brainstate 0.1.8__py2.py3-none-any.whl → 0.1.9__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- brainstate/__init__.py +58 -51
- brainstate/_compatible_import.py +148 -148
- brainstate/_state.py +1605 -1663
- brainstate/_state_test.py +52 -52
- brainstate/_utils.py +47 -47
- brainstate/augment/__init__.py +30 -30
- brainstate/augment/_autograd.py +778 -778
- brainstate/augment/_autograd_test.py +1289 -1289
- brainstate/augment/_eval_shape.py +99 -99
- brainstate/augment/_eval_shape_test.py +38 -38
- brainstate/augment/_mapping.py +1060 -1060
- brainstate/augment/_mapping_test.py +597 -597
- brainstate/augment/_random.py +151 -151
- brainstate/compile/__init__.py +38 -38
- brainstate/compile/_ad_checkpoint.py +204 -204
- brainstate/compile/_ad_checkpoint_test.py +49 -49
- brainstate/compile/_conditions.py +256 -256
- brainstate/compile/_conditions_test.py +220 -220
- brainstate/compile/_error_if.py +92 -92
- brainstate/compile/_error_if_test.py +52 -52
- brainstate/compile/_jit.py +346 -346
- brainstate/compile/_jit_test.py +143 -143
- brainstate/compile/_loop_collect_return.py +536 -536
- brainstate/compile/_loop_collect_return_test.py +58 -58
- brainstate/compile/_loop_no_collection.py +184 -184
- brainstate/compile/_loop_no_collection_test.py +50 -50
- brainstate/compile/_make_jaxpr.py +888 -888
- brainstate/compile/_make_jaxpr_test.py +156 -156
- brainstate/compile/_progress_bar.py +202 -202
- brainstate/compile/_unvmap.py +159 -159
- brainstate/compile/_util.py +147 -147
- brainstate/environ.py +563 -563
- brainstate/environ_test.py +62 -62
- brainstate/functional/__init__.py +27 -26
- brainstate/graph/__init__.py +29 -29
- brainstate/graph/_graph_node.py +244 -244
- brainstate/graph/_graph_node_test.py +73 -73
- brainstate/graph/_graph_operation.py +1738 -1738
- brainstate/graph/_graph_operation_test.py +563 -563
- brainstate/init/__init__.py +26 -26
- brainstate/init/_base.py +52 -52
- brainstate/init/_generic.py +244 -244
- brainstate/init/_random_inits.py +553 -553
- brainstate/init/_random_inits_test.py +149 -149
- brainstate/init/_regular_inits.py +105 -105
- brainstate/init/_regular_inits_test.py +50 -50
- brainstate/mixin.py +365 -363
- brainstate/mixin_test.py +77 -73
- brainstate/nn/__init__.py +135 -131
- brainstate/{functional → nn}/_activations.py +808 -813
- brainstate/{functional → nn}/_activations_test.py +331 -331
- brainstate/nn/_collective_ops.py +514 -514
- brainstate/nn/_collective_ops_test.py +43 -43
- brainstate/nn/_common.py +178 -178
- brainstate/nn/_conv.py +501 -501
- brainstate/nn/_conv_test.py +238 -238
- brainstate/nn/_delay.py +509 -502
- brainstate/nn/_delay_test.py +238 -184
- brainstate/nn/_dropout.py +426 -426
- brainstate/nn/_dropout_test.py +100 -100
- brainstate/nn/_dynamics.py +1343 -1343
- brainstate/nn/_dynamics_test.py +78 -78
- brainstate/nn/_elementwise.py +1119 -1119
- brainstate/nn/_elementwise_test.py +169 -169
- brainstate/nn/_embedding.py +58 -58
- brainstate/nn/_exp_euler.py +92 -92
- brainstate/nn/_exp_euler_test.py +35 -35
