brainstate 0.1.8__py2.py3-none-any.whl → 0.1.9__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (133) hide show
  1. brainstate/__init__.py +58 -51
  2. brainstate/_compatible_import.py +148 -148
  3. brainstate/_state.py +1605 -1663
  4. brainstate/_state_test.py +52 -52
  5. brainstate/_utils.py +47 -47
  6. brainstate/augment/__init__.py +30 -30
  7. brainstate/augment/_autograd.py +778 -778
  8. brainstate/augment/_autograd_test.py +1289 -1289
  9. brainstate/augment/_eval_shape.py +99 -99
  10. brainstate/augment/_eval_shape_test.py +38 -38
  11. brainstate/augment/_mapping.py +1060 -1060
  12. brainstate/augment/_mapping_test.py +597 -597
  13. brainstate/augment/_random.py +151 -151
  14. brainstate/compile/__init__.py +38 -38
  15. brainstate/compile/_ad_checkpoint.py +204 -204
  16. brainstate/compile/_ad_checkpoint_test.py +49 -49
  17. brainstate/compile/_conditions.py +256 -256
  18. brainstate/compile/_conditions_test.py +220 -220
  19. brainstate/compile/_error_if.py +92 -92
  20. brainstate/compile/_error_if_test.py +52 -52
  21. brainstate/compile/_jit.py +346 -346
  22. brainstate/compile/_jit_test.py +143 -143
  23. brainstate/compile/_loop_collect_return.py +536 -536
  24. brainstate/compile/_loop_collect_return_test.py +58 -58
  25. brainstate/compile/_loop_no_collection.py +184 -184
  26. brainstate/compile/_loop_no_collection_test.py +50 -50
  27. brainstate/compile/_make_jaxpr.py +888 -888
  28. brainstate/compile/_make_jaxpr_test.py +156 -156
  29. brainstate/compile/_progress_bar.py +202 -202
  30. brainstate/compile/_unvmap.py +159 -159
  31. brainstate/compile/_util.py +147 -147
  32. brainstate/environ.py +563 -563
  33. brainstate/environ_test.py +62 -62
  34. brainstate/functional/__init__.py +27 -26
  35. brainstate/graph/__init__.py +29 -29
  36. brainstate/graph/_graph_node.py +244 -244
  37. brainstate/graph/_graph_node_test.py +73 -73
  38. brainstate/graph/_graph_operation.py +1738 -1738
  39. brainstate/graph/_graph_operation_test.py +563 -563
  40. brainstate/init/__init__.py +26 -26
  41. brainstate/init/_base.py +52 -52
  42. brainstate/init/_generic.py +244 -244
  43. brainstate/init/_random_inits.py +553 -553
  44. brainstate/init/_random_inits_test.py +149 -149
  45. brainstate/init/_regular_inits.py +105 -105
  46. brainstate/init/_regular_inits_test.py +50 -50
  47. brainstate/mixin.py +365 -363
  48. brainstate/mixin_test.py +77 -73
  49. brainstate/nn/__init__.py +135 -131
  50. brainstate/{functional → nn}/_activations.py +808 -813
  51. brainstate/{functional → nn}/_activations_test.py +331 -331
  52. brainstate/nn/_collective_ops.py +514 -514
  53. brainstate/nn/_collective_ops_test.py +43 -43
  54. brainstate/nn/_common.py +178 -178
  55. brainstate/nn/_conv.py +501 -501
  56. brainstate/nn/_conv_test.py +238 -238
  57. brainstate/nn/_delay.py +509 -502
  58. brainstate/nn/_delay_test.py +238 -184
  59. brainstate/nn/_dropout.py +426 -426
  60. brainstate/nn/_dropout_test.py +100 -100
  61. brainstate/nn/_dynamics.py +1343 -1343
