careamics 0.0.11__py3-none-any.whl → 0.0.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of careamics might be problematic. Click here for more details.
- careamics/careamist.py +24 -7
- careamics/cli/utils.py +1 -1
- careamics/config/algorithms/n2v_algorithm_model.py +1 -1
- careamics/config/architectures/unet_model.py +3 -0
- careamics/config/callback_model.py +23 -34
- careamics/config/configuration.py +55 -4
- careamics/config/configuration_factories.py +288 -23
- careamics/config/data/__init__.py +2 -0
- careamics/config/data/data_model.py +41 -4
- careamics/config/data/ng_data_model.py +381 -0
- careamics/config/data/patching_strategies/__init__.py +14 -0
- careamics/config/data/patching_strategies/_overlapping_patched_model.py +103 -0
- careamics/config/data/patching_strategies/_patched_model.py +56 -0
- careamics/config/data/patching_strategies/random_patching_model.py +21 -0
- careamics/config/data/patching_strategies/sequential_patching_model.py +25 -0
- careamics/config/data/patching_strategies/tiled_patching_model.py +40 -0
- careamics/config/data/patching_strategies/whole_patching_model.py +12 -0
- careamics/config/inference_model.py +6 -3
- careamics/config/optimizer_models.py +1 -3
- careamics/config/support/supported_data.py +7 -0
- careamics/config/support/supported_patching_strategies.py +22 -0
- careamics/config/training_model.py +0 -2
- careamics/config/validators/validator_utils.py +4 -3
- careamics/dataset/dataset_utils/iterate_over_files.py +2 -2
- careamics/dataset/in_memory_dataset.py +2 -1
- careamics/dataset/iterable_dataset.py +2 -2
- careamics/dataset/iterable_pred_dataset.py +2 -2
- careamics/dataset/iterable_tiled_pred_dataset.py +2 -2
- careamics/dataset/patching/patching.py +3 -2
- careamics/dataset/tiling/lvae_tiled_patching.py +16 -6
- careamics/dataset/tiling/tiled_patching.py +2 -1
- careamics/dataset_ng/README.md +212 -0
- careamics/dataset_ng/dataset.py +229 -0
- careamics/dataset_ng/demos/bsd68_demo.ipynb +361 -0
- careamics/dataset_ng/demos/care_U2OS_demo.ipynb +330 -0
- careamics/dataset_ng/demos/demo_custom_image_stack.ipynb +734 -0
- careamics/dataset_ng/demos/demo_datamodule.ipynb +447 -0
- careamics/dataset_ng/{demo_dataset.ipynb → demos/demo_dataset.ipynb} +60 -53
- careamics/dataset_ng/{demo_patch_extractor.py → demos/demo_patch_extractor.py} +7 -9
- careamics/dataset_ng/demos/mouse_nuclei_demo.ipynb +292 -0
- careamics/dataset_ng/factory.py +451 -0
- careamics/dataset_ng/legacy_interoperability.py +170 -0
- careamics/dataset_ng/patch_extractor/__init__.py +3 -8
- careamics/dataset_ng/patch_extractor/demo_custom_image_stack_loader.py +7 -5
- careamics/dataset_ng/patch_extractor/image_stack/__init__.py +4 -1
- careamics/dataset_ng/patch_extractor/image_stack/czi_image_stack.py +360 -0
- careamics/dataset_ng/patch_extractor/image_stack/image_stack_protocol.py +5 -1
- careamics/dataset_ng/patch_extractor/image_stack/in_memory_image_stack.py +1 -1
- careamics/dataset_ng/patch_extractor/image_stack_loader.py +5 -75