- brainstate/nn/_fixedprob.py +239 -239
- brainstate/nn/_fixedprob_test.py +114 -114
- brainstate/nn/_inputs.py +608 -608
- brainstate/nn/_linear.py +424 -424
- brainstate/nn/_linear_mv.py +83 -83
- brainstate/nn/_linear_mv_test.py +120 -120
- brainstate/nn/_linear_test.py +107 -107
- brainstate/nn/_ltp.py +28 -28
- brainstate/nn/_module.py +377 -377
- brainstate/nn/_module_test.py +40 -40
- brainstate/nn/_neuron.py +705 -705
- brainstate/nn/_neuron_test.py +161 -161
- brainstate/nn/_normalizations.py +975 -918
- brainstate/nn/_normalizations_test.py +73 -73
- brainstate/{functional → nn}/_others.py +46 -46
- brainstate/nn/_poolings.py +1177 -1177
- brainstate/nn/_poolings_test.py +217 -217
- brainstate/nn/_projection.py +486 -486
- brainstate/nn/_rate_rnns.py +554 -554
- brainstate/nn/_rate_rnns_test.py +63 -63
- brainstate/nn/_readout.py +209 -209
- brainstate/nn/_readout_test.py +53 -53
- brainstate/nn/_stp.py +236 -236
- brainstate/nn/_synapse.py +505 -505
- brainstate/nn/_synapse_test.py +131 -131
- brainstate/nn/_synaptic_projection.py +423 -423
- brainstate/nn/_synouts.py +162 -162
- brainstate/nn/_synouts_test.py +57 -57
- brainstate/nn/_utils.py +89 -89
- brainstate/nn/metrics.py +388 -388
- brainstate/optim/__init__.py +38 -38
- brainstate/optim/_base.py +64 -64
- brainstate/optim/_lr_scheduler.py +448 -448
- brainstate/optim/_lr_scheduler_test.py +50 -50
- brainstate/optim/_optax_optimizer.py +152 -152
- brainstate/optim/_optax_optimizer_test.py +53 -53
- brainstate/optim/_sgd_optimizer.py +1104 -1104
- brainstate/random/__init__.py +24 -24
- brainstate/random/_rand_funs.py +3616 -3616
- brainstate/random/_rand_funs_test.py +567 -567
- brainstate/random/_rand_seed.py +210 -210
- brainstate/random/_rand_seed_test.py +48 -48
- brainstate/random/_rand_state.py +1409 -1409
- brainstate/random/_random_for_unit.py +52 -52
- brainstate/surrogate.py +1957 -1957
- brainstate/transform.py +23 -23
- brainstate/typing.py +304 -304
- brainstate/util/__init__.py +50 -50
- brainstate/util/caller.py +98 -98
- brainstate/util/error.py +55 -55
- brainstate/util/filter.py +469 -469
- brainstate/util/others.py +540 -540
- brainstate/util/pretty_pytree.py +945 -945
- brainstate/util/pretty_pytree_test.py +159 -159
- brainstate/util/pretty_repr.py +328 -328
- brainstate/util/pretty_table.py +2954 -2954
- brainstate/util/scaling.py +258 -258
- brainstate/util/struct.py +523 -523
- {brainstate-0.1.8.dist-info → brainstate-0.1.9.dist-info}/METADATA +91 -99
- brainstate-0.1.9.dist-info/RECORD +130 -0
- {brainstate-0.1.8.dist-info → brainstate-0.1.9.dist-info}/WHEEL +1 -1
- {brainstate-0.1.8.dist-info → brainstate-0.1.9.dist-info/licenses}/LICENSE +202 -202
- brainstate/functional/_normalization.py +0 -81
- brainstate/functional/_spikes.py +0 -204
- brainstate-0.1.8.dist-info/RECORD +0 -132
- {brainstate-0.1.8.dist-info → brainstate-0.1.9.dist-info}/top_level.txt +0 -0
@@ -1,331 +1,331 @@
|
|
1
|
-
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
|
16
|
-
"""Tests for nn module."""
