careamics 0.0.11__py3-none-any.whl → 0.0.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of careamics might be problematic. Click here for more details.

Files changed (98) hide show
  1. careamics/careamist.py +24 -7
  2. careamics/cli/utils.py +1 -1
  3. careamics/config/algorithms/n2v_algorithm_model.py +1 -1
  4. careamics/config/architectures/unet_model.py +3 -0
  5. careamics/config/callback_model.py +23 -34
  6. careamics/config/configuration.py +55 -4
  7. careamics/config/configuration_factories.py +288 -23
  8. careamics/config/data/__init__.py +2 -0
  9. careamics/config/data/data_model.py +41 -4
  10. careamics/config/data/ng_data_model.py +381 -0
  11. careamics/config/data/patching_strategies/__init__.py +14 -0
  12. careamics/config/data/patching_strategies/_overlapping_patched_model.py +103 -0
  13. careamics/config/data/patching_strategies/_patched_model.py +56 -0
  14. careamics/config/data/patching_strategies/random_patching_model.py +21 -0
  15. careamics/config/data/patching_strategies/sequential_patching_model.py +25 -0
  16. careamics/config/data/patching_strategies/tiled_patching_model.py +40 -0
  17. careamics/config/data/patching_strategies/whole_patching_model.py +12 -0
  18. careamics/config/inference_model.py +6 -3
  19. careamics/config/optimizer_models.py +1 -3
  20. careamics/config/support/supported_data.py +7 -0
  21. careamics/config/support/supported_patching_strategies.py +22 -0
  22. careamics/config/training_model.py +0 -2
  23. careamics/config/validators/validator_utils.py +4 -3
  24. careamics/dataset/dataset_utils/iterate_over_files.py +2 -2
  25. careamics/dataset/in_memory_dataset.py +2 -1
  26. careamics/dataset/iterable_dataset.py +2 -2
  27. careamics/dataset/iterable_pred_dataset.py +2 -2
  28. careamics/dataset/iterable_tiled_pred_dataset.py +2 -2
  29. careamics/dataset/patching/patching.py +3 -2
  30. careamics/dataset/tiling/lvae_tiled_patching.py +16 -6
  31. careamics/dataset/tiling/tiled_patching.py +2 -1
  32. careamics/dataset_ng/README.md +212 -0
  33. careamics/dataset_ng/dataset.py +229 -0
  34. careamics/dataset_ng/demos/bsd68_demo.ipynb +361 -0
  35. careamics/dataset_ng/demos/care_U2OS_demo.ipynb +330 -0
  36. careamics/dataset_ng/demos/demo_custom_image_stack.ipynb +734 -0
  37. careamics/dataset_ng/demos/demo_datamodule.ipynb +447 -0
  38. careamics/dataset_ng/{demo_dataset.ipynb → demos/demo_dataset.ipynb} +60 -53
  39. careamics/dataset_ng/{demo_patch_extractor.py → demos/demo_patch_extractor.py} +7 -9
  40. careamics/dataset_ng/demos/mouse_nuclei_demo.ipynb +292 -0
  41. careamics/dataset_ng/factory.py +451 -0
  42. careamics/dataset_ng/legacy_interoperability.py +170 -0
  43. careamics/dataset_ng/patch_extractor/__init__.py +3 -8
  44. careamics/dataset_ng/patch_extractor/demo_custom_image_stack_loader.py +7 -5
  45. careamics/dataset_ng/patch_extractor/image_stack/__init__.py +4 -1
  46. careamics/dataset_ng/patch_extractor/image_stack/czi_image_stack.py +360 -0
  47. careamics/dataset_ng/patch_extractor/image_stack/image_stack_protocol.py +5 -1
  48. careamics/dataset_ng/patch_extractor/image_stack/in_memory_image_stack.py +1 -1
  49. careamics/dataset_ng/patch_extractor/image_stack_loader.py +5 -75
  50. careamics/dataset_ng/patch_extractor/patch_extractor.py +5 -4
  51. careamics/dataset_ng/patch_extractor/patch_extractor_factory.py +114 -105
  52. careamics/dataset_ng/patching_strategies/__init__.py +6 -1
  53. careamics/dataset_ng/patching_strategies/patching_strategy_protocol.py +31 -0
  54. careamics/dataset_ng/patching_strategies/random_patching.py +5 -1
  55. careamics/dataset_ng/patching_strategies/sequential_patching.py +5 -5
  56. careamics/dataset_ng/patching_strategies/tiling_strategy.py +172 -0
  57. careamics/dataset_ng/patching_strategies/whole_sample.py +36 -0
  58. careamics/file_io/read/get_func.py +2 -1
  59. careamics/lightning/dataset_ng/__init__.py +1 -0
  60. careamics/lightning/dataset_ng/data_module.py +678 -0
  61. careamics/lightning/dataset_ng/lightning_modules/__init__.py +9 -0
  62. careamics/lightning/dataset_ng/lightning_modules/care_module.py +97 -0
  63. careamics/lightning/dataset_ng/lightning_modules/n2v_module.py +106 -0
  64. careamics/lightning/dataset_ng/lightning_modules/unet_module.py +212 -0
  65. careamics/lightning/lightning_module.py +5 -1
  66. careamics/lightning/predict_data_module.py +2 -1
  67. careamics/lightning/train_data_module.py +2 -1
  68. careamics/losses/loss_factory.py +2 -1
  69. careamics/lvae_training/dataset/__init__.py +8 -3
  70. careamics/lvae_training/dataset/config.py +3 -3
  71. careamics/lvae_training/dataset/ms_dataset_ref.py +1067 -0
  72. careamics/lvae_training/dataset/multich_dataset.py +46 -17
  73. careamics/lvae_training/dataset/multicrop_dset.py +196 -0
  74. careamics/lvae_training/dataset/types.py +3 -3
  75. careamics/lvae_training/dataset/utils/index_manager.py +259 -0
  76. careamics/lvae_training/eval_utils.py +93 -3
  77. careamics/model_io/bioimage/bioimage_utils.py +1 -1
  78. careamics/model_io/bioimage/model_description.py +1 -1
  79. careamics/model_io/bmz_io.py +1 -1
  80. careamics/model_io/model_io_utils.py +2 -2
  81. careamics/models/activation.py +2 -1
  82. careamics/prediction_utils/prediction_outputs.py +1 -1
  83. careamics/prediction_utils/stitch_prediction.py +1 -1
