careamics 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of careamics might be problematic. Click here for more details.

Files changed (155) hide show
  1. careamics/__init__.py +6 -1
  2. careamics/careamist.py +729 -0
  3. careamics/config/__init__.py +39 -0
  4. careamics/config/architectures/__init__.py +17 -0
  5. careamics/config/architectures/architecture_model.py +37 -0
  6. careamics/config/architectures/custom_model.py +162 -0
  7. careamics/config/architectures/lvae_model.py +174 -0
  8. careamics/config/architectures/register_model.py +103 -0
  9. careamics/config/architectures/unet_model.py +118 -0
  10. careamics/config/callback_model.py +123 -0
  11. careamics/config/configuration_factory.py +583 -0
  12. careamics/config/configuration_model.py +604 -0
  13. careamics/config/data_model.py +527 -0
  14. careamics/config/fcn_algorithm_model.py +147 -0
  15. careamics/config/inference_model.py +239 -0
  16. careamics/config/likelihood_model.py +43 -0
  17. careamics/config/nm_model.py +101 -0
  18. careamics/config/optimizer_models.py +187 -0
  19. careamics/config/references/__init__.py +45 -0
  20. careamics/config/references/algorithm_descriptions.py +132 -0
  21. careamics/config/references/references.py +39 -0
  22. careamics/config/support/__init__.py +31 -0
  23. careamics/config/support/supported_activations.py +27 -0
  24. careamics/config/support/supported_algorithms.py +33 -0
  25. careamics/config/support/supported_architectures.py +17 -0
  26. careamics/config/support/supported_data.py +109 -0
  27. careamics/config/support/supported_loggers.py +10 -0
  28. careamics/config/support/supported_losses.py +29 -0
  29. careamics/config/support/supported_optimizers.py +57 -0
  30. careamics/config/support/supported_pixel_manipulations.py +15 -0
  31. careamics/config/support/supported_struct_axis.py +21 -0
  32. careamics/config/support/supported_transforms.py +11 -0
  33. careamics/config/tile_information.py +65 -0
  34. careamics/config/training_model.py +72 -0
  35. careamics/config/transformations/__init__.py +15 -0
  36. careamics/config/transformations/n2v_manipulate_model.py +64 -0
  37. careamics/config/transformations/normalize_model.py +60 -0
  38. careamics/config/transformations/transform_model.py +45 -0
  39. careamics/config/transformations/xy_flip_model.py +43 -0
  40. careamics/config/transformations/xy_random_rotate90_model.py +35 -0
  41. careamics/config/vae_algorithm_model.py +171 -0
  42. careamics/config/validators/__init__.py +5 -0
  43. careamics/config/validators/validator_utils.py +101 -0
  44. careamics/conftest.py +39 -0
  45. careamics/dataset/__init__.py +17 -0
  46. careamics/dataset/dataset_utils/__init__.py +19 -0
  47. careamics/dataset/dataset_utils/dataset_utils.py +101 -0
  48. careamics/dataset/dataset_utils/file_utils.py +141 -0
  49. careamics/dataset/dataset_utils/iterate_over_files.py +83 -0
  50. careamics/dataset/dataset_utils/running_stats.py +186 -0
  51. careamics/dataset/in_memory_dataset.py +310 -0
  52. careamics/dataset/in_memory_pred_dataset.py +88 -0
  53. careamics/dataset/in_memory_tiled_pred_dataset.py +129 -0
  54. careamics/dataset/iterable_dataset.py +295 -0
  55. careamics/dataset/iterable_pred_dataset.py +122 -0
  56. careamics/dataset/iterable_tiled_pred_dataset.py +140 -0
  57. careamics/dataset/patching/__init__.py +1 -0
  58. careamics/dataset/patching/patching.py +299 -0
  59. careamics/dataset/patching/random_patching.py +201 -0
