careamics 0.0.19__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (279) hide show
  1. careamics/__init__.py +24 -0
  2. careamics/careamist.py +961 -0
  3. careamics/cli/__init__.py +5 -0
  4. careamics/cli/conf.py +394 -0
  5. careamics/cli/main.py +234 -0
  6. careamics/cli/utils.py +27 -0
  7. careamics/config/__init__.py +66 -0
  8. careamics/config/algorithms/__init__.py +21 -0
  9. careamics/config/algorithms/care_algorithm_config.py +122 -0
  10. careamics/config/algorithms/hdn_algorithm_config.py +103 -0
  11. careamics/config/algorithms/microsplit_algorithm_config.py +103 -0
  12. careamics/config/algorithms/n2n_algorithm_config.py +115 -0
  13. careamics/config/algorithms/n2v_algorithm_config.py +296 -0
  14. careamics/config/algorithms/pn2v_algorithm_config.py +301 -0
  15. careamics/config/algorithms/unet_algorithm_config.py +91 -0
  16. careamics/config/algorithms/vae_algorithm_config.py +178 -0
  17. careamics/config/architectures/__init__.py +7 -0
  18. careamics/config/architectures/architecture_config.py +37 -0
  19. careamics/config/architectures/lvae_config.py +262 -0
  20. careamics/config/architectures/unet_config.py +125 -0
  21. careamics/config/configuration.py +367 -0
  22. careamics/config/configuration_factories.py +2400 -0
  23. careamics/config/data/__init__.py +27 -0
  24. careamics/config/data/data_config.py +472 -0
  25. careamics/config/data/inference_config.py +237 -0
  26. careamics/config/data/ng_data_config.py +1038 -0
  27. careamics/config/data/patch_filter/__init__.py +15 -0
  28. careamics/config/data/patch_filter/filter_config.py +16 -0
  29. careamics/config/data/patch_filter/mask_filter_config.py +17 -0
  30. careamics/config/data/patch_filter/max_filter_config.py +15 -0
  31. careamics/config/data/patch_filter/meanstd_filter_config.py +18 -0
  32. careamics/config/data/patch_filter/shannon_filter_config.py +15 -0
  33. careamics/config/data/patching_strategies/__init__.py +15 -0
  34. careamics/config/data/patching_strategies/_overlapping_patched_config.py +102 -0
  35. careamics/config/data/patching_strategies/_patched_config.py +56 -0
  36. careamics/config/data/patching_strategies/random_patching_config.py +45 -0
  37. careamics/config/data/patching_strategies/sequential_patching_config.py +25 -0
  38. careamics/config/data/patching_strategies/tiled_patching_config.py +40 -0
  39. careamics/config/data/patching_strategies/whole_patching_config.py +12 -0
  40. careamics/config/data/tile_information.py +65 -0
  41. careamics/config/lightning/__init__.py +15 -0
  42. careamics/config/lightning/callbacks/__init__.py +8 -0
  43. careamics/config/lightning/callbacks/callback_config.py +116 -0
  44. careamics/config/lightning/optimizer_configs.py +186 -0
  45. careamics/config/lightning/training_config.py +70 -0
  46. careamics/config/losses/__init__.py +8 -0
  47. careamics/config/losses/loss_config.py +60 -0
  48. careamics/config/ng_configs/__init__.py +5 -0
  49. careamics/config/ng_configs/n2v_configuration.py +64 -0
  50. careamics/config/ng_configs/ng_configuration.py +256 -0
  51. careamics/config/ng_factories/__init__.py +9 -0
  52. careamics/config/ng_factories/algorithm_factory.py +120 -0
  53. careamics/config/ng_factories/data_factory.py +154 -0
  54. careamics/config/ng_factories/n2v_factory.py +256 -0
  55. careamics/config/ng_factories/training_factory.py +69 -0
  56. careamics/config/noise_model/__init__.py +12 -0
  57. careamics/config/noise_model/likelihood_config.py +60 -0
  58. careamics/config/noise_model/noise_model_config.py +149 -0
  59. careamics/config/support/__init__.py +31 -0
  60. careamics/config/support/supported_activations.py +27 -0
  61. careamics/config/support/supported_algorithms.py +40 -0
  62. careamics/config/support/supported_architectures.py +13 -0
  63. careamics/config/support/supported_data.py +122 -0
