canns 0.13.1__py3-none-any.whl → 0.14.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- canns/analyzer/data/__init__.py +5 -1
- canns/analyzer/data/asa/__init__.py +27 -12
- canns/analyzer/data/asa/cohospace.py +336 -10
- canns/analyzer/data/asa/config.py +3 -0
- canns/analyzer/data/asa/embedding.py +48 -45
- canns/analyzer/data/asa/path.py +104 -2
- canns/analyzer/data/asa/plotting.py +88 -19
- canns/analyzer/data/asa/tda.py +11 -4
- canns/analyzer/data/cell_classification/__init__.py +97 -0
- canns/analyzer/data/cell_classification/core/__init__.py +26 -0
- canns/analyzer/data/cell_classification/core/grid_cells.py +633 -0
- canns/analyzer/data/cell_classification/core/grid_modules_leiden.py +288 -0
- canns/analyzer/data/cell_classification/core/head_direction.py +347 -0
- canns/analyzer/data/cell_classification/core/spatial_analysis.py +431 -0
- canns/analyzer/data/cell_classification/io/__init__.py +5 -0
- canns/analyzer/data/cell_classification/io/matlab_loader.py +417 -0
- canns/analyzer/data/cell_classification/utils/__init__.py +39 -0
- canns/analyzer/data/cell_classification/utils/circular_stats.py +383 -0
- canns/analyzer/data/cell_classification/utils/correlation.py +318 -0
- canns/analyzer/data/cell_classification/utils/geometry.py +442 -0
- canns/analyzer/data/cell_classification/utils/image_processing.py +416 -0
- canns/analyzer/data/cell_classification/visualization/__init__.py +19 -0
- canns/analyzer/data/cell_classification/visualization/grid_plots.py +292 -0
- canns/analyzer/data/cell_classification/visualization/hd_plots.py +200 -0
- canns/analyzer/metrics/__init__.py +2 -1
- canns/analyzer/visualization/core/config.py +46 -4
- canns/data/__init__.py +6 -1
- canns/data/datasets.py +154 -1
- canns/data/loaders.py +37 -0
- canns/pipeline/__init__.py +13 -9
- canns/pipeline/__main__.py +6 -0
- canns/pipeline/asa/runner.py +105 -41
- canns/pipeline/asa_gui/__init__.py +68 -0
- canns/pipeline/asa_gui/__main__.py +6 -0
- canns/pipeline/asa_gui/analysis_modes/__init__.py +42 -0
- canns/pipeline/asa_gui/analysis_modes/base.py +39 -0
- canns/pipeline/asa_gui/analysis_modes/batch_mode.py +21 -0
- canns/pipeline/asa_gui/analysis_modes/cohomap_mode.py +56 -0
- canns/pipeline/asa_gui/analysis_modes/cohospace_mode.py +194 -0
- canns/pipeline/asa_gui/analysis_modes/decode_mode.py +52 -0
- canns/pipeline/asa_gui/analysis_modes/fr_mode.py +81 -0
- canns/pipeline/asa_gui/analysis_modes/frm_mode.py +92 -0
- canns/pipeline/asa_gui/analysis_modes/gridscore_mode.py +123 -0
- canns/pipeline/asa_gui/analysis_modes/pathcompare_mode.py +199 -0
- canns/pipeline/asa_gui/analysis_modes/tda_mode.py +112 -0
- canns/pipeline/asa_gui/app.py +29 -0
- canns/pipeline/asa_gui/controllers/__init__.py +6 -0
- canns/pipeline/asa_gui/controllers/analysis_controller.py +59 -0
- canns/pipeline/asa_gui/controllers/preprocess_controller.py +89 -0
- canns/pipeline/asa_gui/core/__init__.py +15 -0
- canns/pipeline/asa_gui/core/cache.py +14 -0
- canns/pipeline/asa_gui/core/runner.py +1936 -0
- canns/pipeline/asa_gui/core/state.py +324 -0
- canns/pipeline/asa_gui/core/worker.py +260 -0
- canns/pipeline/asa_gui/main_window.py +184 -0
- canns/pipeline/asa_gui/models/__init__.py +7 -0
- canns/pipeline/asa_gui/models/config.py +14 -0
- canns/pipeline/asa_gui/models/job.py +31 -0
- canns/pipeline/asa_gui/models/presets.py +21 -0
- canns/pipeline/asa_gui/resources/__init__.py +16 -0
- canns/pipeline/asa_gui/resources/dark.qss +167 -0
- canns/pipeline/asa_gui/resources/light.qss +163 -0
- canns/pipeline/asa_gui/resources/styles.qss +130 -0
- canns/pipeline/asa_gui/utils/__init__.py +1 -0
- canns/pipeline/asa_gui/utils/formatters.py +15 -0
- canns/pipeline/asa_gui/utils/io_adapters.py +40 -0
- canns/pipeline/asa_gui/utils/validators.py +41 -0
- canns/pipeline/asa_gui/views/__init__.py +1 -0
- canns/pipeline/asa_gui/views/help_content.py +171 -0
- canns/pipeline/asa_gui/views/pages/__init__.py +6 -0
- canns/pipeline/asa_gui/views/pages/analysis_page.py +565 -0
- canns/pipeline/asa_gui/views/pages/preprocess_page.py +492 -0
- canns/pipeline/asa_gui/views/panels/__init__.py +1 -0
- canns/pipeline/asa_gui/views/widgets/__init__.py +21 -0
- canns/pipeline/asa_gui/views/widgets/artifacts_tab.py +44 -0
- canns/pipeline/asa_gui/views/widgets/drop_zone.py +80 -0
- canns/pipeline/asa_gui/views/widgets/file_list.py +27 -0
- canns/pipeline/asa_gui/views/widgets/gridscore_tab.py +308 -0
- canns/pipeline/asa_gui/views/widgets/help_dialog.py +27 -0
- canns/pipeline/asa_gui/views/widgets/image_tab.py +50 -0
- canns/pipeline/asa_gui/views/widgets/image_viewer.py +97 -0
- canns/pipeline/asa_gui/views/widgets/log_box.py +16 -0
- canns/pipeline/asa_gui/views/widgets/pathcompare_tab.py +200 -0
- canns/pipeline/asa_gui/views/widgets/popup_combo.py +25 -0
- canns/pipeline/gallery/__init__.py +15 -5
- canns/pipeline/gallery/__main__.py +11 -0
- canns/pipeline/gallery/app.py +705 -0
- canns/pipeline/gallery/runner.py +790 -0
- canns/pipeline/gallery/state.py +51 -0
- canns/pipeline/gallery/styles.tcss +123 -0
- canns/pipeline/launcher.py +81 -0
- {canns-0.13.1.dist-info → canns-0.14.0.dist-info}/METADATA +11 -1
- canns-0.14.0.dist-info/RECORD +163 -0
- canns-0.14.0.dist-info/entry_points.txt +5 -0
- canns/pipeline/_base.py +0 -50
- canns-0.13.1.dist-info/RECORD +0 -89
- canns-0.13.1.dist-info/entry_points.txt +0 -3
- {canns-0.13.1.dist-info → canns-0.14.0.dist-info}/WHEEL +0 -0
- {canns-0.13.1.dist-info → canns-0.14.0.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,790 @@
|
|
|
1
|
+
"""Execution helpers for the model gallery TUI."""
