typing import Any, List, Literal, Tuple, Union, overload
4
+
5
+ import numpy as np
6
+ from numpy.typing import NDArray
7
+
8
+ from ..config.tile_information import TileInformation
9
+ from .stitch_prediction import stitch_prediction
10
+
11
+
12
+ def convert_outputs(predictions: List[Any], tiled: bool) -> list[NDArray]:
13
+ """
14
+ Convert the Lightning trainer outputs to the desired form.
15
+
16
+ This method allows stitching back together tiled predictions.
17
+
18
+ Parameters
19
+ ----------
20
+ predictions : list
21
+ Predictions that are output from `Trainer.predict`.
22
+ tiled : bool
23
+ Whether the predictions are tiled.
24
+
25
+ Returns
26
+ -------
27
+ list of numpy.ndarray or numpy.ndarray
28
+ List of arrays with the axes SC(Z)YX. If there is only 1 output it will not
29
+ be in a list.
30
+ """
31
+ if len(predictions) == 0:
32
+ return predictions
33
+
34
+ # this layout is to stop mypy complaining
35
+ if tiled:
36
+ predictions_comb = combine_batches(predictions, tiled)
37
+ predictions_output = stitch_prediction(*predictions_comb)
38
+ else:
39
+ predictions_output = combine_batches(predictions, tiled)
40
+
41
+ return predictions_output
42
+
43
+
44
+ # for mypy
45
+ @overload
46
+ def combine_batches( # numpydoc ignore=GL08
47
+ predictions: List[Any], tiled: Literal[True]
48
+ ) -> Tuple[List[NDArray], List[TileInformation]]: ...
49
+
50
+
51
+ # for mypy
52
+ @overload
53
+ def combine_batches( # numpydoc ignore=GL08
54
+ predictions: List[Any], tiled: Literal[False]
55
+ ) -> List[NDArray]: ...
56
+
57
+
58
+ # for mypy
59
+ @overload
60
+ def combine_batches( # numpydoc ignore=GL08
61
+ predictions: List[Any], tiled: Union[bool, Literal[True], Literal[False]]
62
+ ) -> Union[List[NDArray], Tuple[List[NDArray], List[TileInformation]]]: ...
63
+
64
+
65
+ def combine_batches(
66
+ predictions: List[Any], tiled: bool
67
+ ) -> Union[List[NDArray], Tuple[List[NDArray], List[TileInformation]]]:
68
+ """
69
+ If predictions are in batches, they will be combined.
70
+
71
+ Parameters
72
+ ----------
73
+ predictions : list
74
+ Predictions that are output from `Trainer.predict`.
75
+ tiled : bool
76
+ Whether the predictions are tiled.
77
+
78
+ Returns
79
+ -------
80
+ (list of numpy.ndarray) or tuple of (list of numpy.ndarray, list of TileInformation)
81
+ Combined batches.
82
+ """
83
+ if tiled:
84
+ return _combine_tiled_batches(predictions)
85
+ else:
86
+ return _combine_array_batches(predictions)
87
+
88
+
89
+ def _combine_tiled_batches(
90
+ predictions: List[Tuple[NDArray, List[TileInformation]]]
91
+ ) -> Tuple[List[NDArray], List[TileInformation]]:
92
+ """
93
+ Combine batches from tiled output.
94
+
95
+ Parameters
96
+ ----------
97
+ predictions : list of (numpy.ndarray, list of TileInformation)
98
+ Predictions that are output from `Trainer.predict`. For tiled batches, this is
99
+ a list of tuples. The first element of the tuples is the prediction output of
100
+ tiles with dimension (B, C, (Z), Y, X), where B is batch size. The second
101
+ element of the tuples is a list of TileInformation objects of length B.
102
+
103
+ Returns
104
+ -------
105
+ tuple of (list of numpy.ndarray, list of TileInformation)
106
+ Combined batches.
107
+ """
108
+ # turn list of lists into single list
109
+ tile_infos = [
110
+ tile_info for _, tile_info_list in predictions for tile_info in tile_info_list
111
+ ]
112
+ prediction_tiles: List[NDArray] = _combine_array_batches(
113
+ [preds for preds, _ in predictions]
114
+ )
115
+ return prediction_tiles, tile_infos
116
+
117
+
118
+ def _combine_array_batches(predictions: List[NDArray]) -> List[NDArray]:
119
+ """
120
+ Combine batches of arrays.
121
+
122
+ Parameters
123
+ ----------
124
+ predictions : list
125
+ Prediction arrays that are output from `Trainer.predict`. A list of arrays that
126
+ have dimensions (B, C, (Z), Y, X), where B is batch size.
127
+
128
+ Returns
129
+ -------
130
+ list of numpy.ndarray
131
+ A list of arrays with dimensions (1, C, (Z), Y, X).
132
+ """
133
+ prediction_concat: NDArray = np.concatenate(predictions, axis=0)
134
+ prediction_split = np.split(prediction_concat, prediction_concat.shape[0], axis=0)
135
+ return prediction_split
@@ -0,0 +1,112 @@
1
+ """Prediction utility functions."""