  84. careamics/transforms/compose.py +1 -0
  85. careamics/transforms/n2v_manipulate_torch.py +15 -9
  86. careamics/transforms/normalize.py +18 -7
  87. careamics/transforms/pixel_manipulation_torch.py +59 -92
  88. careamics/utils/lightning_utils.py +25 -11
  89. careamics/utils/metrics.py +2 -1
  90. careamics/utils/torch_utils.py +23 -0
  91. {careamics-0.0.11.dist-info → careamics-0.0.13.dist-info}/METADATA +12 -11
  92. {careamics-0.0.11.dist-info → careamics-0.0.13.dist-info}/RECORD +95 -69
  93. careamics/dataset_ng/dataset/__init__.py +0 -3
  94. careamics/dataset_ng/dataset/dataset.py +0 -184
  95. careamics/dataset_ng/demo_patch_extractor_factory.py +0 -37
  96. {careamics-0.0.11.dist-info → careamics-0.0.13.dist-info}/WHEEL +0 -0
  97. {careamics-0.0.11.dist-info → careamics-0.0.13.dist-info}/entry_points.txt +0 -0
  98. {careamics-0.0.11.dist-info → careamics-0.0.13.dist-info}/licenses/LICENSE +0 -0
@@ -1,43 +1,52 @@
1
1
  careamics/__init__.py,sha256=eHsl7oE8HTKmi7yLMj8Yyp0RbdtN3QDmQQb-4Sn9d8M,475
2
- careamics/careamist.py,sha256=OhBkchHIVIvLyk57R5UXt2Euy4e_EDSbNp5NXJ53hS8,37588
2
+ careamics/careamist.py,sha256=GhT6Ue3HZGnc0-TIJkR8izgTc3ip3DPO-f0GPJtAthk,38326
3
3
  careamics/conftest.py,sha256=Od4WcaaP0UP-XUMrFr_oo4e6c2hi_RvNbuaRTopwlmI,911
4
4
  careamics/py.typed,sha256=esB4cHc6c07uVkGtqf8at7ttEnprwRxwk8obY8Qumq4,187
5
5
  careamics/cli/__init__.py,sha256=LbM9bVtU1dy-khmdiIDXwvKy2v8wPBCEUuWqV_8rosA,106
6
6
  careamics/cli/conf.py,sha256=oixGRZNylW-NTM_rkDtQkSRw8KUYwtmUC_hK5BEeLnA,13074
7
7
  careamics/cli/main.py,sha256=S4B3c1ZN-OQK0l2_W42CaW0KmF_Pe_y4pKgn_UOuyDg,6564
8
- careamics/cli/utils.py,sha256=q_dmG7lxg_FT62qX9fPilIWL1M8ibhLnnhUKqa4knPI,660
8
+ careamics/cli/utils.py,sha256=ESeKm86je_6dzJNNEMI6LHYkHEMff0OMvzP5bnxotYk,661
9
9
  careamics/config/__init__.py,sha256=K0N1GIqFCYhpPjalZG-Ygap6Ew_dDAC0uw5Npzhg9Lk,1524
10
- careamics/config/callback_model.py,sha256=EeYHqpMIPQwyNxLRzzX32Uncl5mZuB1bJO76RHpNymg,4555
11
- careamics/config/configuration.py,sha256=D7i_g48P7d4H4_YSFyvDh9tRM7vLhM1mnU_XMeCC1HU,11193
12
- careamics/config/configuration_factories.py,sha256=NhheOPkVhIF1cwz0FGNLQrxOByRQGrw-aZ_vGNIE8UE,34599
10
+ careamics/config/callback_model.py,sha256=YRXE-qgnTrI-KInYQK4UwxC55ttY6eg_eb1wvrGhCDU,4096
11
+ careamics/config/configuration.py,sha256=gNBKxeHqAQLa8_btGuQ4-X4987cRPr5L6RI6hOv179Q,13345
12
+ careamics/config/configuration_factories.py,sha256=lg3tG4LYzMsanoiD_c2jX2hY50fXIk1d6ALsRTny1uM,46113
13
13
  careamics/config/configuration_io.py,sha256=P-bP1kzkXxJWOEFP02dEZFNmpuLAPJfJtYhX4bFeaKk,2324
14
- careamics/config/inference_model.py,sha256=UE_-ZmCX6LFCbDBOwyGnvuAboF_JNX2m2LcF0WiwgCI,6961
14
+ careamics/config/inference_model.py,sha256=NEgRN-VZulMKNwY42fecnK0shLh75xVnrY-odMJpwHA,7034
15
15
  careamics/config/likelihood_model.py,sha256=VorUtc0_-xIWNxwVrd1kBba-003ICdVMtxpcDCxH4Io,2259
16
16
  careamics/config/loss_model.py,sha256=yYcUBS90Qyon1MxeaHiVP3dJHPJFC0GUvWKGcAb3IHk,2036
17
17
  careamics/config/nm_model.py,sha256=5dAhDBLa4WPfKaNEK6ATNsSUwtlH8u8gYweEA4gZP6g,4758
18
- careamics/config/optimizer_models.py,sha256=OWpTydRBBR8wt_af1mZHNNwvL_RtnRFopAOdgjzLo30,5750
18
+ careamics/config/optimizer_models.py,sha256=9qxcLjtDp5LjYX52u21Rom4F3_GZUV2GJimrK3un574,5717
19
19
  careamics/config/tile_information.py,sha256=c-_xrVPOgcnjiEzQ-9A_GhNPamObkMANbeHaRP29R-4,2059
20
- careamics/config/training_model.py,sha256=67_ipo_-LxhT4-WqAs40Sg8PjU--my43Qn3BhjvlXxM,3212
20
+ careamics/config/training_model.py,sha256=VfK2bk_1FHaamKZw5S8UDPVxasyUqz1rY1ahcaxYZ7s,3114
21
21
  careamics/config/algorithms/__init__.py,sha256=on5D6zBO9Lu-Tf5To8xpF6owIFqdN7RSmZdpyXDOaNw,404
22
22
  careamics/config/algorithms/care_algorithm_model.py,sha256=ncf89BC2aFPFSquJ65-Y7NpwVbvgPE0BKH6Up1OHa1s,3238
23
23
  careamics/config/algorithms/n2n_algorithm_model.py,sha256=OZbRis9jhRKWNK1-Z_aw2tfJRuGdlJiYEYlH4Hr1FRs,3066
24
- careamics/config/algorithms/n2v_algorithm_model.py,sha256=ROeVsFVY2JDMtQEZWOZc75Muh1SnOxww7_Z2BzB9bZ8,9470
24
+ careamics/config/algorithms/n2v_algorithm_model.py,sha256=IkHsTj-IkWq--mlWjBHfH18CGK_3p2uaC3Zz2tfieaA,9469
25
25
  careamics/config/algorithms/unet_algorithm_model.py,sha256=OaBFVlhsb9YhF3f2x1ImazvfnZ4_DPWvYWihRwurkeg,2587
26
26
  careamics/config/algorithms/vae_algorithm_model.py,sha256=1ZrShUGHA7zbjSiCQwhUSv7l7Hr7MbpcLOw8ucM27p8,4680
27
27
  careamics/config/architectures/__init__.py,sha256=lYUz56R7LDqVQWQDLkLgJL8VtOyxc_ege1r4bXGEBqA,220
28
28
  careamics/config/architectures/architecture_model.py,sha256=gXn4gdLrQP3bmTQxIhzkEHYlodPaIp6LI-kwZl23W-Y,911
29
29
  careamics/config/architectures/lvae_model.py,sha256=lwOiJYNUqPrZFl9SpPLYon77EiRbe2eI7pmpx45rO78,7606
30
- careamics/config/architectures/unet_model.py,sha256=HJJWf-wuYTv8KXMwikdjeB8htg1QOt0IyQbMuBt1LUI,3556
31
- careamics/config/data/__init__.py,sha256=ijNcvrKQtKljmBuZ6DDxh86PMzpRob2l2JMqbPQLqPk,111
32
- careamics/config/data/data_model.py,sha256=0YFN_NXL10f8h_Wr7ce6xsfOy86iZOPIkgLK-KIpeEU,12181
30
+ careamics/config/architectures/unet_model.py,sha256=Aqc_KPf2VKMhNrYwOdmr_ez3iIQz8ZRtsA6t5FFT354,3686
31
+ careamics/config/data/__init__.py,sha256=YS04_USNswKL7kpSn_6BeTvhobAiUVst46_SlCztCxs,171
32
+ careamics/config/data/data_model.py,sha256=d_7_bDdLCzl0HgykpObbBYM1-NLBycJ5iOXN1JYS2SI,13444
33
+ careamics/config/data/ng_data_model.py,sha256=DKmNY84KQLwFsLem3RZJBJYq54FdSfQYlI3NnXhIsTQ,12317
34