  62. brainstate/nn/_dynamics_test.py +78 -78
  63. brainstate/nn/_elementwise.py +1119 -1119
  64. brainstate/nn/_elementwise_test.py +169 -169
  65. brainstate/nn/_embedding.py +58 -58
  66. brainstate/nn/_exp_euler.py +92 -92
  67. brainstate/nn/_exp_euler_test.py +35 -35
  68. brainstate/nn/_fixedprob.py +239 -239
  69. brainstate/nn/_fixedprob_test.py +114 -114
  70. brainstate/nn/_inputs.py +608 -608
  71. brainstate/nn/_linear.py +424 -424
  72. brainstate/nn/_linear_mv.py +83 -83
  73. brainstate/nn/_linear_mv_test.py +120 -120
  74. brainstate/nn/_linear_test.py +107 -107
  75. brainstate/nn/_ltp.py +28 -28
  76. brainstate/nn/_module.py +377 -377
  77. brainstate/nn/_module_test.py +40 -40
  78. brainstate/nn/_neuron.py +705 -705
  79. brainstate/nn/_neuron_test.py +161 -161
  80. brainstate/nn/_normalizations.py +975 -918
  81. brainstate/nn/_normalizations_test.py +73 -73
  82. brainstate/{functional → nn}/_others.py +46 -46
  83. brainstate/nn/_poolings.py +1177 -1177
  84. brainstate/nn/_poolings_test.py +217 -217
  85. brainstate/nn/_projection.py +486 -486
  86. brainstate/nn/_rate_rnns.py +554 -554
  87. brainstate/nn/_rate_rnns_test.py +63 -63
  88. brainstate/nn/_readout.py +209 -209
  89. brainstate/nn/_readout_test.py +53 -53
  90. brainstate/nn/_stp.py +236 -236
  91. brainstate/nn/_synapse.py +505 -505
  92. brainstate/nn/_synapse_test.py +131 -131
  93. brainstate/nn/_synaptic_projection.py +423 -423
  94. brainstate/nn/_synouts.py +162 -162
  95. brainstate/nn/_synouts_test.py +57 -57
  96. brainstate/nn/_utils.py +89 -89
  97. brainstate/nn/metrics.py +388 -388
  98. brainstate/optim/__init__.py +38 -38
  99. brainstate/optim/_base.py +64 -64
  100. brainstate/optim/_lr_scheduler.py +448 -448
  101. brainstate/optim/_lr_scheduler_test.py +50 -50
  102. brainstate/optim/_optax_optimizer.py +152 -152
  103. brainstate/optim/_optax_optimizer_test.py +53 -53
  104. brainstate/optim/_sgd_optimizer.py +1104 -1104
  105. brainstate/random/__init__.py +24 -24
  106. brainstate/random/_rand_funs.py +3616 -3616
  107. brainstate/random/_rand_funs_test.py +567 -567
  108. brainstate/random/_rand_seed.py +210 -210
  109. brainstate/random/_rand_seed_test.py +48 -48
  110. brainstate/random/_rand_state.py +1409 -1409
  111. brainstate/random/_random_for_unit.py +52 -52
  112. brainstate/surrogate.py +1957 -1957
  113. brainstate/transform.py +23 -23
  114. brainstate/typing.py +304 -304
  115. brainstate/util/__init__.py +50 -50
  116. brainstate/util/caller.py +98 -98
  117. brainstate/util/error.py +55 -55
  118. brainstate/util/filter.py +469 -469
  119. brainstate/util/others.py +540 -540
  120. brainstate/util/pretty_pytree.py +945 -945
  121. brainstate/util/pretty_pytree_test.py +159 -159
  122. brainstate/util/pretty_repr.py +328 -328
  123. brainstate/util/pretty_table.py +2954 -2954
  124. brainstate/util/scaling.py +258 -258
  125. brainstate/util/struct.py +523 -523
  126. {brainstate-0.1.8.dist-info → brainstate-0.1.9.dist-info}/METADATA +91 -99