  64. careamics/config/support/supported_filters.py +17 -0
  65. careamics/config/support/supported_loggers.py +10 -0
  66. careamics/config/support/supported_losses.py +32 -0
  67. careamics/config/support/supported_optimizers.py +57 -0
  68. careamics/config/support/supported_patching_strategies.py +22 -0
  69. careamics/config/support/supported_pixel_manipulations.py +15 -0
  70. careamics/config/support/supported_struct_axis.py +21 -0
  71. careamics/config/support/supported_transforms.py +12 -0
  72. careamics/config/transformations/__init__.py +22 -0
  73. careamics/config/transformations/n2v_manipulate_config.py +79 -0
  74. careamics/config/transformations/normalize_config.py +59 -0
  75. careamics/config/transformations/transform_config.py +45 -0
  76. careamics/config/transformations/transform_unions.py +29 -0
  77. careamics/config/transformations/xy_flip_config.py +43 -0
  78. careamics/config/transformations/xy_random_rotate90_config.py +35 -0
  79. careamics/config/utils/__init__.py +8 -0
  80. careamics/config/utils/configuration_io.py +85 -0
  81. careamics/config/validators/__init__.py +18 -0
  82. careamics/config/validators/axes_validators.py +90 -0
  83. careamics/config/validators/model_validators.py +84 -0
  84. careamics/config/validators/patch_validators.py +55 -0
  85. careamics/conftest.py +39 -0
  86. careamics/dataset/__init__.py +17 -0
  87. careamics/dataset/dataset_utils/__init__.py +19 -0
  88. careamics/dataset/dataset_utils/dataset_utils.py +118 -0
  89. careamics/dataset/dataset_utils/file_utils.py +141 -0
  90. careamics/dataset/dataset_utils/iterate_over_files.py +84 -0
  91. careamics/dataset/dataset_utils/running_stats.py +189 -0
  92. careamics/dataset/in_memory_dataset.py +303 -0
  93. careamics/dataset/in_memory_pred_dataset.py +88 -0
  94. careamics/dataset/in_memory_tiled_pred_dataset.py +131 -0
  95. careamics/dataset/iterable_dataset.py +294 -0
  96. careamics/dataset/iterable_pred_dataset.py +121 -0
  97. careamics/dataset/iterable_tiled_pred_dataset.py +141 -0
  98. careamics/dataset/patching/__init__.py +1 -0
  99. careamics/dataset/patching/patching.py +300 -0
  100. careamics/dataset/patching/random_patching.py +110 -0
  101. careamics/dataset/patching/sequential_patching.py +212 -0
  102. careamics/dataset/patching/validate_patch_dimension.py +64 -0
  103. careamics/dataset/tiling/__init__.py +10 -0
  104. careamics/dataset/tiling/collate_tiles.py +33 -0
  105. careamics/dataset/tiling/lvae_tiled_patching.py +375 -0
  106. careamics/dataset/tiling/tiled_patching.py +166 -0
  107. careamics/dataset_ng/README.md +212 -0
  108. careamics/dataset_ng/__init__.py +0 -0
  109. careamics/dataset_ng/dataset.py +365 -0
  110. careamics/dataset_ng/demos/bsd68_demo.ipynb +361 -0
  111. careamics/dataset_ng/demos/bsd68_zarr_demo.ipynb +453 -0
  112. careamics/dataset_ng/demos/care_U2OS_demo.ipynb +330 -0
  113. careamics/dataset_ng/demos/demo_custom_image_stack.ipynb +736 -0
  114. careamics/dataset_ng/demos/demo_datamodule.ipynb +447 -0
  115. careamics/dataset_ng/demos/demo_dataset.ipynb +278 -0
  116. careamics/dataset_ng/demos/demo_patch_extractor.py +51 -0
  117. careamics/dataset_ng/demos/mouse_nuclei_demo.ipynb +293 -0
  118. careamics/dataset_ng/factory.py +180 -0
  119. careamics/dataset_ng/grouped_index_sampler.py +73 -0
  120. careamics/dataset_ng/image_stack/__init__.py +14 -0
  121. careamics/dataset_ng/image_stack/czi_image_stack.py +396 -0
  122. careamics/dataset_ng/image_stack/file_image_stack.py +140 -0
  123. careamics/dataset_ng/image_stack/image_stack_protocol.py +93 -0
  124. careamics/dataset_ng/image_stack/image_utils/__init__.py +6 -0
  125. careamics/dataset_ng/image_stack/image_utils/image_stack_utils.py +125 -0
  126. careamics/dataset_ng/image_stack/in_memory_image_stack.py +93 -0