+ careamics/config/data/patching_strategies/__init__.py,sha256=6ZUors-WzBBQCwMyaSojYJzdXeleFRBlrFls1r-Otdo,394
35
+ careamics/config/data/patching_strategies/_overlapping_patched_model.py,sha256=Qyz4qlFzhZ6e-1aPlV89heKINIaoHfVIBO3dCTyBbOE,3073
36
+ careamics/config/data/patching_strategies/_patched_model.py,sha256=wmhM1Qt5qDuMCs76ab7dPoNTjy_lLVIL8TD5AzaIoak,1429
37
+ careamics/config/data/patching_strategies/random_patching_model.py,sha256=HZfPLkkhwYNQ11O-ahmoaE1bTw7rXg2mIIqsBNkY4WE,533
38
+ careamics/config/data/patching_strategies/sequential_patching_model.py,sha256=sS1h-sHUGvlh41b4kc_3B858ZCPDMJlPb6roAhDL63Y,865
39
+ careamics/config/data/patching_strategies/tiled_patching_model.py,sha256=5lltbA9dqZlo8-yxJWlAAWqZbPRg5gw0PS6752Nr1ec,1295
40
+ careamics/config/data/patching_strategies/whole_patching_model.py,sha256=HCPiWFrYk_ICWvlmddJYW9YjCzZUc7ijGJlLP1WxvjU,272
33
41
  careamics/config/support/__init__.py,sha256=ktWvxbTkRXnQPS_N84l9E2B5kTZVdd64SIjsJIQKB-k,1041
34
42
  careamics/config/support/supported_activations.py,sha256=CqOWoziIK5jZZXJO7G7cGg3TTid1POqv8FXqxjXxyME,535
35
43
  careamics/config/support/supported_algorithms.py,sha256=w6YzcIqGZ_bS85Tw1s7TEltBDXLt4SzgN3Tc6s19dGU,946
36
44
  careamics/config/support/supported_architectures.py,sha256=pOxvHOAIUkc7HCO0IIg4K22h-Ti5ErtcIkGOjN-zh1s,340
37
- careamics/config/support/supported_data.py,sha256=T_mDiWLFMVji_EpjBABUObAJcnv-XBnqp9XUZP37Tdk,2902
45
+ careamics/config/support/supported_data.py,sha256=rVcBOBUosyvYWZJAofJ66_DucnkkPfPhZMXU6KXugsM,3079
38
46
  careamics/config/support/supported_loggers.py,sha256=ubSOkGoYabGbm_jmyc1R3eFcvcP-sHmuyiBi_d3_wLg,197
39
47
  careamics/config/support/supported_losses.py,sha256=2x5sZuxRbWJzodoL35I1mMYUUDMzk8UFiFdbyPwbJ4E,583
40
48
  careamics/config/support/supported_optimizers.py,sha256=_2XmwzYENB6xpTedyWHUdWuGcDzdlfEAJjzm_qI3yRM,1392
49
+ careamics/config/support/supported_patching_strategies.py,sha256=3Ngth0bna6ibabmg73y-1Hq7MebFNFq2MqE8sUB7UO8,635
41
50
  careamics/config/support/supported_pixel_manipulations.py,sha256=rFiktUlvoFU7s1NAKEMqsXOzLw5eaw9GtCKUznvq6xc,432
42
51
  careamics/config/support/supported_struct_axis.py,sha256=alZMA5Y-BpDymLPUEd1zqVY0xMkgl9Rv1d4ujED6sco,424
43
52
  careamics/config/support/supported_transforms.py,sha256=ylTiS8fUFKFwfn85gh7kKF4Trb9Q4ENPKm-XDWCe-SY,311
@@ -50,59 +59,68 @@ careamics/config/transformations/xy_flip_model.py,sha256=zU-uZ1b1zNZWckbho3onN-B
50
59
  careamics/config/transformations/xy_random_rotate90_model.py,sha256=6sYKmtCLvz0SV1qZgBSHUTH-CUjwvHnohq1HyPntbyE,894
51
60
  careamics/config/validators/__init__.py,sha256=zRrIse0O3ImwG97NphEupFVm3Ib9nEJhpNNrKGyDTps,423
52
61
  careamics/config/validators/model_validators.py,sha256=9OCdlf7rmndtTpmQ8COLaEjURYYmszic_RjY9mzS-k4,1941
53
- careamics/config/validators/validator_utils.py,sha256=NVkEOr5AQK4JXWNtmgeQgAaJOyieJNb5PHCjlcqNeew,2611
62
+ careamics/config/validators/validator_utils.py,sha256=7wBQzf4YcxiL0h9yOEaFM4RoeOtLPEBp4W7ZVabfqBA,2609
54
63
  careamics/dataset/__init__.py,sha256=31vop67zbtGesENEIig-LLw1q2lCydMFc_YWgfK2Yt4,547
55
- careamics/dataset/in_memory_dataset.py,sha256=Snbq7N8lYB06m018Yz0Mgx1PE3hHLh6__DeaArKPBvs,9665
64
+ careamics/dataset/in_memory_dataset.py,sha256=INiamRPZGKf0yWIyLds1ZQlBiK4A86XVijOJ65BSH1A,9692
56
65
  careamics/dataset/in_memory_pred_dataset.py,sha256=0f_lS8APDmA7KPaZjF9NmD9kjB0tGwUefALu1MEiWB8,2141
57
66
  careamics/dataset/in_memory_tiled_pred_dataset.py,sha256=fKg3_Mmx0hXlOjuWU6lhTVRsm02D21J-IOYmTIm4UsE,3561
58
- careamics/dataset/iterable_dataset.py,sha256=QsrriN62jUQ7OPbGJoyBP9z9MkJV9kipp8maWb9aIfk,9783
59
- careamics/dataset/iterable_pred_dataset.py,sha256=fgrVC-jdJf8fY8WnZe4QWTAkcKz6xKcw4Zlf5DpqB34,3750
60
- careamics/dataset/iterable_tiled_pred_dataset.py,sha256=062FVJyj4RQhVdne6HreKgAeBdK9UFi--BXzK76tlBk,4594
67
+ careamics/dataset/iterable_dataset.py,sha256=ZBiQh96TgThcOB0flRGZmh0arFn30fX3shAafvetq3s,9783
68
+ careamics/dataset/iterable_pred_dataset.py,sha256=4OsyDQv9udIh7R8UixTLeB_jVtaG-6z38bMqWRqxMxI,3750
69
+ careamics/dataset/iterable_tiled_pred_dataset.py,sha256=4553dDF9_yQkb--g2wWD8rempMk_DTLYgRgt5T03mW0,4594
61
70
  careamics/dataset/zarr_dataset.py,sha256=lojnK5bhiF1vyjuPtWXBrZ9sy5fT_rBvZJbbbnE-H_I,5665
62
71
  careamics/dataset/dataset_utils/__init__.py,sha256=MJ3xriL6R4ZtmzbvLsASUWLb85Hk5AdeRaYnHpNELJQ,507
63
72
  careamics/dataset/dataset_utils/dataset_utils.py,sha256=X83DzaOWmHdl4eOPac2IQJH3bPA43RVq0hPrFrzvIXQ,2630
64
73
  careamics/dataset/dataset_utils/file_utils.py,sha256=ru6AtQ9LCmo6raN1-GnJEN4UyP1PbmSdR9MEys3CuHo,4094
65
- careamics/dataset/dataset_utils/iterate_over_files.py,sha256=zsNhIDMHUsPMbqwG7cfuSc26Svg5hERHcrXfftKaUoY,2898
74
+ careamics/dataset/dataset_utils/iterate_over_files.py,sha256=xQJZQhusFiI3oPJmSsL8fFBVVRA3WS8R1TcAXW-xfdE,2898
66
75
  careamics/dataset/dataset_utils/running_stats.py,sha256=clnSs4TR-lUiQNIYs1ay1_n3wUoeRQqY83V2K70ZBtM,5897
67
76
  careamics/dataset/patching/__init__.py,sha256=7-s12oUAZNlMOwSkxSwbD7vojQINWYFzn_4qIJ87WBg,37
68
- careamics/dataset/patching/patching.py,sha256=deAxY34Iz-mguBlHQ-5EO4vRhPpR9I3LQ9onV1K_KqA,8858
77
+ careamics/dataset/patching/patching.py,sha256=InV9Nt9JeRp9xo5W42nPwP_zif_AjC0O5-w2nyH9Qyw,8899
69
78
  careamics/dataset/patching/random_patching.py,sha256=gm1jxye9yvHbdijLzCtDSzRU_9j110GRLMnJaUwLAHQ,6487
70
79
  careamics/dataset/patching/sequential_patching.py,sha256=4F5E1Ta0M5kFXGwI2-QXRxeOx0CyUwbFaB5awkMCN_Q,5890