  127. brainstate-0.1.9.dist-info/RECORD +130 -0
  128. {brainstate-0.1.8.dist-info → brainstate-0.1.9.dist-info}/WHEEL +1 -1
  129. {brainstate-0.1.8.dist-info → brainstate-0.1.9.dist-info/licenses}/LICENSE +202 -202
  130. brainstate/functional/_normalization.py +0 -81
  131. brainstate/functional/_spikes.py +0 -204
  132. brainstate-0.1.8.dist-info/RECORD +0 -132
  133. {brainstate-0.1.8.dist-info → brainstate-0.1.9.dist-info}/top_level.txt +0 -0
@@ -1,169 +1,169 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- from absl.testing import absltest
17
- from absl.testing import parameterized
18
-
19
- import brainstate
20
-
21
-
22
- class Test_Activation(parameterized.TestCase):
23
-
24
- def test_Threshold(self):
25
- threshold_layer = brainstate.nn.Threshold(5, 20)
26
- input = brainstate.random.randn(2)
27
- output = threshold_layer(input)
28
-
29
- def test_ReLU(self):
30
- ReLU_layer = brainstate.nn.ReLU()
31
- input = brainstate.random.randn(2)
32
- output = ReLU_layer(input)
33
-
34
- def test_RReLU(self):
35
- RReLU_layer = brainstate.nn.RReLU(lower=0, upper=1)
36
- input = brainstate.random.randn(2)
37
- output = RReLU_layer(input)
38
-
39
- def test_Hardtanh(self):
40
- Hardtanh_layer = brainstate.nn.Hardtanh(min_val=0, max_val=1, )
41
- input = brainstate.random.randn(2)
42
- output = Hardtanh_layer(input)
43
-
44
- def test_ReLU6(self):
45
- ReLU6_layer = brainstate.nn.ReLU6()
46
- input = brainstate.random.randn(2)
47
- output = ReLU6_layer(input)
48
-
49
- def test_Sigmoid(self):
50
- Sigmoid_layer = brainstate.nn.Sigmoid()
51
- input = brainstate.random.randn(2)
52
- output = Sigmoid_layer(input)
53
-
54
- def test_Hardsigmoid(self):
55
- Hardsigmoid_layer = brainstate.nn.Hardsigmoid()
56
- input = brainstate.random.randn(2)
57
- output = Hardsigmoid_layer(input)
58
-
59
- def test_Tanh(self):
60
- Tanh_layer = brainstate.nn.Tanh()
61
- input = brainstate.random.randn(2)
62
- output = Tanh_layer(input)
63
-
64
- def test_SiLU(self):
65
- SiLU_layer = brainstate.nn.SiLU()
66
- input = brainstate.random.randn(2)
67
- output = SiLU_layer(input)
68
-
69
- def test_Mish(self):
70
- Mish_layer = brainstate.nn.Mish()
71
- input = brainstate.random.randn(2)
72
- output = Mish_layer(input)
73
-
74
- def test_Hardswish(self):
75
- Hardswish_layer = brainstate.nn.Hardswish()
76
- input = brainstate.random.randn(2)
77
- output = Hardswish_layer(input)
78
-
79
- def test_ELU(self):
80
- ELU_layer = brainstate.nn.ELU(alpha=0.5, )
81
- input = brainstate.random.randn(2)
82
- output = ELU_layer(input)
83
-
84
- def test_CELU(self):
85
- CELU_layer = brainstate.nn.CELU(alpha=0.5, )
86
- input = brainstate.random.randn(2)
87
- output = CELU_layer(input)
88
-
89
- def test_SELU(self):
90
- SELU_layer = brainstate.nn.SELU()
91
- input = brainstate.random.randn(2)
92
- output = SELU_layer(input)
93
-
94
- def test_GLU(self):
95
- GLU_layer = brainstate.nn.GLU()
96
- input = brainstate.random.randn(4, 2)
97
- output = GLU_layer(input)
98
-
99
- @parameterized.product(
100