  127. careamics/dataset_ng/image_stack/zarr_image_stack.py +170 -0
  128. careamics/dataset_ng/image_stack_loader/__init__.py +19 -0
  129. careamics/dataset_ng/image_stack_loader/image_stack_loader_protocol.py +70 -0
  130. careamics/dataset_ng/image_stack_loader/image_stack_loaders.py +273 -0
  131. careamics/dataset_ng/image_stack_loader/zarr_utils.py +130 -0
  132. careamics/dataset_ng/legacy_interoperability.py +175 -0
  133. careamics/dataset_ng/microsplit_input_synth.py +377 -0
  134. careamics/dataset_ng/patch_extractor/__init__.py +7 -0
  135. careamics/dataset_ng/patch_extractor/limit_file_extractor.py +50 -0
  136. careamics/dataset_ng/patch_extractor/patch_construction.py +151 -0
  137. careamics/dataset_ng/patch_extractor/patch_extractor.py +117 -0
  138. careamics/dataset_ng/patch_filter/__init__.py +20 -0
  139. careamics/dataset_ng/patch_filter/coordinate_filter_protocol.py +27 -0
  140. careamics/dataset_ng/patch_filter/filter_factory.py +95 -0
  141. careamics/dataset_ng/patch_filter/mask_filter.py +96 -0
  142. careamics/dataset_ng/patch_filter/max_filter.py +188 -0
  143. careamics/dataset_ng/patch_filter/mean_std_filter.py +218 -0
  144. careamics/dataset_ng/patch_filter/patch_filter_protocol.py +50 -0
  145. careamics/dataset_ng/patch_filter/shannon_filter.py +188 -0
  146. careamics/dataset_ng/patching_strategies/__init__.py +26 -0
  147. careamics/dataset_ng/patching_strategies/patching_strategy_factory.py +50 -0
  148. careamics/dataset_ng/patching_strategies/patching_strategy_protocol.py +161 -0
  149. careamics/dataset_ng/patching_strategies/random_patching.py +393 -0
  150. careamics/dataset_ng/patching_strategies/sequential_patching.py +99 -0
  151. careamics/dataset_ng/patching_strategies/tiling_strategy.py +207 -0
  152. careamics/dataset_ng/patching_strategies/whole_sample.py +61 -0
  153. careamics/file_io/__init__.py +15 -0
  154. careamics/file_io/read/__init__.py +11 -0
  155. careamics/file_io/read/get_func.py +57 -0
  156. careamics/file_io/read/tiff.py +58 -0
  157. careamics/file_io/write/__init__.py +15 -0
  158. careamics/file_io/write/get_func.py +63 -0
  159. careamics/file_io/write/tiff.py +40 -0
  160. careamics/lightning/__init__.py +32 -0
  161. careamics/lightning/callbacks/__init__.py +13 -0
  162. careamics/lightning/callbacks/data_stats_callback.py +33 -0
  163. careamics/lightning/callbacks/hyperparameters_callback.py +49 -0
  164. careamics/lightning/callbacks/prediction_writer_callback/__init__.py +20 -0
  165. careamics/lightning/callbacks/prediction_writer_callback/file_path_utils.py +56 -0
  166. careamics/lightning/callbacks/prediction_writer_callback/prediction_writer_callback.py +234 -0
  167. careamics/lightning/callbacks/prediction_writer_callback/write_strategy.py +399 -0
  168. careamics/lightning/callbacks/prediction_writer_callback/write_strategy_factory.py +215 -0
  169. careamics/lightning/callbacks/progress_bar_callback.py +90 -0
  170. careamics/lightning/dataset_ng/__init__.py +1 -0
  171. careamics/lightning/dataset_ng/callbacks/__init__.py +1 -0
  172. careamics/lightning/dataset_ng/callbacks/prediction_writer/__init__.py +29 -0
  173. careamics/lightning/dataset_ng/callbacks/prediction_writer/cached_tiles_strategy.py +164 -0
  174. careamics/lightning/dataset_ng/callbacks/prediction_writer/file_path_utils.py +33 -0
  175. careamics/lightning/dataset_ng/callbacks/prediction_writer/prediction_writer_callback.py +219 -0
  176. careamics/lightning/dataset_ng/callbacks/prediction_writer/write_image_strategy.py +91 -0
  177. careamics/lightning/dataset_ng/callbacks/prediction_writer/write_strategy.py +27 -0
  178. careamics/lightning/dataset_ng/callbacks/prediction_writer/write_strategy_factory.py +214 -0
  179. careamics/lightning/dataset_ng/callbacks/prediction_writer/write_tiles_zarr_strategy.py +375 -0
