careamics 0.0.19__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (279) hide show
  1. careamics/__init__.py +24 -0
  2. careamics/careamist.py +961 -0
  3. careamics/cli/__init__.py +5 -0
  4. careamics/cli/conf.py +394 -0
  5. careamics/cli/main.py +234 -0
  6. careamics/cli/utils.py +27 -0
  7. careamics/config/__init__.py +66 -0
  8. careamics/config/algorithms/__init__.py +21 -0
  9. careamics/config/algorithms/care_algorithm_config.py +122 -0
  10. careamics/config/algorithms/hdn_algorithm_config.py +103 -0
  11. careamics/config/algorithms/microsplit_algorithm_config.py +103 -0
  12. careamics/config/algorithms/n2n_algorithm_config.py +115 -0
  13. careamics/config/algorithms/n2v_algorithm_config.py +296 -0
  14. careamics/config/algorithms/pn2v_algorithm_config.py +301 -0
  15. careamics/config/algorithms/unet_algorithm_config.py +91 -0
  16. careamics/config/algorithms/vae_algorithm_config.py +178 -0
  17. careamics/config/architectures/__init__.py +7 -0
  18. careamics/config/architectures/architecture_config.py +37 -0
  19. careamics/config/architectures/lvae_config.py +262 -0
  20. careamics/config/architectures/unet_config.py +125 -0
  21. careamics/config/configuration.py +367 -0
  22. careamics/config/configuration_factories.py +2400 -0
  23. careamics/config/data/__init__.py +27 -0
  24. careamics/config/data/data_config.py +472 -0
  25. careamics/config/data/inference_config.py +237 -0
  26. careamics/config/data/ng_data_config.py +1038 -0
  27. careamics/config/data/patch_filter/__init__.py +15 -0
  28. careamics/config/data/patch_filter/filter_config.py +16 -0
  29. careamics/config/data/patch_filter/mask_filter_config.py +17 -0
  30. careamics/config/data/patch_filter/max_filter_config.py +15 -0
  31. careamics/config/data/patch_filter/meanstd_filter_config.py +18 -0
  32. careamics/config/data/patch_filter/shannon_filter_config.py +15 -0
  33. careamics/config/data/patching_strategies/__init__.py +15 -0
  34. careamics/config/data/patching_strategies/_overlapping_patched_config.py +102 -0
  35. careamics/config/data/patching_strategies/_patched_config.py +56 -0
  36. careamics/config/data/patching_strategies/random_patching_config.py +45 -0
  37. careamics/config/data/patching_strategies/sequential_patching_config.py +25 -0
  38. careamics/config/data/patching_strategies/tiled_patching_config.py +40 -0
  39. careamics/config/data/patching_strategies/whole_patching_config.py +12 -0
  40. careamics/config/data/tile_information.py +65 -0
  41. careamics/config/lightning/__init__.py +15 -0
  42. careamics/config/lightning/callbacks/__init__.py +8 -0
  43. careamics/config/lightning/callbacks/callback_config.py +116 -0
  44. careamics/config/lightning/optimizer_configs.py +186 -0
  45. careamics/config/lightning/training_config.py +70 -0
  46. careamics/config/losses/__init__.py +8 -0
  47. careamics/config/losses/loss_config.py +60 -0
  48. careamics/config/ng_configs/__init__.py +5 -0
  49. careamics/config/ng_configs/n2v_configuration.py +64 -0
  50. careamics/config/ng_configs/ng_configuration.py +256 -0
  51. careamics/config/ng_factories/__init__.py +9 -0
  52. careamics/config/ng_factories/algorithm_factory.py +120 -0
  53. careamics/config/ng_factories/data_factory.py +154 -0
  54. careamics/config/ng_factories/n2v_factory.py +256 -0
  55. careamics/config/ng_factories/training_factory.py +69 -0
  56. careamics/config/noise_model/__init__.py +12 -0
  57. careamics/config/noise_model/likelihood_config.py +60 -0
  58. careamics/config/noise_model/noise_model_config.py +149 -0
  59. careamics/config/support/__init__.py +31 -0
  60. careamics/config/support/supported_activations.py +27 -0
  61. careamics/config/support/supported_algorithms.py +40 -0
  62. careamics/config/support/supported_architectures.py +13 -0