- approximate=['tanh', 'none']
101
- )
102
- def test_GELU(self, approximate):
103
- GELU_layer = brainstate.nn.GELU()
104
- input = brainstate.random.randn(2)
105
- output = GELU_layer(input)
106
-
107
- def test_Hardshrink(self):
108
- Hardshrink_layer = brainstate.nn.Hardshrink(lambd=1)
109
- input = brainstate.random.randn(2)
110
- output = Hardshrink_layer(input)
111
-
112
- def test_LeakyReLU(self):
113
- LeakyReLU_layer = brainstate.nn.LeakyReLU()
114
- input = brainstate.random.randn(2)
115
- output = LeakyReLU_layer(input)
116
-
117
- def test_LogSigmoid(self):
118
- LogSigmoid_layer = brainstate.nn.LogSigmoid()
119
- input = brainstate.random.randn(2)
120
- output = LogSigmoid_layer(input)
121
-
122
- def test_Softplus(self):
123
- Softplus_layer = brainstate.nn.Softplus()
124
- input = brainstate.random.randn(2)
125
- output = Softplus_layer(input)
126
-
127
- def test_Softshrink(self):
128
- Softshrink_layer = brainstate.nn.Softshrink(lambd=1)
129
- input = brainstate.random.randn(2)
130
- output = Softshrink_layer(input)
131
-
132
- def test_PReLU(self):
133
- PReLU_layer = brainstate.nn.PReLU(num_parameters=2, init=0.5)
134
- input = brainstate.random.randn(2)
135
- output = PReLU_layer(input)
136
-
137
- def test_Softsign(self):
138
- Softsign_layer = brainstate.nn.Softsign()
139
- input = brainstate.random.randn(2)
140
- output = Softsign_layer(input)
141
-
142
- def test_Tanhshrink(self):
143
- Tanhshrink_layer = brainstate.nn.Tanhshrink()
144
- input = brainstate.random.randn(2)
145
- output = Tanhshrink_layer(input)
146
-
147
- def test_Softmin(self):
148
- Softmin_layer = brainstate.nn.Softmin(dim=2)
149
- input = brainstate.random.randn(2, 3, 4)
150
- output = Softmin_layer(input)
151
-
152
- def test_Softmax(self):
153
- Softmax_layer = brainstate.nn.Softmax(dim=2)
154
- input = brainstate.random.randn(2, 3, 4)
155
- output = Softmax_layer(input)
156
-
157
- def test_Softmax2d(self):
158
- Softmax2d_layer = brainstate.nn.Softmax2d()
159
- input = brainstate.random.randn(2, 3, 12, 13)
160
- output = Softmax2d_layer(input)
161
-
162
- def test_LogSoftmax(self):
163
- LogSoftmax_layer = brainstate.nn.LogSoftmax(dim=2)
164
- input = brainstate.random.randn(2, 3, 4)
165
- output = LogSoftmax_layer(input)
166
-
167
-
168
- if __name__ == '__main__':
169
- absltest.main()
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from absl.testing import absltest
17
+ from absl.testing import parameterized
18
+
19
+ import brainstate
20
+
21
+
22
+ class Test_Activation(parameterized.TestCase):
23
+
24
+ def test_Threshold(self):
25
+ threshold_layer = brainstate.nn.Threshold(5, 20)
26
+ input = brainstate.random.randn(2)
27
+ output = threshold_layer(input)
28
+
29
+ def test_ReLU(self):
30
+ ReLU_layer = brainstate.nn.ReLU()
31
+ input = brainstate.random.randn(2)
32
+ output = ReLU_layer(input)
33
+
34
+ def test_RReLU(self):
35
+ RReLU_layer = brainstate.nn.RReLU(lower=0, upper=1)
36
+ input = brainstate.random.randn(2)
37
+ output = RReLU_layer(input)
38
+
39
+ def test_Hardtanh(self):