- careamics/dataset_ng/patch_extractor/patch_extractor.py +5 -4
- careamics/dataset_ng/patch_extractor/patch_extractor_factory.py +114 -105
- careamics/dataset_ng/patching_strategies/__init__.py +6 -1
- careamics/dataset_ng/patching_strategies/patching_strategy_protocol.py +31 -0
- careamics/dataset_ng/patching_strategies/random_patching.py +5 -1
- careamics/dataset_ng/patching_strategies/sequential_patching.py +5 -5
- careamics/dataset_ng/patching_strategies/tiling_strategy.py +172 -0
- careamics/dataset_ng/patching_strategies/whole_sample.py +36 -0
- careamics/file_io/read/get_func.py +2 -1
- careamics/lightning/dataset_ng/__init__.py +1 -0
- careamics/lightning/dataset_ng/data_module.py +678 -0
- careamics/lightning/dataset_ng/lightning_modules/__init__.py +9 -0
- careamics/lightning/dataset_ng/lightning_modules/care_module.py +97 -0
- careamics/lightning/dataset_ng/lightning_modules/n2v_module.py +106 -0
- careamics/lightning/dataset_ng/lightning_modules/unet_module.py +212 -0
- careamics/lightning/lightning_module.py +5 -1
- careamics/lightning/predict_data_module.py +2 -1
- careamics/lightning/train_data_module.py +2 -1
- careamics/losses/loss_factory.py +2 -1
- careamics/lvae_training/dataset/__init__.py +8 -3
- careamics/lvae_training/dataset/config.py +3 -3
- careamics/lvae_training/dataset/ms_dataset_ref.py +1067 -0
- careamics/lvae_training/dataset/multich_dataset.py +46 -17
- careamics/lvae_training/dataset/multicrop_dset.py +196 -0
- careamics/lvae_training/dataset/types.py +3 -3
- careamics/lvae_training/dataset/utils/index_manager.py +259 -0
- careamics/lvae_training/eval_utils.py +93 -3
- careamics/model_io/bioimage/bioimage_utils.py +1 -1
- careamics/model_io/bioimage/model_description.py +1 -1
- careamics/model_io/bmz_io.py +1 -1
- careamics/model_io/model_io_utils.py +2 -2
- careamics/models/activation.py +2 -1
- careamics/prediction_utils/prediction_outputs.py +1 -1
- careamics/prediction_utils/stitch_prediction.py +1 -1
- careamics/transforms/compose.py +1 -0
- careamics/transforms/n2v_manipulate_torch.py +15 -9
- careamics/transforms/normalize.py +18 -7
- careamics/transforms/pixel_manipulation_torch.py +59 -92
- careamics/utils/lightning_utils.py +25 -11
- careamics/utils/metrics.py +2 -1
- careamics/utils/torch_utils.py +23 -0
- {careamics-0.0.11.dist-info → careamics-0.0.13.dist-info}/METADATA +12 -11
- {careamics-0.0.11.dist-info → careamics-0.0.13.dist-info}/RECORD +95 -69
- careamics/dataset_ng/dataset/__init__.py +0 -3
- careamics/dataset_ng/dataset/dataset.py +0 -184
- careamics/dataset_ng/demo_patch_extractor_factory.py +0 -37
- {careamics-0.0.11.dist-info → careamics-0.0.13.dist-info}/WHEEL +0 -0
- {careamics-0.0.11.dist-info → careamics-0.0.13.dist-info}/entry_points.txt +0 -0
- {careamics-0.0.11.dist-info → careamics-0.0.13.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,330 @@
|
|
|
1
|
+
{
|
|
2
|
+
"cells": [
|
|
3
|
+
{
|
|
4
|
+
"cell_type": "code",
|
|
5
|