71
80
  careamics/dataset/patching/validate_patch_dimension.py,sha256=mC2bZWBpU44NEvXxEfR7ULUKwWPuZPjmBWpHYJxNDWc,2121
72
81
  careamics/dataset/tiling/__init__.py,sha256=aW_AMB9rzm0VmooUpjcyqv6sQP69RlPQMEdP2sVjdz8,190
73
82
  careamics/dataset/tiling/collate_tiles.py,sha256=XK0BsDQE7XwIwmOoCHJIpVC3kqjSN6nDhrJ4POVeHS8,965
74
- careamics/dataset/tiling/lvae_tiled_patching.py,sha256=LYEEdjKuKaxIGFtOkhfpsE7hruBnIsD5HcW9aVH6WHI,13019
75
- careamics/dataset/tiling/tiled_patching.py,sha256=6vxsqlccUqIl4Ys92JWIPs0Kn95VzaHoAYMSGcp2dh8,5956
76
- careamics/dataset_ng/demo_dataset.ipynb,sha256=gAWQnodNga5I6TrjsJspjeAGWCHiy23SFE5dPvKnETE,7130
77
- careamics/dataset_ng/demo_patch_extractor.py,sha256=8iCAdvmfGdTJSR59yu0WOb_4r3HshRDDMrSiOpxoh5o,1510
78
- careamics/dataset_ng/demo_patch_extractor_factory.py,sha256=4NRtb9hOL0bXz2f8PHOmjoltbMhoMl8UkFXIJTf8f5Y,981
79
- careamics/dataset_ng/dataset/__init__.py,sha256=V8fSRAnabpo706OVLn6l9UtQCyp5Kc5CDwD1hMOjRAA,70
80
- careamics/dataset_ng/dataset/dataset.py,sha256=g0-uBKxLHVUEuRtIQnKseiExhc_yb0-pfS4icTdOFkE,6406
81
- careamics/dataset_ng/patch_extractor/__init__.py,sha256=X_UBCKi_5py0HfBAGiRMcTaqEu3EdJNVRI7eSG2wmlo,298
82
- careamics/dataset_ng/patch_extractor/demo_custom_image_stack_loader.py,sha256=fv-izzYW5QyMQ2Oki2sDGzXLAt51uzxxphu-NdrQMOA,2884
83
- careamics/dataset_ng/patch_extractor/image_stack_loader.py,sha256=0jSF-uM05kv-nqY3tB_bcbpC0Cb7qB1CBDDqkfTvjNs,4690
84
- careamics/dataset_ng/patch_extractor/patch_extractor.py,sha256=CLexpuFQ_GiNWhzRSa3HoepbBj3lvCHu9ZU5PVfYWas,748
85
- careamics/dataset_ng/patch_extractor/patch_extractor_factory.py,sha256=rIEuCMUhqslzd-7DHueOAQ13y8rgxjtvjlVX3dql0zk,6017
86
- careamics/dataset_ng/patch_extractor/image_stack/__init__.py,sha256=xTGRg2W_CpxsTgyiG-cHSFuXh7hwA0fGrEPm61GrsBI,225
87
- careamics/dataset_ng/patch_extractor/image_stack/image_stack_protocol.py,sha256=8QLpKEVqw3Edz-hL7lmKW_06x6DcbQo20feN8XkTnsY,1543
88
- careamics/dataset_ng/patch_extractor/image_stack/in_memory_image_stack.py,sha256=FS9dEY5GXKEf0oeNe7Vb005HTby4thUvzTzWwCxe3Zk,1927
83
+ careamics/dataset/tiling/lvae_tiled_patching.py,sha256=rGcUOOL0nC5zv22RLn_WiLV9cxrqCwZc-btJ6zrtAy8,13223
84
+ careamics/dataset/tiling/tiled_patching.py,sha256=985vlz9hJdBNKP6z9hL0hU6lXSUPmGpXutdcbyBtv_o,6000
85
+ careamics/dataset_ng/README.md,sha256=489sMnra-cVotBBWNL-jhb9H4eLO1FFa3b5zhfkK34g,9856
86
+ careamics/dataset_ng/dataset.py,sha256=ZrFnB4Xj3mWDYQyP2yMoazRnKs8wrkJYL28pHsOC8Yc,8826
87
+ careamics/dataset_ng/factory.py,sha256=lPh61FIkvXdqW5nH68d5Jvn4vg8wxB7bNmTCvea1_2Q,14787
88
+ careamics/dataset_ng/legacy_interoperability.py,sha256=K8u7MZRUkrG-gTX-COIykEejTHDxPET4H2oxKhQ_UTw,5559
89
+ careamics/dataset_ng/demos/bsd68_demo.ipynb,sha256=UdpxKq198IV_xqJLcGR_C5rnX95G_zktnfmbltfEw60,10628
90
+ careamics/dataset_ng/demos/care_U2OS_demo.ipynb,sha256=fxuiJ0g65Ts7jFUxHgCGbf30Xoz8kIB4dfh9qfpW1D8,9501
91
+ careamics/dataset_ng/demos/demo_custom_image_stack.ipynb,sha256=x2mO5zDazKjlWd96026YqobqivuLU8iW_ptq7PPaavM,25198
92
+ careamics/dataset_ng/demos/demo_datamodule.ipynb,sha256=isYopZhI9eDGXZun-bdOrgVTXrtqm0jefm6ZxUNqCf0,12687
93
+ careamics/dataset_ng/demos/demo_dataset.ipynb,sha256=3mNGotUtQ2XMbw4JE5HkOSZXtqcrUYcoGGGV0NUjJBU,7382
94
+ careamics/dataset_ng/demos/demo_patch_extractor.py,sha256=2guz1iRqBzue4GLAVh9-K8sXCgsygtsJS-wzeHctY34,1419
95
+ careamics/dataset_ng/demos/mouse_nuclei_demo.ipynb,sha256=Afd-_T848z3ZCDAL8vMfP6CJR8CbUg0xLAurBxg-fuc,8278
96
+ careamics/dataset_ng/patch_extractor/__init__.py,sha256=U27Gxp6dk6DUc-MiDMPvdh2aoWlM7jU-bjueqa7elPg,207
97
+ careamics/dataset_ng/patch_extractor/demo_custom_image_stack_loader.py,sha256=Y6CQyCy-_NcRf9ytOeCsIXjeN8CZBnKpMwcM1H50cNc,2987
98
+ careamics/dataset_ng/patch_extractor/image_stack_loader.py,sha256=Gq1KbqZWCX8fR4ZCcFysXPK6LoJJJvb4Cig_KYeGyqs,2490
99
+ careamics/dataset_ng/patch_extractor/patch_extractor.py,sha256=nGN5TrmmSo5KeQoXJ-wrVQtQlYadaR8onH7TOWXhVy4,824
100
+ careamics/dataset_ng/patch_extractor/patch_extractor_factory.py,sha256=8B3s5n8nEOQ6JCJIANVdckgJGaYm8Y4v69vYn4Zsmdo,5927
101
+ careamics/dataset_ng/patch_extractor/image_stack/__init__.py,sha256=0K4swSw3fmVonjavNyxDtXRDJTNq4P7oMBktsoNO2GI,333
102
+ careamics/dataset_ng/patch_extractor/image_stack/czi_image_stack.py,sha256=5XXbOZoxPY3g8cAcuHgwKFWN5gAC9vAwvuesA2pxF9Q,14420
103
+ careamics/dataset_ng/patch_extractor/image_stack/image_stack_protocol.py,sha256=NnhqyDmZPuQgU_gjNugNWNX9_NetRguwLg9LfTmd7U8,1649
104
+ careamics/dataset_ng/patch_extractor/image_stack/in_memory_image_stack.py,sha256=2eICQjYTzjEaYLh9Wg2IJ6cguo7Ty1p-eXPvTJk0nv0,1941
89
105
  careamics/dataset_ng/patch_extractor/image_stack/zarr_image_stack.py,sha256=hmNOl6-FMUNQS65YMSa4eAz3Rp_2es98p1_UY6S8B50,6590
90
- careamics/dataset_ng/patching_strategies/__init__.py,sha256=NLSjecNI_BOhkfznjogBEkq8BP74aixjpLhhRdkS9Bo,366
91
- careamics/dataset_ng/patching_strategies/patching_strategy_protocol.py,sha256=gcbprNfRxG5gEBQzqZyJIhjCfwsC80PQvx0JQ-iunJg,2308
92
- careamics/dataset_ng/patching_strategies/random_patching.py,sha256=AGlvn1NsjPJY5Ku8DEn92DaKkvAjX293coqMnwi7_UY,13410
93
- careamics/dataset_ng/patching_strategies/sequential_patching.py,sha256=fngTPpY6D93guFwSdHuCakDebin7eEtK7Y2OFmJ1IG8,2485
106
+ careamics/dataset_ng/patching_strategies/__init__.py,sha256=2KwdY_TeD9WQju150WbV2IF19TincHU3lbcL0fqZF5o,549
107