40
+ Hardtanh_layer = brainstate.nn.Hardtanh(min_val=0, max_val=1, )
41
+ input = brainstate.random.randn(2)
42
+ output = Hardtanh_layer(input)
43
+
44
+ def test_ReLU6(self):
45
+ ReLU6_layer = brainstate.nn.ReLU6()
46
+ input = brainstate.random.randn(2)
47
+ output = ReLU6_layer(input)
48
+
49
+ def test_Sigmoid(self):
50
+ Sigmoid_layer = brainstate.nn.Sigmoid()
51
+ input = brainstate.random.randn(2)
52
+ output = Sigmoid_layer(input)
53
+
54
+ def test_Hardsigmoid(self):
55
+ Hardsigmoid_layer = brainstate.nn.Hardsigmoid()
56
+ input = brainstate.random.randn(2)
57
+ output = Hardsigmoid_layer(input)
58
+
59
+ def test_Tanh(self):
60
+ Tanh_layer = brainstate.nn.Tanh()
61
+ input = brainstate.random.randn(2)
62
+ output = Tanh_layer(input)
63
+
64
+ def test_SiLU(self):
65
+ SiLU_layer = brainstate.nn.SiLU()
66
+ input = brainstate.random.randn(2)
67
+ output = SiLU_layer(input)
68
+
69
+ def test_Mish(self):
70
+ Mish_layer = brainstate.nn.Mish()
71
+ input = brainstate.random.randn(2)
72
+ output = Mish_layer(input)
73
+
74
+ def test_Hardswish(self):
75
+ Hardswish_layer = brainstate.nn.Hardswish()
76
+ input = brainstate.random.randn(2)
77
+ output = Hardswish_layer(input)
78
+
79
+ def test_ELU(self):
80
+ ELU_layer = brainstate.nn.ELU(alpha=0.5, )
81
+ input = brainstate.random.randn(2)
82
+ output = ELU_layer(input)
83
+
84
+ def test_CELU(self):
85
+ CELU_layer = brainstate.nn.CELU(alpha=0.5, )
86
+ input = brainstate.random.randn(2)
87
+ output = CELU_layer(input)
88
+
89
+ def test_SELU(self):
90
+ SELU_layer = brainstate.nn.SELU()
91
+ input = brainstate.random.randn(2)
92
+ output = SELU_layer(input)
93
+
94
+ def test_GLU(self):
95
+ GLU_layer = brainstate.nn.GLU()
96
+ input = brainstate.random.randn(4, 2)
97
+ output = GLU_layer(input)
98
+
99
+ @parameterized.product(
100
+ approximate=['tanh', 'none']
101
+ )
102
+ def test_GELU(self, approximate):
103
+ GELU_layer = brainstate.nn.GELU()
104
+ input = brainstate.random.randn(2)
105
+ output = GELU_layer(input)
106
+
107
+ def test_Hardshrink(self):
108
+ Hardshrink_layer = brainstate.nn.Hardshrink(lambd=1)
109
+ input = brainstate.random.randn(2)
110
+ output = Hardshrink_layer(input)
111
+
112
+ def test_LeakyReLU(self):
113
+ LeakyReLU_layer = brainstate.nn.LeakyReLU()
114
+ input = brainstate.random.randn(2)
115
+ output = LeakyReLU_layer(input)
116
+
117
+ def test_LogSigmoid(self):
118
+ LogSigmoid_layer = brainstate.nn.LogSigmoid()
119
+ input = brainstate.random.randn(2)
120
+ output = LogSigmoid_layer(input)
121
+
122
+ def test_Softplus(self):
123
+ Softplus_layer = brainstate.nn.Softplus()
124
+ input = brainstate.random.randn(2)
125
+ output = Softplus_layer(input)
126
+
127
+ def test_Softshrink(self):
128
+ Softshrink_layer = brainstate.nn.Softshrink(lambd=1)
129
+ input = brainstate.random.randn(2)
130
+ output = Softshrink_layer(input)
131
+
132
+ def test_PReLU(self):
133
+ PReLU_layer = brainstate.nn.PReLU(num_parameters=2, init=0.5)
134
+ input = brainstate.random.randn(2)
135