+
"execution_count": null,
|
|
6
|
+
"metadata": {},
|
|
7
|
+
"outputs": [],
|
|
8
|
+
"source": [
|
|
9
|
+
"from pathlib import Path\n",
|
|
10
|
+
"\n",
|
|
11
|
+
"import matplotlib.pyplot as plt\n",
|
|
12
|
+
"import numpy as np\n",
|
|
13
|
+
"import tifffile\n",
|
|
14
|
+
"from careamics_portfolio import PortfolioManager\n",
|
|
15
|
+
"\n",
|
|
16
|
+
"from careamics.config import create_care_configuration\n",
|
|
17
|
+
"from careamics.dataset_ng.legacy_interoperability import imageregions_to_tileinfos\n",
|
|
18
|
+
"from careamics.lightning.callbacks import HyperParametersCallback\n",
|
|
19
|
+
"from careamics.lightning.dataset_ng.data_module import CareamicsDataModule\n",
|
|
20
|
+
"from careamics.lightning.dataset_ng.lightning_modules import CAREModule\n",
|
|
21
|
+
"from careamics.prediction_utils import convert_outputs"
|
|
22
|
+
]
|
|
23
|
+
},
|
|
24
|
+
{
|
|
25
|
+
"cell_type": "code",
|
|
26
|
+
"execution_count": null,
|
|
27
|
+
"metadata": {},
|
|
28
|
+
"outputs": [],
|
|
29
|
+
"source": [
|
|
30
|
+
"# Set seed for reproducibility\n",
|
|
31
|
+
"from pytorch_lightning import seed_everything\n",
|
|
32
|
+
"\n",
|
|
33
|
+
"seed_everything(42)"
|
|
34
|
+
]
|
|
35
|
+
},
|
|
36
|
+
{
|
|
37
|
+
"cell_type": "markdown",
|
|
38
|
+
"metadata": {},
|
|
39
|
+
"source": [
|
|
40
|
+
"### Load data and set paths to it"
|
|
41
|
+
]
|
|
42
|
+
},
|
|
43
|
+
{
|
|
44
|
+
"cell_type": "code",
|
|
45
|
+
"execution_count": null,
|
|
46
|
+
"metadata": {},
|
|
47
|
+
"outputs": [],
|
|
48
|
+
"source": [
|
|
49
|
+
"# instantiate data portfolio manager and download the data\n",
|
|
50
|
+
"root_path = Path(\"./data\")\n",
|
|
51
|
+
"\n",
|
|
52
|
+
"portfolio = PortfolioManager()\n",
|
|
53
|
+
"download = portfolio.denoising.CARE_U2OS.download(root_path)\n",
|
|
54
|
+
"\n",
|
|
55
|
+
"root_path = root_path / \"denoising-CARE_U2OS.unzip\" / \"data\" / \"U2OS\"\n",
|
|
56
|
+
"train_path = root_path / \"train\" / \"low\"\n",
|
|
57
|
+
"target_path = root_path / \"train\" / \"GT\"\n",
|
|
58
|
+
"test_path = root_path / \"test\" / \"low\"\n",
|
|
59
|
+
"test_target_path = root_path / \"test\" / \"GT\""
|
|
60
|
+
]
|
|
61
|
+
},
|
|
62
|
+
{
|
|
63
|
+
"cell_type": "markdown",
|
|
64
|
+
"metadata": {},
|
|
65
|
+
"source": [
|
|
66
|
+
"### Create config"
|
|
67
|
+
]
|
|
68
|
+
},
|
|
69
|
+
{
|
|
70
|
+
"cell_type": "code",
|
|
71
|
+
"execution_count": null,
|
|
72
|
+
"metadata": {},
|
|
73
|
+
"outputs": [],
|
|
74
|
+
"source": [
|
|
75
|
+
"train_files = sorted(train_path.glob(\"*.tif\"))\n",
|
|
76
|
+
"train_target_files = sorted(target_path.glob(\"*.tif\"))\n",
|
|
77
|
+
"\n",
|
|
78
|
+
"config = create_care_configuration(\n",
|
|
79
|
+
" experiment_name=\"care_U20S\",\n",
|
|
80
|
+
" data_type=\"tiff\",\n",
|
|
81
|
+
" axes=\"YX\",\n",
|
|
82
|
+
" patch_size=(128, 128),\n",
|
|
83
|
+
" batch_size=32,\n",
|
|
84
|
+
" num_epochs=50,\n",
|
|
85
|
+
")"
|
|
86
|
+
]
|
|
87
|
+
},
|
|
88
|
+