  63. careamics/config/support/supported_data.py +122 -0
  64. careamics/config/support/supported_filters.py +17 -0
  65. careamics/config/support/supported_loggers.py +10 -0
  66. careamics/config/support/supported_losses.py +32 -0
  67. careamics/config/support/supported_optimizers.py +57 -0
  68. careamics/config/support/supported_patching_strategies.py +22 -0
  69. careamics/config/support/supported_pixel_manipulations.py +15 -0
  70. careamics/config/support/supported_struct_axis.py +21 -0
  71. careamics/config/support/supported_transforms.py +12 -0
  72. careamics/config/transformations/__init__.py +22 -0
  73. careamics/config/transformations/n2v_manipulate_config.py +79 -0
  74. careamics/config/transformations/normalize_config.py +59 -0
  75. careamics/config/transformations/transform_config.py +45 -0
  76. careamics/config/transformations/transform_unions.py +29 -0
  77. careamics/config/transformations/xy_flip_config.py +43 -0
  78. careamics/config/transformations/xy_random_rotate90_config.py +35 -0
  79. careamics/config/utils/__init__.py +8 -0
  80. careamics/config/utils/configuration_io.py +85 -0
  81. careamics/config/validators/__init__.py +18 -0
  82. careamics/config/validators/axes_validators.py +90 -0
  83. careamics/config/validators/model_validators.py +84 -0
  84. careamics/config/validators/patch_validators.py +55 -0
  85. careamics/conftest.py +39 -0
  86. careamics/dataset/__init__.py +17 -0
  87. careamics/dataset/dataset_utils/__init__.py +19 -0
  88. careamics/dataset/dataset_utils/dataset_utils.py +118 -0
  89. careamics/dataset/dataset_utils/file_utils.py +141 -0
  90. careamics/dataset/dataset_utils/iterate_over_files.py +84 -0
  91. careamics/dataset/dataset_utils/running_stats.py +189 -0
  92. careamics/dataset/in_memory_dataset.py +303 -0
  93. careamics/dataset/in_memory_pred_dataset.py +88 -0
  94. careamics/dataset/in_memory_tiled_pred_dataset.py +131 -0
  95. careamics/dataset/iterable_dataset.py +294 -0
  96. careamics/dataset/iterable_pred_dataset.py +121 -0
  97. careamics/dataset/iterable_tiled_pred_dataset.py +141 -0
  98. careamics/dataset/patching/__init__.py +1 -0
  99. careamics/dataset/patching/patching.py +300 -0
  100. careamics/dataset/patching/random_patching.py +110 -0
  101. careamics/dataset/patching/sequential_patching.py +212 -0
  102. careamics/dataset/patching/validate_patch_dimension.py +64 -0
  103. careamics/dataset/tiling/__init__.py +10 -0
  104. careamics/dataset/tiling/collate_tiles.py +33 -0
  105. careamics/dataset/tiling/lvae_tiled_patching.py +375 -0
  106. careamics/dataset/tiling/tiled_patching.py +166 -0
  107. careamics/dataset_ng/README.md +212 -0
  108. careamics/dataset_ng/__init__.py +0 -0
  109. careamics/dataset_ng/dataset.py +365 -0
  110. careamics/dataset_ng/demos/bsd68_demo.ipynb +361 -0
  111. careamics/dataset_ng/demos/bsd68_zarr_demo.ipynb +453 -0
  112. careamics/dataset_ng/demos/care_U2OS_demo.ipynb +330 -0
  113. careamics/dataset_ng/demos/demo_custom_image_stack.ipynb +736 -0
  114. careamics/dataset_ng/demos/demo_datamodule.ipynb +447 -0
  115. careamics/dataset_ng/demos/demo_dataset.ipynb +278 -0
  116. careamics/dataset_ng/demos/demo_patch_extractor.py +51 -0
  117. careamics/dataset_ng/demos/mouse_nuclei_demo.ipynb +293 -0
  118. careamics/dataset_ng/factory.py +180 -0
  119. careamics/dataset_ng/grouped_index_sampler.py +73 -0
  120. careamics/dataset_ng/image_stack/__init__.py +14 -0
  121. careamics/dataset_ng/image_stack/czi_image_stack.py +396 -0
  122. careamics/dataset_ng/image_stack/file_image_stack.py +140 -0
  123. careamics/dataset_ng/image_stack/image_stack_protocol.py +93 -0
  124. careamics/dataset_ng/image_stack/image_utils/__init__.py +6 -0