|
17
|
-
|
18
|
-
import itertools
|
19
|
-
from functools import partial
|
20
|
-
|
21
|
-
import jax
|
22
|
-
import jax.numpy as jnp
|
23
|
-
import scipy.stats
|
24
|
-
from absl.testing import parameterized
|
25
|
-
from jax._src import test_util as jtu
|
26
|
-
from jax.test_util import check_grads
|
27
|
-
|
28
|
-
import brainstate
|
29
|
-
|
30
|
-
|
31
|
-
class NNFunctionsTest(jtu.JaxTestCase):
|
32
|
-
@jtu.skip_on_flag("jax_skip_slow_tests", True)
|
33
|
-
def testSoftplusGrad(self):
|
34
|
-
check_grads(brainstate.functional.softplus, (1e-8,), order=4, )
|
35
|
-
|
36
|
-
def testSoftplusGradZero(self):
|
37
|
-
check_grads(brainstate.functional.softplus, (0.,), order=1)
|
38
|
-
|
39
|
-
def testSoftplusGradInf(self):
|
40
|
-
self.assertAllClose(1., jax.grad(brainstate.functional.softplus)(float('inf')))
|
41
|
-
|
42
|
-
def testSoftplusGradNegInf(self):
|
43
|
-
check_grads(brainstate.functional.softplus, (-float('inf'),), order=1)
|
44
|
-
|
45
|
-
def testSoftplusGradNan(self):
|
46
|
-
check_grads(brainstate.functional.softplus, (float('nan'),), order=1)
|
47
|
-
|
48
|
-
@parameterized.parameters([int, float] + jtu.dtypes.floating + jtu.dtypes.integer)
|
49
|
-
def testSoftplusZero(self, dtype):
|
50
|
-
self.assertEqual(jnp.log(dtype(2)), brainstate.functional.softplus(dtype(0)))
|
51
|
-
|
52
|
-
def testSparseplusGradZero(self):
|
53
|
-
check_grads(brainstate.functional.sparse_plus, (-2.,), order=1)
|
54
|
-
|
55
|
-
def testSparseplusGrad(self):
|
56
|
-
check_grads(brainstate.functional.sparse_plus, (0.,), order=1)
|
57
|
-
|
58
|
-
def testSparseplusAndSparseSigmoid(self):
|
59
|
-
self.assertAllClose(
|
60
|
-
jax.grad(brainstate.functional.sparse_plus)(0.),
|
61
|
-
brainstate.functional.sparse_sigmoid(0.),
|
62
|
-
check_dtypes=False)
|
63
|
-
self.assertAllClose(
|
64
|
-
jax.grad(brainstate.functional.sparse_plus)(2.),
|
65
|
-
brainstate.functional.sparse_sigmoid(2.),
|
66
|
-
check_dtypes=False)
|
67
|
-
self.assertAllClose(
|
68
|
-
jax.grad(brainstate.functional.sparse_plus)(-2.),
|
69
|
-
brainstate.functional.sparse_sigmoid(-2.),
|
70
|
-
check_dtypes=False)
|
71
|
-
|
72
|
-
# def testSquareplusGrad(self):
|
73
|
-
# check_grads(brainstate.functional.squareplus, (1e-8,), order=4,
|
74
|
-
# )
|
75
|
-
|
76
|
-
# def testSquareplusGradZero(self):
|
77
|
-
# check_grads(brainstate.functional.squareplus, (0.,), order=1,
|
78
|
-
# )
|
79
|
-
|
80
|
-
# def testSquareplusGradNegInf(self):
|
81
|
-
# check_grads(brainstate.functional.squareplus, (-float('inf'),), order=1,
|
82
|
-
# )
|
83
|
-
|
84
|
-
# def testSquareplusGradNan(self):
|
85
|
-
# check_grads(brainstate.functional.squareplus, (float('nan'),), order=1,
|
86
|
-
# )
|
87
|
-
|
88
|
-
# @parameterized.parameters([float] + jtu.dtypes.floating)
|
89
|
-
# def testSquareplusZero(self, dtype):
|
90
|
-
# self.assertEqual(dtype(1), brainstate.functional.squareplus(dtype(0), dtype(4)))
|
91
|
-
#
|
92
|
-
# def testMishGrad(self):
|
93
|
-
# check_grads(brainstate.functional.mish, (1e-8,), order=4,
|
94
|
-
# )
|
95
|
-
#
|
96
|
-
# def testMishGradZero(self):
|
97
|
-
# check_grads(brainstate.functional.mish, (0.,), order=1,
|
98
|
-
# )
|
99
|
-
#
|
100
|
-
# def testMishGradNegInf(self):
|
101
|
-
# check_grads(brainstate.functional.mish, (-float('inf'),), order=1,
|
102
|
-
# )
|
103
|
-
#
|
104
|
-
# def testMishGradNan(self):
|
105
|
-
# check_grads(brainstate.functional.mish, (float('nan'),), order=1,
|
106
|
-
# )
|
107
|
-
|
108
|
-
@parameterized.parameters([float] + jtu.dtypes.floating)
|
109
|
-
def testMishZero(self, dtype):
|
110
|
-
self.assertEqual(dtype(0), brainstate.functional.mish(dtype(0)))
|
111
|
-
|
112
|
-
def testReluGrad(self):
|
113
|
-
rtol = None
|
114
|
-
check_grads(brainstate.functional.relu, (1.,), order=3, rtol=rtol)
|
115
|
-
check_grads(brainstate.functional.relu, (-1.,), order=3, rtol=rtol)
|
116
|
-
jaxpr = jax.make_jaxpr(jax.grad(brainstate.functional.relu))(0.)