+ output = PReLU_layer(input)
136
+
137
+ def test_Softsign(self):
138
+ Softsign_layer = brainstate.nn.Softsign()
139
+ input = brainstate.random.randn(2)
140
+ output = Softsign_layer(input)
141
+
142
+ def test_Tanhshrink(self):
143
+ Tanhshrink_layer = brainstate.nn.Tanhshrink()
144
+ input = brainstate.random.randn(2)
145
+ output = Tanhshrink_layer(input)
146
+
147
+ def test_Softmin(self):
148
+ Softmin_layer = brainstate.nn.Softmin(dim=2)
149
+ input = brainstate.random.randn(2, 3, 4)
150
+ output = Softmin_layer(input)
151
+
152
+ def test_Softmax(self):
153
+ Softmax_layer = brainstate.nn.Softmax(dim=2)
154
+ input = brainstate.random.randn(2, 3, 4)
155
+ output = Softmax_layer(input)
156
+
157
+ def test_Softmax2d(self):
158
+ Softmax2d_layer = brainstate.nn.Softmax2d()
159
+ input = brainstate.random.randn(2, 3, 12, 13)
160
+ output = Softmax2d_layer(input)
161
+
162
+ def test_LogSoftmax(self):
163
+ LogSoftmax_layer = brainstate.nn.LogSoftmax(dim=2)
164
+ input = brainstate.random.randn(2, 3, 4)
165
+ output = LogSoftmax_layer(input)
166
+
167
+
168
+ if __name__ == '__main__':
169
+ absltest.main()
@@ -1,58 +1,58 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- from typing import Optional, Callable, Union
17
-
18
- from brainstate import init
19
- from brainstate._state import ParamState
20
- from brainstate.typing import ArrayLike
21
- from ._module import Module
22
-
23
- __all__ = [
24
- 'Embedding',
25
- ]
26
-
27
-
28
- class Embedding(Module):
29
- r"""
30
- A simple lookup table that stores embeddings of a fixed size.
31
-
32
- Args:
33
- num_embeddings: Size of embedding dictionary. Must be non-negative.
34
- embedding_size: Size of each embedding vector. Must be non-negative.
35
- embedding_init: The initializer for the embedding lookup table, of shape `(num_embeddings, embedding_size)`.
36
- """
37
-
38
- def __init__(
39
- self,
40
- num_embeddings: int,
41
- embedding_size: int,
42
- embedding_init: Union[Callable, ArrayLike] = init.LecunUniform(),
43
- name: Optional[str] = None,
44
- ):
45
- super().__init__(name=name)
46
- if num_embeddings < 0:
47
- raise ValueError("num_embeddings must not be negative.")
48
- if embedding_size < 0:
49
- raise ValueError("embedding_size must not be negative.")
50
- self.num_embeddings = num_embeddings
51
- self.embedding_size = embedding_size
52
- self.out_size = (embedding_size,)
53
-
54
- weight = init.param(embedding_init, (self.num_embeddings, self.embedding_size))
55
- self.weight = ParamState(weight)
56
-
57
- def update(self, indices: ArrayLike):
58
- return self.weight.value[indices]
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from typing import Optional, Callable, Union
17
+
18
+ from brainstate import init
19
+ from brainstate._state import ParamState
20
+ from brainstate.typing import ArrayLike
21
+ from ._module import Module
22
+
23
+ __all__ = [
24
+ 'Embedding',
25
+ ]
26
+
27
+
28
+ class Embedding(Module):
29
+ r"""
30
+ A simple lookup table that stores embeddings of a fixed size.