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import multiprocessing as mp
|
|
6
|
+
import sys
|
|
7
|
+
import time
|
|
8
|
+
import traceback
|
|
9
|
+
from collections.abc import Callable
|
|
10
|
+
from dataclasses import dataclass
|
|
11
|
+
from pathlib import Path
|
|
12
|
+
from typing import Any
|
|
13
|
+
|
|
14
|
+
import brainpy.math as bm
|
|
15
|
+
import matplotlib
|
|
16
|
+
import matplotlib.pyplot as plt
|
|
17
|
+
import numpy as np
|
|
18
|
+
|
|
19
|
+
from canns.analyzer.metrics.spatial_metrics import compute_firing_field, gaussian_smooth_heatmaps
|
|
20
|
+
from canns.analyzer.visualization import (
|
|
21
|
+
PlotConfigs,
|
|
22
|
+
energy_landscape_1d_static,
|
|
23
|
+
energy_landscape_2d_static,
|
|
24
|
+
plot_firing_field_heatmap,
|
|
25
|
+
tuning_curve,
|
|
26
|
+
)
|
|
27
|
+
from canns.models.basic import CANN1D, CANN2D, GridCell2DVelocity
|
|
28
|
+
from canns.task.open_loop_navigation import OpenLoopNavigationTask
|
|
29
|
+
from canns.task.tracking import (
|
|
30
|
+
SmoothTracking1D,
|
|
31
|
+
SmoothTracking2D,
|
|
32
|
+
TemplateMatching1D,
|
|
33
|
+
TemplateMatching2D,
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
@dataclass
|
|
38
|
+
class GalleryResult:
|
|
39
|
+
"""Result from running a gallery analysis."""
|
|
40
|
+
|
|
41
|
+
success: bool
|
|
42
|
+
artifacts: dict[str, Path]
|
|
43
|
+
summary: str
|
|
44
|
+
error: str | None = None
|
|
45
|
+
elapsed_time: float = 0.0
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
class GalleryRunner:
|
|
49
|
+
"""Runner for gallery model analyses."""
|
|
50
|
+
|
|
51
|
+
def __init__(self) -> None:
|
|
52
|
+
self._mpl_ready = False
|
|
53
|
+
|
|
54
|
+
def _ensure_matplotlib_backend(self) -> None:
|
|
55
|
+
if self._mpl_ready:
|
|
56
|
+
return
|
|
57
|
+
matplotlib.use("Agg", force=True)
|
|
58
|
+
self._mpl_ready = True
|
|
59
|
+
|
|
60
|
+
def _ensure_multiprocessing(self) -> None:
|
|
61
|
+
"""Stabilize multiprocessing behavior on macOS within threads."""
|
|
62
|
+
if sys.platform == "darwin":
|
|
63
|
+
try:
|
|
64
|
+
mp.set_start_method("fork", force=True)
|
|
65
|
+
except RuntimeError:
|
|
66
|
+
pass
|
|
67
|
+
|
|
68
|
+
def _ensure_brainpy_environment(self) -> None:
|
|
69
|
+
"""Initialize BrainPy environment for worker threads."""
|
|
70
|
+
try:
|
|
71
|
+
import brainstate.environ as bs_env
|
|
72
|
+
from brainpy.math import defaults as bm_defaults
|
|
73
|
+
|
|
74
|
+
bm_defaults.setting()
|
|
75
|
+
bm.set_environment(
|
|
76
|
+
mode=bm.nonbatching_mode,
|
|
77
|
+
bp_object_as_pytree=False,
|
|
78
|
+
numpy_func_return="bp_array",
|
|
79
|
+
)
|
|
80
|
+
bs_env.set(
|
|
81
|
+
mode=bm.nonbatching_mode,
|
|
82
|
+
dt=bm.get_dt(),
|
|
83
|
+
bp_object_as_pytree=False,
|
|
84
|
+
numpy_func_return="bp_array",
|
|
85
|
+
)
|
|
86
|
+
except Exception:
|
|
87
|
+
pass
|
|
88
|
+
|
|
89
|
+
async def run(
|
|
90
|
+
self,
|
|
91
|
+
model: str,
|
|
92
|
+
analysis: str,
|
|
93
|
+
model_params: dict[str, Any],
|
|
94
|
+
analysis_params: dict[str, Any],
|
|
95
|
+
output_dir: Path,
|
|
96
|
+
log_callback: Callable[[str], None],
|
|
97
|
+
progress_callback: Callable[[int], None],
|
|
98
|
+
) -> GalleryResult:
|
|
99
|
+
start_time = time.time()
|
|
100
|
+
artifacts: dict[str, Path] = {}
|
|
101
|
+
|
|
102
|
+
try:
|
|
103
|
+
self._ensure_matplotlib_backend()
|
|
104
|
+
self._ensure_multiprocessing()
|
|
105
|
+
self._ensure_brainpy_environment()
|
|
106
|
+
output_dir.mkdir(parents=True, exist_ok=True)
|
|
107
|
+
|
|
108
|
+
log_callback(f"Running {model} / {analysis}...")