|
117
|
-
self.assertGreaterEqual(len(jaxpr.jaxpr.eqns), 2)
|
118
|
-
|
119
|
-
def testRelu6Grad(self):
|
120
|
-
rtol = None
|
121
|
-
check_grads(brainstate.functional.relu6, (1.,), order=3, rtol=rtol)
|
122
|
-
check_grads(brainstate.functional.relu6, (-1.,), order=3, rtol=rtol)
|
123
|
-
self.assertAllClose(jax.grad(brainstate.functional.relu6)(0.), 0., check_dtypes=False)
|
124
|
-
self.assertAllClose(jax.grad(brainstate.functional.relu6)(6.), 0., check_dtypes=False)
|
125
|
-
|
126
|
-
def testSoftplusValue(self):
|
127
|
-
val = brainstate.functional.softplus(89.)
|
128
|
-
self.assertAllClose(val, 89., check_dtypes=False)
|
129
|
-
|
130
|
-
def testSparseplusValue(self):
|
131
|
-
val = brainstate.functional.sparse_plus(89.)
|
132
|
-
self.assertAllClose(val, 89., check_dtypes=False)
|
133
|
-
|
134
|
-
def testSparsesigmoidValue(self):
|
135
|
-
self.assertAllClose(brainstate.functional.sparse_sigmoid(-2.), 0., check_dtypes=False)
|
136
|
-
self.assertAllClose(brainstate.functional.sparse_sigmoid(2.), 1., check_dtypes=False)
|
137
|
-
self.assertAllClose(brainstate.functional.sparse_sigmoid(0.), .5, check_dtypes=False)
|
138
|
-
|
139
|
-
# def testSquareplusValue(self):
|
140
|
-
# val = brainstate.functional.squareplus(1e3)
|
141
|
-
# self.assertAllClose(val, 1e3, check_dtypes=False, atol=1e-3)
|
142
|
-
|
143
|
-
def testMishValue(self):
|
144
|
-
val = brainstate.functional.mish(1e3)
|
145
|
-
self.assertAllClose(val, 1e3, check_dtypes=False, atol=1e-3)
|
146
|
-
|
147
|
-
def testEluValue(self):
|
148
|
-
val = brainstate.functional.elu(1e4)
|
149
|
-
self.assertAllClose(val, 1e4, check_dtypes=False)
|
150
|
-
|
151
|
-
def testGluValue(self):
|
152
|
-
val = brainstate.functional.glu(jnp.array([1.0, 0.0]), axis=0)
|
153
|
-
self.assertAllClose(val, jnp.array([0.5]))
|
154
|
-
|
155
|
-
@parameterized.parameters(False, True)
|
156
|
-
def testGeluIntType(self, approximate):
|
157
|
-
val_float = brainstate.functional.gelu(jnp.array(-1.0), approximate=approximate)
|
158
|
-
val_int = brainstate.functional.gelu(jnp.array(-1), approximate=approximate)
|
159
|
-
self.assertAllClose(val_float, val_int)
|
160
|
-
|
161
|
-
@parameterized.parameters(False, True)
|
162
|
-
def testGelu(self, approximate):
|
163
|
-
def gelu_reference(x):
|
164
|
-
return x * scipy.stats.norm.cdf(x)
|
165
|
-
|
166
|
-
rng = jtu.rand_default(self.rng())
|
167
|
-
args_maker = lambda: [rng((4, 5, 6), jnp.float32)]
|
168
|
-
self._CheckAgainstNumpy(
|
169
|
-
gelu_reference, partial(brainstate.functional.gelu, approximate=approximate), args_maker,
|
170
|
-
check_dtypes=False, tol=1e-3 if approximate else None)
|
171
|
-
|
172
|
-
@parameterized.parameters(*itertools.product(
|
173
|
-
(jnp.float32, jnp.bfloat16, jnp.float16),
|
174
|
-
(partial(brainstate.functional.gelu, approximate=False),
|
175
|
-
partial(brainstate.functional.gelu, approximate=True),
|
176
|
-
brainstate.functional.relu,
|
177
|
-
brainstate.functional.softplus,
|
178
|
-
brainstate.functional.sparse_plus,
|
179
|
-
brainstate.functional.sigmoid,
|
180
|
-
# brainstate.functional.squareplus,
|
181
|
-
brainstate.functional.mish)))
|
182
|
-
def testDtypeMatchesInput(self, dtype, fn):
|
183
|
-
x = jnp.zeros((), dtype=dtype)
|
184
|
-
out = fn(x)
|
185