{
|
|
89
|
+
"cell_type": "markdown",
|
|
90
|
+
"metadata": {},
|
|
91
|
+
"source": [
|
|
92
|
+
"### Create Lightning datamodule and model"
|
|
93
|
+
]
|
|
94
|
+
},
|
|
95
|
+
{
|
|
96
|
+
"cell_type": "code",
|
|
97
|
+
"execution_count": null,
|
|
98
|
+
"metadata": {},
|
|
99
|
+
"outputs": [],
|
|
100
|
+
"source": [
|
|
101
|
+
"train_data_module = CareamicsDataModule(\n",
|
|
102
|
+
" data_config=config.data_config,\n",
|
|
103
|
+
" train_data=train_path,\n",
|
|
104
|
+
" train_data_target=target_path,\n",
|
|
105
|
+
" val_data=test_path,\n",
|
|
106
|
+
" val_data_target=test_target_path,\n",
|
|
107
|
+
")\n",
|
|
108
|
+
"\n",
|
|
109
|
+
"model = CAREModule(config.algorithm_config)"
|
|
110
|
+
]
|
|
111
|
+
},
|
|
112
|
+
{
|
|
113
|
+
"cell_type": "markdown",
|
|
114
|
+
"metadata": {},
|
|
115
|
+
"source": [
|
|
116
|
+
"### Manually initialize the datamodule and visualize single train and val batches"
|
|
117
|
+
]
|
|
118
|
+
},
|
|
119
|
+
{
|
|
120
|
+
"cell_type": "code",
|
|
121
|
+
"execution_count": null,
|
|
122
|
+
"metadata": {},
|
|
123
|
+
"outputs": [],
|
|
124
|
+
"source": [
|
|
125
|
+
"train_data_module.setup(\"fit\")\n",
|
|
126
|
+
"train_data_module.setup(\"validate\")\n",
|
|
127
|
+
"\n",
|
|
128
|
+
"train_batch = next(iter(train_data_module.train_dataloader()))\n",
|
|
129
|
+
"val_batch = next(iter(train_data_module.val_dataloader()))\n",
|
|
130
|
+
"\n",
|
|
131
|
+
"fig, ax = plt.subplots(2, 8, figsize=(10, 3))\n",
|
|
132
|
+
"\n",
|
|
133
|
+
"ax[0][0].set_title(\"Train batch\")\n",
|
|
134
|
+
"ax[1][0].set_title(\"Train target\")\n",
|
|
135
|
+
"for i in range(8):\n",
|
|
136
|
+
" ax[0][i].imshow(train_batch[0].data[i][0].numpy(), cmap=\"gray\")\n",
|
|
137
|
+
" ax[1][i].imshow(train_batch[1].data[i][0].numpy(), cmap=\"gray\")\n",
|
|
138
|
+
"\n",
|
|
139
|
+
"\n",
|
|
140
|
+
"fig, ax = plt.subplots(2, 8, figsize=(10, 3))\n",
|
|
141
|
+
"ax[0][0].set_title(\"Val batch\")\n",
|
|
142
|
+
"ax[1][0].set_title(\"Val target\")\n",
|
|
143
|
+
"for i in range(8):\n",
|
|
144
|
+
" ax[0][i].imshow(val_batch[0].data[i][0].numpy(), cmap=\"gray\")\n",
|
|
145
|
+
" ax[1][i].imshow(val_batch[1].data[i][0].numpy(), cmap=\"gray\")"
|
|
146
|
+
]
|
|
147
|
+
},
|
|
148
|
+
{
|
|
149
|
+
"cell_type": "markdown",
|
|
150
|
+
"metadata": {},
|
|
151
|
+
"source": [
|
|
152
|
+
"### Train the model"
|
|
153
|
+
]
|
|
154
|
+
},
|
|
155
|
+
{
|
|
156
|
+
"cell_type": "code",
|
|
157
|
+
"execution_count": null,
|
|
158
|
+
"metadata": {},
|
|
159
|
+
"outputs": [],
|
|
160
|
+
"source": [
|
|
161
|
+
"from pytorch_lightning import Trainer\n",
|
|
162
|
+
"from pytorch_lightning.callbacks import ModelCheckpoint\n",
|
|
163
|
+
"from pytorch_lightning.loggers import WandbLogger\n",
|
|
164
|
+
"\n",
|
|
165
|
+
"root = Path(\"care_baseline\")\n",
|
|
166
|
+
"callbacks = [\n",
|
|
167
|
+
" ModelCheckpoint(\n",
|
|
168
|
+
" dirpath=root / \"checkpoints\",\n",
|
|
169
|
+
" filename=\"care_baseline\",\n",