|
|
109
|
+
progress_callback(5)
|
|
110
|
+
|
|
111
|
+
if model == "cann1d":
|
|
112
|
+
output_path = self._run_cann1d(
|
|
113
|
+
analysis,
|
|
114
|
+
model_params,
|
|
115
|
+
analysis_params,
|
|
116
|
+
output_dir,
|
|
117
|
+
log_callback,
|
|
118
|
+
progress_callback,
|
|
119
|
+
)
|
|
120
|
+
elif model == "cann2d":
|
|
121
|
+
output_path = self._run_cann2d(
|
|
122
|
+
analysis,
|
|
123
|
+
model_params,
|
|
124
|
+
analysis_params,
|
|
125
|
+
output_dir,
|
|
126
|
+
log_callback,
|
|
127
|
+
progress_callback,
|
|
128
|
+
)
|
|
129
|
+
elif model == "gridcell":
|
|
130
|
+
output_path = self._run_gridcell(
|
|
131
|
+
analysis,
|
|
132
|
+
model_params,
|
|
133
|
+
analysis_params,
|
|
134
|
+
output_dir,
|
|
135
|
+
log_callback,
|
|
136
|
+
progress_callback,
|
|
137
|
+
)
|
|
138
|
+
else:
|
|
139
|
+
raise ValueError(f"Unknown model: {model}")
|
|
140
|
+
|
|
141
|
+
artifacts["output"] = output_path
|
|
142
|
+
elapsed = time.time() - start_time
|
|
143
|
+
progress_callback(100)
|
|
144
|
+
return GalleryResult(
|
|
145
|
+
success=True,
|
|
146
|
+
artifacts=artifacts,
|
|
147
|
+
summary=f"Completed in {elapsed:.1f}s",
|
|
148
|
+
elapsed_time=elapsed,
|
|
149
|
+
)
|
|
150
|
+
except Exception as exc:
|
|
151
|
+
elapsed = time.time() - start_time
|
|
152
|
+
log_callback(f"Error: {exc}")
|
|
153
|
+
log_callback(traceback.format_exc())
|
|
154
|
+
return GalleryResult(
|
|
155
|
+
success=False,
|
|
156
|
+
artifacts=artifacts,
|
|
157
|
+
summary=f"Failed after {elapsed:.1f}s",
|
|
158
|
+
error=str(exc),
|
|
159
|
+
elapsed_time=elapsed,
|
|
160
|
+
)
|
|
161
|
+
|
|
162
|
+
def _run_cann1d(
|
|
163
|
+
self,
|
|
164
|
+
analysis: str,
|
|
165
|
+
model_params: dict[str, Any],
|
|
166
|
+
analysis_params: dict[str, Any],
|
|
167
|
+
output_dir: Path,
|
|
168
|
+
log_callback: Callable[[str], None],
|
|
169
|
+
progress_callback: Callable[[int], None],
|
|
170
|
+
) -> Path:
|
|
171
|
+
seed = model_params["seed"]
|
|
172
|
+
np.random.seed(seed)
|
|
173
|
+
bm.random.seed(seed)
|
|
174
|
+
bm.set_dt(model_params["dt"])
|
|
175
|
+
|
|
176
|
+
model = CANN1D(
|
|
177
|
+
num=model_params["num"],
|
|
178
|
+
tau=model_params["tau"],
|
|
179
|
+
k=model_params["k"],
|
|
180
|
+
a=model_params["a"],
|
|
181
|
+
A=model_params["A"],
|
|
182
|
+
J0=model_params["J0"],
|
|
183
|
+
)
|
|
184
|
+
|
|
185
|
+
output_path = output_dir / f"cann1d_{analysis}_seed{seed}.png"
|
|
186
|
+
|
|
187
|
+
if analysis == "connectivity":
|
|
188
|
+
log_callback("Rendering connectivity matrix...")
|
|
189
|
+
progress_callback(30)
|
|
190
|
+
self._plot_connectivity(model.conn_mat, output_path, title="CANN1D Connectivity")
|
|
191
|
+
return output_path
|
|
192
|
+
|
|
193
|
+
if analysis == "energy":
|
|
194
|
+
log_callback("Simulating energy landscape...")
|
|
195
|
+
task = TemplateMatching1D(
|
|
196
|
+
model,
|
|
197
|
+
Iext=analysis_params["energy_pos"],
|
|
198
|
+
duration=analysis_params["energy_duration"],
|
|
199
|
+
time_step=model_params["dt"],
|
|
200
|
+
)
|
|
201
|
+
task.get_data(progress_bar=False)
|
|
202
|
+
|
|
203
|
+
def run_step(inputs):
|
|
204
|
+
model(inputs)
|
|
205
|
+
return model.u.value
|
|
206
|
+
|
|
207
|
+
us = bm.for_loop(run_step, operands=(task.data,), progress_bar=False)
|
|
208
|
+
select_index = len(task.data) // 2
|
|
209
|
+
config = PlotConfigs.energy_landscape_1d_static(
|
|
210
|
+
title="Energy Landscape 1D",
|
|
211
|
+
xlabel="State",
|
|
212
|
+
ylabel="Activity",
|
|
213
|
+
show=False,
|
|
214
|
+
save_path=str(output_path),
|
|
215
|
+
save_format="png",
|
|
216
|
+
)
|
|
217
|
+
energy_landscape_1d_static(
|
|
218
|
+
data_sets={"u": (np.asarray(model.x), np.asarray(us)[select_index])},
|
|
219
|
+
config=config,
|
|
220
|
+
)
|
|
221
|
+
return output_path
|
|
222
|
+
|
|
223
|
+
if analysis == "tuning":
|
|
224
|
+
log_callback("Simulating tuning curves...")
|
|
225
|
+
task = SmoothTracking1D(
|
|
226
|
+
model,
|
|
227
|
+
Iext=(
|
|
228
|
+
analysis_params["tuning_start"],
|
|
229
|
+
analysis_params["tuning_mid"],
|
|
230
|
+
analysis_params["tuning_end"],
|
|
231
|
+
),
|
|
232
|
+
duration=(analysis_params["tuning_duration"],) * 2,
|
|
233
|
+
time_step=model_params["dt"],
|
|
234
|
+
)
|
|
235
|
+
task.get_data(progress_bar=False)
|
|
236
|
+
|
|
237
|
+
def run_step(inputs):
|
|
238
|
+
model(inputs)
|
|
239
|
+
return model.r.value
|
|
240
|
+
|
|
241
|
+
rs = bm.for_loop(run_step, operands=(task.data,), progress_bar=False)
|
|
242
|
+
neuron_indices = self._parse_indices(analysis_params["tuning_neurons"], len(model.x))
|
|
243
|
+
config = PlotConfigs.tuning_curve(
|
|
244
|
+
num_bins=analysis_params["tuning_bins"],
|
|
245
|
+
pref_stim=np.asarray(model.x),
|
|
246
|
+
title="Tuning Curves",
|
|
247
|
+
xlabel="Stimulus",
|
|
248
|
+
ylabel="Average Rate",
|
|
249
|
+
show=False,
|
|
250
|
+
save_path=str(output_path),
|
|
251
|
+
save_format="png",
|
|
252
|
+
)
|
|
253
|
+
tuning_curve(
|
|
254
|
+
stimulus=task.Iext_sequence.squeeze(),
|
|
255
|
+
firing_rates=np.asarray(rs),
|
|
256
|
+
neuron_indices=neuron_indices,
|
|
257
|
+
config=config,
|
|
258
|
+
)
|
|
259
|
+
return output_path
|
|
260
|
+
|
|
261
|
+
if analysis == "template":
|
|
262
|
+
log_callback("Simulating template matching...")