+ careamics/dataset_ng/patching_strategies/patching_strategy_protocol.py,sha256=ukw5G9hIOPEJz-DEFDMuJsGYou7wUeRjALNU8qdgn9g,3475
108
+ careamics/dataset_ng/patching_strategies/random_patching.py,sha256=uUqkCOSmbq1r54LcobtivHpUtpH4WhnTFpN2Y17dIFk,13525
109
+ careamics/dataset_ng/patching_strategies/sequential_patching.py,sha256=T65DszwUmCvLBZXbMmTYYWFn702tuECkPKJ_x8ps00A,2491
110
+ careamics/dataset_ng/patching_strategies/tiling_strategy.py,sha256=jKug3ocARe-pSqSB3g27T7GGmrrQ6eRYbp_m49BJ4-4,6415
111
+ careamics/dataset_ng/patching_strategies/whole_sample.py,sha256=o1Z4iHKveq9X--LRV-gdUQqB-TPVxr2RvaKHmgDnCx0,1249
94
112
  careamics/file_io/__init__.py,sha256=vgMI77X820VOWywAEW5W20FXfmbqBzx4V63D3V3_HhI,334
95
113
  careamics/file_io/read/__init__.py,sha256=wf8O_o80ghrlWQ-RGEuSqcc2LU55P1B-oxTacDToygo,259
96
- careamics/file_io/read/get_func.py,sha256=O_pdymjh2mc-JZ1je3ZnPAcsHc7Je3a005AMgAa0xuw,1388
114
+ careamics/file_io/read/get_func.py,sha256=1UJMfVb6gUCe_5WBRxCEO2Q7pqdVu8u2Sm0aHxXdiak,1415
97
115
  careamics/file_io/read/tiff.py,sha256=UMofW33rvByK9B1zYGhSrWAiAA3uQUV3OVK7cq9d0gQ,1359
98
116
  careamics/file_io/read/zarr.py,sha256=2jzREAnJDQSv0qmsL-v00BxmiZ_sp0ijq667LZSQ_hY,1685
99
117
  careamics/file_io/write/__init__.py,sha256=CUt33cRjG9hm18L9a7XqaUKWQ_3xiuQ9ztz4Ab7RYG0,283
100
118
  careamics/file_io/write/get_func.py,sha256=hyGHe1RX-lfa9QFAnwRCz_gS0NRiRnXEtg4Bdeh2Esc,1627
101
119
  careamics/file_io/write/tiff.py,sha256=tBGIgl-I1sMyBivgx-dOTBykXBODkgwPH8MT3_4KAE8,1050
102
120
  careamics/lightning/__init__.py,sha256=ATCVAGnX08Ik4TxbIv0-cXb52UinR42JgvZh_GIMSpc,588
103
- careamics/lightning/lightning_module.py,sha256=_gMGKGSHOEoh00jblCX5egMI91Z0UJpIjEQ74AaVGss,24177
104
- careamics/lightning/predict_data_module.py,sha256=JNwujK6QwObSx6P25ghpGl2f2gGT3KVgYMTlonZzH20,12745
105
- careamics/lightning/train_data_module.py,sha256=HyXeDZ_u3JLzyh1tqRBIH93spMj0iQhAP4nmHPEI4aM,26554
121
+ careamics/lightning/lightning_module.py,sha256=C7BylX4uMok7q_ioAsptrWpFt-INIxaLjLFOjz0usSw,24384
122
+ careamics/lightning/predict_data_module.py,sha256=Ve_ADYLo67yoFlY-04xofkt8KvbJXKIkviF_9bZ3fVc,12772
123
+ careamics/lightning/train_data_module.py,sha256=A4nVrL5tXQTCeeXlGD_oGlAMPEWryykVKElnSmDhmjQ,26581
106
124
  careamics/lightning/callbacks/__init__.py,sha256=eA5ltzYNzuO0uMEr1jG4wP01b0s29s5I03WGJ290qkw,312
107
125
  careamics/lightning/callbacks/hyperparameters_callback.py,sha256=u45knOZHwoVHz6yYfrnERQuozT_SfZ1OrKP0QjeU4EM,1495
108
126
  careamics/lightning/callbacks/progress_bar_callback.py,sha256=w-j_nk2ysyc4THKfwWbpkiKGeqNUpLGtm-8dYBgla2c,2443
@@ -111,8 +129,14 @@ careamics/lightning/callbacks/prediction_writer_callback/file_path_utils.py,sha2
111
129
  careamics/lightning/callbacks/prediction_writer_callback/prediction_writer_callback.py,sha256=8HHUSKcG7G0FSCVPnpGQHLfpara5mnKAwsiiyWp2wzo,8210
112
130
  careamics/lightning/callbacks/prediction_writer_callback/write_strategy.py,sha256=lxsLjLskRpYnzdyWCdOICUJxF9YzuUi1RH0LJnOCVgo,12594
113
131
  careamics/lightning/callbacks/prediction_writer_callback/write_strategy_factory.py,sha256=F1IpbNNgkv5eK8Xpqp7wqv2lsqEdP1wMRlBL7RBn93U,7114
132
+ careamics/lightning/dataset_ng/__init__.py,sha256=5913hBQ5FRn4K-zzPtrqh-2zN4iie9bD-KXm0-_FNXY,49
133
+ careamics/lightning/dataset_ng/data_module.py,sha256=acRjHcJSUEb9Unmc6n_BvyBOwMEnCaHr8wl0UH52wQU,26365
134
+ careamics/lightning/dataset_ng/lightning_modules/__init__.py,sha256=Kx7NkwAS9rqfozxamMWcJa3U8zw47HT5T8R1E0Uk8Rc,164
135
+ careamics/lightning/dataset_ng/lightning_modules/care_module.py,sha256=Mc72uucp8DOObIfK05-LvzFVbXcBQ5IZ7vDUeYoMt1Q,3145
136
+ careamics/lightning/dataset_ng/lightning_modules/n2v_module.py,sha256=DD9JkNDD-nbBNDjmUP-PWTr_sbNaYb8_TKXpUC6FB5Q,3355
137
+ careamics/lightning/dataset_ng/lightning_modules/unet_module.py,sha256=aGN_xZptJ1fxK3J39YLoF_E4UDYNJGeYJETQKVgxRwU,6868
114
138
  careamics/losses/__init__.py,sha256=nSWbkBcFhkyUkIT2wVcULqpieyY2Oro39NXZTtfQpXo,351
115
- careamics/losses/loss_factory.py,sha256=oPacrkwiabsmiW_r--IxX-XPRbzezZUvOuWKbUw5LiI,1518
139
+ careamics/losses/loss_factory.py,sha256=IVcvSWLnbMuoLG_4SmZ4s_hfinB-olu44PL9lhDEGEM,1545
116
140
  careamics/losses/fcn/__init__.py,sha256=kf92MKFGHr6upiztZVgWwtGPf734DZyub92Rn8uEq8o,18
117
141
  careamics/losses/fcn/losses.py,sha256=KuoXqL24QbTxDdRmQJbERC95x0f3u4T0S77dqBZRarQ,2513
118
142
  careamics/losses/lvae/__init__.py,sha256=0FNtMLHrOMfagtWkaBdz1NTjyf2y0QLgysxJv5jq5uw,19
@@ -120,33 +144,35 @@ careamics/losses/lvae/loss_utils.py,sha256=QxzA2N1TglR4H0X0uyTWWytDagE1lA9IB_TK1
120
144
  careamics/losses/lvae/losses.py,sha256=wHT1dx04BZ_OI-_S7cFQ5hFmMetm6FSnuZfwZBBtIpY,17977
121
145
  careamics/lvae_training/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
122
146
  careamics/lvae_training/calibration.py,sha256=xHbiLcY2csYos3s7rRSqp7P7G-9wzULcSo1JfVzfIjE,7239
123
- careamics/lvae_training/eval_utils.py,sha256=FxZmmT6vMRluLYnnCEQtLcz5Q45OAqmxXbQo6KPbQEk,30372
147
+ careamics/lvae_training/eval_utils.py,sha256=PWKlG2XrvdfZTG0_brcADaAA0owTeNRT1g673gYtk5k,34410
124
148
  careamics/lvae_training/get_config.py,sha256=dwVfaQS7nzjQss0E1gGLUpQpjPcOWwLgIhbu3Z0I1rg,3068
125
149
  careamics/lvae_training/lightning_module.py,sha256=ryr7iHqCMzCl5esi6_gEcnKFDQkMrw0EXK9Zfgv1Nek,27186
126
150
  careamics/lvae_training/metrics.py,sha256=KTDAKhe3vh-YxzGibjtkIG2nnUyujbnwqX4xGwaRXwE,6718
127
151
