careamics 0.0.19__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (279) hide show
  1. careamics/__init__.py +24 -0
  2. careamics/careamist.py +961 -0
  3. careamics/cli/__init__.py +5 -0
  4. careamics/cli/conf.py +394 -0
  5. careamics/cli/main.py +234 -0
  6. careamics/cli/utils.py +27 -0
  7. careamics/config/__init__.py +66 -0
  8. careamics/config/algorithms/__init__.py +21 -0
  9. careamics/config/algorithms/care_algorithm_config.py +122 -0
  10. careamics/config/algorithms/hdn_algorithm_config.py +103 -0
  11. careamics/config/algorithms/microsplit_algorithm_config.py +103 -0
  12. careamics/config/algorithms/n2n_algorithm_config.py +115 -0
  13. careamics/config/algorithms/n2v_algorithm_config.py +296 -0
  14. careamics/config/algorithms/pn2v_algorithm_config.py +301 -0
  15. careamics/config/algorithms/unet_algorithm_config.py +91 -0
  16. careamics/config/algorithms/vae_algorithm_config.py +178 -0
  17. careamics/config/architectures/__init__.py +7 -0
  18. careamics/config/architectures/architecture_config.py +37 -0
  19. careamics/config/architectures/lvae_config.py +262 -0
  20. careamics/config/architectures/unet_config.py +125 -0
  21. careamics/config/configuration.py +367 -0
  22. careamics/config/configuration_factories.py +2400 -0
  23. careamics/config/data/__init__.py +27 -0
  24. careamics/config/data/data_config.py +472 -0
  25. careamics/config/data/inference_config.py +237 -0
  26. careamics/config/data/ng_data_config.py +1038 -0
  27. careamics/config/data/patch_filter/__init__.py +15 -0
  28. careamics/config/data/patch_filter/filter_config.py +16 -0
  29. careamics/config/data/patch_filter/mask_filter_config.py +17 -0
  30. careamics/config/data/patch_filter/max_filter_config.py +15 -0
  31. careamics/config/data/patch_filter/meanstd_filter_config.py +18 -0
  32. careamics/config/data/patch_filter/shannon_filter_config.py +15 -0
  33. careamics/config/data/patching_strategies/__init__.py +15 -0
  34. careamics/config/data/patching_strategies/_overlapping_patched_config.py +102 -0
  35. careamics/config/data/patching_strategies/_patched_config.py +56 -0
  36. careamics/config/data/patching_strategies/random_patching_config.py +45 -0
  37. careamics/config/data/patching_strategies/sequential_patching_config.py +25 -0
  38. careamics/config/data/patching_strategies/tiled_patching_config.py +40 -0
  39. careamics/config/data/patching_strategies/whole_patching_config.py +12 -0
  40. careamics/config/data/tile_information.py +65 -0
  41. careamics/config/lightning/__init__.py +15 -0
  42. careamics/config/lightning/callbacks/__init__.py +8 -0
  43. careamics/config/lightning/callbacks/callback_config.py +116 -0
  44. careamics/config/lightning/optimizer_configs.py +186 -0
  45. careamics/config/lightning/training_config.py +70 -0
  46. careamics/config/losses/__init__.py +8 -0
  47. careamics/config/losses/loss_config.py +60 -0
  48. careamics/config/ng_configs/__init__.py +5 -0
  49. careamics/config/ng_configs/n2v_configuration.py +64 -0
  50. careamics/config/ng_configs/ng_configuration.py +256 -0
  51. careamics/config/ng_factories/__init__.py +9 -0
  52. careamics/config/ng_factories/algorithm_factory.py +120 -0
  53. careamics/config/ng_factories/data_factory.py +154 -0
  54. careamics/config/ng_factories/n2v_factory.py +256 -0
  55. careamics/config/ng_factories/training_factory.py +69 -0
  56. careamics/config/noise_model/__init__.py +12 -0
  57. careamics/config/noise_model/likelihood_config.py +60 -0
  58. careamics/config/noise_model/noise_model_config.py +149 -0
  59. careamics/config/support/__init__.py +31 -0
  60. careamics/config/support/supported_activations.py +27 -0
  61. careamics/config/support/supported_algorithms.py +40 -0
  62. careamics/config/support/supported_architectures.py +13 -0
  63. careamics/config/support/supported_data.py +122 -0
  64. careamics/config/support/supported_filters.py +17 -0
  65. careamics/config/support/supported_loggers.py +10 -0
  66. careamics/config/support/supported_losses.py +32 -0
  67. careamics/config/support/supported_optimizers.py +57 -0
  68. careamics/config/support/supported_patching_strategies.py +22 -0
  69. careamics/config/support/supported_pixel_manipulations.py +15 -0
  70. careamics/config/support/supported_struct_axis.py +21 -0
  71. careamics/config/support/supported_transforms.py +12 -0