|
-
self.assertEqual(out.dtype, dtype)
|
186
|
-
|
187
|
-
def testEluMemory(self):
|
188
|
-
# see https://github.com/google/jax/pull/1640
|
189
|
-
with jax.enable_checks(False): # With checks we materialize the array
|
190
|
-
jax.make_jaxpr(lambda: brainstate.functional.elu(jnp.ones((10 ** 12,)))) # don't oom
|
191
|
-
|
192
|
-
def testHardTanhMemory(self):
|
193
|
-
# see https://github.com/google/jax/pull/1640
|
194
|
-
with jax.enable_checks(False): # With checks we materialize the array
|
195
|
-
jax.make_jaxpr(lambda: brainstate.functional.hard_tanh(jnp.ones((10 ** 12,)))) # don't oom
|
196
|
-
|
197
|
-
@parameterized.parameters([brainstate.functional.softmax, brainstate.functional.log_softmax])
|
198
|
-
def testSoftmaxEmptyArray(self, fn):
|
199
|
-
x = jnp.array([], dtype=float)
|
200
|
-
self.assertArraysEqual(fn(x), x)
|
201
|
-
|
202
|
-
@parameterized.parameters([brainstate.functional.softmax, brainstate.functional.log_softmax])
|
203
|
-
def testSoftmaxEmptyMask(self, fn):
|
204
|
-
x = jnp.array([5.5, 1.3, -4.2, 0.9])
|
205
|
-
m = jnp.zeros_like(x, dtype=bool)
|
206
|
-
expected = jnp.full_like(x, 0.0 if fn is brainstate.functional.softmax else -jnp.inf)
|
207
|
-
self.assertArraysEqual(fn(x, where=m), expected)
|
208
|
-
|
209
|
-
@parameterized.parameters([brainstate.functional.softmax, brainstate.functional.log_softmax])
|
210
|
-
def testSoftmaxWhereMask(self, fn):
|
211
|
-
x = jnp.array([5.5, 1.3, -4.2, 0.9])
|
212
|
-
m = jnp.array([True, False, True, True])
|
213
|
-
|
214
|
-
out = fn(x, where=m)
|
215
|
-
self.assertAllClose(out[m], fn(x[m]))
|
216
|
-
|
217
|
-
probs = out if fn is brainstate.functional.softmax else jnp.exp(out)
|
218
|
-
self.assertAllClose(probs.sum(), 1.0)
|
219
|
-
|
220
|
-
@parameterized.parameters([brainstate.functional.softmax, brainstate.functional.log_softmax])
|
221
|
-
def testSoftmaxWhereGrad(self, fn):
|
222
|
-
# regression test for https://github.com/google/jax/issues/19490
|
223
|
-
x = jnp.array([36., 10000.])
|
224
|
-
mask = x < 1000
|
225
|
-
|
226
|
-
f = lambda x, mask: fn(x, where=mask)[0]
|
227
|
-
|
228
|
-
self.assertAllClose(jax.grad(f)(x, mask), jnp.zeros_like(x))
|
229
|
-
|
230
|
-
def testSoftmaxGrad(self):
|
231
|
-
x = jnp.array([5.5, 1.3, -4.2, 0.9])
|
232
|
-
jtu.check_grads(brainstate.functional.softmax, (x,), order=2, atol=5e-3)
|
233
|
-
|
234
|
-
def testStandardizeWhereMask(self):
|
235
|
-
x = jnp.array([5.5, 1.3, -4.2, 0.9])
|
236
|
-
m = jnp.array([True, False, True, True])
|
237
|
-
x_filtered = jnp.take(x, jnp.array([0, 2, 3]))
|
238
|
-
|
239
|
-
out_masked = jnp.take(brainstate.functional.standardize(x, where=m), jnp.array([0, 2, 3]))
|
240
|
-
out_filtered = brainstate.functional.standardize(x_filtered)
|
241
|
-
|
242
|
-
self.assertAllClose(out_masked, out_filtered)
|
243
|
-
|
244
|
-
def testOneHot(self):
|
245
|
-
actual = brainstate.functional.one_hot(jnp.array([0, 1, 2]), 3)
|
246
|
-
expected = jnp.array([[1., 0., 0.],
|
247
|
-
[0., 1., 0.],
|
248
|
-
[0., 0., 1.]])
|
249
|
-
self.assertAllClose(actual, expected, check_dtypes=False)
|
250
|
-
|
251
|
-
actual = brainstate.functional.one_hot(jnp.array([1, 2, 0]), 3)
|
252
|
-
expected = jnp.array([[0., 1., 0.],
|
253
|
-
[0., 0., 1.],
|
254
|
-
[1., 0., 0.]])