  careamics/lvae_training/train_lvae.py,sha256=lJEBlBGdISVkZBcEnPNRYgJ7VbapYzZHRaFOrZ0xYGE,11080
128
152
  careamics/lvae_training/train_utils.py,sha256=e-d4QsF-li8MmAPkAmB1daHpkuU16nBTnQFZYqpTjn4,3567
129
- careamics/lvae_training/dataset/__init__.py,sha256=dvdHHaRA9ZfOt_uOnXkYyra2_b0Wsxs8qmrze6zxJAE,377
130
- careamics/lvae_training/dataset/config.py,sha256=hGIggj5uOZrFBK54o9vii0sG5WGhF_E32URKIIzQMec,4342
153
+ careamics/lvae_training/dataset/__init__.py,sha256=TcsPOoeYXWZh2mTEOodYf4u5dd12TzzkxAaxLzBrMyA,538
154
+ careamics/lvae_training/dataset/config.py,sha256=upMx0NvYtKBi0SHH6WHMfVDzwLzgIk3Nw7z5vRoEvj0,4392
131
155
  careamics/lvae_training/dataset/lc_dataset.py,sha256=r4PffRXzuTJ0tLWei4B3wq6f1Q34raaZQzZ0IQXi8OI,10762
132
- careamics/lvae_training/dataset/multich_dataset.py,sha256=5yMC6bgEIYHBsjFj5gXlc68xJQz8A05TYbYfOo-TdUQ,41672
156
+ careamics/lvae_training/dataset/ms_dataset_ref.py,sha256=uyyz9RjiV3iszQAmavhLhU6PT2B_n6pch3F22ZS4M0o,40892
157
+ careamics/lvae_training/dataset/multich_dataset.py,sha256=kw2gFZPDEp6WdsJwjQ-2EFvxZHe-HI83FhI4C5k39b4,42593
158
+ careamics/lvae_training/dataset/multicrop_dset.py,sha256=1h5fREkDNxKGBO1vb4d9W_UVMOA105uBTrN6_J-jUs0,6418
133
159
  careamics/lvae_training/dataset/multifile_dataset.py,sha256=hJBs6iBrf_FcyUYzg8rDjvKEICHxDYyXVOj-5L0F6FE,10273
134
- careamics/lvae_training/dataset/types.py,sha256=SQ99hV9R3iwrRLJs-aRkL3OlmrWWkCrca2JqkntoWZs,633
160
+ careamics/lvae_training/dataset/types.py,sha256=7uCrbL_FQeQfAPz-mHnqHKpZC1x4sdvq9wswmBvOPO0,616
135
161
  careamics/lvae_training/dataset/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
136
162
  careamics/lvae_training/dataset/utils/data_utils.py,sha256=8PvRPqSbYHPCl87cycZHxXIFOT_EoBV-8XCt3ZLh36s,3125
137
163
  careamics/lvae_training/dataset/utils/empty_patch_fetcher.py,sha256=OFjeqhZ6vFULJsF5tnoByhEhE8aLHujFToU_yyqMCP4,2266
138
- careamics/lvae_training/dataset/utils/index_manager.py,sha256=Gt1I-7lBaQDBgqguOmofAFDdAsJQfz7ktvq4_I80F9c,10084
164
+ careamics/lvae_training/dataset/utils/index_manager.py,sha256=rihMe5zOfXvPFvM_2paP0EzK4WhaG6RhRFLy8TxnNas,21654
139
165
  careamics/lvae_training/dataset/utils/index_switcher.py,sha256=ZoMi8LsaIkm8MFqIFaxN4oQGyzCcwOlCom8SYNus15E,6716
140
166
  careamics/model_io/__init__.py,sha256=khMIkk107LL5JGze0OVfl5Lfi14R3_e4W21tW0iJ1kE,155
141
- careamics/model_io/bmz_io.py,sha256=XQvRUxM4keEiYlnWNTZUxeLgLl3_c-_drOZcH4mjEDo,7801
142
- careamics/model_io/model_io_utils.py,sha256=ZSBO1MEFBh--GwUqmK1iW7Vf57MgdQtxmucNBdXkHBw,2748
167
+ careamics/model_io/bmz_io.py,sha256=fWuBXKbz2gNQZmZIV7m7M_qF80rQMCR7E448ALIuosU,7802
168
+ careamics/model_io/model_io_utils.py,sha256=mA8y5ZJ2r5vqA3OCgJqB1wxvCCx37x8Yl7nj1zi3_3U,2750
143
169
  careamics/model_io/bioimage/__init__.py,sha256=dKm-UluVwa_7EHQB0ukx-Qk8JVWtuT-OUinY8hE9EIw,298
144
170
  careamics/model_io/bioimage/_readme_factory.py,sha256=sRfHbuwhfYmpwsG0keXFCSK3qCS4VI4GQhX6OhSKLjY,3440
145
- careamics/model_io/bioimage/bioimage_utils.py,sha256=aX0rZny3OPaZZGGE-5Y3qXgnOAhyAQOtN15Ri0EVMTk,1297
171
+ careamics/model_io/bioimage/bioimage_utils.py,sha256=VaDF0XCCcvhvqqNXLIWQI-uny45uPstKyw8e0KdjY1A,1297
146
172
  careamics/model_io/bioimage/cover_factory.py,sha256=8URrpEfJvdHBJeSrh5H2IQHSUybsTyAOR3_A-YYAAlw,4583
147
- careamics/model_io/bioimage/model_description.py,sha256=caC9O0xyXEIMyCHW5j37HMX4IhMtNk0QWCF05VdPCQE,10050
173
+ careamics/model_io/bioimage/model_description.py,sha256=4cgbSBnRUwOJDnhk7sds_gooB_HlbHWGSZdhR7vP8NQ,10064
148
174
  careamics/models/__init__.py,sha256=Xui2BLJd1I2r_E3Sj24fJALFTi2FGtfNscUWj_0c9Hk,93
149
- careamics/models/activation.py,sha256=nu3sDgd7Lsyw8rvmUwxNN-7SM09cEMfxZ9DRDzdSKns,1049
175
+ careamics/models/activation.py,sha256=vvoOOuJk_3x8_LsAXl2Utz0r8uRMozFIwgw5GRi0wso,1076
150
176
  careamics/models/layers.py,sha256=tpsxbolRWYycZGxS3hKlDRtMf6HpNdZs98uwx5K8lls,13757
151
177
  careamics/models/model_factory.py,sha256=GWbouERvEfHj_BrpKHYgrPAj8dpdoh1R-X--Jt09N1Q,1370
152
178
  careamics/models/unet.py,sha256=9m8GxsTXX9c0mC-eVe2ZXQn2afose1CG6Z8vIhELb7I,14308
@@ -160,15 +186,15 @@ careamics/models/lvae/utils.py,sha256=EE3paHu3vhCaqfOrGypzUsImZJO94uBhx8q6kZ-R36
160
186
  careamics/prediction_utils/__init__.py,sha256=k5hsPGY8FOkwIT0fQgrUz7fVCH2NlwuOdZiISdXjEWg,270
161
187
  careamics/prediction_utils/lvae_prediction.py,sha256=ZwPFCSeUGsULIMoMQWRYKHfLFaDm7UKyGaUMVfSUqfs,6210
162
188
  careamics/prediction_utils/lvae_tiling_manager.py,sha256=SI-JaJvLrKWBSHdm-FjcqWdbhlcflTRiKxYF7CSGzvA,13736
163
- careamics/prediction_utils/prediction_outputs.py,sha256=fw-bJ2szWJD7BgZlECmxy5sgeXGFJl4T8cRNzLR1aUQ,4069
164
- careamics/prediction_utils/stitch_prediction.py,sha256=8YRW2rea-is5tYI0Q1bw3bpX7VMFmbpxSP_y6x9Yfug,3893
189
+ careamics/prediction_utils/prediction_outputs.py,sha256=-rjI6pWEy_29nljG9sLGdI-7VaBH4ZBvJQOxB5UAOi4,4070
190
+ careamics/prediction_utils/stitch_prediction.py,sha256=zWpfUPdJWKoJwHDcOjVyDek2YXmfQb3gHDWrkAb5E_I,3907
165
191
  careamics/transforms/__init__.py,sha256=n7D3SbcVSRaMOl5F5Rozo2_lY8dn0DH28ywYIdbXxBo,561
166
- careamics/transforms/compose.py,sha256=QMCuqp0C5mJ5N6xh3ISKY7HfjfKp6NqDwQiKXoxEjug,5326
192
+ careamics/transforms/compose.py,sha256=ETnI_Z4ZfBWNA12D-KEtr_P8wKeyBQVHvostGG2f_SI,5395
167
193
  careamics/transforms/n2v_manipulate.py,sha256=t9rtMbYV6P1IVp4yzuJfq5-giWyfGrxL8ZhzP29Pp8k,5686
168
- careamics/transforms/n2v_manipulate_torch.py,sha256=Lxi94cbE0aEZ1fFD0m4T7VDrDSt3cbHPdYISa8XYemw,4830