  180. careamics/lightning/dataset_ng/data_module.py +529 -0
  181. careamics/lightning/dataset_ng/data_module_utils.py +395 -0
  182. careamics/lightning/dataset_ng/lightning_modules/__init__.py +9 -0
  183. careamics/lightning/dataset_ng/lightning_modules/care_module.py +97 -0
  184. careamics/lightning/dataset_ng/lightning_modules/n2v_module.py +106 -0
  185. careamics/lightning/dataset_ng/lightning_modules/unet_module.py +221 -0
  186. careamics/lightning/dataset_ng/prediction/__init__.py +16 -0
  187. careamics/lightning/dataset_ng/prediction/convert_prediction.py +198 -0
  188. careamics/lightning/dataset_ng/prediction/stitch_prediction.py +171 -0
  189. careamics/lightning/lightning_module.py +914 -0
  190. careamics/lightning/microsplit_data_module.py +632 -0
  191. careamics/lightning/predict_data_module.py +341 -0
  192. careamics/lightning/train_data_module.py +666 -0
  193. careamics/losses/__init__.py +21 -0
  194. careamics/losses/fcn/__init__.py +1 -0
  195. careamics/losses/fcn/losses.py +125 -0
  196. careamics/losses/loss_factory.py +80 -0
  197. careamics/losses/lvae/__init__.py +1 -0
  198. careamics/losses/lvae/loss_utils.py +83 -0
  199. careamics/losses/lvae/losses.py +589 -0
  200. careamics/lvae_training/__init__.py +0 -0
  201. careamics/lvae_training/calibration.py +191 -0
  202. careamics/lvae_training/dataset/__init__.py +20 -0
  203. careamics/lvae_training/dataset/config.py +135 -0
  204. careamics/lvae_training/dataset/lc_dataset.py +274 -0
  205. careamics/lvae_training/dataset/ms_dataset_ref.py +1067 -0
  206. careamics/lvae_training/dataset/multich_dataset.py +1121 -0
  207. careamics/lvae_training/dataset/multicrop_dset.py +196 -0
  208. careamics/lvae_training/dataset/multifile_dataset.py +335 -0
  209. careamics/lvae_training/dataset/types.py +32 -0
  210. careamics/lvae_training/dataset/utils/__init__.py +0 -0
  211. careamics/lvae_training/dataset/utils/data_utils.py +114 -0
  212. careamics/lvae_training/dataset/utils/empty_patch_fetcher.py +65 -0
  213. careamics/lvae_training/dataset/utils/index_manager.py +491 -0
  214. careamics/lvae_training/dataset/utils/index_switcher.py +165 -0
  215. careamics/lvae_training/eval_utils.py +987 -0
  216. careamics/lvae_training/get_config.py +84 -0
  217. careamics/lvae_training/lightning_module.py +701 -0
  218. careamics/lvae_training/metrics.py +214 -0
  219. careamics/lvae_training/train_lvae.py +342 -0
  220. careamics/lvae_training/train_utils.py +121 -0
  221. careamics/model_io/__init__.py +7 -0
  222. careamics/model_io/bioimage/__init__.py +11 -0
  223. careamics/model_io/bioimage/_readme_factory.py +113 -0
  224. careamics/model_io/bioimage/bioimage_utils.py +56 -0
  225. careamics/model_io/bioimage/cover_factory.py +171 -0
  226. careamics/model_io/bioimage/model_description.py +341 -0
  227. careamics/model_io/bmz_io.py +251 -0
  228. careamics/model_io/model_io_utils.py +95 -0
  229. careamics/models/__init__.py +5 -0
  230. careamics/models/activation.py +40 -0
  231. careamics/models/layers.py +495 -0
  232. careamics/models/lvae/__init__.py +3 -0
  233. careamics/models/lvae/layers.py +1371 -0
  234. careamics/models/lvae/likelihoods.py +394 -0
  235. careamics/models/lvae/lvae.py +848 -0
  236. careamics/models/lvae/noise_models.py +738 -0
  237. careamics/models/lvae/stochastic.py +394 -0
  238. careamics/models/lvae/utils.py +404 -0
  239. careamics/models/model_factory.py +54 -0
  240. careamics/models/unet.py +449 -0
  241. careamics/nm_training_placeholder.py +203 -0
  242. careamics/prediction_utils/__init__.py +21 -0
  243. careamics/prediction_utils/lvae_prediction.py +158 -0
  244. careamics/prediction_utils/lvae_tiling_manager.py +362 -0
  245. careamics/prediction_utils/prediction_outputs.py +238 -0
  246. careamics/prediction_utils/stitch_prediction.py +193 -0
  247. careamics/py.typed +5 -0