|
|
263
|
+
task = TemplateMatching1D(
|
|
264
|
+
model,
|
|
265
|
+
Iext=analysis_params["template_pos"],
|
|
266
|
+
duration=analysis_params["template_duration"],
|
|
267
|
+
time_step=model_params["dt"],
|
|
268
|
+
)
|
|
269
|
+
task.get_data(progress_bar=False)
|
|
270
|
+
|
|
271
|
+
def run_step(inputs):
|
|
272
|
+
model(inputs)
|
|
273
|
+
return model.u.value, model.inp.value
|
|
274
|
+
|
|
275
|
+
us, inps = bm.for_loop(run_step, operands=(task.data,), progress_bar=False)
|
|
276
|
+
select_index = len(task.data) // 2
|
|
277
|
+
fig, ax = plt.subplots(figsize=(6, 4))
|
|
278
|
+
ax.plot(
|
|
279
|
+
np.asarray(model.x), np.asarray(inps)[select_index], "r--", linewidth=2.0, alpha=0.6
|
|
280
|
+
)
|
|
281
|
+
ax.plot(np.asarray(model.x), np.asarray(us)[select_index], "b-", linewidth=2.5)
|
|
282
|
+
ax.grid(True, alpha=0.3)
|
|
283
|
+
ax.set_title("Template Matching", fontsize=12, fontweight="bold")
|
|
284
|
+
fig.tight_layout()
|
|
285
|
+
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
|
286
|
+
plt.close(fig)
|
|
287
|
+
return output_path
|
|
288
|
+
|
|
289
|
+
if analysis == "manifold":
|
|
290
|
+
log_callback("Computing neural manifold...")
|
|
291
|
+
segment = analysis_params["manifold_segment"]
|
|
292
|
+
warmup = analysis_params["manifold_warmup"]
|
|
293
|
+
iext = (0.0, 0.0, np.pi, 2 * np.pi, -2 * np.pi, 0.0)
|
|
294
|
+
durations = (warmup, segment, segment, segment, segment)
|
|
295
|
+
task = SmoothTracking1D(
|
|
296
|
+
model, Iext=iext, duration=durations, time_step=model_params["dt"]
|
|
297
|
+
)
|
|
298
|
+
task.get_data(progress_bar=False)
|
|
299
|
+
|
|
300
|
+
def run_step(t, inputs):
|
|
301
|
+
model(inputs)
|
|
302
|
+
return model.r.value
|
|
303
|
+
|
|
304
|
+
rs = bm.for_loop(run_step, (task.run_steps, task.data), progress_bar=False)
|
|
305
|
+
n_warmup = int(warmup / model_params["dt"])
|
|
306
|
+
firing_rates = np.asarray(rs[n_warmup:])
|
|
307
|
+
stimulus_pos = np.asarray(task.Iext_sequence).squeeze()[n_warmup:]
|
|
308
|
+
projected = self._pca_projection(firing_rates, n_components=2)
|
|
309
|
+
|
|
310
|
+
fig, ax = plt.subplots(figsize=(6, 4))
|
|
311
|
+
ax.scatter(
|
|
312
|
+
projected[:, 0], projected[:, 1], c=stimulus_pos, cmap="viridis", s=2, alpha=0.7
|
|
313
|
+
)
|
|
314
|
+
ax.set_title("Neural Manifold (PC1/PC2)", fontsize=12, fontweight="bold")
|
|
315
|
+
ax.set_xticks([])
|
|
316
|
+
ax.set_yticks([])
|
|
317
|
+
fig.tight_layout()
|
|
318
|
+
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
|
319
|
+
plt.close(fig)
|
|
320
|
+
return output_path
|
|
321
|
+
|
|
322
|
+
raise ValueError(f"Unsupported analysis for CANN1D: {analysis}")
|
|
323
|
+
|
|
324
|
+
def _run_cann2d(
|
|
325
|
+
self,
|
|
326
|
+
analysis: str,
|
|
327
|
+
model_params: dict[str, Any],
|
|
328
|
+
analysis_params: dict[str, Any],
|
|
329
|
+
output_dir: Path,
|
|
330
|
+
log_callback: Callable[[str], None],
|
|
331
|
+
progress_callback: Callable[[int], None],
|
|
332
|
+
) -> Path:
|
|
333
|
+
seed = model_params["seed"]
|
|
334
|
+
np.random.seed(seed)
|
|
335
|
+
bm.random.seed(seed)
|
|
336
|
+
bm.set_dt(model_params["dt"])
|
|
337
|
+
|
|
338
|
+
model = CANN2D(
|
|
339
|
+
length=model_params["length"],
|
|
340
|
+
tau=model_params["tau"],
|
|
341
|
+
k=model_params["k"],
|
|
342
|
+
a=model_params["a"],
|
|
343
|
+
A=model_params["A"],
|
|
344
|
+
J0=model_params["J0"],
|
|
345
|
+
)
|
|
346
|
+
|
|
347
|
+
output_path = output_dir / f"cann2d_{analysis}_seed{seed}.png"
|
|
348
|
+
|
|
349
|
+
if analysis == "connectivity":
|
|
350
|
+
log_callback("Rendering connectivity matrix...")
|
|
351
|
+
progress_callback(30)
|
|
352
|
+
self._plot_connectivity(model.conn_mat, output_path, title="CANN2D Connectivity")
|
|
353
|
+
return output_path
|
|
354
|
+
|
|
355
|
+
if analysis == "energy":
|
|
356
|
+
log_callback("Simulating energy landscape...")