  72. careamics/config/transformations/__init__.py +22 -0
  73. careamics/config/transformations/n2v_manipulate_config.py +79 -0
  74. careamics/config/transformations/normalize_config.py +59 -0
  75. careamics/config/transformations/transform_config.py +45 -0
  76. careamics/config/transformations/transform_unions.py +29 -0
  77. careamics/config/transformations/xy_flip_config.py +43 -0
  78. careamics/config/transformations/xy_random_rotate90_config.py +35 -0
  79. careamics/config/utils/__init__.py +8 -0
  80. careamics/config/utils/configuration_io.py +85 -0
  81. careamics/config/validators/__init__.py +18 -0
  82. careamics/config/validators/axes_validators.py +90 -0
  83. careamics/config/validators/model_validators.py +84 -0
  84. careamics/config/validators/patch_validators.py +55 -0
  85. careamics/conftest.py +39 -0
  86. careamics/dataset/__init__.py +17 -0
  87. careamics/dataset/dataset_utils/__init__.py +19 -0
  88. careamics/dataset/dataset_utils/dataset_utils.py +118 -0
  89. careamics/dataset/dataset_utils/file_utils.py +141 -0
  90. careamics/dataset/dataset_utils/iterate_over_files.py +84 -0
  91. careamics/dataset/dataset_utils/running_stats.py +189 -0
  92. careamics/dataset/in_memory_dataset.py +303 -0
  93. careamics/dataset/in_memory_pred_dataset.py +88 -0
  94. careamics/dataset/in_memory_tiled_pred_dataset.py +131 -0
  95. careamics/dataset/iterable_dataset.py +294 -0
  96. careamics/dataset/iterable_pred_dataset.py +121 -0
  97. careamics/dataset/iterable_tiled_pred_dataset.py +141 -0
  98. careamics/dataset/patching/__init__.py +1 -0
  99. careamics/dataset/patching/patching.py +300 -0
  100. careamics/dataset/patching/random_patching.py +110 -0
  101. careamics/dataset/patching/sequential_patching.py +212 -0
  102. careamics/dataset/patching/validate_patch_dimension.py +64 -0
  103. careamics/dataset/tiling/__init__.py +10 -0
  104. careamics/dataset/tiling/collate_tiles.py +33 -0
  105. careamics/dataset/tiling/lvae_tiled_patching.py +375 -0
  106. careamics/dataset/tiling/tiled_patching.py +166 -0
  107. careamics/dataset_ng/README.md +212 -0
  108. careamics/dataset_ng/__init__.py +0 -0
  109. careamics/dataset_ng/dataset.py +365 -0
  110. careamics/dataset_ng/demos/bsd68_demo.ipynb +361 -0
  111. careamics/dataset_ng/demos/bsd68_zarr_demo.ipynb +453 -0
  112. careamics/dataset_ng/demos/care_U2OS_demo.ipynb +330 -0
  113. careamics/dataset_ng/demos/demo_custom_image_stack.ipynb +736 -0
  114. careamics/dataset_ng/demos/demo_datamodule.ipynb +447 -0
  115. careamics/dataset_ng/demos/demo_dataset.ipynb +278 -0
  116. careamics/dataset_ng/demos/demo_patch_extractor.py +51 -0
  117. careamics/dataset_ng/demos/mouse_nuclei_demo.ipynb +293 -0
  118. careamics/dataset_ng/factory.py +180 -0
  119. careamics/dataset_ng/grouped_index_sampler.py +73 -0
  120. careamics/dataset_ng/image_stack/__init__.py +14 -0
  121. careamics/dataset_ng/image_stack/czi_image_stack.py +396 -0
  122. careamics/dataset_ng/image_stack/file_image_stack.py +140 -0
  123. careamics/dataset_ng/image_stack/image_stack_protocol.py +93 -0
  124. careamics/dataset_ng/image_stack/image_utils/__init__.py +6 -0
  125. careamics/dataset_ng/image_stack/image_utils/image_stack_utils.py +125 -0
  126. careamics/dataset_ng/image_stack/in_memory_image_stack.py +93 -0
  127. careamics/dataset_ng/image_stack/zarr_image_stack.py +170 -0
  128. careamics/dataset_ng/image_stack_loader/__init__.py +19 -0
  129. careamics/dataset_ng/image_stack_loader/image_stack_loader_protocol.py +70 -0
  130. careamics/dataset_ng/image_stack_loader/image_stack_loaders.py +273 -0
  131. careamics/dataset_ng/image_stack_loader/zarr_utils.py +130 -0
  132. careamics/dataset_ng/legacy_interoperability.py +175 -0
  133. careamics/dataset_ng/microsplit_input_synth.py +377 -0
  134. careamics/dataset_ng/patch_extractor/__init__.py +7 -0
  135. careamics/dataset_ng/patch_extractor/limit_file_extractor.py +50 -0
  136. careamics/dataset_ng/patch_extractor/patch_construction.py +151 -0
  137. careamics/dataset_ng/patch_extractor/patch_extractor.py +117 -0
  138. careamics/dataset_ng/patch_filter/__init__.py +20 -0
  139. careamics/dataset_ng/patch_filter/coordinate_filter_protocol.py +27 -0
  140. careamics/dataset_ng/patch_filter/filter_factory.py +95 -0
  141. careamics/dataset_ng/patch_filter/mask_filter.py +96 -0