  248. careamics/transforms/__init__.py +22 -0
  249. careamics/transforms/compose.py +173 -0
  250. careamics/transforms/n2v_manipulate.py +150 -0
  251. careamics/transforms/n2v_manipulate_torch.py +149 -0
  252. careamics/transforms/normalize.py +374 -0
  253. careamics/transforms/pixel_manipulation.py +406 -0
  254. careamics/transforms/pixel_manipulation_torch.py +388 -0
  255. careamics/transforms/struct_mask_parameters.py +20 -0
  256. careamics/transforms/transform.py +24 -0
  257. careamics/transforms/tta.py +88 -0
  258. careamics/transforms/xy_flip.py +131 -0
  259. careamics/transforms/xy_random_rotate90.py +108 -0
  260. careamics/utils/__init__.py +19 -0
  261. careamics/utils/autocorrelation.py +40 -0
  262. careamics/utils/base_enum.py +60 -0
  263. careamics/utils/context.py +67 -0
  264. careamics/utils/deprecation.py +63 -0
  265. careamics/utils/lightning_utils.py +71 -0
  266. careamics/utils/logging.py +323 -0
  267. careamics/utils/metrics.py +394 -0
  268. careamics/utils/path_utils.py +26 -0
  269. careamics/utils/plotting.py +76 -0
  270. careamics/utils/ram.py +15 -0
  271. careamics/utils/receptive_field.py +108 -0
  272. careamics/utils/serializers.py +62 -0
  273. careamics/utils/torch_utils.py +150 -0
  274. careamics/utils/version.py +38 -0
  275. careamics-0.0.19.dist-info/METADATA +80 -0
  276. careamics-0.0.19.dist-info/RECORD +279 -0
  277. careamics-0.0.19.dist-info/WHEEL +4 -0
  278. careamics-0.0.19.dist-info/entry_points.txt +2 -0
  279. careamics-0.0.19.dist-info/licenses/LICENSE +28 -0
@@ -0,0 +1,453 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "from pathlib import Path\n",
10
+ "\n",
11
+ "import matplotlib.pyplot as plt\n",
12
+ "import numpy as np\n",
13
+ "import zarr\n",
14
+ "\n",
15
+ "from careamics.config.configuration_factories import (\n",
16
+ " _create_ng_data_configuration,\n",
17
+ " create_n2v_configuration,\n",
18
+ ")\n",
19
+ "from careamics.config.data import NGDataConfig\n",
20
+ "from careamics.lightning.callbacks import HyperParametersCallback\n",
21
+ "from careamics.lightning.dataset_ng.data_module import CareamicsDataModule\n",
22
+ "from careamics.lightning.dataset_ng.lightning_modules import N2VModule"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": null,
28
+ "metadata": {},
29
+ "outputs": [],
30
+ "source": [
31
+ "# Set seeds for reproducibility\n",
32
+ "from pytorch_lightning import seed_everything\n",
33
+ "\n",
34
+ "seed = 42\n",
35
+ "seed_everything(seed)"
36
+ ]
37
+ },
38
+ {
39
+ "cell_type": "code",
40
+ "execution_count": null,
41
+ "metadata": {},
42
+ "outputs": [],
43
+ "source": [
44
+ "import platform\n",
45
+ "\n",
46
+ "import torch\n",
47
+ "\n",
48
+ "print(platform.processor() in ('arm', 'arm64') and torch.backends.mps.is_available())"
49
+ ]
50
+ },
51
+ {
52
+ "cell_type": "markdown",
53
+ "metadata": {},
54
+ "source": [
55
+ "## Create zarr dataset"
56
+ ]
57
+ },
58
+ {
59
+ "cell_type": "code",
60
+ "execution_count": null,
61
+ "metadata": {},
62
+ "outputs": [],
63
+ "source": [
64
+ "# # instantiate data portfolio manage and download the data\n",
65
+ "# root_path = Path(\"data\")\n",
66
+ "\n",
67
+ "# portfolio = PortfolioManager()\n",
68
+ "# files = portfolio.denoising.N2V_BSD68.download(root_path)\n",
69
+ "\n",
70
+ "# # create paths for the data\n",
71
+ "# data_path = root_path / \"denoising-N2V_BSD68.unzip/BSD68_reproducibility_data\"\n",
72
+ "# train_path = data_path / \"train\" / \"DCNN400_train_gaussian25.tiff\"\n",
73
+ "# val_path = data_path / \"val\" / \"DCNN400_validation_gaussian25.tiff\"\n",
74
+ "\n",
75
+ "# root = zarr.create_group(root_path / \"bsd68.zarr\")\n",
76
+ "# print(f\"Creating zarr at: {root.store_path}\")\n",
77
+ "\n",
78
+ "# # add train images to train group\n",
79
+ "# train = root.create_group('train')\n",
80