  60. careamics/dataset/patching/sequential_patching.py +212 -0
  61. careamics/dataset/patching/validate_patch_dimension.py +64 -0
  62. careamics/dataset/tiling/__init__.py +10 -0
  63. careamics/dataset/tiling/collate_tiles.py +33 -0
  64. careamics/dataset/tiling/lvae_tiled_patching.py +282 -0
  65. careamics/dataset/tiling/tiled_patching.py +164 -0
  66. careamics/dataset/zarr_dataset.py +151 -0
  67. careamics/file_io/__init__.py +15 -0
  68. careamics/file_io/read/__init__.py +12 -0
  69. careamics/file_io/read/get_func.py +56 -0
  70. careamics/file_io/read/tiff.py +58 -0
  71. careamics/file_io/read/zarr.py +60 -0
  72. careamics/file_io/write/__init__.py +15 -0
  73. careamics/file_io/write/get_func.py +63 -0
  74. careamics/file_io/write/tiff.py +40 -0
  75. careamics/lightning/__init__.py +18 -0
  76. careamics/lightning/callbacks/__init__.py +11 -0
  77. careamics/lightning/callbacks/hyperparameters_callback.py +49 -0
  78. careamics/lightning/callbacks/prediction_writer_callback/__init__.py +20 -0
  79. careamics/lightning/callbacks/prediction_writer_callback/file_path_utils.py +56 -0
  80. careamics/lightning/callbacks/prediction_writer_callback/prediction_writer_callback.py +233 -0
  81. careamics/lightning/callbacks/prediction_writer_callback/write_strategy.py +398 -0
  82. careamics/lightning/callbacks/prediction_writer_callback/write_strategy_factory.py +215 -0
  83. careamics/lightning/callbacks/progress_bar_callback.py +90 -0
  84. careamics/lightning/lightning_module.py +632 -0
  85. careamics/lightning/predict_data_module.py +333 -0
  86. careamics/lightning/train_data_module.py +680 -0
  87. careamics/losses/__init__.py +15 -0
  88. careamics/losses/fcn/__init__.py +1 -0
  89. careamics/losses/fcn/losses.py +98 -0
  90. careamics/losses/loss_factory.py +155 -0
  91. careamics/losses/lvae/__init__.py +1 -0
  92. careamics/losses/lvae/loss_utils.py +83 -0
  93. careamics/losses/lvae/losses.py +445 -0
  94. careamics/lvae_training/__init__.py +0 -0
  95. careamics/lvae_training/dataset/__init__.py +0 -0
  96. careamics/lvae_training/dataset/data_utils.py +701 -0
  97. careamics/lvae_training/dataset/lc_dataset.py +259 -0
  98. careamics/lvae_training/dataset/lc_dataset_config.py +13 -0
  99. careamics/lvae_training/dataset/vae_data_config.py +179 -0
  100. careamics/lvae_training/dataset/vae_dataset.py +1054 -0
  101. careamics/lvae_training/eval_utils.py +905 -0
  102. careamics/lvae_training/get_config.py +84 -0
  103. careamics/lvae_training/lightning_module.py +701 -0
  104. careamics/lvae_training/metrics.py +214 -0
  105. careamics/lvae_training/train_lvae.py +342 -0
  106. careamics/lvae_training/train_utils.py +121 -0
  107. careamics/model_io/__init__.py +7 -0
  108. careamics/model_io/bioimage/__init__.py +11 -0
  109. careamics/model_io/bioimage/_readme_factory.py +121 -0
  110. careamics/model_io/bioimage/bioimage_utils.py +52 -0
  111. careamics/model_io/bioimage/model_description.py +327 -0
  112. careamics/model_io/bmz_io.py +246 -0
  113. careamics/model_io/model_io_utils.py +95 -0
  114. careamics/models/__init__.py +5 -0
  115. careamics/models/activation.py +39 -0
  116. careamics/models/layers.py +493 -0
  117. careamics/models/lvae/__init__.py +3 -0
  118. careamics/models/lvae/layers.py +1998 -0
  119. careamics/models/lvae/likelihoods.py +364 -0
  120. careamics/models/lvae/lvae.py +901 -0
  121. careamics/models/lvae/noise_models.py +541 -0
  122. careamics/models/lvae/utils.py +395 -0
  123. careamics/models/model_factory.py +67 -0