  142. careamics/dataset_ng/patch_filter/max_filter.py +188 -0
  143. careamics/dataset_ng/patch_filter/mean_std_filter.py +218 -0
  144. careamics/dataset_ng/patch_filter/patch_filter_protocol.py +50 -0
  145. careamics/dataset_ng/patch_filter/shannon_filter.py +188 -0
  146. careamics/dataset_ng/patching_strategies/__init__.py +26 -0
  147. careamics/dataset_ng/patching_strategies/patching_strategy_factory.py +50 -0
  148. careamics/dataset_ng/patching_strategies/patching_strategy_protocol.py +161 -0
  149. careamics/dataset_ng/patching_strategies/random_patching.py +393 -0
  150. careamics/dataset_ng/patching_strategies/sequential_patching.py +99 -0
  151. careamics/dataset_ng/patching_strategies/tiling_strategy.py +207 -0
  152. careamics/dataset_ng/patching_strategies/whole_sample.py +61 -0
  153. careamics/file_io/__init__.py +15 -0
  154. careamics/file_io/read/__init__.py +11 -0
  155. careamics/file_io/read/get_func.py +57 -0
  156. careamics/file_io/read/tiff.py +58 -0
  157. careamics/file_io/write/__init__.py +15 -0
  158. careamics/file_io/write/get_func.py +63 -0
  159. careamics/file_io/write/tiff.py +40 -0
  160. careamics/lightning/__init__.py +32 -0
  161. careamics/lightning/callbacks/__init__.py +13 -0
  162. careamics/lightning/callbacks/data_stats_callback.py +33 -0
  163. careamics/lightning/callbacks/hyperparameters_callback.py +49 -0
  164. careamics/lightning/callbacks/prediction_writer_callback/__init__.py +20 -0
  165. careamics/lightning/callbacks/prediction_writer_callback/file_path_utils.py +56 -0
  166. careamics/lightning/callbacks/prediction_writer_callback/prediction_writer_callback.py +234 -0
  167. careamics/lightning/callbacks/prediction_writer_callback/write_strategy.py +399 -0
  168. careamics/lightning/callbacks/prediction_writer_callback/write_strategy_factory.py +215 -0
  169. careamics/lightning/callbacks/progress_bar_callback.py +90 -0
  170. careamics/lightning/dataset_ng/__init__.py +1 -0
  171. careamics/lightning/dataset_ng/callbacks/__init__.py +1 -0
  172. careamics/lightning/dataset_ng/callbacks/prediction_writer/__init__.py +29 -0
  173. careamics/lightning/dataset_ng/callbacks/prediction_writer/cached_tiles_strategy.py +164 -0
  174. careamics/lightning/dataset_ng/callbacks/prediction_writer/file_path_utils.py +33 -0
  175. careamics/lightning/dataset_ng/callbacks/prediction_writer/prediction_writer_callback.py +219 -0
  176. careamics/lightning/dataset_ng/callbacks/prediction_writer/write_image_strategy.py +91 -0
  177. careamics/lightning/dataset_ng/callbacks/prediction_writer/write_strategy.py +27 -0
  178. careamics/lightning/dataset_ng/callbacks/prediction_writer/write_strategy_factory.py +214 -0
  179. careamics/lightning/dataset_ng/callbacks/prediction_writer/write_tiles_zarr_strategy.py +375 -0
  180. careamics/lightning/dataset_ng/data_module.py +529 -0
  181. careamics/lightning/dataset_ng/data_module_utils.py +395 -0
  182. careamics/lightning/dataset_ng/lightning_modules/__init__.py +9 -0
  183. careamics/lightning/dataset_ng/lightning_modules/care_module.py +97 -0
  184. careamics/lightning/dataset_ng/lightning_modules/n2v_module.py +106 -0
  185. careamics/lightning/dataset_ng/lightning_modules/unet_module.py +221 -0
  186. careamics/lightning/dataset_ng/prediction/__init__.py +16 -0
  187. careamics/lightning/dataset_ng/prediction/convert_prediction.py +198 -0
  188. careamics/lightning/dataset_ng/prediction/stitch_prediction.py +171 -0
  189. careamics/lightning/lightning_module.py +914 -0
  190. careamics/lightning/microsplit_data_module.py +632 -0
  191. careamics/lightning/predict_data_module.py +341 -0
  192. careamics/lightning/train_data_module.py +666 -0
  193. careamics/losses/__init__.py +21 -0
  194. careamics/losses/fcn/__init__.py +1 -0
  195. careamics/losses/fcn/losses.py +125 -0
  196. careamics/losses/loss_factory.py +80 -0
  197. careamics/losses/lvae/__init__.py +1 -0
  198. careamics/losses/lvae/loss_utils.py +83 -0
  199. careamics/losses/lvae/losses.py +589 -0
  200. careamics/lvae_training/__init__.py +0 -0
  201. careamics/lvae_training/calibration.py +191 -0
  202. careamics/lvae_training/dataset/__init__.py +20 -0
  203. careamics/lvae_training/dataset/config.py +135 -0
  204. careamics/lvae_training/dataset/lc_dataset.py +274 -0
  205. careamics/lvae_training/dataset/ms_dataset_ref.py +1067 -0