+ "# train_img = tifffile.imread(train_path)\n",
81
+ "\n",
82
+ "# for i in range(train_img.shape[0]):\n",
83
+ "\n",
84
+ "# img = train_img[i]\n",
85
+ "# name = f\"img_{i:04d}\"\n",
86
+ "# train.create_array(name=name, data=img, chunks=(128, 128))\n",
87
+ "\n",
88
+ "# # add validation images to train group\n",
89
+ "# val = root.create_group('val')\n",
90
+ "# val_img = tifffile.imread(val_path)\n",
91
+ "\n",
92
+ "# for i in range(val_img.shape[0]):\n",
93
+ "\n",
94
+ "# img = val_img[i]\n",
95
+ "# name = f\"img_{i:04d}\"\n",
96
+ "# val.create_array(name=name, data=img, chunks=(128, 128))\n",
97
+ "\n",
98
+ "\n",
99
+ "# # add test gt to zarr\n",
100
+ "# test_gt_f = sorted([f for f in (data_path / \"test\" / \"gt\").glob(\"*.tiff\")])\n",
101
+ "# test_gt_z = root.create_group('test_gt')\n",
102
+ "# for i in test_gt_f:\n",
103
+ "# img = tifffile.imread(i)\n",
104
+ "# name = i.stem\n",
105
+ "# test_gt_z.create_array(name=name, data=img, chunks=(128, 128))\n",
106
+ "\n",
107
+ "\n",
108
+ "# test_raw_f = sorted([f for f in (data_path / \"test\" / \"images\").glob(\"*.tiff\")])\n",
109
+ "# test_raw_z = root.create_group('test_raw')\n",
110
+ "# for i in test_raw_f:\n",
111
+ "# img = tifffile.imread(i)\n",
112
+ "# name = i.stem\n",
113
+ "# test_raw_z.create_array(name=name, data=img, chunks=(128, 128))"
114
+ ]
115
+ },
116
+ {
117
+ "cell_type": "code",
118
+ "execution_count": null,
119
+ "metadata": {},
120
+ "outputs": [],
121
+ "source": [
122
+ "# data path\n",
123
+ "g = zarr.open(Path(\"data\") / \"bsd68.zarr\")\n",
124
+ "train_path = str(g[\"train\"].store_path)\n",
125
+ "val_path = str(g[\"val\"].store_path)"
126
+ ]
127
+ },
128
+ {
129
+ "cell_type": "markdown",
130
+ "metadata": {},
131
+ "source": [
132
+ "### Visualize a single train and val image"
133
+ ]
134
+ },
135
+ {
136
+ "cell_type": "code",
137
+ "execution_count": null,
138
+ "metadata": {},
139
+ "outputs": [],
140
+ "source": [
141
+ "# load training and validation image and show them side by side\n",
142
+ "list_train_arrays = list(g[\"train\"].array_keys())\n",
143
+ "list_val_arrays = list(g[\"val\"].array_keys())\n",
144
+ "\n",
145
+ "single_train_image = g[\"train\"][list_train_arrays[0]]\n",
146
+ "single_val_image = g[\"val\"][list_val_arrays[0]]\n",
147
+ "fig, ax = plt.subplots(1, 2, figsize=(10, 5))\n",
148
+ "ax[0].imshow(single_train_image, cmap=\"gray\")\n",
149
+ "ax[0].set_title(\"Training Image\")\n",
150
+ "ax[1].imshow(single_val_image, cmap=\"gray\")\n",
151
+ "ax[1].set_title(\"Validation Image\")"
152
+ ]
153
+ },
154
+ {
155
+ "cell_type": "markdown",
156
+ "metadata": {},
157
+ "source": [
158
+ "### Create config"
159
+ ]
160
+ },
161
+ {
162
+ "cell_type": "code",
163
+ "execution_count": null,
164
+ "metadata": {},
165
+ "outputs": [],
166
+ "source": [
167
+ "epochs = 1\n",
168
+ "steps = 50\n",
169
+ "batch_size = 1\n",
170
+ "\n",
171
+ "config = create_n2v_configuration(\n",
172
+ " experiment_name=\"bsd68_n2v\",\n",
173
+ " data_type=\"custom\",\n",
174
+ " axes=\"YX\",\n",
175
+ " patch_size=(64, 64),\n",
176
+ " batch_size=batch_size,\n",
177
+ " num_epochs=epochs,\n",
178
+ " num_steps=steps,\n",
179
+ ")\n",
180
+ "\n",
181
+ "# TODO until the NGDataConfig is accepted by the Configuration, these are separate\n",
182
+ "ng_data_config = _create_ng_data_configuration(\n",
183
+ " data_type=\"zarr\", # specific to NG Dataset\n",
184
+ " axes=config.data_config.axes,\n",
185
+ " patch_size=config.data_config.patch_size,\n",
186
+ " batch_size=config.data_config.batch_size,\n",
187
+ " augmentations=config.data_config.transforms,\n",
188
+ " train_dataloader_params=config.data_config.train_dataloader_params,\n",
189
+ " val_dataloader_params=config.data_config.val_dataloader_params,\n",
190
+ " seed=seed,\n",
191
+ ")\n",
192
+ "\n",
193