2
+
3
+ import builtins
4
+ from typing import List, Union
5
+
6
+ import numpy as np
7
+ from numpy.typing import NDArray
8
+
9
+ from careamics.config.tile_information import TileInformation
10
+
11
+
12
+ # TODO: why not allow input and output of torch.tensor ?
13
+ def stitch_prediction(
14
+ tiles: List[np.ndarray],
15
+ tile_infos: List[TileInformation],
16
+ ) -> List[np.ndarray]:
17
+ """
18
+ Stitch tiles back together to form a full image(s).
19
+
20
+ Tiles are of dimensions SC(Z)YX, where C is the number of channels and can be a
21
+ singleton dimension.
22
+
23
+ Parameters
24
+ ----------
25
+ tiles : list of numpy.ndarray
26
+ Cropped tiles and their respective stitching coordinates. Can contain tiles
27
+ from multiple images.
28
+ tile_infos : list of TileInformation
29
+ List of information and coordinates obtained from
30
+ `dataset.tiled_patching.extract_tiles`.
31
+
32
+ Returns
33
+ -------
34
+ list of numpy.ndarray
35
+ Full image(s).
36
+ """
37
+ # Find where to split the lists so that only info from one image is contained.
38
+ # Do this by locating the last tiles of each image.
39
+ last_tiles = [tile_info.last_tile for tile_info in tile_infos]
40
+ last_tile_position = np.where(last_tiles)[0]
41
+ image_slices = [
42
+ slice(
43
+ None if i == 0 else last_tile_position[i - 1] + 1, last_tile_position[i] + 1
44
+ )
45
+ for i in range(len(last_tile_position))
46
+ ]
47
+ image_predictions = []
48
+ # slice the lists and apply stitch_prediction_single to each in turn.
49
+ for image_slice in image_slices:
50
+ image_predictions.append(
51
+ stitch_prediction_single(tiles[image_slice], tile_infos[image_slice])
52
+ )
53
+ return image_predictions
54
+
55
+
56
+ def stitch_prediction_single(
57
+ tiles: List[NDArray],
58
+ tile_infos: List[TileInformation],
59
+ ) -> NDArray:
60
+ """
61
+ Stitch tiles back together to form a full image.
62
+
63
+ Tiles are of dimensions SC(Z)YX, where C is the number of channels and can be a
64
+ singleton dimension.
65
+
66
+ Parameters
67
+ ----------
68
+ tiles : list of numpy.ndarray
69
+ Cropped tiles and their respective stitching coordinates.
70
+ tile_infos : list of TileInformation
71
+ List of information and coordinates obtained from
72
+ `dataset.tiled_patching.extract_tiles`.
73
+
74
+ Returns
75
+ -------
76
+ numpy.ndarray
77
+ Full image, with dimensions SC(Z)YX.
78
+ """
79
+ # TODO: this is hacky... need a better way to deal with when input channels and
80
+ # target channels do not match
81
+ if len(tile_infos[0].array_shape) == 4:
82
+ # 4 dimensions => 3 spatial dimensions so -4 is channel dimension
83
+ tile_channels = tiles[0].shape[-4]
84
+ elif len(tile_infos[0].array_shape) == 3:
85
+ # 3 dimensions => 2 spatial dimensions so -3 is channel dimension
86
+ tile_channels = tiles[0].shape[-3]
87
+ else:
88
+ # Note pretty sure this is unreachable because array shape is already
89
+ # validated by TileInformation
90
+ raise ValueError(
91
+ f"Unsupported number of output dimension {len(tile_infos[0].array_shape)}"
92
+ )
93
+ # retrieve whole array size, add S dim and use number of channels in tile
94
+ input_shape = (1, tile_channels, *tile_infos[0].array_shape[1:])
95
+ predicted_image = np.zeros(input_shape, dtype=np.float32)
96
+
97
+ for tile, tile_info in zip(tiles, tile_infos):
98
+
99
+ # Compute coordinates for cropping predicted tile
100
+ crop_slices: tuple[Union[builtins.ellipsis, slice], ...] = (
101
+ ...,
102
+ *[slice(c[0], c[1]) for c in tile_info.overlap_crop_coords],
103
+ )
104
+
105
+ # Crop predited tile according to overlap coordinates
106
+ cropped_tile = tile[crop_slices]
107
+
108
+ # Insert cropped tile into predicted image using stitch coordinates
109
+ image_slices = (..., *[slice(c[0], c[1]) for c in tile_info.stitch_coords])
110
+ predicted_image[image_slices] = cropped_tile.astype(np.float32)
111
+
112
+ return predicted_image
@@ -0,0 +1,20 @@
1
+ """Transforms that are used to augment the data."""
2
+
3
+ __all__ = [
4
+ "get_all_transforms",
5
+ "N2VManipulate",
6
+ "XYFlip",
7
+ "XYRandomRotate90",
8
+ "ImageRestorationTTA",
9
+ "Denormalize",
10
+ "Normalize",
11
+ "Compose",
12
+ ]
13
+
14
+
15
+ from .compose import Compose, get_all_transforms
16
+ from .n2v_manipulate import N2VManipulate
17
+ from .normalize import Denormalize, Normalize
18
+ from .tta import ImageRestorationTTA
19
+ from .xy_flip import XYFlip
20
+ from .xy_random_rotate90 import XYRandomRotate90