  206. careamics/lvae_training/dataset/multich_dataset.py +1121 -0
  207. careamics/lvae_training/dataset/multicrop_dset.py +196 -0
  208. careamics/lvae_training/dataset/multifile_dataset.py +335 -0
  209. careamics/lvae_training/dataset/types.py +32 -0
  210. careamics/lvae_training/dataset/utils/__init__.py +0 -0
  211. careamics/lvae_training/dataset/utils/data_utils.py +114 -0
  212. careamics/lvae_training/dataset/utils/empty_patch_fetcher.py +65 -0
  213. careamics/lvae_training/dataset/utils/index_manager.py +491 -0
  214. careamics/lvae_training/dataset/utils/index_switcher.py +165 -0
  215. careamics/lvae_training/eval_utils.py +987 -0
  216. careamics/lvae_training/get_config.py +84 -0
  217. careamics/lvae_training/lightning_module.py +701 -0
  218. careamics/lvae_training/metrics.py +214 -0
  219. careamics/lvae_training/train_lvae.py +342 -0
  220. careamics/lvae_training/train_utils.py +121 -0
  221. careamics/model_io/__init__.py +7 -0
  222. careamics/model_io/bioimage/__init__.py +11 -0
  223. careamics/model_io/bioimage/_readme_factory.py +113 -0
  224. careamics/model_io/bioimage/bioimage_utils.py +56 -0
  225. careamics/model_io/bioimage/cover_factory.py +171 -0
  226. careamics/model_io/bioimage/model_description.py +341 -0
  227. careamics/model_io/bmz_io.py +251 -0
  228. careamics/model_io/model_io_utils.py +95 -0
  229. careamics/models/__init__.py +5 -0
  230. careamics/models/activation.py +40 -0
  231. careamics/models/layers.py +495 -0
  232. careamics/models/lvae/__init__.py +3 -0
  233. careamics/models/lvae/layers.py +1371 -0
  234. careamics/models/lvae/likelihoods.py +394 -0
  235. careamics/models/lvae/lvae.py +848 -0
  236. careamics/models/lvae/noise_models.py +738 -0
  237. careamics/models/lvae/stochastic.py +394 -0
  238. careamics/models/lvae/utils.py +404 -0
  239. careamics/models/model_factory.py +54 -0
  240. careamics/models/unet.py +449 -0
  241. careamics/nm_training_placeholder.py +203 -0
  242. careamics/prediction_utils/__init__.py +21 -0
  243. careamics/prediction_utils/lvae_prediction.py +158 -0
  244. careamics/prediction_utils/lvae_tiling_manager.py +362 -0
  245. careamics/prediction_utils/prediction_outputs.py +238 -0
  246. careamics/prediction_utils/stitch_prediction.py +193 -0
  247. careamics/py.typed +5 -0
  248. careamics/transforms/__init__.py +22 -0
  249. careamics/transforms/compose.py +173 -0
  250. careamics/transforms/n2v_manipulate.py +150 -0
  251. careamics/transforms/n2v_manipulate_torch.py +149 -0
  252. careamics/transforms/normalize.py +374 -0
  253. careamics/transforms/pixel_manipulation.py +406 -0
  254. careamics/transforms/pixel_manipulation_torch.py +388 -0
  255. careamics/transforms/struct_mask_parameters.py +20 -0
  256. careamics/transforms/transform.py +24 -0
  257. careamics/transforms/tta.py +88 -0
  258. careamics/transforms/xy_flip.py +131 -0
  259. careamics/transforms/xy_random_rotate90.py +108 -0
  260. careamics/utils/__init__.py +19 -0
  261. careamics/utils/autocorrelation.py +40 -0
  262. careamics/utils/base_enum.py +60 -0
  263. careamics/utils/context.py +67 -0
  264. careamics/utils/deprecation.py +63 -0
  265. careamics/utils/lightning_utils.py +71 -0
  266. careamics/utils/logging.py +323 -0
  267. careamics/utils/metrics.py +394 -0
  268. careamics/utils/path_utils.py +26 -0
  269. careamics/utils/plotting.py +76 -0
  270. careamics/utils/ram.py +15 -0
  271. careamics/utils/receptive_field.py +108 -0
  272. careamics/utils/serializers.py +62 -0
  273. careamics/utils/torch_utils.py +150 -0
  274. careamics/utils/version.py +38 -0
  275. careamics-0.0.19.dist-info/METADATA +80 -0
  276. careamics-0.0.19.dist-info/RECORD +279 -0
  277. careamics-0.0.19.dist-info/WHEEL +4 -0
  278. careamics-0.0.19.dist-info/entry_points.txt +2 -0
  279. careamics-0.0.19.dist-info/licenses/LICENSE +28 -0
@@ -0,0 +1,278 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "0",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "from pathlib import Path\n",
11
+ "\n",
12
+ "import matplotlib.pyplot as plt\n",
13
+ "import numpy as np\n",
14
+ "import skimage\n",
15
+ "import tifffile\n",
16
+ "\n",
17
+ "from careamics.config.configuration_factories import (\n",
18
+ " _create_ng_data_configuration,\n",
19
+ " _list_spatial_augmentations,\n",
20
+ ")\n",
21
+ "from careamics.dataset_ng.dataset import Mode\n",