|
255
|
-
self.assertAllClose(actual, expected, check_dtypes=False)
|
256
|
-
|
257
|
-
def testOneHotOutOfBound(self):
|
258
|
-
actual = brainstate.functional.one_hot(jnp.array([-1, 3]), 3)
|
259
|
-
expected = jnp.array([[0., 0., 0.],
|
260
|
-
[0., 0., 0.]])
|
261
|
-
self.assertAllClose(actual, expected, check_dtypes=False)
|
262
|
-
|
263
|
-
def testOneHotNonArrayInput(self):
|
264
|
-
actual = brainstate.functional.one_hot([0, 1, 2], 3)
|
265
|
-
expected = jnp.array([[1., 0., 0.],
|
266
|
-
[0., 1., 0.],
|
267
|
-
[0., 0., 1.]])
|
268
|
-
self.assertAllClose(actual, expected, check_dtypes=False)
|
269
|
-
|
270
|
-
def testOneHotCustomDtype(self):
|
271
|
-
actual = brainstate.functional.one_hot(jnp.array([0, 1, 2]), 3, dtype=jnp.bool_)
|
272
|
-
expected = jnp.array([[True, False, False],
|
273
|
-
[False, True, False],
|
274
|
-
[False, False, True]])
|
275
|
-
self.assertAllClose(actual, expected)
|
276
|
-
|
277
|
-
def testOneHotAxis(self):
|
278
|
-
expected = jnp.array([[0., 1., 0.],
|
279
|
-
[0., 0., 1.],
|
280
|
-
[1., 0., 0.]]).T
|
281
|
-
|
282
|
-
actual = brainstate.functional.one_hot(jnp.array([1, 2, 0]), 3, axis=0)
|
283
|
-
self.assertAllClose(actual, expected, check_dtypes=False)
|
284
|
-
|
285
|
-
actual = brainstate.functional.one_hot(jnp.array([1, 2, 0]), 3, axis=-2)
|
286
|
-
self.assertAllClose(actual, expected, check_dtypes=False)
|
287
|
-
|
288
|
-
def testTanhExists(self):
|
289
|
-
print(brainstate.functional.tanh) # doesn't crash
|
290
|
-
|
291
|
-
def testCustomJVPLeak(self):
|
292
|
-
# https://github.com/google/jax/issues/8171
|
293
|
-
@jax.jit
|
294
|
-
def fwd():
|
295
|
-
a = jnp.array(1.)
|
296
|
-
|
297
|
-
def f(hx, _):
|
298
|
-
hx = brainstate.functional.sigmoid(hx + a)
|
299
|
-
return hx, None
|
300
|
-
|
301
|
-
hx = jnp.array(0.)
|
302
|
-
jax.lax.scan(f, hx, None, length=2)
|
303
|
-
|
304
|
-
with jax.checking_leaks():
|
305
|
-
fwd() # doesn't crash
|
306
|
-
|
307
|
-
def testCustomJVPLeak2(self):
|
308
|
-
# https://github.com/google/jax/issues/8171
|
309
|
-
# The above test uses jax.brainstate.functional.sigmoid, as in the original #8171, but that
|
310
|
-
# function no longer actually has a custom_jvp! So we inline the old def.
|
311
|
-
|
312
|
-
@jax.custom_jvp
|
313
|
-
def sigmoid(x):
|
314
|
-
one = jnp.float32(1)
|
315
|
-
return jax.lax.div(one, jax.lax.add(one, jax.lax.exp(jax.lax.neg(x))))
|
316
|
-
|
317
|
-
sigmoid.defjvps(lambda g, ans, x: g * ans * (jnp.float32(1) - ans))
|
318
|
-
|
319
|
-
@jax.jit
|
320
|
-
def fwd():
|
321
|
-
a = jnp.array(1., 'float32')
|
322
|
-
|
323
|
-
def f(hx, _):
|
324
|
-
hx = sigmoid(hx + a)
|
325
|
-
return hx, None
|
326
|
-
|
327
|
-
hx = jnp.array(0., 'float32')
|
328
|
-
jax.lax.scan(f, hx, None, length=2)
|
329
|
-
|
330
|
-
with jax.checking_leaks():
|
331
|
-
fwd() # doesn't crash
|
1
|
+
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Tests for nn module."""