169
- careamics/transforms/normalize.py,sha256=fxs813ydCWrIzrxFzkbk1gW8OGSr0esQSrNUFSJuGL0,7715
194
+ careamics/transforms/n2v_manipulate_torch.py,sha256=eOSM5Xp7Hm6xrzjlInOMGzdmWhAxRURD1ePTQdIdu7c,5133
195
+ careamics/transforms/normalize.py,sha256=sVa6uiI2vB1CZJBdgJ6KOlujRmsOQ72YXnhPuQ1QGuE,8314
170
196
  careamics/transforms/pixel_manipulation.py,sha256=WSx2sqcZ2wUkm6qPi4pG3Ai0sE8ONPOpYLSvkW5M3bY,13393
171
- careamics/transforms/pixel_manipulation_torch.py,sha256=W2sTQrM00TwmcoFf1bcYapAwE66pKIVVeAtBIW6ovK4,14343
197
+ careamics/transforms/pixel_manipulation_torch.py,sha256=4QhG9ZsITVRKdA_Po6ikw6YGWltNIwP2dAOZClbHRX4,13936
172
198
  careamics/transforms/struct_mask_parameters.py,sha256=jE29Li9sx3olaRnqYfJsSlKi2t0WQzJmCm9aCbIQEsA,421
173
199
  careamics/transforms/transform.py,sha256=cEqc4ci8na70i-HIGYC7udRfVa8D_8OjdRVrr3txLvQ,464
174
200
  careamics/transforms/tta.py,sha256=78S7Df9rLHmEVSQSI1qDcRrRJGauyG3oaIrXkckCkmw,2335
@@ -178,18 +204,18 @@ careamics/utils/__init__.py,sha256=mLwBQ7wTL2EwDwL3NcX53EHPNklojU45Jcc728y4EWQ,4
178
204
  careamics/utils/autocorrelation.py,sha256=M_WYzrEOQngc5iSXWar4S3-EOnK6DfYHPC2vVMeu_Bs,945
179
205
  careamics/utils/base_enum.py,sha256=bz1D8mDx5V5hdnJ3WAzJXWHJTbgwAky5FprUt9F5cMA,1387
180
206
  careamics/utils/context.py,sha256=SoTZfzG6fO4SDOGHOTL2Xlm1n1CSgb9B57GVhrEkFls,1436
181
- careamics/utils/lightning_utils.py,sha256=DMMmqx-AlNtddBCqm8b_W3h09qUetz32OMPhdDieFwg,1769
207
+ careamics/utils/lightning_utils.py,sha256=vAdcRMu0JzXwhdsf8l4eG4daNi1ZtG8D1-u764x2_ho,2067
182
208
  careamics/utils/logging.py,sha256=5U4VsQ4m4OajtirLH6qUjrM1CAc-oXeCsd6JyROjkWE,10337
183
- careamics/utils/metrics.py,sha256=i9TQNzVF6lUL9c6OwRZFFDhelZfinkEDpWSCKeduscc,10853
209
+ careamics/utils/metrics.py,sha256=dO_46tWuu__F2whndeTFr1zmMYwGY63SOLNVxVu0nos,10880
184
210
  careamics/utils/path_utils.py,sha256=8AugiG5DOmzgSnTCJI8vypXaPE0XhnR-9pzeiFUZ-0I,554
185
211
  careamics/utils/plotting.py,sha256=cea1GQB932j2UA3IQZnh-0EenQdnjzPOFoGoFKJ4how,2518
186
212
  careamics/utils/ram.py,sha256=tksyn8dVX_iJXmrDZDGub32hFZWIaNxnMheO5G1p43I,244
187
213
  careamics/utils/receptive_field.py,sha256=Y2h4c8S6glX3qcx5KHDmO17Kkuyey9voxfoXyqcAfiM,3296
188
214
  careamics/utils/serializers.py,sha256=mILUhz75IMpGKnEzcYu9hlOPG8YIiIW09fk6eZM7Y8k,1427
189
- careamics/utils/torch_utils.py,sha256=_Cf3HdlIRl5hxfpUg9aofCSlcW7GSsIJxsbSORXko0U,3010
215
+ careamics/utils/torch_utils.py,sha256=IUTxKIqYpUTvN-UDZDGBheF7zgtskH_yDcVvYx0p8zI,3478
190
216
  careamics/utils/version.py,sha256=WKtMlrNmXymJqzMfguBX558D6tb6aoAZfbABRh_ViIs,1142
191
- careamics-0.0.11.dist-info/METADATA,sha256=AKeMVWNP52xha3axDHE2j_y5wn5OroRFbxvQB1GVUVY,3917
192
- careamics-0.0.11.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
193
- careamics-0.0.11.dist-info/entry_points.txt,sha256=2fSNVXJWDJgFLATVj7MkjFNvpl53amG8tUzC3jf7G1s,53
194
- careamics-0.0.11.dist-info/licenses/LICENSE,sha256=6zdNW-k_xHRKYWUf9tDI_ZplUciFHyj0g16DYuZ2udw,1509
195
- careamics-0.0.11.dist-info/RECORD,,
217
+ careamics-0.0.13.dist-info/METADATA,sha256=ryCa_q8gC_8BRa4U8KjKZFItYjzL3MQhOnZXiwgzzgI,3940
218
+ careamics-0.0.13.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
219
+ careamics-0.0.13.dist-info/entry_points.txt,sha256=2fSNVXJWDJgFLATVj7MkjFNvpl53amG8tUzC3jf7G1s,53
220
+ careamics-0.0.13.dist-info/licenses/LICENSE,sha256=6zdNW-k_xHRKYWUf9tDI_ZplUciFHyj0g16DYuZ2udw,1509
221
+ careamics-0.0.13.dist-info/RECORD,,
@@ -1,3 +0,0 @@
1
- __all__ = ["CareamicsDataset"]
2
-
3
- from .dataset import CareamicsDataset
@@ -1,184 +0,0 @@
1
- from collections.abc import Sequence
2
- from enum import Enum
3
- from pathlib import Path
4
- from typing import Literal, NamedTuple, Optional, Union
5
-
6
- import numpy as np
7
- from numpy.typing import NDArray
8
- from torch.utils.data import Dataset
9
- from typing_extensions import ParamSpec
10
-
11
- from careamics.config import DataConfig, InferenceConfig
12
- from careamics.config.support import SupportedData
13
- from careamics.dataset.patching.patching import Stats
14
- from careamics.dataset_ng.patch_extractor import (
15
- ImageStackLoader,
16
- PatchExtractor,
17
- create_patch_extractor,
18
- )
19
- from careamics.dataset_ng.patching_strategies import (
20
- FixedRandomPatchingStrategy,
21
- PatchingStrategy,
22
- PatchSpecs,
23
- RandomPatchingStrategy,
24
- )
25
- from careamics.transforms import Compose
26
-
27
- P = ParamSpec("P")
28
-
29
-
30
- class Mode(str, Enum):
31
- TRAINING = "training"
32
- VALIDATING = "validating"
33
- PREDICTING = "predicting"
34
-
35
-
36
- class ImageRegionData(NamedTuple):
37
- data: NDArray
38
- source: Union[Path, Literal["array"]]
39
- data_shape: Sequence[int]
40
- dtype: str # dtype should be str for collate
41
- axes: str
42
- region_spec: PatchSpecs
43
-
44
-
45
- InputType = Union[Sequence[np.ndarray], Sequence[Path]]
46
-
47
-
48
- class CareamicsDataset(Dataset):
49
- def __init__(
50
- self,
51
- data_config: Union[DataConfig, InferenceConfig],
52
- mode: Mode,
53
- inputs: InputType,
54
- targets: Optional[InputType] = None,
55
- image_stack_loader: Optional[ImageStackLoader[P]] = None,
56
- *args: P.args,
57
- **kwargs: P.kwargs,
58
- ):
59
- self.config = data_config
60
- self.mode = mode
61
-
62
- data_type_enum = SupportedData(self.config.data_type)
63
- self.input_extractor = create_patch_extractor(
64
- inputs,
65
- self.config.axes,