22
+ "from careamics.dataset_ng.factory import create_dataset"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": null,
28
+ "id": "1",
29
+ "metadata": {},
30
+ "outputs": [],
31
+ "source": [
32
+ "example_data = skimage.data.human_mitosis()\n",
33
+ "\n",
34
+ "markers = np.zeros_like(example_data)\n",
35
+ "markers[example_data < 25] = 1\n",
36
+ "markers[example_data > 50] = 2\n",
37
+ "\n",
38
+ "elevation_map = skimage.filters.sobel(example_data)\n",
39
+ "segmentation = skimage.segmentation.watershed(elevation_map, markers)\n",
40
+ "\n",
41
+ "fig, ax = plt.subplots(1, 2)\n",
42
+ "ax[0].imshow(example_data)\n",
43
+ "ax[1].imshow(segmentation)\n",
44
+ "plt.show()"
45
+ ]
46
+ },
47
+ {
48
+ "cell_type": "markdown",
49
+ "id": "2",
50
+ "metadata": {},
51
+ "source": [
52
+ "### 1. From an array "
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": null,
58
+ "id": "3",
59
+ "metadata": {},
60
+ "outputs": [],
61
+ "source": [
62
+ "# 1. Train val from an array\n",
63
+ "\n",
64
+ "train_data_config = _create_ng_data_configuration(\n",
65
+ " data_type=\"array\",\n",
66
+ " axes=\"YX\",\n",
67
+ " patch_size=(32, 32),\n",
68
+ " batch_size=1,\n",
69
+ " augmentations=_list_spatial_augmentations()\n",
70
+ ")\n",
71
+ "\n",
72
+ "val_data_config = _create_ng_data_configuration(\n",
73
+ " data_type=\"array\",\n",
74
+ " axes=\"YX\",\n",
75
+ " patch_size=(32, 32),\n",
76
+ " batch_size=1,\n",
77
+ " augmentations=[],\n",
78
+ ")\n",
79
+ "\n",
80
+ "\n",
81
+ "train_dataset = create_dataset(\n",
82
+ " config=train_data_config,\n",
83
+ " mode=Mode.TRAINING,\n",
84
+ " inputs=[example_data],\n",
85
+ " targets=[segmentation],\n",
86
+ " in_memory=True,\n",
87
+ ")\n",
88
+ "val_dataset = create_dataset(\n",
89
+ " config=val_data_config,\n",
90
+ " mode=Mode.VALIDATING,\n",
91
+ " inputs=[example_data],\n",
92
+ " targets=[segmentation],\n",
93
+ " in_memory=True,\n",
94
+ ")\n",
95
+ "\n",
96
+ "fig, ax = plt.subplots(2, 5, figsize=(10, 5))\n",
97
+ "ax[0, 0].set_title(\"Train input\")\n",
98
+ "ax[1, 0].set_title(\"Train target\")\n",
99
+ "for i in range(5):\n",
100
+ " sample, target = train_dataset[i]\n",
101
+ " ax[0, i].imshow(sample.data[0])\n",
102
+ " ax[1, i].imshow(target.data[0])"
103
+ ]
104
+ },
105
+ {
106
+ "cell_type": "markdown",
107
+ "id": "4",
108
+ "metadata": {},
109
+ "source": [
110
+ "### 2. From tiff "
111
+ ]
112
+ },
113
+ {
114
+ "cell_type": "code",
115
+ "execution_count": null,
116
+ "id": "5",
117
+ "metadata": {},
118
+ "outputs": [],
119
+ "source": [
120
+ "tifffile.imwrite(\"example_data1.tiff\", example_data)\n",
121
+ "tifffile.imwrite(\"example_target1.tiff\", segmentation)\n",
122
+ "tifffile.imwrite(\"example_data2.tiff\", example_data[:256, :256])\n",
123
+ "tifffile.imwrite(\"example_target2.tiff\", segmentation[:256, :256])\n",
124
+ "\n",
125
+ "train_data_config = _create_ng_data_configuration(\n",
126
+ " data_type=\"tiff\",\n",
127
+ " axes=\"YX\",\n",
128
+ " patch_size=(32, 32),\n",
129
+ " batch_size=1,\n",
130
+ " augmentations=_list_spatial_augmentations()\n",
131
+ ")\n",
132
+ "\n",
133
+ "val_data_config = _create_ng_data_configuration(\n",
134
+ " data_type=\"tiff\",\n",
135
+ " axes=\"YX\",\n",
136
+ " patch_size=(32, 32),\n",
137
+ " batch_size=1,\n",
138
+ " augmentations=[],\n",
139
+ ")\n",
140
+ "\n",
141
+ "data = sorted(Path(\"./\").glob(\"example_data*.tiff\"))\n",
142
+ "targets = sorted(Path(\"./\").glob(\"example_target*.tiff\"))\n",
143
+ "train_dataset = create_dataset(\n",
144
+ " config=train_data_config,\n",
145
+ " mode=Mode.TRAINING,\n",
146
+ " inputs=data,\n",
147
+ " targets=targets,\n",
148
+ " in_memory=True,\n",
149
+ ")\n",
150
+ "val_dataset = create_dataset(\n",
151
+ " config=val_data_config,\n",
152
+ " mode=Mode.VALIDATING,\n",
153
+ " inputs=data,\n",
154
+ " targets=targets,\n",
155
+ " in_memory=True,\n",
156
+ ")\n",
157
+ "\n",
158
+ "fig, ax = plt.subplots(2, 5, figsize=(10, 5))\n",
159
+ "ax[0, 0].set_title(\"Train input\")\n",
160
+ "ax[1, 0].set_title(\"Train target\")\n",
161
+ "for i in range(5):\n",
162
+ " sample, target = train_dataset[i]\n",
163
+ " ax[0, i].imshow(sample.data[0])\n",
164
+ " ax[1, i].imshow(target.data[0])"
165
+ ]
166
+ },
167
+ {
168
+ "cell_type": "markdown",
169
+ "id": "6",
170
+ "metadata": {},
171
+ "source": [
172