+ "ng_data_config.set_means_and_stds(\n",
194
+ " image_means=[0], image_stds=[1]\n",
195
+ ")\n"
196
+ ]
197
+ },
198
+ {
199
+ "cell_type": "markdown",
200
+ "metadata": {},
201
+ "source": [
202
+ "### Create Lightning datamodule and model"
203
+ ]
204
+ },
205
+ {
206
+ "cell_type": "code",
207
+ "execution_count": null,
208
+ "metadata": {},
209
+ "outputs": [],
210
+ "source": [
211
+ "train_data_module = CareamicsDataModule(\n",
212
+ " data_config=ng_data_config,\n",
213
+ " train_data=[train_path],\n",
214
+ " val_data=[val_path],\n",
215
+ ")\n",
216
+ "\n",
217
+ "model = N2VModule(config.algorithm_config)"
218
+ ]
219
+ },
220
+ {
221
+ "cell_type": "markdown",
222
+ "metadata": {},
223
+ "source": [
224
+ "### Manually initialize the datamodule and visualize single train and val batches"
225
+ ]
226
+ },
227
+ {
228
+ "cell_type": "code",
229
+ "execution_count": null,
230
+ "metadata": {},
231
+ "outputs": [],
232
+ "source": [
233
+ "train_data_module.setup(\"fit\")\n",
234
+ "train_data_module.setup(\"validate\")\n",
235
+ "\n",
236
+ "tdm = train_data_module.train_dataloader()\n",
237
+ "vdm = train_data_module.val_dataloader()\n",
238
+ "train_batch = next(iter(tdm))\n",
239
+ "val_batch = next(iter(vdm))\n",
240
+ "\n",
241
+ "fig, ax = plt.subplots(1, batch_size, figsize=(10, 5))\n",
242
+ "ax[0].set_title(\"Training Batch\")\n",
243
+ "for i in range(batch_size):\n",
244
+ " ax[i].imshow(train_batch.data[i][0].numpy(), cmap=\"gray\")\n",
245
+ "\n",
246
+ "fig, ax = plt.subplots(1, batch_size, figsize=(10, 5))\n",
247
+ "ax[0].set_title(\"Validation Batch\")\n",
248
+ "for i in range(batch_size):\n",
249
+ " ax[i].imshow(val_batch.data[i][0].numpy(), cmap=\"gray\")"
250
+ ]
251
+ },
252
+ {
253
+ "cell_type": "markdown",
254
+ "metadata": {},
255
+ "source": [
256
+ "### Train the model"
257
+ ]
258
+ },
259
+ {
260
+ "cell_type": "code",
261
+ "execution_count": null,
262
+ "metadata": {},
263
+ "outputs": [],
264
+ "source": [
265
+ "from pytorch_lightning import Trainer\n",
266
+ "from pytorch_lightning.callbacks import ModelCheckpoint\n",
267
+ "\n",
268
+ "root = Path(\"bsd68_n2v\")\n",
269
+ "callbacks = [\n",
270
+ " ModelCheckpoint(\n",
271
+ " dirpath=root / \"checkpoints\",\n",
272
+ " filename=\"bsd68_new_lightning_module\",\n",
273
+ " save_last=True,\n",
274
+ " monitor=\"val_loss\",\n",
275
+ " mode=\"min\",\n",
276
+ " ),\n",
277
+ " HyperParametersCallback(config),\n",
278
+ "]\n",
279
+ "\n",
280
+ "trainer = Trainer(\n",
281
+ " max_epochs=epochs,\n",
282
+ " default_root_dir=root,\n",
283
+ " callbacks=callbacks,\n",
284
+ " limit_train_batches=steps\n",
285
+ ")\n",
286
+ "trainer.fit(model, datamodule=train_data_module)"
287
+ ]
288
+ },
289
+ {
290
+ "cell_type": "markdown",
291
+ "metadata": {},
292
+ "source": [
293
+ "### Create an inference config and datamodule"
294
+ ]
295
+ },
296
+ {
297
+ "cell_type": "code",
298
+ "execution_count": null,
299
+ "metadata": {},
300
+ "outputs": [],
301
+ "source": [
302
+ "from careamics.dataset_ng.legacy_interoperability import imageregions_to_tileinfos\n",
303
+ "from careamics.prediction_utils import convert_outputs\n",
304
+ "\n",
305
+ "test_files = [str(g[\"test_raw\"].store_path)]\n",
306
+ "\n",
307
+ "\n",
308
+ "config = NGDataConfig(\n",
309
+ " data_type=\"zarr\",\n",
310
+ " patching={\n",
311
+ " \"name\": \"tiled\",\n",
312
+ " \"patch_size\": (128, 128),\n",
313
+ " \"overlaps\": (48, 48),\n",
314
+ " },\n",
315
+ " axes=\"YX\",\n",
316
+ " batch_size=1,\n",
317
+ " image_means=train_data_module.train_dataset.input_stats.means,\n",
318
+ " image_stds=train_data_module.train_dataset.input_stats.stds,\n",
319
+ ")\n",
320
+ "\n",
321
+ "inf_data_module = CareamicsDataModule(data_config=config, pred_data=test_files)"
322
+ ]
323
+ },
324
+ {
325
+ "cell_type": "markdown",
326
+ "metadata": {},