|
|
357
|
+
task = TemplateMatching2D(
|
|
358
|
+
model,
|
|
359
|
+
Iext=(analysis_params["energy_x"], analysis_params["energy_y"]),
|
|
360
|
+
duration=analysis_params["energy_duration"],
|
|
361
|
+
time_step=model_params["dt"],
|
|
362
|
+
)
|
|
363
|
+
task.get_data(progress_bar=False)
|
|
364
|
+
|
|
365
|
+
def run_step(inputs):
|
|
366
|
+
model(inputs)
|
|
367
|
+
return model.u.value
|
|
368
|
+
|
|
369
|
+
us = bm.for_loop(run_step, operands=(task.data,), progress_bar=False)
|
|
370
|
+
select_index = len(task.data) // 2
|
|
371
|
+
config = PlotConfigs.energy_landscape_2d_static(
|
|
372
|
+
title="Energy Landscape 2D",
|
|
373
|
+
xlabel="State",
|
|
374
|
+
ylabel="Activity",
|
|
375
|
+
show=False,
|
|
376
|
+
save_path=str(output_path),
|
|
377
|
+
save_format="png",
|
|
378
|
+
)
|
|
379
|
+
energy_landscape_2d_static(z_data=np.asarray(us)[select_index], config=config)
|
|
380
|
+
return output_path
|
|
381
|
+
|
|
382
|
+
if analysis == "firing_field":
|
|
383
|
+
log_callback("Computing firing field...")
|
|
384
|
+
box_size = analysis_params["field_box"]
|
|
385
|
+
task = OpenLoopNavigationTask(
|
|
386
|
+
duration=analysis_params["field_duration"],
|
|
387
|
+
width=box_size,
|
|
388
|
+
height=box_size,
|
|
389
|
+
start_pos=(box_size / 2.0, box_size / 2.0),
|
|
390
|
+
speed_mean=analysis_params["field_speed"],
|
|
391
|
+
speed_std=analysis_params["field_speed_std"],
|
|
392
|
+
dt=model_params["dt"],
|
|
393
|
+
rng_seed=seed,
|
|
394
|
+
progress_bar=False,
|
|
395
|
+
)
|
|
396
|
+
task.get_data()
|
|
397
|
+
positions = task.data.position
|
|
398
|
+
|
|
399
|
+
def run_step(inputs):
|
|
400
|
+
stimulus = model.get_stimulus_by_pos(inputs)
|
|
401
|
+
model(stimulus)
|
|
402
|
+
return model.r.value
|
|
403
|
+
|
|
404
|
+
rs = bm.for_loop(run_step, operands=(positions,), progress_bar=False)
|
|
405
|
+
activity = np.asarray(rs).reshape(rs.shape[0], -1)
|
|
406
|
+
|
|
407
|
+
firing_fields = compute_firing_field(
|
|
408
|
+
activity,
|
|
409
|
+
np.asarray(positions),
|
|
410
|
+
width=box_size,
|
|
411
|
+
height=box_size,
|
|
412
|
+
M=analysis_params["field_resolution"],
|
|
413
|
+
K=analysis_params["field_resolution"],
|
|
414
|
+
)
|
|
415
|
+
firing_fields = gaussian_smooth_heatmaps(
|
|
416
|
+
firing_fields, sigma=analysis_params["field_sigma"]
|
|
417
|
+
)
|
|
418
|
+
cell_idx = min(64, firing_fields.shape[0] - 1)
|
|
419
|
+
config = PlotConfigs.firing_field_heatmap(
|
|
420
|
+
title=f"Firing Field Cell {cell_idx}",
|
|
421
|
+
show=False,
|
|
422
|
+
save_path=str(output_path),
|
|
423
|
+
save_format="png",
|
|
424
|
+
)
|
|
425
|
+
plot_firing_field_heatmap(firing_fields[cell_idx], config=config)
|
|
426
|
+
return output_path
|
|
427
|
+
|
|
428
|
+
if analysis == "trajectory":
|
|
429
|
+
log_callback("Computing trajectory comparison...")
|
|
430
|
+
segment = analysis_params["traj_segment"]
|
|
431
|
+
warmup = analysis_params["traj_warmup"]
|
|
432
|
+
iext = (
|
|
433
|
+
(0.0, 0.0),
|
|
434
|
+
(0.0, 0.0),
|
|
435
|
+
(-2.0, 2.0),
|
|
436
|
+
(2.0, 2.0),
|
|
437
|
+
(2.0, -2.0),
|
|
438
|
+
(-2.0, -2.0),
|
|
439
|
+
)
|
|
440
|
+
durations = (warmup, segment, segment, segment, segment)
|
|
441
|
+
task = SmoothTracking2D(
|
|
442
|
+
model, Iext=iext, duration=durations, time_step=model_params["dt"]
|
|
443
|
+
)
|
|
444
|
+
task.get_data(progress_bar=False)
|
|
445
|
+
true_positions = np.asarray(task.Iext_sequence)
|
|
446
|
+
|
|
447
|
+
def run_step(inputs):
|
|
448
|
+
model(inputs)
|
|
449
|
+
return model.r.value
|
|
450
|
+
|
|
451
|
+
rs = bm.for_loop(run_step, operands=(task.data,), progress_bar=False)
|
|
452
|
+
decoded = self._decode_cann2d_center(np.asarray(rs), model.length)
|
|
453
|
+
decoded_pos = (decoded / model.length - 0.5) * 2 * np.pi
|
|
454
|
+
warmup_steps = int(warmup / model_params["dt"])
|
|
455
|
+
true_pos = true_positions[warmup_steps:]
|
|
456
|
+
decoded_pos = decoded_pos[warmup_steps:]
|
|
457
|
+
|
|
458
|
+
fig, ax = plt.subplots(figsize=(6, 4))
|
|
459
|
+
ax.plot(true_pos[:, 0], true_pos[:, 1], "b-", linewidth=1.5, alpha=0.6)
|
|
460
|
+
ax.plot(decoded_pos[:, 0], decoded_pos[:, 1], "r--", linewidth=1.5, alpha=0.8)
|
|
461
|
+
ax.grid(True, alpha=0.3)
|
|
462
|
+
ax.set_aspect("equal", adjustable="box")
|
|
463
|
+
ax.set_title("Trajectory Comparison", fontsize=12, fontweight="bold")
|
|
464
|
+
fig.tight_layout()
|
|
465
|
+
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
|
466
|
+
plt.close(fig)
|
|
467
|
+
return output_path
|
|
468
|
+
|
|
469
|
+
if analysis == "manifold":
|
|
470
|
+
log_callback("Computing neural manifold...")