  124. careamics/models/unet.py +443 -0
  125. careamics/prediction_utils/__init__.py +10 -0
  126. careamics/prediction_utils/lvae_prediction.py +158 -0
  127. careamics/prediction_utils/lvae_tiling_manager.py +362 -0
  128. careamics/prediction_utils/prediction_outputs.py +135 -0
  129. careamics/prediction_utils/stitch_prediction.py +112 -0
  130. careamics/transforms/__init__.py +20 -0
  131. careamics/transforms/compose.py +107 -0
  132. careamics/transforms/n2v_manipulate.py +146 -0
  133. careamics/transforms/normalize.py +243 -0
  134. careamics/transforms/pixel_manipulation.py +407 -0
  135. careamics/transforms/struct_mask_parameters.py +20 -0
  136. careamics/transforms/transform.py +24 -0
  137. careamics/transforms/tta.py +88 -0
  138. careamics/transforms/xy_flip.py +123 -0
  139. careamics/transforms/xy_random_rotate90.py +101 -0
  140. careamics/utils/__init__.py +19 -0
  141. careamics/utils/autocorrelation.py +40 -0
  142. careamics/utils/base_enum.py +60 -0
  143. careamics/utils/context.py +66 -0
  144. careamics/utils/logging.py +322 -0
  145. careamics/utils/metrics.py +188 -0
  146. careamics/utils/path_utils.py +26 -0
  147. careamics/utils/ram.py +15 -0
  148. careamics/utils/receptive_field.py +108 -0
  149. careamics/utils/torch_utils.py +127 -0
  150. careamics-0.0.3.dist-info/METADATA +78 -0
  151. careamics-0.0.3.dist-info/RECORD +154 -0
  152. {careamics-0.0.1.dist-info → careamics-0.0.3.dist-info}/WHEEL +1 -1
  153. {careamics-0.0.1.dist-info → careamics-0.0.3.dist-info}/licenses/LICENSE +1 -1
  154. careamics-0.0.1.dist-info/METADATA +0 -46
  155. careamics-0.0.1.dist-info/RECORD +0 -6
@@ -0,0 +1,246 @@
1
+ """Function to export to the BioImage Model Zoo format."""
2
+
3
+ import tempfile
4
+ from pathlib import Path
5
+ from typing import List, Optional, Tuple, Union
6
+
7
+ import numpy as np
8
+ import pkg_resources
9
+ from bioimageio.core import load_description, test_model
10
+ from bioimageio.spec import ValidationSummary, save_bioimageio_package
11
+ from torch import __version__, load, save
12
+
13
+ from careamics.config import Configuration, load_configuration, save_configuration
14
+ from careamics.config.support import SupportedArchitecture
15
+ from careamics.lightning.lightning_module import FCNModule, VAEModule
16
+
17
+ from .bioimage import (
18
+ create_env_text,
19
+ create_model_description,
20
+ extract_model_path,
21
+ get_unzip_path,
22
+ )
23
+
24
+
25
+ def _export_state_dict(
26
+ model: Union[FCNModule, VAEModule], path: Union[Path, str]
27
+ ) -> Path:
28
+ """
29
+ Export the model state dictionary to a file.
30
+
31
+ Parameters
32
+ ----------
33
+ model : CAREamicsKiln
34
+ CAREamics model to export.
35
+ path : Union[Path, str]
36
+ Path to the file where to save the model state dictionary.
37
+
38
+ Returns
39
+ -------
40
+ Path
41
+ Path to the saved model state dictionary.
42
+ """
43
+ path = Path(path)
44
+
45
+ # make sure it has the correct suffix
46
+ if path.suffix not in ".pth":
47
+ path = path.with_suffix(".pth")
48
+
49
+ # save model state dictionary
50
+ # we save through the torch model itself to avoid the initial "model." in the
51
+ # layers naming, which is incompatible with the way the BMZ load torch state dicts
52
+ save(model.model.state_dict(), path)
53
+
54
+ return path
55
+
56
+
57
+ def _load_state_dict(
58
+ model: Union[FCNModule, VAEModule], path: Union[Path, str]
59
+ ) -> None:
60
+ """
61
+ Load a model from a state dictionary.
