careamics 0.0.11__py3-none-any.whl → 0.0.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of careamics might be problematic. Click here for more details.

Files changed (98) hide show
  1. careamics/careamist.py +24 -7
  2. careamics/cli/utils.py +1 -1
  3. careamics/config/algorithms/n2v_algorithm_model.py +1 -1
  4. careamics/config/architectures/unet_model.py +3 -0
  5. careamics/config/callback_model.py +23 -34
  6. careamics/config/configuration.py +55 -4
  7. careamics/config/configuration_factories.py +288 -23
  8. careamics/config/data/__init__.py +2 -0
  9. careamics/config/data/data_model.py +41 -4
  10. careamics/config/data/ng_data_model.py +381 -0
  11. careamics/config/data/patching_strategies/__init__.py +14 -0
  12. careamics/config/data/patching_strategies/_overlapping_patched_model.py +103 -0
  13. careamics/config/data/patching_strategies/_patched_model.py +56 -0
  14. careamics/config/data/patching_strategies/random_patching_model.py +21 -0
  15. careamics/config/data/patching_strategies/sequential_patching_model.py +25 -0
  16. careamics/config/data/patching_strategies/tiled_patching_model.py +40 -0
  17. careamics/config/data/patching_strategies/whole_patching_model.py +12 -0
  18. careamics/config/inference_model.py +6 -3
  19. careamics/config/optimizer_models.py +1 -3
  20. careamics/config/support/supported_data.py +7 -0
  21. careamics/config/support/supported_patching_strategies.py +22 -0
  22. careamics/config/training_model.py +0 -2
  23. careamics/config/validators/validator_utils.py +4 -3
  24. careamics/dataset/dataset_utils/iterate_over_files.py +2 -2
  25. careamics/dataset/in_memory_dataset.py +2 -1
  26. careamics/dataset/iterable_dataset.py +2 -2
  27. careamics/dataset/iterable_pred_dataset.py +2 -2
  28. careamics/dataset/iterable_tiled_pred_dataset.py +2 -2
  29. careamics/dataset/patching/patching.py +3 -2
  30. careamics/dataset/tiling/lvae_tiled_patching.py +16 -6
  31. careamics/dataset/tiling/tiled_patching.py +2 -1
  32. careamics/dataset_ng/README.md +212 -0
  33. careamics/dataset_ng/dataset.py +229 -0
  34. careamics/dataset_ng/demos/bsd68_demo.ipynb +361 -0
  35. careamics/dataset_ng/demos/care_U2OS_demo.ipynb +330 -0
  36. careamics/dataset_ng/demos/demo_custom_image_stack.ipynb +734 -0
  37. careamics/dataset_ng/demos/demo_datamodule.ipynb +447 -0
  38. careamics/dataset_ng/{demo_dataset.ipynb → demos/demo_dataset.ipynb} +60 -53
  39. careamics/dataset_ng/{demo_patch_extractor.py → demos/demo_patch_extractor.py} +7 -9
  40. careamics/dataset_ng/demos/mouse_nuclei_demo.ipynb +292 -0
  41. careamics/dataset_ng/factory.py +451 -0
  42. careamics/dataset_ng/legacy_interoperability.py +170 -0
  43. careamics/dataset_ng/patch_extractor/__init__.py +3 -8
  44. careamics/dataset_ng/patch_extractor/demo_custom_image_stack_loader.py +7 -5
  45. careamics/dataset_ng/patch_extractor/image_stack/__init__.py +4 -1
  46. careamics/dataset_ng/patch_extractor/image_stack/czi_image_stack.py +360 -0