|
17
|
+
|
18
|
+
import itertools
|
19
|
+
from functools import partial
|
20
|
+
|
21
|
+
import jax
|
22
|
+
import jax.numpy as jnp
|
23
|
+
import scipy.stats
|
24
|
+
from absl.testing import parameterized
|
25
|
+
from jax._src import test_util as jtu
|
26
|
+
from jax.test_util import check_grads
|
27
|
+
|
28
|
+
import brainstate
|
29
|
+
|
30
|
+
|
31
|
+
class NNFunctionsTest(jtu.JaxTestCase):
|
32
|
+
@jtu.skip_on_flag("jax_skip_slow_tests", True)
|
33
|
+
def testSoftplusGrad(self):
|
34
|
+
check_grads(brainstate.functional.softplus, (1e-8,), order=4, )
|
35
|
+
|
36
|
+
def testSoftplusGradZero(self):
|
37
|
+
check_grads(brainstate.functional.softplus, (0.,), order=1)
|
38
|
+
|
39
|
+
def testSoftplusGradInf(self):
|
40
|
+
self.assertAllClose(1., jax.grad(brainstate.functional.softplus)(float('inf')))
|
41
|
+
|
42
|
+
def testSoftplusGradNegInf(self):
|
43
|
+
check_grads(brainstate.functional.softplus, (-float('inf'),), order=1)
|
44
|
+
|
45
|
+
def testSoftplusGradNan(self):
|
46
|
+
check_grads(brainstate.functional.softplus, (float('nan'),), order=1)
|
47
|
+
|
48
|
+
@parameterized.parameters([int, float] + jtu.dtypes.floating + jtu.dtypes.integer)
|
49
|
+
def testSoftplusZero(self, dtype):
|
50
|
+
self.assertEqual(jnp.log(dtype(2)), brainstate.functional.softplus(dtype(0)))
|
51
|
+
|
52
|
+
def testSparseplusGradZero(self):
|
53
|
+
check_grads(brainstate.functional.sparse_plus, (-2.,), order=1)
|
54
|
+
|
55
|
+
def testSparseplusGrad(self):
|
56
|
+
check_grads(brainstate.functional.sparse_plus, (0.,), order=1)
|
57
|
+
|
58
|
+
def testSparseplusAndSparseSigmoid(self):
|
59
|
+
self.assertAllClose(
|
60
|
+
jax.grad(brainstate.functional.sparse_plus)(0.),
|
61
|
+
brainstate.functional.sparse_sigmoid(0.),
|
62
|
+
check_dtypes=False)
|
63
|
+
self.assertAllClose(
|
64
|
+
jax.grad(brainstate.functional.sparse_plus)(2.),
|
65
|
+
brainstate.functional.sparse_sigmoid(2.),
|
66
|
+
check_dtypes=False)
|
67
|
+
self.assertAllClose(
|
68
|
+
jax.grad(brainstate.functional.sparse_plus)(-2.),
|
69
|
+
brainstate.functional.sparse_sigmoid(-2.),
|
70
|
+
check_dtypes=False)
|
71
|
+
|
72
|
+
# def testSquareplusGrad(self):
|
73
|
+
# check_grads(brainstate.functional.squareplus, (1e-8,), order=4,
|
74
|
+
# )
|
75
|
+
|
76
|
+
# def testSquareplusGradZero(self):
|
77
|
+
# check_grads(brainstate.functional.squareplus, (0.,), order=1,
|
78
|
+
# )
|
79
|
+
|
80
|
+
# def testSquareplusGradNegInf(self):
|
81
|
+
# check_grads(brainstate.functional.squareplus, (-float('inf'),), order=1,
|
82
|
+
# )
|
83
|
+
|
84
|
+
# def testSquareplusGradNan(self):
|
85
|
+
# check_grads(brainstate.functional.squareplus, (float('nan'),), order=1,
|
86
|
+
# )
|
87
|
+
|
88
|
+
# @parameterized.parameters([float] + jtu.dtypes.floating)
|
89
|
+
# def testSquareplusZero(self, dtype):
|
90
|
+
# self.assertEqual(dtype(1), brainstate.functional.squareplus(dtype(0), dtype(4)))
|
91
|
+
#
|
92
|
+
# def testMishGrad(self):
|
93
|
+
# check_grads(brainstate.functional.mish, (1e-8,), order=4,
|
94
|
+
# )
|
95
|
+
#
|
96
|
+
# def testMishGradZero(self):
|
97
|
+
# check_grads(brainstate.functional.mish, (0.,), order=1,
|
98
|
+
# )
|
99
|
+
#
|
100
|
+
# def testMishGradNegInf(self):
|
101
|
+
# check_grads(brainstate.functional.mish, (-float('inf'),), order=1,
|
102
|
+
# )
|
103
|
+
#
|
104
|
+
# def testMishGradNan(self):
|
105
|
+
# check_grads(brainstate.functional.mish, (float('nan'),), order=1,
|
106
|
+
# )
|
107
|
+
|
108
|
+
@parameterized.parameters([float] + jtu.dtypes.floating)
|
109
|
+
def testMishZero(self, dtype):
|
110
|
+
self.assertEqual(dtype(0), brainstate.functional.mish(dtype(0)))
|
111
|
+
|
112
|
+
def testReluGrad(self):
|
113
|
+
rtol = None
|
114
|
+
check_grads(brainstate.functional.relu, (1.,), order=3, rtol=rtol)
|
115
|
+
check_grads(brainstate.functional.relu, (-1.,), order=3, rtol=rtol)
|
116
|
+
jaxpr = jax.make_jaxpr(jax.grad(brainstate.functional.relu))(0.)