|
|
170
|
+
" save_last=True,\n",
|
|
171
|
+
" monitor=\"val_loss\",\n",
|
|
172
|
+
" mode=\"min\",\n",
|
|
173
|
+
" ),\n",
|
|
174
|
+
" HyperParametersCallback(config),\n",
|
|
175
|
+
"]\n",
|
|
176
|
+
"\n",
|
|
177
|
+
"wandb_logger = WandbLogger(project=\"care-U2OS\", name=\"new-dataset\")\n",
|
|
178
|
+
"\n",
|
|
179
|
+
"trainer = Trainer(\n",
|
|
180
|
+
" max_epochs=50, default_root_dir=root, callbacks=callbacks, logger=wandb_logger\n",
|
|
181
|
+
")\n",
|
|
182
|
+
"trainer.fit(model, datamodule=train_data_module)"
|
|
183
|
+
]
|
|
184
|
+
},
|
|
185
|
+
{
|
|
186
|
+
"cell_type": "markdown",
|
|
187
|
+
"metadata": {},
|
|
188
|
+
"source": [
|
|
189
|
+
"### Create an inference config and datamodule"
|
|
190
|
+
]
|
|
191
|
+
},
|
|
192
|
+
{
|
|
193
|
+
"cell_type": "code",
|
|
194
|
+
"execution_count": null,
|
|
195
|
+
"metadata": {},
|
|
196
|
+
"outputs": [],
|
|
197
|
+
"source": [
|
|
198
|
+
"from careamics.config.inference_model import InferenceConfig\n",
|
|
199
|
+
"\n",
|
|
200
|
+
"config = InferenceConfig(\n",
|
|
201
|
+
" model_config=config,\n",
|
|
202
|
+
" data_type=\"tiff\",\n",
|
|
203
|
+
" tile_size=(128, 128),\n",
|
|
204
|
+
" tile_overlap=(32, 32),\n",
|
|
205
|
+
" axes=\"YX\",\n",
|
|
206
|
+
" batch_size=1,\n",
|
|
207
|
+
" image_means=train_data_module.train_dataset.input_stats.means,\n",
|
|
208
|
+
" image_stds=train_data_module.train_dataset.input_stats.stds,\n",
|
|
209
|
+
")\n",
|
|
210
|
+
"\n",
|
|
211
|
+
"inf_data_module = CareamicsDataModule(\n",
|
|
212
|
+
" data_config=config, pred_data=test_path\n",
|
|
213
|
+
")"
|
|
214
|
+
]
|
|
215
|
+
},
|
|
216
|
+
{
|
|
217
|
+
"cell_type": "markdown",
|
|
218
|
+
"metadata": {},
|
|
219
|
+
"source": [
|
|
220
|
+
"### Convert outputs to the legacy format and stitch the tiles"
|
|
221
|
+
]
|
|
222
|
+
},
|
|
223
|
+
{
|
|
224
|
+
"cell_type": "code",
|
|
225
|
+
"execution_count": null,
|
|
226
|
+
"metadata": {},
|
|
227
|
+
"outputs": [],
|
|
228
|
+
"source": [
|
|
229
|
+
"predictions = trainer.predict(model, datamodule=inf_data_module)\n",
|
|
230
|
+
"tile_infos = imageregions_to_tileinfos(predictions)\n",
|
|
231
|
+
"prediction = convert_outputs(tile_infos, tiled=True)"
|
|
232
|
+
]
|
|
233
|
+
},
|
|
234
|
+
{
|
|
235
|
+
"cell_type": "markdown",
|
|
236
|
+
"metadata": {},
|
|
237
|
+
"source": [
|
|
238
|
+
"### Visualize predictions and count metrics"
|
|
239
|
+
]
|
|
240
|
+
},
|
|
241
|
+
{
|
|
242
|
+
"cell_type": "code",
|
|
243
|
+
"execution_count": null,
|
|
244
|
+
"metadata": {},
|
|
245
|
+
"outputs": [],
|
|
246
|
+
"source": [
|
|
247
|
+
"from careamics.utils.metrics import psnr, scale_invariant_psnr\n",
|
|
248
|
+
"\n",
|
|
249
|
+
"# Show two images\n",
|
|
250
|
+
"noises = [tifffile.imread(f) for f in sorted(test_path.glob(\"*.tif\"))]\n",
|
|
251
|
+
"gts = [tifffile.imread(f) for f in sorted(test_target_path.glob(\"*.tif\"))]\n",
|
|
252
|
+
"\n",
|
|
253
|
+
"# images to show\n",