  47. careamics/dataset_ng/patch_extractor/image_stack/image_stack_protocol.py +5 -1
  48. careamics/dataset_ng/patch_extractor/image_stack/in_memory_image_stack.py +1 -1
  49. careamics/dataset_ng/patch_extractor/image_stack_loader.py +5 -75
  50. careamics/dataset_ng/patch_extractor/patch_extractor.py +5 -4
  51. careamics/dataset_ng/patch_extractor/patch_extractor_factory.py +114 -105
  52. careamics/dataset_ng/patching_strategies/__init__.py +6 -1
  53. careamics/dataset_ng/patching_strategies/patching_strategy_protocol.py +31 -0
  54. careamics/dataset_ng/patching_strategies/random_patching.py +5 -1
  55. careamics/dataset_ng/patching_strategies/sequential_patching.py +5 -5
  56. careamics/dataset_ng/patching_strategies/tiling_strategy.py +172 -0
  57. careamics/dataset_ng/patching_strategies/whole_sample.py +36 -0
  58. careamics/file_io/read/get_func.py +2 -1
  59. careamics/lightning/dataset_ng/__init__.py +1 -0
  60. careamics/lightning/dataset_ng/data_module.py +678 -0
  61. careamics/lightning/dataset_ng/lightning_modules/__init__.py +9 -0
  62. careamics/lightning/dataset_ng/lightning_modules/care_module.py +97 -0
  63. careamics/lightning/dataset_ng/lightning_modules/n2v_module.py +106 -0
  64. careamics/lightning/dataset_ng/lightning_modules/unet_module.py +212 -0
  65. careamics/lightning/lightning_module.py +5 -1
  66. careamics/lightning/predict_data_module.py +2 -1
  67. careamics/lightning/train_data_module.py +2 -1
  68. careamics/losses/loss_factory.py +2 -1
  69. careamics/lvae_training/dataset/__init__.py +8 -3
  70. careamics/lvae_training/dataset/config.py +3 -3
  71. careamics/lvae_training/dataset/ms_dataset_ref.py +1067 -0
  72. careamics/lvae_training/dataset/multich_dataset.py +46 -17
  73. careamics/lvae_training/dataset/multicrop_dset.py +196 -0
  74. careamics/lvae_training/dataset/types.py +3 -3
  75. careamics/lvae_training/dataset/utils/index_manager.py +259 -0
  76. careamics/lvae_training/eval_utils.py +93 -3
  77. careamics/model_io/bioimage/bioimage_utils.py +1 -1
  78. careamics/model_io/bioimage/model_description.py +1 -1
  79. careamics/model_io/bmz_io.py +1 -1
  80. careamics/model_io/model_io_utils.py +2 -2
  81. careamics/models/activation.py +2 -1
  82. careamics/prediction_utils/prediction_outputs.py +1 -1
  83. careamics/prediction_utils/stitch_prediction.py +1 -1
  84. careamics/transforms/compose.py +1 -0
  85. careamics/transforms/n2v_manipulate_torch.py +15 -9
  86. careamics/transforms/normalize.py +18 -7
  87. careamics/transforms/pixel_manipulation_torch.py +59 -92
  88. careamics/utils/lightning_utils.py +25 -11
  89. careamics/utils/metrics.py +2 -1
  90. careamics/utils/torch_utils.py +23 -0
  91. {careamics-0.0.11.dist-info → careamics-0.0.13.dist-info}/METADATA +12 -11
  92. {careamics-0.0.11.dist-info → careamics-0.0.13.dist-info}/RECORD +95 -69
  93. careamics/dataset_ng/dataset/__init__.py +0 -3
  94. careamics/dataset_ng/dataset/dataset.py +0 -184