+ "### 3. Prediction from array"
173
+ ]
174
+ },
175
+ {
176
+ "cell_type": "code",
177
+ "execution_count": null,
178
+ "id": "7",
179
+ "metadata": {},
180
+ "outputs": [],
181
+ "source": [
182
+ "from careamics.config.data import NGDataConfig\n",
183
+ "\n",
184
+ "prediction_config = NGDataConfig(\n",
185
+ " data_type=\"array\",\n",
186
+ " patching={\n",
187
+ " \"name\": \"tiled\",\n",
188
+ " \"patch_size\": (32, 32),\n",
189
+ " \"overlaps\": (16, 16),\n",
190
+ " },\n",
191
+ " axes=\"YX\",\n",
192
+ " batch_size=1,\n",
193
+ " image_means=[example_data.mean()],\n",
194
+ " image_stds=[example_data.std()],\n",
195
+ ")\n",
196
+ "\n",
197
+ "prediction_dataset = create_dataset(\n",
198
+ " config=prediction_config,\n",
199
+ " mode=Mode.PREDICTING,\n",
200
+ " inputs=[example_data],\n",
201
+ " targets=None,\n",
202
+ " in_memory=True,\n",
203
+ ")\n",
204
+ "\n",
205
+ "fig, ax = plt.subplots(1, 5, figsize=(10, 5))\n",
206
+ "ax[0].set_title(\"Prediction input\")\n",
207
+ "for i in range(5):\n",
208
+ " sample, *_ = prediction_dataset[i]\n",
209
+ " ax[i].imshow(sample.data[0])"
210
+ ]
211
+ },
212
+ {
213
+ "cell_type": "markdown",
214
+ "id": "8",
215
+ "metadata": {},
216
+ "source": [
217
+ "### 4. From custom data type "
218
+ ]
219
+ },
220
+ {
221
+ "cell_type": "code",
222
+ "execution_count": null,
223
+ "id": "9",
224
+ "metadata": {},
225
+ "outputs": [],
226
+ "source": [
227
+ "train_data_config = _create_ng_data_configuration(\n",
228
+ " data_type=\"custom\",\n",
229
+ " axes=\"YX\",\n",
230
+ " patch_size=(32, 32),\n",
231
+ " batch_size=1,\n",
232
+ " augmentations=_list_spatial_augmentations(),\n",
233
+ ")\n",
234
+ "\n",
235
+ "\n",
236
+ "def read_data_func_test(example_data):\n",
237
+ " return 255 - example_data\n",
238
+ "\n",
239
+ "\n",
240
+ "fig, ax = plt.subplots(1, 5, figsize=(10, 5))\n",
241
+ "train_dataset = create_dataset(\n",
242
+ " config=train_data_config,\n",
243
+ " mode=Mode.TRAINING,\n",
244
+ " inputs=[example_data],\n",
245
+ " targets=[segmentation],\n",
246
+ " in_memory=True,\n",
247
+ " read_func=read_data_func_test,\n",
248
+ " read_kwargs={}\n",
249
+ ")\n",
250
+ "\n",
251
+ "for i in range(5):\n",
252
+ " sample, _ = train_dataset[i]\n",
253
+ " ax[i].imshow(sample.data[0])"
254
+ ]
255
+ }
256
+ ],
257
+ "metadata": {
258
+ "kernelspec": {
259
+ "display_name": "czi",
260
+ "language": "python",
261
+ "name": "python3"
262
+ },
263
+ "language_info": {
264
+ "codemirror_mode": {
265
+ "name": "ipython",
266
+ "version": 3
267
+ },
268
+ "file_extension": ".py",
269
+ "mimetype": "text/x-python",
270
+ "name": "python",
271
+ "nbconvert_exporter": "python",
272
+ "pygments_lexer": "ipython3",
273
+ "version": "3.12.11"
274
+ }
275
+ },
276
+ "nbformat": 4,
277
+ "nbformat_minor": 5
278
+ }
@@ -0,0 +1,51 @@
1
+ # %%
2
+ import numpy as np
3
+ from careamics.dataset_ng.patch_extractor.image_stack import InMemoryImageStack
4
+
5
+ # %%
6
+ from careamics.dataset_ng.patch_extractor.patch_extractor_factory import (
7
+ create_array_extractor,
8
+ )
9
+
10
+ from careamics.dataset_ng.patching_strategies import RandomPatchingStrategy
11
+
12
+ # %%
13
+ array = np.arange(36).reshape(6, 6)
14
+ image_stack = InMemoryImageStack.from_array(data=array, axes="YX")
15
+ image_stack.extract_patch(sample_idx=0, coords=(2, 2), patch_size=(3, 3))
16
+
17
+ # %%
18
+ rng = np.random.default_rng()
19
+
20
+ # %%
21
+ # define example data
22
+ array1 = np.arange(36).reshape(1, 6, 6)
23
+ array2 = np.arange(50).reshape(2, 5, 5)
24
+ target1 = rng.integers(0, 1, size=array1.shape, endpoint=True)
25
+ target2 = rng.integers(0, 1, size=array2.shape, endpoint=True)
26
+
27
+ # %%
28
+ print(array1)
29
+ print(array2)
30
+ print(target1)
31
+ print(target2)
32
+
33
+ # %%
34
+ # define example readers
35
+ input_patch_extractor = create_array_extractor([array1, array2], axes="SYX")
36
+ target_patch_extractor = create_array_extractor([target1, target2], axes="SYX")
37
+
38
+ # %%
39
+ # generate random patch specification
40
+ data_shapes = [
41
+ image_stack.data_shape for image_stack in input_patch_extractor.image_stacks
42
+ ]
43
+ patch_specs_generator = RandomPatchingStrategy(data_shapes, patch_size=(2, 2))
44
+ patch_specs = patch_specs_generator.get_patch_spec(18)
45
+
46
+ # %%
47
+ # extract a subset of patches
48
+ input_patch_extractor.extract_patch(**patch_specs)