|
|
254
|
+
"images = [0, 1, 2]\n",
|
|
255
|
+
"\n",
|
|
256
|
+
"fig, ax = plt.subplots(3, 3, figsize=(15, 15))\n",
|
|
257
|
+
"fig.tight_layout()\n",
|
|
258
|
+
"\n",
|
|
259
|
+
"for i in range(3):\n",
|
|
260
|
+
" pred_image = prediction[images[i]].squeeze()\n",
|
|
261
|
+
" psnr_noisy = psnr(\n",
|
|
262
|
+
" gts[images[i]],\n",
|
|
263
|
+
" noises[images[i]],\n",
|
|
264
|
+
" data_range=gts[images[i]].max() - gts[images[i]].min(),\n",
|
|
265
|
+
" )\n",
|
|
266
|
+
" psnr_result = psnr(\n",
|
|
267
|
+
" gts[images[i]],\n",
|
|
268
|
+
" pred_image,\n",
|
|
269
|
+
" data_range=gts[images[i]].max() - gts[images[i]].min(),\n",
|
|
270
|
+
" )\n",
|
|
271
|
+
"\n",
|
|
272
|
+
" scale_invariant_psnr_result = scale_invariant_psnr(gts[images[i]], pred_image)\n",
|
|
273
|
+
"\n",
|
|
274
|
+
" ax[i, 0].imshow(noises[images[i]], cmap=\"gray\")\n",
|
|
275
|
+
" ax[i, 0].title.set_text(f\"Noisy\\nPSNR: {psnr_noisy:.2f}\")\n",
|
|
276
|
+
"\n",
|
|
277
|
+
" ax[i, 1].imshow(pred_image, cmap=\"gray\")\n",
|
|
278
|
+
" ax[i, 1].title.set_text(\n",
|
|
279
|
+
" f\"Prediction\\nPSNR: {psnr_result:.2f}\\n\"\n",
|
|
280
|
+
" f\"Scale invariant PSNR: {scale_invariant_psnr_result:.2f}\"\n",
|
|
281
|
+
" )\n",
|
|
282
|
+
"\n",
|
|
283
|
+
" ax[i, 2].imshow(gts[images[i]], cmap=\"gray\")\n",
|
|
284
|
+
" ax[i, 2].title.set_text(\"Ground-truth\")"
|
|
285
|
+
]
|
|
286
|
+
},
|
|
287
|
+
{
|
|
288
|
+
"cell_type": "code",
|
|
289
|
+
"execution_count": null,
|
|
290
|
+
"metadata": {},
|
|
291
|
+
"outputs": [],
|
|
292
|
+
"source": [
|
|
293
|
+
"psnrs = np.zeros((len(prediction), 1))\n",
|
|
294
|
+
"scale_invariant_psnrs = np.zeros((len(prediction), 1))\n",
|
|
295
|
+
"\n",
|
|
296
|
+
"for i, (pred, gt) in enumerate(zip(prediction, gts, strict=False)):\n",
|
|
297
|
+
" psnrs[i] = psnr(gt, pred.squeeze(), data_range=gt.max() - gt.min())\n",
|
|
298
|
+
" scale_invariant_psnrs[i] = scale_invariant_psnr(gt, pred.squeeze())\n",
|
|
299
|
+
"\n",
|
|
300
|
+
"print(f\"PSNR: {psnrs.mean():.2f} +/- {psnrs.std():.2f}\")\n",
|
|
301
|
+
"print(\n",
|
|
302
|
+
" f\"Scale invariant PSNR: \"\n",
|
|
303
|
+
" f\"{scale_invariant_psnrs.mean():.2f} +/- {scale_invariant_psnrs.std():.2f}\"\n",
|
|
304
|
+
")\n",
|
|
305
|
+
"print(\"Target PSNR: 31.53 +/- 3.71\")"
|
|
306
|
+
]
|
|
307
|
+
}
|
|
308
|
+
],
|
|
309
|
+
"metadata": {
|
|
310
|
+
"kernelspec": {
|
|
311
|
+
"display_name": "Python 3",
|
|
312
|
+
"language": "python",
|
|
313
|
+
"name": "python3"
|
|
314
|
+
},
|
|
315
|
+
"language_info": {
|
|
316
|
+
"codemirror_mode": {
|
|
317
|
+
"name": "ipython",
|
|
318
|
+
"version": 3
|
|
319
|
+
},
|
|
320
|
+
"file_extension": ".py",
|
|
321
|
+
"mimetype": "text/x-python",
|
|
322
|
+
"name": "python",
|
|
323
|
+
"nbconvert_exporter": "python",
|
|
324
|
+
"pygments_lexer": "ipython3",
|
|
325
|
+
"version": "3.9.20"
|
|
326
|
+
}
|
|
327
|
+
},
|
|
328
|
+
"nbformat": 4,
|
|
329
|
+
"nbformat_minor": 2
|
|
330
|
+
}
|