62
+
63
+ Parameters
64
+ ----------
65
+ model : CAREamicsKiln
66
+ CAREamics model to be updated with the weights.
67
+ path : Union[Path, str]
68
+ Path to the model state dictionary.
69
+ """
70
+ path = Path(path)
71
+
72
+ # load model state dictionary
73
+ # same as in _export_state_dict, we load through the torch model to be compatible
74
+ # witht bioimageio.core expectations for a torch state dict
75
+ state_dict = load(path)
76
+ model.model.load_state_dict(state_dict)
77
+
78
+
79
+ # TODO break down in subfunctions
80
+ def export_to_bmz(
81
+ model: Union[FCNModule, VAEModule],
82
+ config: Configuration,
83
+ path_to_archive: Union[Path, str],
84
+ model_name: str,
85
+ general_description: str,
86
+ authors: List[dict],
87
+ input_array: np.ndarray,
88
+ output_array: np.ndarray,
89
+ channel_names: Optional[List[str]] = None,
90
+ data_description: Optional[str] = None,
91
+ ) -> None:
92
+ """Export the model to BioImage Model Zoo format.
93
+
94
+ Arrays are expected to be SC(Z)YX with singleton dimensions allowed for S and C.
95
+
96
+ `model_name` should consist of letters, numbers, dashes, underscores and parentheses
97
+ only.
98
+
99
+ Parameters
100
+ ----------
101
+ model : CAREamicsModule
102
+ CAREamics model to export.
103
+ config : Configuration
104
+ Model configuration.
105
+ path_to_archive : Union[Path, str]
106
+ Path to the output file.
107
+ model_name : str
108
+ Model name.
109
+ general_description : str
110
+ General description of the model.
111
+ authors : List[dict]
112
+ Authors of the model.
113
+ input_array : np.ndarray
114
+ Input array, should not have been normalized.
115
+ output_array : np.ndarray
116
+ Output array, should have been denormalized.
117
+ channel_names : Optional[List[str]], optional
118
+ Channel names, by default None.
119
+ data_description : Optional[str], optional
120
+ Description of the data, by default None.
121
+
122
+ Raises
123
+ ------
124
+ ValueError
125
+ If the model is a Custom model.
126
+ """
127
+ path_to_archive = Path(path_to_archive)
128
+
129
+ # method is not compatible with Custom models
130
+ if config.algorithm_config.model.architecture == SupportedArchitecture.CUSTOM:
131
+ raise ValueError(
132
+ "Exporting Custom models to BioImage Model Zoo format is not supported."
133
+ )
134
+
135
+ if path_to_archive.suffix != ".zip":
136
+ raise ValueError(
137
+ f"Path to archive must point to a zip file, got {path_to_archive}."