31
+
32
+ Args:
33
+ num_embeddings: Size of embedding dictionary. Must be non-negative.
34
+ embedding_size: Size of each embedding vector. Must be non-negative.
35
+ embedding_init: The initializer for the embedding lookup table, of shape `(num_embeddings, embedding_size)`.
36
+ """
37
+
38
+ def __init__(
39
+ self,
40
+ num_embeddings: int,
41
+ embedding_size: int,
42
+ embedding_init: Union[Callable, ArrayLike] = init.LecunUniform(),
43
+ name: Optional[str] = None,
44
+ ):
45
+ super().__init__(name=name)
46
+ if num_embeddings < 0:
47
+ raise ValueError("num_embeddings must not be negative.")
48
+ if embedding_size < 0:
49
+ raise ValueError("embedding_size must not be negative.")
50
+ self.num_embeddings = num_embeddings
51
+ self.embedding_size = embedding_size
52
+ self.out_size = (embedding_size,)
53
+
54
+ weight = init.param(embedding_init, (self.num_embeddings, self.embedding_size))
55
+ self.weight = ParamState(weight)
56
+
57
+ def update(self, indices: ArrayLike):
58
+ return self.weight.value[indices]
@@ -1,92 +1,92 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
-
17
- from typing import Callable
18
-
19
- import brainunit as u
20
- import jax.numpy as jnp
21
-
22
- from brainstate import environ, random
23
- from brainstate.augment import vector_grad
24
-
25
- __all__ = [
26
- 'exp_euler_step',
27
- ]
28
-
29
-
30
- def exp_euler_step(
31
- fn: Callable, *args, **kwargs
32
- ):
33
- r"""
34
- One-step Exponential Euler method for solving ODEs.
35
-
36
- Examples
37
- --------
38
-
39
- >>> def fun(x, t):
40
- ... return -x
41
- >>> x = 1.0
42
- >>> exp_euler_step(fun, x, None)
43
-
44
- If the variable ( $x$ ) has units of ( $[X]$ ), then the drift term ( $\text{drift_fn}(x)$ ) should
45
- have units of ( $[X]/[T]$ ), where ( $[T]$ ) is the unit of time.
46
-
47
- If the variable ( x ) has units of ( [X] ), then the diffusion term ( \text{diffusion_fn}(x) )
48
- should have units of ( [X]/\sqrt{[T]} ).
49
-
50
- Args:
51
- fun: Callable. The function to be solved.
52
- diffusion: Callable. The diffusion function.
53
- *args: The input arguments.
54
- drift: Callable. The drift function.
55
-
56
- Returns:
57
- The one-step solution of the ODE.
58
- """
59
- assert callable(fn), 'The input function should be callable.'
60
- assert len(args) > 0, 'The input arguments should not be empty.'
61
- if callable(args[0]):
62
- diffusion = args[0]
63
- args = args[1:]
64
- else:
65
- diffusion = None
66
- assert len(args) > 0, 'The input arguments should not be empty.'
67
- if u.math.get_dtype(args[0]) not in [jnp.float32, jnp.float64, jnp.float16, jnp.bfloat16]:
68
- raise ValueError(
69
- f'The input data type should be float64, float32, float16, or bfloat16 '
70
- f'when using Exponential Euler method. But we got {args[0].dtype}.'