  125. careamics/dataset_ng/image_stack/image_utils/image_stack_utils.py +125 -0
  126. careamics/dataset_ng/image_stack/in_memory_image_stack.py +93 -0
  127. careamics/dataset_ng/image_stack/zarr_image_stack.py +170 -0
  128. careamics/dataset_ng/image_stack_loader/__init__.py +19 -0
  129. careamics/dataset_ng/image_stack_loader/image_stack_loader_protocol.py +70 -0
  130. careamics/dataset_ng/image_stack_loader/image_stack_loaders.py +273 -0
  131. careamics/dataset_ng/image_stack_loader/zarr_utils.py +130 -0
  132. careamics/dataset_ng/legacy_interoperability.py +175 -0
  133. careamics/dataset_ng/microsplit_input_synth.py +377 -0
  134. careamics/dataset_ng/patch_extractor/__init__.py +7 -0
  135. careamics/dataset_ng/patch_extractor/limit_file_extractor.py +50 -0
  136. careamics/dataset_ng/patch_extractor/patch_construction.py +151 -0
  137. careamics/dataset_ng/patch_extractor/patch_extractor.py +117 -0
  138. careamics/dataset_ng/patch_filter/__init__.py +20 -0
  139. careamics/dataset_ng/patch_filter/coordinate_filter_protocol.py +27 -0
  140. careamics/dataset_ng/patch_filter/filter_factory.py +95 -0
  141. careamics/dataset_ng/patch_filter/mask_filter.py +96 -0
  142. careamics/dataset_ng/patch_filter/max_filter.py +188 -0
  143. careamics/dataset_ng/patch_filter/mean_std_filter.py +218 -0
  144. careamics/dataset_ng/patch_filter/patch_filter_protocol.py +50 -0
  145. careamics/dataset_ng/patch_filter/shannon_filter.py +188 -0
  146. careamics/dataset_ng/patching_strategies/__init__.py +26 -0
  147. careamics/dataset_ng/patching_strategies/patching_strategy_factory.py +50 -0
  148. careamics/dataset_ng/patching_strategies/patching_strategy_protocol.py +161 -0
  149. careamics/dataset_ng/patching_strategies/random_patching.py +393 -0
  150. careamics/dataset_ng/patching_strategies/sequential_patching.py +99 -0
  151. careamics/dataset_ng/patching_strategies/tiling_strategy.py +207 -0
  152. careamics/dataset_ng/patching_strategies/whole_sample.py +61 -0
  153. careamics/file_io/__init__.py +15 -0
  154. careamics/file_io/read/__init__.py +11 -0
  155. careamics/file_io/read/get_func.py +57 -0
  156. careamics/file_io/read/tiff.py +58 -0
  157. careamics/file_io/write/__init__.py +15 -0
  158. careamics/file_io/write/get_func.py +63 -0
  159. careamics/file_io/write/tiff.py +40 -0
  160. careamics/lightning/__init__.py +32 -0
  161. careamics/lightning/callbacks/__init__.py +13 -0
  162. careamics/lightning/callbacks/data_stats_callback.py +33 -0
  163. careamics/lightning/callbacks/hyperparameters_callback.py +49 -0
  164. careamics/lightning/callbacks/prediction_writer_callback/__init__.py +20 -0
  165. careamics/lightning/callbacks/prediction_writer_callback/file_path_utils.py +56 -0
  166. careamics/lightning/callbacks/prediction_writer_callback/prediction_writer_callback.py +234 -0
  167. careamics/lightning/callbacks/prediction_writer_callback/write_strategy.py +399 -0
  168. careamics/lightning/callbacks/prediction_writer_callback/write_strategy_factory.py +215 -0
  169. careamics/lightning/callbacks/progress_bar_callback.py +90 -0
  170. careamics/lightning/dataset_ng/__init__.py +1 -0
  171. careamics/lightning/dataset_ng/callbacks/__init__.py +1 -0
  172. careamics/lightning/dataset_ng/callbacks/prediction_writer/__init__.py +29 -0
  173. careamics/lightning/dataset_ng/callbacks/prediction_writer/cached_tiles_strategy.py +164 -0
  174. careamics/lightning/dataset_ng/callbacks/prediction_writer/file_path_utils.py +33 -0
  175. careamics/lightning/dataset_ng/callbacks/prediction_writer/prediction_writer_callback.py +219 -0
  176. careamics/lightning/dataset_ng/callbacks/prediction_writer/write_image_strategy.py +91 -0
  177. careamics/lightning/dataset_ng/callbacks/prediction_writer/write_strategy.py +27 -0