66
- data_type_enum,
67
- image_stack_loader,
68
- *args,
69
- **kwargs,
70
- )
71
- if targets is not None:
72
- self.target_extractor: Optional[PatchExtractor] = create_patch_extractor(
73
- targets,
74
- self.config.axes,
75
- data_type_enum,
76
- image_stack_loader,
77
- *args,
78
- **kwargs,
79
- )
80
- else:
81
- self.target_extractor = None
82
-
83
- self.patching_strategy = self._initialize_patching_strategy()
84
-
85
- self.input_stats, self.target_stats = self._initialize_statistics()
86
-
87
- self.transforms = self._initialize_transforms()
88
-
89
- def _initialize_patching_strategy(self) -> PatchingStrategy:
90
- patching_strategy: PatchingStrategy
91
- if self.mode == Mode.TRAINING:
92
- if isinstance(self.config, InferenceConfig):
93
- raise ValueError("Inference config cannot be used for training.")
94
- patching_strategy = RandomPatchingStrategy(
95
- data_shapes=self.input_extractor.shape,
96
- patch_size=self.config.patch_size,
97
- # TODO: Add random seed to dataconfig
98
- seed=getattr(self.config, "random_seed", None),
99
- )
100
- elif self.mode == Mode.VALIDATING:
101
- if isinstance(self.config, InferenceConfig):
102
- raise ValueError("Inference config cannot be used for validating.")
103
- patching_strategy = FixedRandomPatchingStrategy(
104
- data_shapes=self.input_extractor.shape,
105
- patch_size=self.config.patch_size,
106
- # TODO: Add random seed to dataconfig
107
- seed=getattr(self.config, "random_seed", None),
108
- )
109
- elif self.mode == Mode.PREDICTING:
110
- # TODO: patching strategy will be tilingStrategy in upcoming PR
111
- raise NotImplementedError(
112
- "Prediction mode for the CAREamicsDataset has not been implemented yet."
113
- )
114
- else:
115
- raise ValueError(f"Unrecognised dataset mode {self.mode}.")
116
-
117
- return patching_strategy
118
-
119
- def _initialize_transforms(self) -> Optional[Compose]:
120
- if isinstance(self.config, DataConfig):
121
- return Compose(
122
- transform_list=list(self.config.transforms),
123
- )
124
- # TODO: add TTA
125
- return None
126
-
127
- def _initialize_statistics(self) -> tuple[Stats, Optional[Stats]]:
128
- # TODO: add running stats
129
- # Currently assume that stats are provided in the configuration
130
- input_stats = Stats(self.config.image_means, self.config.image_stds)
131
- target_stats = None
132
- if isinstance(self.config, DataConfig):
133
- target_means = self.config.target_means
134
- target_stds = self.config.target_stds
135
- if target_means is not None and target_stds is not None:
136
- target_stats = Stats(target_means, target_stds)
137
- return input_stats, target_stats
138
-
139
- def __len__(self):
140
- return self.patching_strategy.n_patches
141
-
142
- def _create_image_region(
143
- self, patch: np.ndarray, patch_spec: PatchSpecs, extractor: PatchExtractor
144
- ) -> ImageRegionData:
145
- data_idx = patch_spec["data_idx"]
146
- return ImageRegionData(
147
- data=patch,
148
- source=extractor.image_stacks[data_idx].source,
149
- dtype=str(extractor.image_stacks[data_idx].data_dtype),
150
- data_shape=extractor.image_stacks[data_idx].data_shape,
151
- # TODO: should it be axes of the original image instead?
152
- axes=self.config.axes,
153
- region_spec=patch_spec,
154
- )
155
-
156
- def __getitem__(
157
- self, index: int
158
- ) -> tuple[ImageRegionData, Optional[ImageRegionData]]:
159
- patch_spec = self.patching_strategy.get_patch_spec(index)
160
- input_patch = self.input_extractor.extract_patch(**patch_spec)
161
-
162
- target_patch = (
163
- self.target_extractor.extract_patch(**patch_spec)
164
- if self.target_extractor is not None
165
- else None
166
- )
167
-
168
- if self.transforms is not None:
169
- input_patch, target_patch = self.transforms(input_patch, target_patch)
170
-
171
- input_data = self._create_image_region(
172
- patch=input_patch, patch_spec=patch_spec, extractor=self.input_extractor
173
- )
174
-
175
- if target_patch is not None and self.target_extractor is not None:
176
- target_data = self._create_image_region(
177
- patch=target_patch,
178
- patch_spec=patch_spec,
179
- extractor=self.target_extractor,
180
- )
181
- else:
182
- target_data = None
183
-
184
- return input_data, target_data
@@ -1,37 +0,0 @@
1
- # %%
2
- import numpy as np
3
-
4
- from careamics.config import create_n2n_configuration
5
- from careamics.config.support import SupportedData
6
- from careamics.dataset_ng.patch_extractor.patch_extractor_factory import (
7
- create_patch_extractors,
8
- )
9
-
10
- rng = np.random.default_rng()
11
-
12
- # %%
13
- # define example data
14
- array1 = np.arange(36).reshape(1, 6, 6)
15
- array2 = np.arange(50).reshape(2, 5, 5)
16
- target1 = rng.integers(0, 1, size=array1.shape, endpoint=True)
17
- target2 = rng.integers(0, 1, size=array2.shape, endpoint=True)
18
-
19
- # %%
20
- config = create_n2n_configuration(
21
- "test_exp",
22
- data_type="array",
23
- axes="SYX",
24
- patch_size=[8, 8],
25
- batch_size=1,
26
- num_epochs=1,
27
- )
28
- data_config = config.data_config
29
-
30
- # %%
31
- data_type = SupportedData(data_config.data_type)
32
- train_inputs, train_targets = create_patch_extractors(
33
- [array1, array2], [target1, target2], axes=data_config.axes, data_type=data_type
34
- )
35
-
36
- # %%
37
- train_inputs.extract_patch(data_idx=0, sample_idx=0, coords=(2, 2), patch_size=(3, 3))