|
|
471
|
+
box_size = 2 * np.pi
|
|
472
|
+
task = OpenLoopNavigationTask(
|
|
473
|
+
duration=analysis_params["manifold_duration"],
|
|
474
|
+
width=box_size,
|
|
475
|
+
height=box_size,
|
|
476
|
+
start_pos=(box_size / 2.0, box_size / 2.0),
|
|
477
|
+
speed_mean=analysis_params["manifold_speed"],
|
|
478
|
+
speed_std=analysis_params["manifold_speed_std"],
|
|
479
|
+
dt=model_params["dt"],
|
|
480
|
+
rng_seed=seed,
|
|
481
|
+
progress_bar=False,
|
|
482
|
+
)
|
|
483
|
+
task.get_data()
|
|
484
|
+
positions = task.data.position
|
|
485
|
+
|
|
486
|
+
def run_step(inputs):
|
|
487
|
+
stimulus = model.get_stimulus_by_pos(inputs)
|
|
488
|
+
model(stimulus)
|
|
489
|
+
return model.r.value
|
|
490
|
+
|
|
491
|
+
rs = bm.for_loop(run_step, operands=(positions,), progress_bar=False)
|
|
492
|
+
n_warmup = int(analysis_params["manifold_warmup"] / model_params["dt"])
|
|
493
|
+
firing_rates = np.asarray(rs[n_warmup:]).reshape(-1, model.length * model.length)
|
|
494
|
+
stimulus_pos = np.asarray(positions[n_warmup:])
|
|
495
|
+
|
|
496
|
+
downsample = max(1, analysis_params["manifold_downsample"])
|
|
497
|
+
firing_rates = firing_rates[::downsample]
|
|
498
|
+
stimulus_pos = stimulus_pos[::downsample]
|
|
499
|
+
|
|
500
|
+
projected = self._pca_projection(firing_rates, n_components=2)
|
|
501
|
+
fig, ax = plt.subplots(figsize=(6, 4))
|
|
502
|
+
ax.scatter(
|
|
503
|
+
projected[:, 0],
|
|
504
|
+
projected[:, 1],
|
|
505
|
+
c=stimulus_pos[:, 0],
|
|
506
|
+
cmap="viridis",
|
|
507
|
+
s=2,
|
|
508
|
+
alpha=0.7,
|
|
509
|
+
)
|
|
510
|
+
ax.set_xticks([])
|
|
511
|
+
ax.set_yticks([])
|
|
512
|
+
ax.set_title("Neural Manifold (PC1/PC2)", fontsize=12, fontweight="bold")
|
|
513
|
+
fig.tight_layout()
|
|
514
|
+
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
|
515
|
+
plt.close(fig)
|
|
516
|
+
return output_path
|
|
517
|
+
|
|
518
|
+
raise ValueError(f"Unsupported analysis for CANN2D: {analysis}")
|
|
519
|
+
|
|
520
|
+
def _run_gridcell(
|
|
521
|
+
self,
|
|
522
|
+
analysis: str,
|
|
523
|
+
model_params: dict[str, Any],
|
|
524
|
+
analysis_params: dict[str, Any],
|
|
525
|
+
output_dir: Path,
|
|
526
|
+
log_callback: Callable[[str], None],
|
|
527
|
+
progress_callback: Callable[[int], None],
|
|
528
|
+
) -> Path:
|
|
529
|
+
seed = model_params["seed"]
|
|
530
|
+
np.random.seed(seed)
|
|
531
|
+
bm.random.seed(seed)
|
|
532
|
+
bm.set_dt(model_params["dt"])
|
|
533
|
+
|
|
534
|
+
output_path = output_dir / f"gridcell_{analysis}_seed{seed}.png"
|
|
535
|
+
|
|
536
|
+
if analysis == "connectivity":
|
|
537
|
+
np.random.seed(999)
|
|
538
|
+
bm.random.seed(999)
|
|
539
|
+
model = GridCell2DVelocity(
|
|
540
|
+
length=model_params["length"],
|
|
541
|
+
tau=model_params["tau"],
|
|
542
|
+
alpha=model_params["alpha"],
|
|
543
|
+
W_l=model_params["W_l"],
|
|
544
|
+
lambda_net=model_params["lambda_net"],
|
|
545
|
+
)
|
|
546
|
+
log_callback("Rendering connectivity matrix...")
|
|
547
|
+
progress_callback(30)
|
|
548
|
+
self._plot_connectivity(model.conn_mat, output_path, title="Grid Cell Connectivity")
|
|
549
|
+
return output_path
|
|
550
|
+
|
|
551
|
+
model = GridCell2DVelocity(
|
|
552
|
+
length=model_params["length"],
|
|
553
|
+
tau=model_params["tau"],
|
|
554
|
+
alpha=model_params["alpha"],
|
|
555
|
+
W_l=model_params["W_l"],
|
|
556
|
+
lambda_net=model_params["lambda_net"],
|
|
557
|
+
)
|
|
558
|
+
|
|
559
|
+
box_size = analysis_params["box_size"]
|
|
560
|
+
start_pos = (box_size / 2.0, box_size / 2.0)
|
|
561
|
+
|
|
562
|
+
if analysis == "energy":
|
|
563
|
+
log_callback("Computing energy landscape...")