  95. careamics/dataset_ng/demo_patch_extractor_factory.py +0 -37
  96. {careamics-0.0.11.dist-info → careamics-0.0.13.dist-info}/WHEEL +0 -0
  97. {careamics-0.0.11.dist-info → careamics-0.0.13.dist-info}/entry_points.txt +0 -0
  98. {careamics-0.0.11.dist-info → careamics-0.0.13.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,292 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "from pathlib import Path\n",
10
+ "\n",
11
+ "import matplotlib.pyplot as plt\n",
12
+ "import numpy as np\n",
13
+ "from careamics_portfolio import PortfolioManager\n",
14
+ "\n",
15
+ "from careamics.config.configuration_factories import create_n2v_configuration\n",
16
+ "from careamics.config.support import SupportedTransform\n",
17
+ "from careamics.lightning.callbacks import HyperParametersCallback\n",
18
+ "from careamics.lightning.dataset_ng.data_module import CareamicsDataModule\n",
19
+ "from careamics.lightning.dataset_ng.lightning_modules import N2VModule"
20
+ ]
21
+ },
22
+ {
23
+ "cell_type": "code",
24
+ "execution_count": null,
25
+ "metadata": {},
26
+ "outputs": [],
27
+ "source": [
28
+ "portfolio = PortfolioManager()\n",
29
+ "files = portfolio.denoiseg.MouseNuclei_n20.download()\n",
30
+ "files.sort()\n",
31
+ "\n",
32
+ "# load images\n",
33
+ "train_data = np.load(files[1])[\"X_train\"]\n",
34
+ "print(f\"Train data shape: {train_data.shape}\")"
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": null,
40
+ "metadata": {},
41
+ "outputs": [],
42
+ "source": [
43
+ "indices = [34, 293, 571, 783]\n",
44
+ "\n",
45
+ "fig, ax = plt.subplots(2, 2, figsize=(8, 8))\n",
46
+ "ax[0, 0].imshow(train_data[indices[0]], cmap=\"gray\")\n",
47
+ "ax[0, 0].set_title(f\"Image {indices[0]}\")\n",
48
+ "ax[0, 0].set_xticks([])\n",
49
+ "ax[0, 0].set_yticks([])\n",
50
+ "\n",
51
+ "ax[0, 1].imshow(train_data[indices[1]], cmap=\"gray\")\n",
52
+ "ax[0, 1].set_title(f\"Image {indices[1]}\")\n",
53
+ "ax[0, 1].set_xticks([])\n",
54
+ "ax[0, 1].set_yticks([])\n",
55
+ "\n",
56
+ "ax[1, 0].imshow(train_data[indices[2]], cmap=\"gray\")\n",
57
+ "ax[1, 0].set_title(f\"Image {indices[2]}\")\n",
58
+ "ax[1, 0].set_xticks([])\n",
59
+ "ax[1, 0].set_yticks([])\n",
60
+ "\n",
61
+ "ax[1, 1].imshow(train_data[indices[3]], cmap=\"gray\")\n",
62
+ "ax[1, 1].set_title(f\"Image {indices[3]}\")\n",
63
+ "ax[1, 1].set_xticks([])\n",
64
+ "ax[1, 1].set_yticks([])\n",
65
+ "\n",
66
+ "plt.show()"
67
+ ]
68
+ },
69
+ {
70
+ "cell_type": "code",
71
+ "execution_count": null,
72
+ "metadata": {},
73
+ "outputs": [],
74
+ "source": [
75
+ "config = create_n2v_configuration(\n",
76
+ " experiment_name=\"mouse_nuclei_n2v\",\n",
77
+ " data_type=\"array\",\n",
78
+ " axes=\"SYX\",\n",
79
+ " patch_size=(64, 64),\n",
80
+ " batch_size=16,\n",
81
+ " num_epochs=10,\n",
82
+ ")\n",
83
+ "\n",
84
+ "print(config)"
85
+ ]
86
+ },
87
+ {
88
+ "cell_type": "code",
89
+ "execution_count": null,
90
+ "metadata": {},
91
+ "outputs": [],
92
+ "source": [
93
+ "# Ensuring that transforms are set\n",