  178. careamics/lightning/dataset_ng/callbacks/prediction_writer/write_strategy_factory.py +214 -0
  179. careamics/lightning/dataset_ng/callbacks/prediction_writer/write_tiles_zarr_strategy.py +375 -0
  180. careamics/lightning/dataset_ng/data_module.py +529 -0
  181. careamics/lightning/dataset_ng/data_module_utils.py +395 -0
  182. careamics/lightning/dataset_ng/lightning_modules/__init__.py +9 -0
  183. careamics/lightning/dataset_ng/lightning_modules/care_module.py +97 -0
  184. careamics/lightning/dataset_ng/lightning_modules/n2v_module.py +106 -0
  185. careamics/lightning/dataset_ng/lightning_modules/unet_module.py +221 -0
  186. careamics/lightning/dataset_ng/prediction/__init__.py +16 -0
  187. careamics/lightning/dataset_ng/prediction/convert_prediction.py +198 -0
  188. careamics/lightning/dataset_ng/prediction/stitch_prediction.py +171 -0
  189. careamics/lightning/lightning_module.py +914 -0
  190. careamics/lightning/microsplit_data_module.py +632 -0
  191. careamics/lightning/predict_data_module.py +341 -0
  192. careamics/lightning/train_data_module.py +666 -0
  193. careamics/losses/__init__.py +21 -0
  194. careamics/losses/fcn/__init__.py +1 -0
  195. careamics/losses/fcn/losses.py +125 -0
  196. careamics/losses/loss_factory.py +80 -0
  197. careamics/losses/lvae/__init__.py +1 -0
  198. careamics/losses/lvae/loss_utils.py +83 -0
  199. careamics/losses/lvae/losses.py +589 -0
  200. careamics/lvae_training/__init__.py +0 -0
  201. careamics/lvae_training/calibration.py +191 -0
  202. careamics/lvae_training/dataset/__init__.py +20 -0
  203. careamics/lvae_training/dataset/config.py +135 -0
  204. careamics/lvae_training/dataset/lc_dataset.py +274 -0
  205. careamics/lvae_training/dataset/ms_dataset_ref.py +1067 -0
  206. careamics/lvae_training/dataset/multich_dataset.py +1121 -0
  207. careamics/lvae_training/dataset/multicrop_dset.py +196 -0
  208. careamics/lvae_training/dataset/multifile_dataset.py +335 -0
  209. careamics/lvae_training/dataset/types.py +32 -0
  210. careamics/lvae_training/dataset/utils/__init__.py +0 -0
  211. careamics/lvae_training/dataset/utils/data_utils.py +114 -0
  212. careamics/lvae_training/dataset/utils/empty_patch_fetcher.py +65 -0
  213. careamics/lvae_training/dataset/utils/index_manager.py +491 -0
  214. careamics/lvae_training/dataset/utils/index_switcher.py +165 -0
  215. careamics/lvae_training/eval_utils.py +987 -0
  216. careamics/lvae_training/get_config.py +84 -0
  217. careamics/lvae_training/lightning_module.py +701 -0
  218. careamics/lvae_training/metrics.py +214 -0
  219. careamics/lvae_training/train_lvae.py +342 -0
  220. careamics/lvae_training/train_utils.py +121 -0
  221. careamics/model_io/__init__.py +7 -0
  222. careamics/model_io/bioimage/__init__.py +11 -0
  223. careamics/model_io/bioimage/_readme_factory.py +113 -0
  224. careamics/model_io/bioimage/bioimage_utils.py +56 -0
  225. careamics/model_io/bioimage/cover_factory.py +171 -0
  226. careamics/model_io/bioimage/model_description.py +341 -0
  227. careamics/model_io/bmz_io.py +251 -0
  228. careamics/model_io/model_io_utils.py +95 -0
  229. careamics/models/__init__.py +5 -0
  230. careamics/models/activation.py +40 -0
  231. careamics/models/layers.py +495 -0
  232. careamics/models/lvae/__init__.py +3 -0
  233. careamics/models/lvae/layers.py +1371 -0
  234. careamics/models/lvae/likelihoods.py +394 -0
  235. careamics/models/lvae/lvae.py +848 -0
  236. careamics/models/lvae/noise_models.py +738 -0
  237. careamics/models/lvae/stochastic.py +394 -0
  238. careamics/models/lvae/utils.py +404 -0
  239. careamics/models/model_factory.py +54 -0
  240. careamics/models/unet.py +449 -0
  241. careamics/nm_training_placeholder.py +203 -0
  242. careamics/prediction_utils/__init__.py +21 -0