327
+ "source": [
328
+ "### Convert outputs to the legacy format and stitch the tiles"
329
+ ]
330
+ },
331
+ {
332
+ "cell_type": "code",
333
+ "execution_count": null,
334
+ "metadata": {},
335
+ "outputs": [],
336
+ "source": [
337
+ "predictions = trainer.predict(model, datamodule=inf_data_module)\n",
338
+ "tile_infos = imageregions_to_tileinfos(predictions)\n",
339
+ "predictions = convert_outputs(tile_infos, tiled=True)"
340
+ ]
341
+ },
342
+ {
343
+ "cell_type": "markdown",
344
+ "metadata": {},
345
+ "source": [
346
+ "### Visualize predictions and count metrics"
347
+ ]
348
+ },
349
+ {
350
+ "cell_type": "code",
351
+ "execution_count": null,
352
+ "metadata": {},
353
+ "outputs": [],
354
+ "source": [
355
+ "from careamics.utils.metrics import psnr, scale_invariant_psnr\n",
356
+ "\n",
357
+ "noises_str = sorted(g[\"test_raw\"].array_keys())\n",
358
+ "gts_str = sorted(g[\"test_gt\"].array_keys())\n",
359
+ "\n",
360
+ "noises = [\n",
361
+ " g[\"test_raw\"][arr] for arr in noises_str\n",
362
+ "]\n",
363
+ "gts = [\n",
364
+ " g[\"test_gt\"][arr] for arr in gts_str\n",
365
+ "]\n",
366
+ "\n",
367
+ "images = [0, 1, 2]\n",
368
+ "fig, ax = plt.subplots(3, 3, figsize=(15, 15))\n",
369
+ "fig.tight_layout()\n",
370
+ "\n",
371
+ "for i in range(3):\n",
372
+ " gts_arrs = gts[images[i]][...]\n",
373
+ " noises_arrs = noises[images[i]][...]\n",
374
+ "\n",
375
+ " pred_image = predictions[images[i]].squeeze()\n",
376
+ " psnr_noisy = psnr(\n",
377
+ " gts_arrs,\n",
378
+ " noises_arrs,\n",
379
+ " data_range=gts_arrs.max() - gts_arrs.min(),\n",
380
+ " )\n",
381
+ " psnr_result = psnr(\n",
382
+ " gts_arrs,\n",
383
+ " pred_image,\n",
384
+ " data_range=gts_arrs.max() - gts_arrs.min(),\n",
385
+ " )\n",
386
+ "\n",
387
+ " scale_invariant_psnr_result = scale_invariant_psnr(gts_arrs, pred_image)\n",
388
+ "\n",
389
+ " ax[i, 0].imshow(noises[images[i]], cmap=\"gray\")\n",
390
+ " ax[i, 0].title.set_text(f\"Noisy\\nPSNR: {psnr_noisy:.2f}\")\n",
391
+ "\n",
392
+ " ax[i, 1].imshow(pred_image, cmap=\"gray\")\n",
393
+ " ax[i, 1].title.set_text(\n",
394
+ " f\"Prediction\\nPSNR: {psnr_result:.2f}\\n\"\n",
395
+ " f\"Scale invariant PSNR: {scale_invariant_psnr_result:.2f}\"\n",
396
+ " )\n",
397
+ "\n",
398
+ " ax[i, 2].imshow(gts_arrs, cmap=\"gray\")\n",
399
+ " ax[i, 2].title.set_text(\"Ground-truth\")"
400
+ ]
401
+ },
402
+ {
403
+ "cell_type": "code",
404
+ "execution_count": null,
405
+ "metadata": {},
406
+ "outputs": [],
407
+ "source": [
408
+ "psnrs = np.zeros((len(predictions), 1))\n",
409
+ "scale_invariant_psnrs = np.zeros((len(predictions), 1))\n",
410
+ "\n",
411
+ "for i, (pred, gt) in enumerate(zip(predictions, gts, strict=False)):\n",
412
+ " gt = gt[...]\n",
413
+ " psnrs[i] = psnr(gt, pred.squeeze(), data_range=gt.max() - gt.min())\n",
414
+ " scale_invariant_psnrs[i] = scale_invariant_psnr(gt, pred.squeeze())\n",
415
+ "\n",
416
+ "print(f\"PSNR: {psnrs.mean():.2f} +/- {psnrs.std():.2f}\")\n",
417
+ "print(\n",
418
+ " f\"Scale invariant PSNR: \"\n",
419
+ " f\"{scale_invariant_psnrs.mean():.2f} +/- {scale_invariant_psnrs.std():.2f}\"\n",
420
+ ")\n",
421
+ "print(\"Reported PSNR: 27.71\")"
422
+ ]
423
+ },
424
+ {
425
+ "cell_type": "code",
426
+ "execution_count": null,
427
+ "metadata": {},
428
+ "outputs": [],
429
+ "source": []
430
+ }
431
+ ],
432
+ "metadata": {
433
+ "kernelspec": {
434
+ "display_name": "careamics (3.13.7)",
435
+ "language": "python",
436
+ "name": "python3"
437
+ },
438
+ "language_info": {
439
+ "codemirror_mode": {
440
+ "name": "ipython",
441
+ "version": 3
442
+ },
443
+ "file_extension": ".py",
444
+ "mimetype": "text/x-python",
445
+ "name": "python",
446
+ "nbconvert_exporter": "python",
447
+ "pygments_lexer": "ipython3",
448
+ "version": "3.13.7"
449
+ }
450
+ },
451
+ "nbformat": 4,
452
+ "nbformat_minor": 2
453
+ }