138
+ )
139
+
140
+ if not path_to_archive.parent.exists():
141
+ path_to_archive.parent.mkdir(parents=True, exist_ok=True)
142
+
143
+ # versions
144
+ pytorch_version = __version__
145
+ careamics_version = pkg_resources.get_distribution("careamics").version
146
+
147
+ # save files in temporary folder
148
+ with tempfile.TemporaryDirectory() as tmpdirname:
149
+ temp_path = Path(tmpdirname)
150
+
151
+ # create environment file
152
+ # TODO move in bioimage module
153
+ env_path = temp_path / "environment.yml"
154
+ env_path.write_text(create_env_text(pytorch_version))
155
+
156
+ # export input and ouputs
157
+ inputs = temp_path / "inputs.npy"
158
+ np.save(inputs, input_array)
159
+ outputs = temp_path / "outputs.npy"
160
+ np.save(outputs, output_array)
161
+
162
+ # export configuration
163
+ config_path = save_configuration(config, temp_path)
164
+
165
+ # export model state dictionary
166
+ weight_path = _export_state_dict(model, temp_path / "weights.pth")
167
+
168
+ # create model description
169
+ model_description = create_model_description(
170
+ config=config,
171
+ name=model_name,
172
+ general_description=general_description,
173
+ authors=authors,
174
+ inputs=inputs,
175
+ outputs=outputs,
176
+ weights_path=weight_path,
177
+ torch_version=pytorch_version,
178
+ careamics_version=careamics_version,
179
+ config_path=config_path,
180
+ env_path=env_path,
181
+ channel_names=channel_names,
182
+ data_description=data_description,
183
+ )
184
+
185
+ # test model description
186
+ summary: ValidationSummary = test_model(model_description, decimal=1)
187
+ if summary.status == "failed":
188
+ raise ValueError(f"Model description test failed: {summary}")
189
+
190
+ # save bmz model
191
+ save_bioimageio_package(model_description, output_path=path_to_archive)
192
+
193
+
194
+ def load_from_bmz(
195
+ path: Union[Path, str]
196
+ ) -> Tuple[Union[FCNModule, VAEModule], Configuration]:
197
+ """Load a model from a BioImage Model Zoo archive.
198
+
199
+ Parameters
200
+ ----------
201
+ path : Union[Path, str]
202
+ Path to the BioImage Model Zoo archive.
203
+
204
+ Returns
205
+ -------
206
+ Tuple[CAREamicsKiln, Configuration]
207
+ CAREamics model and configuration.
208
+
209
+ Raises
210
+ ------
211
+ ValueError
212
+ If the path is not a zip file.
213
+ """
214
+ path = Path(path)
215
+
216
+ if path.suffix != ".zip":
217
+ raise ValueError(f"Path must be a bioimage.io zip file, got {path}.")
218
+
219
+ # load description, this creates an unzipped folder next to the archive
220
+ model_desc = load_description(path)
221
+
222
+ # extract relative paths
223
+ weights_path, config_path = extract_model_path(model_desc)
224
+
225
+ # create folder path and absolute paths
226
+ unzip_path = get_unzip_path(path)
227
+ weights_path = unzip_path / weights_path
228
+ config_path = unzip_path / config_path
229
+
230
+ # load configuration
231
+ config = load_configuration(config_path)
232
+
233
+ # create careamics lightning module
234
+ if config.algorithm_config.model.architecture == SupportedArchitecture.UNET:
235
+ model = FCNModule(algorithm_config=config.algorithm_config)
236
+ elif config.algorithm_config.model.architecture == SupportedArchitecture.LVAE:
237
+ model = VAEModule(algorithm_config=config.algorithm_config)
238
+ else:
239
+ raise ValueError(
240
+ f"Unsupported architecture {config.algorithm_config.model.architecture}"
241
+ ) # TODO ugly ?
242
+
243
+ # load model state dictionary
244
+ _load_state_dict(model, weights_path)
245
+
246
+ return model, config
@@ -0,0 +1,95 @@
1
+ """Utility functions to load pretrained models."""
2
+
3
+ from pathlib import Path
4
+ from typing import Tuple, Union
5
+
6
+ import torch
7
+
8
+ from careamics.config import Configuration
9
+ from careamics.lightning.lightning_module import FCNModule, VAEModule
10
+ from careamics.model_io.bmz_io import load_from_bmz
11
+ from careamics.utils import check_path_exists
12
+
13
+
14
+ def load_pretrained(
15
+ path: Union[Path, str]
16
+ ) -> Tuple[Union[FCNModule, VAEModule], Configuration]:
17
+ """
18
+ Load a pretrained model from a checkpoint or a BioImage Model Zoo model.
19
+
20
+ Expected formats are .ckpt or .zip files.
21
+
22
+ Parameters
23
+ ----------
24
+ path : Union[Path, str]
25
+ Path to the pretrained model.
26
+
27
+ Returns
28
+ -------
29
+ Tuple[CAREamicsKiln, Configuration]
30
+ Tuple of CAREamics model and its configuration.