  243. careamics/prediction_utils/lvae_prediction.py +158 -0
  244. careamics/prediction_utils/lvae_tiling_manager.py +362 -0
  245. careamics/prediction_utils/prediction_outputs.py +238 -0
  246. careamics/prediction_utils/stitch_prediction.py +193 -0
  247. careamics/py.typed +5 -0
  248. careamics/transforms/__init__.py +22 -0
  249. careamics/transforms/compose.py +173 -0
  250. careamics/transforms/n2v_manipulate.py +150 -0
  251. careamics/transforms/n2v_manipulate_torch.py +149 -0
  252. careamics/transforms/normalize.py +374 -0
  253. careamics/transforms/pixel_manipulation.py +406 -0
  254. careamics/transforms/pixel_manipulation_torch.py +388 -0
  255. careamics/transforms/struct_mask_parameters.py +20 -0
  256. careamics/transforms/transform.py +24 -0
  257. careamics/transforms/tta.py +88 -0
  258. careamics/transforms/xy_flip.py +131 -0
  259. careamics/transforms/xy_random_rotate90.py +108 -0
  260. careamics/utils/__init__.py +19 -0
  261. careamics/utils/autocorrelation.py +40 -0
  262. careamics/utils/base_enum.py +60 -0
  263. careamics/utils/context.py +67 -0
  264. careamics/utils/deprecation.py +63 -0
  265. careamics/utils/lightning_utils.py +71 -0
  266. careamics/utils/logging.py +323 -0
  267. careamics/utils/metrics.py +394 -0
  268. careamics/utils/path_utils.py +26 -0
  269. careamics/utils/plotting.py +76 -0
  270. careamics/utils/ram.py +15 -0
  271. careamics/utils/receptive_field.py +108 -0
  272. careamics/utils/serializers.py +62 -0
  273. careamics/utils/torch_utils.py +150 -0
  274. careamics/utils/version.py +38 -0
  275. careamics-0.0.19.dist-info/METADATA +80 -0
  276. careamics-0.0.19.dist-info/RECORD +279 -0
  277. careamics-0.0.19.dist-info/WHEEL +4 -0
  278. careamics-0.0.19.dist-info/entry_points.txt +2 -0
  279. careamics-0.0.19.dist-info/licenses/LICENSE +28 -0
@@ -0,0 +1,447 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "from careamics.config.configuration_factories import (\n",
10
+ " _create_ng_data_configuration,\n",
11
+ " _list_spatial_augmentations,\n",
12
+ ")\n",
13
+ "from careamics.lightning.dataset_ng.data_module import CareamicsDataModule"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": null,
19
+ "metadata": {},
20
+ "outputs": [],
21
+ "source": [
22
+ "%load_ext autoreload\n",
23
+ "%autoreload 2\n"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "code",
28
+ "execution_count": null,
29
+ "metadata": {},
30
+ "outputs": [],
31
+ "source": [
32
+ "from pathlib import Path\n",
33
+ "\n",
34
+ "import matplotlib.pyplot as plt\n",
35
+ "import numpy as np\n",
36
+ "import tifffile\n",
37
+ "from careamics_portfolio import PortfolioManager\n",
38
+ "\n",
39
+ "# instantiate data portfolio manage\n",
40
+ "portfolio = PortfolioManager()\n",
41
+ "\n",
42
+ "# and download the data\n",
43
+ "root_path = Path(\"./data\")\n",
44
+ "files = portfolio.denoising.N2V_BSD68.download(root_path)\n",
45
+ "\n",
46
+ "# create paths for the data\n",
47
+ "data_path = Path(root_path / \"denoising-N2V_BSD68.unzip/BSD68_reproducibility_data\")\n",
48
+ "train_path = data_path / \"train\"\n",
49
+ "val_path = data_path / \"val\"\n",
50
+ "test_path = data_path / \"test\" / \"images\"\n",
51
+ "gt_path = data_path / \"test\" / \"gt\""
52
+ ]
53
+ },
54
+ {
55
+ "cell_type": "code",
56
+ "execution_count": null,
57
+ "metadata": {},
58
+ "outputs": [],
59
+ "source": [
60
+ "image_std, image_mean = [], []\n",
61
+ "for file in train_path.glob(\"*.tiff\"):\n",
62
+ " image = tifffile.imread(file)\n",
63
+ " image_std.append(image.std())\n",
64
+ " image_mean.append(image.mean())\n",
65
+ "image_std, image_mean = np.mean(image_std), np.mean(image_mean)"
66
+ ]
67
+ },
68
+ {
69
+ "cell_type": "code",
70
+ "execution_count": null,
71
+ "metadata": {},
72
+ "outputs": [],
73