|
|
564
|
+
task = OpenLoopNavigationTask(
|
|
565
|
+
duration=analysis_params["energy_duration"],
|
|
566
|
+
width=box_size,
|
|
567
|
+
height=box_size,
|
|
568
|
+
start_pos=start_pos,
|
|
569
|
+
speed_mean=analysis_params["energy_speed"],
|
|
570
|
+
speed_std=analysis_params["energy_speed_std"],
|
|
571
|
+
dt=bm.get_dt(),
|
|
572
|
+
rng_seed=seed,
|
|
573
|
+
progress_bar=False,
|
|
574
|
+
)
|
|
575
|
+
task.get_data()
|
|
576
|
+
model.heal_network(
|
|
577
|
+
num_healing_steps=analysis_params["energy_heal_steps"],
|
|
578
|
+
dt_healing=1e-4,
|
|
579
|
+
)
|
|
580
|
+
|
|
581
|
+
def run_step(vel):
|
|
582
|
+
model(vel)
|
|
583
|
+
return model.s.value
|
|
584
|
+
|
|
585
|
+
us = bm.for_loop(run_step, operands=(task.data.velocity,), progress_bar=False)
|
|
586
|
+
select_index = int(task.total_steps * 0.75)
|
|
587
|
+
energy_data = np.asarray(us)[select_index].reshape(model.length, model.length)
|
|
588
|
+
fig, ax = plt.subplots(figsize=(5, 5))
|
|
589
|
+
ax.imshow(energy_data, cmap="viridis", origin="lower")
|
|
590
|
+
ax.set_xticks([])
|
|
591
|
+
ax.set_yticks([])
|
|
592
|
+
ax.set_title("Energy Landscape", fontsize=12, fontweight="bold")
|
|
593
|
+
fig.tight_layout()
|
|
594
|
+
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
|
595
|
+
plt.close(fig)
|
|
596
|
+
return output_path
|
|
597
|
+
|
|
598
|
+
if analysis == "firing_field":
|
|
599
|
+
log_callback("Computing firing field...")
|
|
600
|
+
from canns.analyzer.metrics.systematic_ratemap import compute_systematic_ratemap
|
|
601
|
+
|
|
602
|
+
ratemaps = compute_systematic_ratemap(
|
|
603
|
+
model,
|
|
604
|
+
box_width=box_size,
|
|
605
|
+
box_height=box_size,
|
|
606
|
+
resolution=analysis_params["field_resolution"],
|
|
607
|
+
speed=analysis_params["field_speed"],
|
|
608
|
+
num_batches=analysis_params["field_batches"],
|
|
609
|
+
verbose=False,
|
|
610
|
+
)
|
|
611
|
+
firing_fields = np.transpose(ratemaps, (2, 0, 1))
|
|
612
|
+
firing_fields = gaussian_smooth_heatmaps(
|
|
613
|
+
firing_fields, sigma=analysis_params["field_sigma"]
|
|
614
|
+
)
|
|
615
|
+
cell_idx = model.num // 2
|
|
616
|
+
config = PlotConfigs.firing_field_heatmap(
|
|
617
|
+
title=f"Grid Cell Field {cell_idx}",
|
|
618
|
+
show=False,
|
|
619
|
+
save_path=str(output_path),
|
|
620
|
+
save_format="png",
|
|
621
|
+
)
|
|
622
|
+
plot_firing_field_heatmap(firing_fields[cell_idx], config=config)
|
|
623
|
+
return output_path
|
|
624
|
+
|
|
625
|
+
if analysis == "path_integration":
|
|
626
|
+
log_callback("Computing path integration...")
|
|
627
|
+
model.heal_network(
|
|
628
|
+
num_healing_steps=analysis_params["path_heal_steps"],
|
|
629
|
+
dt_healing=1e-4,
|
|
630
|
+
)
|
|
631
|
+
task = OpenLoopNavigationTask(
|
|
632
|
+
duration=analysis_params["path_duration"],
|
|
633
|
+
width=box_size,
|
|
634
|
+
height=box_size,
|
|
635
|
+
start_pos=start_pos,
|
|
636
|
+
speed_mean=analysis_params["path_speed"],
|
|
637
|
+
speed_std=analysis_params["path_speed_std"],
|
|
638
|
+
dt=analysis_params["path_dt"],
|
|
639
|
+
rng_seed=seed,
|
|
640
|
+
progress_bar=False,
|
|
641
|
+
)
|
|
642
|
+
task.get_data()
|
|
643
|
+
true_positions = np.asarray(task.data.position)
|
|
644
|
+
|
|
645
|
+
def run_step(vel):
|
|
646
|
+
model(vel)
|
|
647
|
+
return model.r.value
|
|
648
|
+
|
|
649
|
+
activities = bm.for_loop(run_step, operands=(task.data.velocity,), progress_bar=False)
|
|
650
|
+
activities = np.asarray(activities)
|
|
651
|
+
blob_centers = GridCell2DVelocity.track_blob_centers(activities, model.length)
|
|
652
|
+
blob_displacement = np.diff(blob_centers, axis=0)
|
|
653
|
+
displacement_norm = np.linalg.norm(blob_displacement, axis=1)
|
|
654
|
+
jump_indices = np.where(displacement_norm > 3.0)[0]
|
|
655
|
+
for idx in jump_indices:
|
|
656
|
+
if 0 < idx < len(blob_displacement) - 1:
|
|
657
|
+
blob_displacement[idx] = (
|
|
658
|
+
blob_displacement[idx - 1] + blob_displacement[idx + 1]
|
|
659
|
+
) / 2
|
|
660
|
+
estimated_pos_neuron = np.cumsum(blob_displacement, axis=0)
|
|
661
|
+
|
|
662
|
+
true_pos_rel = true_positions - true_positions[0]
|
|
663
|
+
true_pos_aligned = true_pos_rel[: len(estimated_pos_neuron)]
|
|
664
|
+
X = estimated_pos_neuron.reshape(-1)
|
|
665
|
+
y = true_pos_aligned.reshape(-1)
|
|
666
|
+
scale = np.dot(X, y) / (np.dot(X, X) + 1e-8)
|
|
667
|
+
estimated_pos = scale * estimated_pos_neuron + true_positions[0]
|
|
668
|
+
|
|
669
|
+
fig, ax = plt.subplots(figsize=(6, 4))
|
|
670
|
+
ax.plot(
|
|
671
|
+
true_positions[: len(estimated_pos), 0],
|
|
672
|
+
true_positions[: len(estimated_pos), 1],
|
|
673
|
+
"b-",
|
|
674
|
+
alpha=0.5,
|
|
675
|
+
linewidth=1.5,
|
|
676
|
+
label="True",
|
|
677
|
+
)
|
|
678
|
+
ax.plot(
|
|
679
|
+
estimated_pos[:, 0],
|
|
680
|
+
estimated_pos[:, 1],
|
|
681
|
+
"r-",
|
|
682
|
+
alpha=0.7,
|
|
683
|
+
linewidth=1.5,
|
|
684
|
+
label="Estimated",
|
|
685
|
+
)
|
|
686
|
+
ax.set_aspect("equal", adjustable="box")
|
|
687
|
+
ax.grid(True, alpha=0.3)
|
|
688
|
+
ax.set_title("Path Integration", fontsize=12, fontweight="bold")
|
|
689
|
+
fig.tight_layout()
|
|
690
|
+
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
|
691
|
+
plt.close(fig)
|
|
692
|
+
return output_path
|
|
693
|
+
|
|
694
|
+
if analysis == "manifold":
|
|
695
|
+
log_callback("Computing neural manifold...")