31
+
32
+ Raises
33
+ ------
34
+ ValueError
35
+ If the model format is not supported.
36
+ """
37
+ path = check_path_exists(path)
38
+
39
+ if path.suffix == ".ckpt":
40
+ return _load_checkpoint(path)
41
+ elif path.suffix == ".zip":
42
+ return load_from_bmz(path)
43
+ else:
44
+ raise ValueError(
45
+ f"Invalid model format. Expected .ckpt or .zip, got {path.suffix}."
46
+ )
47
+
48
+
49
+ def _load_checkpoint(
50
+ path: Union[Path, str]
51
+ ) -> Tuple[Union[FCNModule, VAEModule], Configuration]:
52
+ """
53
+ Load a model from a checkpoint and return both model and configuration.
54
+
55
+ Parameters
56
+ ----------
57
+ path : Union[Path, str]
58
+ Path to the checkpoint.
59
+
60
+ Returns
61
+ -------
62
+ Tuple[CAREamicsKiln, Configuration]
63
+ Tuple of CAREamics model and its configuration.
64
+
65
+ Raises
66
+ ------
67
+ ValueError
68
+ If the checkpoint file does not contain hyper parameters (configuration).
69
+ """
70
+ # load checkpoint
71
+ # here we might run into issues between devices
72
+ # see https://pytorch.org/tutorials/recipes/recipes/save_load_across_devices.html
73
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
74
+ checkpoint: dict = torch.load(path, map_location=device)
75
+
76
+ # attempt to load configuration
77
+ try:
78
+ cfg_dict = checkpoint["hyper_parameters"]
79
+ except KeyError as e:
80
+ raise ValueError(
81
+ f"Invalid checkpoint file. No `hyper_parameters` found in the "
82
+ f"checkpoint: {checkpoint.keys()}"
83
+ ) from e
84
+
85
+ if cfg_dict["algorithm_config"]["model"]["architecture"] == "UNet":
86
+ model = FCNModule.load_from_checkpoint(path)
87
+ elif cfg_dict["algorithm_config"]["model"]["architecture"] == "LVAE":
88
+ model = VAEModule.load_from_checkpoint(path)
89
+ else:
90
+ raise ValueError(
91
+ "Invalid model architecture: "
92
+ f"{cfg_dict['algorithm_config']['model']['architecture']}"
93
+ )
94
+
95
+ return model, Configuration(**cfg_dict)
@@ -0,0 +1,5 @@
1
+ """Models package."""
2
+
3
+ __all__ = ["model_factory"]
4
+
5
+ from .model_factory import model_factory
@@ -0,0 +1,39 @@
1
+ """Activations for CAREamics models."""
2
+
3
+ from typing import Callable, Union
4
+
5
+ import torch.nn as nn
6
+
7
+ from ..config.support import SupportedActivation
8
+
9
+
10
+ def get_activation(activation: Union[SupportedActivation, str]) -> Callable:
11
+ """
12
+ Get activation function.
13
+
14
+ Parameters
15
+ ----------
16
+ activation : str
17
+ Activation function name.
18
+
19
+ Returns
20
+ -------
21
+ Callable
22
+ Activation function.
23
+ """
24
+ if activation == SupportedActivation.RELU:
25
+ return nn.ReLU()
26
+ elif activation == SupportedActivation.ELU:
27
+ return nn.ELU()
28
+ elif activation == SupportedActivation.LEAKYRELU:
29
+ return nn.LeakyReLU()
30
+ elif activation == SupportedActivation.TANH:
31
+ return nn.Tanh()
32
+ elif activation == SupportedActivation.SIGMOID:
33
+ return nn.Sigmoid()
34
+ elif activation == SupportedActivation.SOFTMAX:
35
+ return nn.Softmax(dim=1)
36
+ elif activation == SupportedActivation.NONE:
37
+ return nn.Identity()
38
+ else:
39
+ raise ValueError(f"Activation {activation} not supported.")