+ "source": [
74
+ "# from path, train and val, no target\n",
75
+ "\n",
76
+ "config = _create_ng_data_configuration(\n",
77
+ " data_type=\"tiff\",\n",
78
+ " axes=\"SYX\",\n",
79
+ " patch_size=(64, 64),\n",
80
+ " batch_size=64,\n",
81
+ " augmentations=_list_spatial_augmentations()\n",
82
+ ")\n",
83
+ "\n",
84
+ "config.set_means_and_stds([image_mean], [image_std])\n",
85
+ "config.val_dataloader_params = {\"shuffle\": False}\n",
86
+ "\n",
87
+ "data_module = CareamicsDataModule(\n",
88
+ " data_config=config,\n",
89
+ " train_data=train_path,\n",
90
+ " val_data=val_path,\n",
91
+ ")\n",
92
+ "data_module.setup('fit')\n",
93
+ "data_module.setup('validate')\n",
94
+ "\n",
95
+ "train_batch = next(iter(data_module.train_dataloader()))\n",
96
+ "val_batch = next(iter(data_module.val_dataloader()))\n",
97
+ "\n",
98
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
99
+ "\n",
100
+ "for i in range(8):\n",
101
+ " ax[i].imshow(train_batch[0].data[i][0].numpy(), cmap=\"gray\")\n",
102
+ "\n",
103
+ "\n",
104
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
105
+ "for i in range(8):\n",
106
+ " ax[i].imshow(val_batch[0].data[i][0].numpy(), cmap=\"gray\")"
107
+ ]
108
+ },
109
+ {
110
+ "cell_type": "code",
111
+ "execution_count": null,
112
+ "metadata": {},
113
+ "outputs": [],
114
+ "source": [
115
+ "# from path, only predict\n",
116
+ "\n",
117
+ "from careamics.config.data import NGDataConfig\n",
118
+ "\n",
119
+ "config = NGDataConfig(\n",
120
+ " data_type=\"tiff\",\n",
121
+ " patching={\n",
122
+ " \"name\": \"tiled\",\n",
123
+ " \"patch_size\": (128, 128),\n",
124
+ " \"overlaps\": (32, 32)\n",
125
+ " },\n",
126
+ " axes=\"YX\",\n",
127
+ " batch_size=8,\n",
128
+ " image_means=[image_mean],\n",
129
+ " image_stds=[image_std]\n",
130
+ ")\n",
131
+ "\n",
132
+ "data_module = CareamicsDataModule(\n",
133
+ " data_config=config,\n",
134
+ " pred_data=test_path\n",
135
+ ")\n",
136
+ "data_module.setup('predict')\n",
137
+ "\n",
138
+ "pred_batch = next(iter(data_module.predict_dataloader()))\n",
139
+ "\n",
140
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
141
+ "\n",
142
+ "for i in range(8):\n",
143
+ " ax[i].imshow(pred_batch[0].data[i][0].numpy(), cmap=\"gray\")"
144
+ ]
145
+ },
146
+ {
147
+ "cell_type": "code",
148
+ "execution_count": null,
149
+ "metadata": {},
150
+ "outputs": [],
151
+ "source": [
152
+ "# test from array"
153
+ ]
154
+ },
155
+ {
156
+ "cell_type": "code",
157
+ "execution_count": null,
158
+ "metadata": {},
159
+ "outputs": [],
160
+ "source": [
161
+ "train_array = tifffile.imread(sorted(train_path.rglob('*'))[0])\n",
162
+ "val_array = tifffile.imread(sorted(val_path.rglob('*'))[0])\n",
163
+ "test_array = tifffile.imread(sorted(test_path.rglob('*'))[0])"
164
+ ]
165
+ },
166
+ {
167
+ "cell_type": "code",
168
+ "execution_count": null,
169
+ "metadata": {},
170
+ "outputs": [],
171
+ "source": [
172
+ "# from array, train and val, no target\n",
173
+ "\n",
174
+ "config = _create_ng_data_configuration(\n",
175
+ " data_type=\"array\",\n",
176
+ " axes=\"SYX\",\n",
177
+ " patch_size=(64, 64),\n",
178
+ " batch_size=64,\n",
179
+ " augmentations=_list_spatial_augmentations()\n",
180
+ ")\n",
181
+ "\n",
182
+ "config.set_means_and_stds([image_mean], [image_std])\n",
183
+ "config.val_dataloader_params = {\"shuffle\": False}\n",
184
+ "\n",
185
+ "data_module = CareamicsDataModule(\n",
186
+ " data_config=config,\n",
187
+ " train_data=train_array,\n",
188
+ " val_data=val_array,\n",
189
+ ")\n",
190
+ "data_module.setup('fit')\n",
191
+ "data_module.setup('validate')\n",
192
+ "\n",
193
+ "train_batch = next(iter(data_module.train_dataloader()))\n",
194
+ "val_batch = next(iter(data_module.val_dataloader()))\n",
195
+ "\n",
196
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