94
+ "config.data_config.transforms =[\n",
95
+ " {\n",
96
+ " \"name\": SupportedTransform.XY_FLIP.value,\n",
97
+ " \"flip_x\": True,\n",
98
+ " \"flip_y\": True,\n",
99
+ " },\n",
100
+ " {\n",
101
+ " \"name\": SupportedTransform.XY_RANDOM_ROTATE90.value,\n",
102
+ " },\n",
103
+ "]"
104
+ ]
105
+ },
106
+ {
107
+ "cell_type": "code",
108
+ "execution_count": null,
109
+ "metadata": {},
110
+ "outputs": [],
111
+ "source": [
112
+ "from sklearn.model_selection import train_test_split\n",
113
+ "\n",
114
+ "train_data, val_data = train_test_split(train_data, test_size=0.1, random_state=42)\n"
115
+ ]
116
+ },
117
+ {
118
+ "cell_type": "code",
119
+ "execution_count": null,
120
+ "metadata": {},
121
+ "outputs": [],
122
+ "source": [
123
+ "train_data_module = CareamicsDataModule(\n",
124
+ " data_config=config.data_config,\n",
125
+ " train_data=train_data,\n",
126
+ " val_data=val_data,\n",
127
+ ")\n",
128
+ "\n",
129
+ "model = N2VModule(config.algorithm_config)"
130
+ ]
131
+ },
132
+ {
133
+ "cell_type": "code",
134
+ "execution_count": null,
135
+ "metadata": {},
136
+ "outputs": [],
137
+ "source": [
138
+ "from pytorch_lightning import Trainer\n",
139
+ "from pytorch_lightning.callbacks import ModelCheckpoint\n",
140
+ "from pytorch_lightning.loggers import WandbLogger\n",
141
+ "\n",
142
+ "root = Path(\"nuclei_n2v\")\n",
143
+ "callbacks = [\n",
144
+ " ModelCheckpoint(\n",
145
+ " dirpath=root / \"checkpoints\",\n",
146
+ " filename=\"nuclei_new_lightning_module\",\n",
147
+ " save_last=True,\n",
148
+ " monitor=\"val_loss\",\n",
149
+ " mode=\"min\",\n",
150
+ " ),\n",
151
+ " HyperParametersCallback(config)\n",
152
+ "]\n",
153
+ "logger = WandbLogger(\n",
154
+ " project=\"nuclei-n2v\", name=\"nuclei_new_lightning_module\"\n",
155
+ ")\n",
156
+ "\n",
157
+ "trainer = Trainer(\n",
158
+ " max_epochs=10,\n",
159
+ " default_root_dir=root,\n",
160
+ " callbacks=callbacks,\n",
161
+ " logger=logger\n",
162
+ ")\n",
163
+ "trainer.fit(model, datamodule=train_data_module)"
164
+ ]
165
+ },
166
+ {
167
+ "cell_type": "code",
168
+ "execution_count": null,
169
+ "metadata": {},
170
+ "outputs": [],
171
+ "source": [
172
+ "from careamics.config.inference_model import InferenceConfig\n",
173
+ "from careamics.dataset_ng.legacy_interoperability import imageregions_to_tileinfos\n",
174
+ "from careamics.prediction_utils import convert_outputs\n",
175
+ "\n",
176
+ "train_data = np.load(files[1])[\"X_train\"]\n",
177
+ "\n",
178
+ "config = InferenceConfig(\n",
179
+ " model_config=config,\n",
180
+ " data_type=\"array\",\n",
181
+ " tile_size=(64, 64),\n",
182
+ " tile_overlap=(32, 32),\n",
183
+ " axes=\"SYX\",\n",
184
+ " batch_size=1,\n",
185
+ " image_means=train_data_module.train_dataset.input_stats.means,\n",
186
+ " image_stds=train_data_module.train_dataset.input_stats.stds\n",
187
+ ")\n",
188
+ "\n",
189
+ "inf_data_module = CareamicsDataModule(\n",
190
+ " data_config=config,\n",
191