71
- )
72
-
73
- # drift
74
- dt = environ.get('dt')
75
- linear, derivative = vector_grad(fn, argnums=0, return_value=True)(*args, **kwargs)
76
- linear = u.Quantity(u.get_mantissa(linear), u.get_unit(derivative) / u.get_unit(linear))
77
- phi = u.math.exprel(dt * linear)
78
- x_next = args[0] + dt * phi * derivative
79
-
80
- # diffusion
81
- if diffusion is not None:
82
- diffusion_part = diffusion(*args, **kwargs) * u.math.sqrt(dt) * random.randn_like(args[0])
83
- if u.get_dim(x_next) != u.get_dim(diffusion_part):
84
- drift_unit = u.get_unit(x_next)
85
- time_unit = u.get_unit(dt)
86
- raise ValueError(
87
- f"Drift unit is {drift_unit}, "
88
- f"expected diffusion unit is {drift_unit / time_unit ** 0.5}, "
89
- f"but we got {u.get_unit(diffusion_part)}."
90
- )
91
- x_next += diffusion_part
92
- return x_next
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+
17
+ from typing import Callable
18
+
19
+ import brainunit as u
20
+ import jax.numpy as jnp
21
+
22
+ from brainstate import environ, random
23
+ from brainstate.augment import vector_grad
24
+
25
+ __all__ = [
26
+ 'exp_euler_step',
27
+ ]
28
+
29
+
30
+ def exp_euler_step(
31
+ fn: Callable, *args, **kwargs
32
+ ):
33
+ r"""
34
+ One-step Exponential Euler method for solving ODEs.
35
+
36
+ Examples
37
+ --------
38
+
39
+ >>> def fun(x, t):
40
+ ... return -x
41
+ >>> x = 1.0
42
+ >>> exp_euler_step(fun, x, None)
43
+
44
+ If the variable ( $x$ ) has units of ( $[X]$ ), then the drift term ( $\text{drift_fn}(x)$ ) should
45
+ have units of ( $[X]/[T]$ ), where ( $[T]$ ) is the unit of time.
46
+
47
+ If the variable ( x ) has units of ( [X] ), then the diffusion term ( \text{diffusion_fn}(x) )
48
+ should have units of ( [X]/\sqrt{[T]} ).
49
+
50
+ Args:
51
+ fun: Callable. The function to be solved.
52
+ diffusion: Callable. The diffusion function.
53
+ *args: The input arguments.
54
+ drift: Callable. The drift function.
55
+
56
+ Returns:
57
+ The one-step solution of the ODE.
58
+ """
59
+ assert callable(fn), 'The input function should be callable.'
60
+ assert len(args) > 0, 'The input arguments should not be empty.'
61
+ if callable(args[0]):
62
+ diffusion = args[0]
63
+ args = args[1:]
64
+ else:
65
+ diffusion = None
66
+ assert len(args) > 0, 'The input arguments should not be empty.'
67
+ if u.math.get_dtype(args[0]) not in [jnp.float32, jnp.float64, jnp.float16, jnp.bfloat16]:
68
+ raise ValueError(
69
+ f'The input data type should be float64, float32, float16, or bfloat16 '
70
+ f'when using Exponential Euler method. But we got {args[0].dtype}.'
71
+ )
72
+
73
+ # drift
74
+ dt = environ.get('dt')
75
+ linear, derivative = vector_grad(fn, argnums=0, return_value=True)(*args, **kwargs)
76
+ linear = u.Quantity(u.get_mantissa(linear), u.get_unit(derivative) / u.get_unit(linear))
77
+ phi = u.math.exprel(dt * linear)
78
+ x_next = args[0] + dt * phi * derivative
79
+
80
+ # diffusion
81
+ if diffusion is not None:
82
+ diffusion_part = diffusion(*args, **kwargs) * u.math.sqrt(dt) * random.randn_like(args[0])
83
+ if u.get_dim(x_next) != u.get_dim(diffusion_part):
84
+ drift_unit = u.get_unit(x_next)
85
+ time_unit = u.get_unit(dt)
86
+ raise ValueError(
87
+ f"Drift unit is {drift_unit}, "
88
+ f"expected diffusion unit is {drift_unit / time_unit ** 0.5}, "
89
+ f"but we got {u.get_unit(diffusion_part)}."
90
+ )
91
+ x_next += diffusion_part
92
+ return x_next