49
+
50
+ # %%
51
+ target_patch_extractor.extract_patch(**patch_specs)
@@ -0,0 +1,293 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "from pathlib import Path\n",
10
+ "\n",
11
+ "import matplotlib.pyplot as plt\n",
12
+ "import numpy as np\n",
13
+ "from careamics_portfolio import PortfolioManager\n",
14
+ "\n",
15
+ "from careamics.config.configuration_factories import create_n2v_configuration\n",
16
+ "from careamics.config.support import SupportedTransform\n",
17
+ "from careamics.lightning.callbacks import HyperParametersCallback\n",
18
+ "from careamics.lightning.dataset_ng.data_module import CareamicsDataModule\n",
19
+ "from careamics.lightning.dataset_ng.lightning_modules import N2VModule"
20
+ ]
21
+ },
22
+ {
23
+ "cell_type": "code",
24
+ "execution_count": null,
25
+ "metadata": {},
26
+ "outputs": [],
27
+ "source": [
28
+ "portfolio = PortfolioManager()\n",
29
+ "files = portfolio.denoiseg.MouseNuclei_n20.download()\n",
30
+ "files.sort()\n",
31
+ "\n",
32
+ "# load images\n",
33
+ "train_data = np.load(files[1])[\"X_train\"]\n",
34
+ "print(f\"Train data shape: {train_data.shape}\")"
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": null,
40
+ "metadata": {},
41
+ "outputs": [],
42
+ "source": [
43
+ "indices = [34, 293, 571, 783]\n",
44
+ "\n",
45
+ "fig, ax = plt.subplots(2, 2, figsize=(8, 8))\n",
46
+ "ax[0, 0].imshow(train_data[indices[0]], cmap=\"gray\")\n",
47
+ "ax[0, 0].set_title(f\"Image {indices[0]}\")\n",
48
+ "ax[0, 0].set_xticks([])\n",
49
+ "ax[0, 0].set_yticks([])\n",
50
+ "\n",
51
+ "ax[0, 1].imshow(train_data[indices[1]], cmap=\"gray\")\n",
52
+ "ax[0, 1].set_title(f\"Image {indices[1]}\")\n",
53
+ "ax[0, 1].set_xticks([])\n",
54
+ "ax[0, 1].set_yticks([])\n",
55
+ "\n",
56
+ "ax[1, 0].imshow(train_data[indices[2]], cmap=\"gray\")\n",
57
+ "ax[1, 0].set_title(f\"Image {indices[2]}\")\n",
58
+ "ax[1, 0].set_xticks([])\n",
59
+ "ax[1, 0].set_yticks([])\n",
60
+ "\n",
61
+ "ax[1, 1].imshow(train_data[indices[3]], cmap=\"gray\")\n",
62
+ "ax[1, 1].set_title(f\"Image {indices[3]}\")\n",
63
+ "ax[1, 1].set_xticks([])\n",
64
+ "ax[1, 1].set_yticks([])\n",
65
+ "\n",
66
+ "plt.show()"
67
+ ]
68
+ },
69
+ {
70
+ "cell_type": "code",
71
+ "execution_count": null,
72
+ "metadata": {},
73
+ "outputs": [],
74
+ "source": [
75
+ "config = create_n2v_configuration(\n",
76
+ " experiment_name=\"mouse_nuclei_n2v\",\n",
77
+ " data_type=\"array\",\n",
78
+ " axes=\"SYX\",\n",
79
+ " patch_size=(64, 64),\n",
80
+ " batch_size=16,\n",
81
+ " num_epochs=10,\n",
82
+ ")\n",
83
+ "\n",
84
+ "print(config)"
85
+ ]
86
+ },
87
+ {
88
+ "cell_type": "code",
89
+ "execution_count": null,
90
+ "metadata": {},
91
+ "outputs": [],
92
+ "source": [
93
+ "# Ensuring that transforms are set\n",
94
+ "config.data_config.transforms =[\n",
95
+ " {\n",
96
+ " \"name\": SupportedTransform.XY_FLIP.value,\n",
97
+ " \"flip_x\": True,\n",
98
+ " \"flip_y\": True,\n",
99
+ " },\n",
100
+ " {\n",
101
+ " \"name\": SupportedTransform.XY_RANDOM_ROTATE90.value,\n",
102
+ " },\n",
103
+ "]"
104
+ ]
105
+ },
106
+ {
107
+ "cell_type": "code",
108
+ "execution_count": null,
109
+ "metadata": {},
110
+ "outputs": [],
111
+ "source": [
112
+ "from sklearn.model_selection import train_test_split\n",
113
+ "\n",
114
+ "train_data, val_data = train_test_split(train_data, test_size=0.1, random_state=42)\n"
115
+ ]
116
+ },
117
+ {
118
+ "cell_type": "code",
119
+ "execution_count": null,
120
+ "metadata": {},
121
+ "outputs": [],
122
+ "source": [
123
+ "train_data_module = CareamicsDataModule(\n",
124
+ " data_config=config.data_config,\n",
125
+ " train_data=train_data,\n",
126
+ " val_data=val_data,\n",
127
+ ")\n",
128
+ "\n",
129
+ "model = N2VModule(config.algorithm_config)"
130
+ ]
131
+ },
132
+ {
133
+ "cell_type": "code",
134
+ "execution_count": null,
135
+ "metadata": {},
136
+ "outputs": [],
137
+ "source": [
138
+ "from pytorch_lightning import Trainer\n",
139
+ "from pytorch_lightning.callbacks import ModelCheckpoint\n",
140
+ "from pytorch_lightning.loggers import WandbLogger\n",
141
+ "\n",
142
+ "root = Path(\"nuclei_n2v\")\n",
143
+ "callbacks = [\n",
144
+ " ModelCheckpoint(\n",
145
+ " dirpath=root / \"checkpoints\",\n",
146
+ " filename=\"nuclei_new_lightning_module\",\n",
147
+ " save_last=True,\n",
148
+ " monitor=\"val_loss\",\n",
149
+ " mode=\"min\",\n",