197
+ "\n",
198
+ "for i in range(8):\n",
199
+ " ax[i].imshow(train_batch[0].data[i][0].numpy(), cmap=\"gray\")\n",
200
+ "\n",
201
+ "\n",
202
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
203
+ "for i in range(8):\n",
204
+ " ax[i].imshow(val_batch[0].data[i][0].numpy(), cmap=\"gray\")"
205
+ ]
206
+ },
207
+ {
208
+ "cell_type": "code",
209
+ "execution_count": null,
210
+ "metadata": {},
211
+ "outputs": [],
212
+ "source": [
213
+ "# test with target"
214
+ ]
215
+ },
216
+ {
217
+ "cell_type": "code",
218
+ "execution_count": null,
219
+ "metadata": {},
220
+ "outputs": [],
221
+ "source": [
222
+ "import skimage\n",
223
+ "\n",
224
+ "example_data = skimage.data.human_mitosis()\n",
225
+ "\n",
226
+ "markers = np.zeros_like(example_data)\n",
227
+ "markers[example_data < 25] = 1\n",
228
+ "markers[example_data > 50] = 2\n",
229
+ "\n",
230
+ "elevation_map = skimage.filters.sobel(example_data)\n",
231
+ "segmentation = skimage.segmentation.watershed(elevation_map, markers)\n",
232
+ "\n",
233
+ "fig, ax = plt.subplots(1, 2)\n",
234
+ "ax[0].imshow(example_data)\n",
235
+ "ax[1].imshow(segmentation)\n",
236
+ "plt.show()"
237
+ ]
238
+ },
239
+ {
240
+ "cell_type": "code",
241
+ "execution_count": null,
242
+ "metadata": {},
243
+ "outputs": [],
244
+ "source": [
245
+ "config = _create_ng_data_configuration(\n",
246
+ " data_type=\"array\",\n",
247
+ " axes=\"YX\",\n",
248
+ " patch_size=(64, 64),\n",
249
+ " batch_size=64,\n",
250
+ " augmentations=_list_spatial_augmentations()\n",
251
+ ")\n",
252
+ "config.set_means_and_stds(\n",
253
+ " [example_data.mean()],\n",
254
+ " [example_data.std()],\n",
255
+ " [segmentation.mean()],\n",
256
+ " [segmentation.std()]\n",
257
+ ")\n",
258
+ "\n",
259
+ "data_module = CareamicsDataModule(\n",
260
+ " data_config=config,\n",
261
+ " train_data=[example_data],\n",
262
+ " train_data_target=[segmentation],\n",
263
+ " val_data=[example_data],\n",
264
+ " val_data_target=[segmentation]\n",
265
+ ")\n",
266
+ "data_module.setup('fit')\n",
267
+ "data_module.setup('validate')\n",
268
+ "\n",
269
+ "train_batch = next(iter(data_module.train_dataloader()))\n",
270
+ "val_batch = next(iter(data_module.val_dataloader()))\n",
271
+ "\n",
272
+ "fig, ax = plt.subplots(2, 8, figsize=(10, 3))\n",
273
+ "\n",
274
+ "for i in range(8):\n",
275
+ " ax[0][i].imshow(train_batch[0].data[i][0].numpy(), cmap=\"gray\")\n",
276
+ " ax[1][i].imshow(train_batch[1].data[i][0].numpy())\n",
277
+ "\n",
278
+ "\n",
279
+ "fig, ax = plt.subplots(2, 8, figsize=(10, 3))\n",
280
+ "for i in range(8):\n",
281
+ " ax[0][i].imshow(val_batch[0].data[i][0].numpy(), cmap=\"gray\")\n",
282
+ " ax[1][i].imshow(val_batch[1].data[i][0].numpy())"
283
+ ]
284
+ },
285
+ {
286
+ "cell_type": "code",
287
+ "execution_count": null,
288
+ "metadata": {},
289
+ "outputs": [],
290
+ "source": [
291
+ "# from array, only predict, with target\n",
292
+ "\n",
293
+ "from careamics.config.data import NGDataConfig\n",
294
+ "\n",
295
+ "config = NGDataConfig(\n",
296
+ " data_type=\"array\",\n",
297
+ " patching={\n",
298
+ " \"name\": \"tiled\",\n",
299
+ " \"patch_size\": (128, 128),\n",
300
+ " \"overlaps\": (32, 32)\n",
301
+ " },\n",
302
+ " axes=\"YX\",\n",
303
+ " batch_size=8,\n",
304
+ " image_means=[image_mean],\n",
305
+ " image_stds=[image_std]\n",
306
+ ")\n",
307
+ "\n",
308
+ "data_module = CareamicsDataModule(\n",
309
+ " data_config=config,\n",
310
+ " pred_data=example_data,\n",
311
+ " pred_data_target=segmentation\n",
312
+ ")\n",
313
+ "data_module.setup('predict')\n",
314
+ "\n",
315
+ "pred_batch = next(iter(data_module.predict_dataloader()))\n",
316
+ "\n",
317
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
318
+ "\n",
319
+ "for i in range(8):\n",
320