|
|
696
|
+
from canns.analyzer.metrics.systematic_ratemap import compute_systematic_ratemap
|
|
697
|
+
|
|
698
|
+
ratemaps = compute_systematic_ratemap(
|
|
699
|
+
model,
|
|
700
|
+
box_width=box_size,
|
|
701
|
+
box_height=box_size,
|
|
702
|
+
resolution=analysis_params["field_resolution"],
|
|
703
|
+
speed=analysis_params["field_speed"],
|
|
704
|
+
num_batches=analysis_params["field_batches"],
|
|
705
|
+
verbose=False,
|
|
706
|
+
)
|
|
707
|
+
firing_fields = np.transpose(ratemaps, (2, 0, 1))
|
|
708
|
+
firing_fields = gaussian_smooth_heatmaps(
|
|
709
|
+
firing_fields, sigma=analysis_params["field_sigma"]
|
|
710
|
+
)
|
|
711
|
+
data_for_pca = firing_fields.reshape(firing_fields.shape[0], -1).T
|
|
712
|
+
projected = self._pca_projection(data_for_pca, n_components=3)
|
|
713
|
+
fig = plt.figure(figsize=(6, 5))
|
|
714
|
+
ax = fig.add_subplot(111, projection="3d")
|
|
715
|
+
ax.scatter(
|
|
716
|
+
projected[:, 0],
|
|
717
|
+
projected[:, 1],
|
|
718
|
+
projected[:, 2],
|
|
719
|
+
c=projected[:, 2],
|
|
720
|
+
cmap="viridis",
|
|
721
|
+
s=1,
|
|
722
|
+
alpha=0.7,
|
|
723
|
+
)
|
|
724
|
+
ax.axis("off")
|
|
725
|
+
ax.set_title("Grid Cell Manifold", fontsize=12, fontweight="bold")
|
|
726
|
+
fig.tight_layout()
|
|
727
|
+
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
|
728
|
+
plt.close(fig)
|
|
729
|
+
return output_path
|
|
730
|
+
|
|
731
|
+
raise ValueError(f"Unsupported analysis for Grid Cell: {analysis}")
|
|
732
|
+
|
|
733
|
+
def _plot_connectivity(self, conn_mat: Any, output_path: Path, title: str) -> None:
|
|
734
|
+
data = np.asarray(conn_mat)
|
|
735
|
+
fig, ax = plt.subplots(figsize=(6, 6))
|
|
736
|
+
im = ax.imshow(data, cmap="viridis")
|
|
737
|
+
ax.set_title(title)
|
|
738
|
+
ax.set_xlabel("Neuron Index")
|
|
739
|
+
ax.set_ylabel("Neuron Index")
|
|
740
|
+
fig.colorbar(im, ax=ax, fraction=0.046, pad=0.04)
|
|
741
|
+
fig.tight_layout()
|
|
742
|
+
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
|
743
|
+
plt.close(fig)
|
|
744
|
+
|
|
745
|
+
def _pca_projection(self, data: np.ndarray, n_components: int = 3) -> np.ndarray:
|
|
746
|
+
centered = data - np.mean(data, axis=0, keepdims=True)
|
|
747
|
+
_, _, vt = np.linalg.svd(centered, full_matrices=False)
|
|
748
|
+
components = vt[:n_components].T
|
|
749
|
+
return centered @ components
|
|
750
|
+
|
|
751
|
+
def _decode_cann2d_center(self, activities: np.ndarray, length: int) -> np.ndarray:
|
|
752
|
+
from scipy.ndimage import center_of_mass, gaussian_filter, label
|
|
753
|
+
|
|
754
|
+
T = len(activities)
|
|
755
|
+
n = length
|
|
756
|
+
activities_2d = activities.reshape(T, n, n)
|
|
757
|
+
smoothed = np.array([gaussian_filter(activities_2d[t], sigma=1) for t in range(T)])
|
|
758
|
+
thresholds = smoothed.mean(axis=(1, 2)) + 0.5 * smoothed.std(axis=(1, 2))
|
|
759
|
+
binary_images = smoothed > thresholds[:, None, None]
|
|
760
|
+
|
|
761
|
+
centers = []
|
|
762
|
+
for i in range(T):
|
|
763
|
+
labeled, num_features = label(binary_images[i])
|
|
764
|
+
if num_features > 0:
|
|
765
|
+
blob_centers = np.array(
|
|
766
|
+
center_of_mass(binary_images[i], labeled, range(1, num_features + 1))
|
|
767
|
+
)
|
|
768
|
+
if blob_centers.ndim == 1:
|
|
769
|
+
blob_centers = blob_centers.reshape(1, -1)
|
|
770
|
+
blob_centers = blob_centers[:, [1, 0]]
|
|
771
|
+
dist = np.linalg.norm(blob_centers - n / 2, axis=1)
|
|
772
|
+
best_center = blob_centers[np.argmin(dist)]
|
|
773
|
+
else:
|
|
774
|
+
best_center = centers[-1] if centers else np.array([n / 2, n / 2])
|
|
775
|
+
centers.append(best_center)
|
|
776
|
+
return np.array(centers)
|
|
777
|
+
|
|
778
|
+
def _parse_indices(self, raw: str, max_size: int) -> list[int]:
|
|
779
|
+
cleaned = [p.strip() for p in raw.split(",") if p.strip()]
|
|
780
|
+
indices: list[int] = []
|
|
781
|
+
for part in cleaned:
|
|
782
|
+
try:
|
|
783
|
+
idx = int(part)
|
|
784
|
+
except ValueError:
|
|
785
|
+
continue
|
|
786
|
+
if 0 <= idx < max_size:
|
|
787
|
+
indices.append(idx)
|
|
788
|
+
if not indices:
|
|
789
|
+
indices = [max_size // 4, max_size // 2, (3 * max_size) // 4]
|
|
790
|
+
return indices
|