150
+ " ),\n",
151
+ " HyperParametersCallback(config)\n",
152
+ "]\n",
153
+ "logger = WandbLogger(\n",
154
+ " project=\"nuclei-n2v\", name=\"nuclei_new_lightning_module\"\n",
155
+ ")\n",
156
+ "\n",
157
+ "trainer = Trainer(\n",
158
+ " max_epochs=10,\n",
159
+ " default_root_dir=root,\n",
160
+ " callbacks=callbacks,\n",
161
+ " logger=logger\n",
162
+ ")\n",
163
+ "trainer.fit(model, datamodule=train_data_module)"
164
+ ]
165
+ },
166
+ {
167
+ "cell_type": "code",
168
+ "execution_count": null,
169
+ "metadata": {},
170
+ "outputs": [],
171
+ "source": [
172
+ "from careamics.config.inference_model import InferenceConfig\n",
173
+ "\n",
174
+ "from careamics.dataset_ng.legacy_interoperability import imageregions_to_tileinfos\n",
175
+ "from careamics.prediction_utils import convert_outputs\n",
176
+ "\n",
177
+ "train_data = np.load(files[1])[\"X_train\"]\n",
178
+ "\n",
179
+ "config = InferenceConfig(\n",
180
+ " model_config=config,\n",
181
+ " data_type=\"array\",\n",
182
+ " tile_size=(64, 64),\n",
183
+ " tile_overlap=(32, 32),\n",
184
+ " axes=\"SYX\",\n",
185
+ " batch_size=1,\n",
186
+ " image_means=train_data_module.train_dataset.input_stats.means,\n",
187
+ " image_stds=train_data_module.train_dataset.input_stats.stds\n",
188
+ ")\n",
189
+ "\n",
190
+ "inf_data_module = CareamicsDataModule(\n",
191
+ " data_config=config,\n",
192
+ " pred_data=train_data\n",
193
+ ")"
194
+ ]
195
+ },
196
+ {
197
+ "cell_type": "code",
198
+ "execution_count": null,
199
+ "metadata": {},
200
+ "outputs": [],
201
+ "source": [
202
+ "predictions = trainer.predict(model, datamodule=inf_data_module)\n",
203
+ "tile_infos = imageregions_to_tileinfos(predictions)\n",
204
+ "predictions = convert_outputs(tile_infos, tiled=True)\n",
205
+ "predictions = np.stack(predictions).squeeze()"
206
+ ]
207
+ },
208
+ {
209
+ "cell_type": "code",
210
+ "execution_count": null,
211
+ "metadata": {},
212
+ "outputs": [],
213
+ "source": [
214
+ "files = portfolio.denoiseg.MouseNuclei_n0.download()\n",
215
+ "files.sort()\n",
216
+ "\n",
217
+ "gt_data = np.load(files[1])[\"X_train\"]\n",
218
+ "print(f\"GT data shape: {gt_data.shape}\")\n",
219
+ "print(f\"Predictions shape: {predictions.shape}\")"
220
+ ]
221
+ },
222
+ {
223
+ "cell_type": "code",
224
+ "execution_count": null,
225
+ "metadata": {},
226
+ "outputs": [],
227
+ "source": [
228
+ "from careamics.utils.metrics import scale_invariant_psnr\n",
229
+ "\n",
230
+ "indices = [389, 621]\n",
231
+ "\n",
232
+ "for i in indices:\n",
233
+ " # compute psnr\n",
234
+ " psnr_noisy = scale_invariant_psnr(gt_data[i], train_data[i])\n",
235
+ " psnr_denoised = scale_invariant_psnr(gt_data[i], predictions[i].squeeze())\n",
236
+ "\n",
237
+ " # plot images\n",
238
+ " fig, ax = plt.subplots(1, 3, figsize=(10, 10))\n",
239
+ " ax[0].imshow(train_data[i], cmap=\"gray\")\n",
240
+ " ax[0].set_title(f\"Noisy Image\\nPSNR: {psnr_noisy:.2f}\")\n",
241
+ " ax[0].set_xticks([])\n",
242
+ " ax[0].set_yticks([])\n",
243
+ "\n",
244
+ " ax[1].imshow(predictions[i].squeeze(), cmap=\"gray\")\n",
245
+ " ax[1].set_title(f\"Denoised Image\\nPSNR: {psnr_denoised:.2f}\")\n",
246
+ " ax[1].set_xticks([])\n",
247
+ " ax[1].set_yticks([])\n",
248
+ "\n",
249
+ " ax[2].imshow(gt_data[i], cmap=\"gray\")\n",
250
+ " ax[2].set_title(\"GT Image\")\n",
251
+ " ax[2].set_xticks([])\n",
252
+ " ax[2].set_yticks([])\n",
253
+ "\n",
254
+ " plt.show()"
255
+ ]
256
+ },
257
+ {
258
+ "cell_type": "code",
259
+ "execution_count": null,
260
+ "metadata": {},
261
+ "outputs": [],
262
+ "source": [
263
+ "psnrs = np.zeros(gt_data.shape[0])\n",
264
+ "\n",
265
+ "for i in range(gt_data.shape[0]):\n",
266
+ " psnrs[i] = scale_invariant_psnr(gt_data[i], predictions[i].squeeze())\n",
267
+ "\n",
268
+ "print(f\"PSNR: {np.mean(psnrs):.2f} ± {np.std(psnrs):.2f}\")"
269
+ ]
270
+ }
271
+ ],
272
+ "metadata": {
273
+ "kernelspec": {
274
+ "display_name": "Python 3",
275
+ "language": "python",
276
+ "name": "python3"
277
+ },
278
+ "language_info": {
279
+ "codemirror_mode": {
280
+ "name": "ipython",
281
+ "version": 3
282
+ },
283
+ "file_extension": ".py",
284
+ "mimetype": "text/x-python",
285
+ "name": "python",
286
+ "nbconvert_exporter": "python",
287
+ "pygments_lexer": "ipython3",
288
+ "version": "3.9.20"
289
+ }
290
+ },
291
+ "nbformat": 4,
292
+ "nbformat_minor": 2
293
+ }