+ " pred_data=train_data\n",
192
+ ")"
193
+ ]
194
+ },
195
+ {
196
+ "cell_type": "code",
197
+ "execution_count": null,
198
+ "metadata": {},
199
+ "outputs": [],
200
+ "source": [
201
+ "predictions = trainer.predict(model, datamodule=inf_data_module)\n",
202
+ "tile_infos = imageregions_to_tileinfos(predictions)\n",
203
+ "predictions = convert_outputs(tile_infos, tiled=True)\n",
204
+ "predictions = np.stack(predictions).squeeze()"
205
+ ]
206
+ },
207
+ {
208
+ "cell_type": "code",
209
+ "execution_count": null,
210
+ "metadata": {},
211
+ "outputs": [],
212
+ "source": [
213
+ "files = portfolio.denoiseg.MouseNuclei_n0.download()\n",
214
+ "files.sort()\n",
215
+ "\n",
216
+ "gt_data = np.load(files[1])[\"X_train\"]\n",
217
+ "print(f\"GT data shape: {gt_data.shape}\")\n",
218
+ "print(f\"Predictions shape: {predictions.shape}\")"
219
+ ]
220
+ },
221
+ {
222
+ "cell_type": "code",
223
+ "execution_count": null,
224
+ "metadata": {},
225
+ "outputs": [],
226
+ "source": [
227
+ "from careamics.utils.metrics import scale_invariant_psnr\n",
228
+ "\n",
229
+ "indices = [389, 621]\n",
230
+ "\n",
231
+ "for i in indices:\n",
232
+ " # compute psnr\n",
233
+ " psnr_noisy = scale_invariant_psnr(gt_data[i], train_data[i])\n",
234
+ " psnr_denoised = scale_invariant_psnr(gt_data[i], predictions[i].squeeze())\n",
235
+ "\n",
236
+ " # plot images\n",
237
+ " fig, ax = plt.subplots(1, 3, figsize=(10, 10))\n",
238
+ " ax[0].imshow(train_data[i], cmap=\"gray\")\n",
239
+ " ax[0].set_title(f\"Noisy Image\\nPSNR: {psnr_noisy:.2f}\")\n",
240
+ " ax[0].set_xticks([])\n",
241
+ " ax[0].set_yticks([])\n",
242
+ "\n",
243
+ " ax[1].imshow(predictions[i].squeeze(), cmap=\"gray\")\n",
244
+ " ax[1].set_title(f\"Denoised Image\\nPSNR: {psnr_denoised:.2f}\")\n",
245
+ " ax[1].set_xticks([])\n",
246
+ " ax[1].set_yticks([])\n",
247
+ "\n",
248
+ " ax[2].imshow(gt_data[i], cmap=\"gray\")\n",
249
+ " ax[2].set_title(\"GT Image\")\n",
250
+ " ax[2].set_xticks([])\n",
251
+ " ax[2].set_yticks([])\n",
252
+ "\n",
253
+ " plt.show()"
254
+ ]
255
+ },
256
+ {
257
+ "cell_type": "code",
258
+ "execution_count": null,
259
+ "metadata": {},
260
+ "outputs": [],
261
+ "source": [
262
+ "psnrs = np.zeros(gt_data.shape[0])\n",
263
+ "\n",
264
+ "for i in range(gt_data.shape[0]):\n",
265
+ " psnrs[i] = scale_invariant_psnr(gt_data[i], predictions[i].squeeze())\n",
266
+ "\n",
267
+ "print(f\"PSNR: {np.mean(psnrs):.2f} ± {np.std(psnrs):.2f}\")"
268
+ ]
269
+ }
270
+ ],
271
+ "metadata": {
272
+ "kernelspec": {
273
+ "display_name": "Python 3",
274
+ "language": "python",
275
+ "name": "python3"
276
+ },
277
+ "language_info": {
278
+ "codemirror_mode": {
279
+ "name": "ipython",
280
+ "version": 3
281
+ },
282
+ "file_extension": ".py",
283
+ "mimetype": "text/x-python",
284
+ "name": "python",
285
+ "nbconvert_exporter": "python",
286
+ "pygments_lexer": "ipython3",
287
+ "version": "3.9.20"
288
+ }
289
+ },
290
+ "nbformat": 4,
291
+ "nbformat_minor": 2
292
+ }