+ " ax[i].imshow(pred_batch[0].data[i][0].numpy(), cmap=\"gray\")"
321
+ ]
322
+ },
323
+ {
324
+ "cell_type": "code",
325
+ "execution_count": null,
326
+ "metadata": {},
327
+ "outputs": [],
328
+ "source": [
329
+ "# from list of paths"
330
+ ]
331
+ },
332
+ {
333
+ "cell_type": "code",
334
+ "execution_count": null,
335
+ "metadata": {},
336
+ "outputs": [],
337
+ "source": [
338
+ "config = _create_ng_data_configuration(\n",
339
+ " data_type=\"tiff\",\n",
340
+ " axes=\"SYX\",\n",
341
+ " patch_size=(64, 64),\n",
342
+ " batch_size=64,\n",
343
+ " augmentations=_list_spatial_augmentations()\n",
344
+ ")\n",
345
+ "\n",
346
+ "config.set_means_and_stds([image_mean], [image_std])\n",
347
+ "config.val_dataloader_params = {\"shuffle\": False}\n",
348
+ "\n",
349
+ "data_module = CareamicsDataModule(\n",
350
+ " data_config=config,\n",
351
+ " train_data=sorted(train_path.glob(\"*.tiff\")),\n",
352
+ " val_data=sorted(val_path.glob(\"*.tiff\")),\n",
353
+ ")\n",
354
+ "data_module.setup('fit')\n",
355
+ "data_module.setup('validate')\n",
356
+ "\n",
357
+ "train_batch = next(iter(data_module.train_dataloader()))\n",
358
+ "val_batch = next(iter(data_module.val_dataloader()))\n",
359
+ "\n",
360
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
361
+ "\n",
362
+ "for i in range(8):\n",
363
+ " ax[i].imshow(train_batch[0].data[i][0].numpy(), cmap=\"gray\")\n",
364
+ "\n",
365
+ "\n",
366
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
367
+ "for i in range(8):\n",
368
+ " ax[i].imshow(val_batch[0].data[i][0].numpy(), cmap=\"gray\")"
369
+ ]
370
+ },
371
+ {
372
+ "cell_type": "code",
373
+ "execution_count": null,
374
+ "metadata": {},
375
+ "outputs": [],
376
+ "source": [
377
+ "# from custom"
378
+ ]
379
+ },
380
+ {
381
+ "cell_type": "code",
382
+ "execution_count": null,
383
+ "metadata": {},
384
+ "outputs": [],
385
+ "source": [
386
+ "config = _create_ng_data_configuration(\n",
387
+ " data_type=\"custom\",\n",
388
+ " axes=\"SYX\",\n",
389
+ " patch_size=(64, 64),\n",
390
+ " batch_size=64,\n",
391
+ " augmentations=_list_spatial_augmentations()\n",
392
+ ")\n",
393
+ "\n",
394
+ "config.set_means_and_stds([image_mean], [image_std])\n",
395
+ "config.val_dataloader_params = {\"shuffle\": False}\n",
396
+ "\n",
397
+ "def read_source_func(path):\n",
398
+ " image = tifffile.imread(path)\n",
399
+ " image = 255 - image\n",
400
+ " return image\n",
401
+ "\n",
402
+ "data_module = CareamicsDataModule(\n",
403
+ " data_config=config,\n",
404
+ " train_data=sorted(train_path.glob(\"*.tiff\")),\n",
405
+ " val_data=sorted(val_path.glob(\"*.tiff\")),\n",
406
+ " read_source_func=read_source_func\n",
407
+ ")\n",
408
+ "data_module.setup('fit')\n",
409
+ "data_module.setup('validate')\n",
410
+ "\n",
411
+ "train_batch = next(iter(data_module.train_dataloader()))\n",
412
+ "val_batch = next(iter(data_module.val_dataloader()))\n",
413
+ "\n",
414
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
415
+ "\n",
416
+ "for i in range(8):\n",
417
+ " ax[i].imshow(train_batch[0].data[i][0].numpy(), cmap=\"gray\")\n",
418
+ "\n",
419
+ "\n",
420
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
421
+ "for i in range(8):\n",
422
+ " ax[i].imshow(val_batch[0].data[i][0].numpy(), cmap=\"gray\")"
423
+ ]
424
+ }
425
+ ],
426
+ "metadata": {
427
+ "kernelspec": {
428
+ "display_name": "czi",
429
+ "language": "python",
430
+ "name": "python3"
431
+ },
432
+ "language_info": {
433
+ "codemirror_mode": {
434
+ "name": "ipython",
435
+ "version": 3
436
+ },
437
+ "file_extension": ".py",
438
+ "mimetype": "text/x-python",
439
+ "name": "python",
440
+ "nbconvert_exporter": "python",
441
+ "pygments_lexer": "ipython3",
442
+ "version": "3.12.11"
443
+ }
444
+ },
445
+ "nbformat": 4,
446
+ "nbformat_minor": 2
447
+ }