|
117
|
+
self.assertGreaterEqual(len(jaxpr.jaxpr.eqns), 2)
|
118
|
+
|
119
|
+
def testRelu6Grad(self):
|
120
|
+
rtol = None
|
121
|
+
check_grads(brainstate.functional.relu6, (1.,), order=3, rtol=rtol)
|
122
|
+
check_grads(brainstate.functional.relu6, (-1.,), order=3, rtol=rtol)
|
123
|
+
self.assertAllClose(jax.grad(brainstate.functional.relu6)(0.), 0., check_dtypes=False)
|
124
|
+
self.assertAllClose(jax.grad(brainstate.functional.relu6)(6.), 0., check_dtypes=False)
|
125
|
+
|
126
|
+
def testSoftplusValue(self):
|
127
|
+
val = brainstate.functional.softplus(89.)
|
128
|
+
self.assertAllClose(val, 89., check_dtypes=False)
|
129
|
+
|
130
|
+
def testSparseplusValue(self):
|
131
|
+
val = brainstate.functional.sparse_plus(89.)
|
132
|
+
self.assertAllClose(val, 89., check_dtypes=False)
|
133
|
+
|
134
|
+
def testSparsesigmoidValue(self):
|
135
|
+
self.assertAllClose(brainstate.functional.sparse_sigmoid(-2.), 0., check_dtypes=False)
|
136
|
+
self.assertAllClose(brainstate.functional.sparse_sigmoid(2.), 1., check_dtypes=False)
|
137
|
+
self.assertAllClose(brainstate.functional.sparse_sigmoid(0.), .5, check_dtypes=False)
|
138
|
+
|
139
|
+
# def testSquareplusValue(self):
|
140
|
+
# val = brainstate.functional.squareplus(1e3)
|
141
|
+
# self.assertAllClose(val, 1e3, check_dtypes=False, atol=1e-3)
|
142
|
+
|
143
|
+
def testMishValue(self):
|
144
|
+
val = brainstate.functional.mish(1e3)
|
145
|
+
self.assertAllClose(val, 1e3, check_dtypes=False, atol=1e-3)
|
146
|
+
|
147
|
+
def testEluValue(self):
|
148
|
+
val = brainstate.functional.elu(1e4)
|
149
|
+
self.assertAllClose(val, 1e4, check_dtypes=False)
|
150
|
+
|
151
|
+
def testGluValue(self):
|
152
|
+
val = brainstate.functional.glu(jnp.array([1.0, 0.0]), axis=0)
|
153
|
+
self.assertAllClose(val, jnp.array([0.5]))
|
154
|
+
|
155
|
+
@parameterized.parameters(False, True)
|
156
|
+
def testGeluIntType(self, approximate):
|
157
|
+
val_float = brainstate.functional.gelu(jnp.array(-1.0), approximate=approximate)
|
158
|
+
val_int = brainstate.functional.gelu(jnp.array(-1), approximate=approximate)
|
159
|
+
self.assertAllClose(val_float, val_int)
|
160
|
+
|
161
|
+
@parameterized.parameters(False, True)
|
162
|
+
def testGelu(self, approximate):
|
163
|
+
def gelu_reference(x):
|
164
|
+
return x * scipy.stats.norm.cdf(x)
|
165
|
+
|
166
|
+
rng = jtu.rand_default(self.rng())
|
167
|
+
args_maker = lambda: [rng((4, 5, 6), jnp.float32)]
|
168
|
+
self._CheckAgainstNumpy(
|
169
|
+
gelu_reference, partial(brainstate.functional.gelu, approximate=approximate), args_maker,
|
170
|
+
check_dtypes=False, tol=1e-3 if approximate else None)
|
171
|
+
|
172
|
+
@parameterized.parameters(*itertools.product(
|
173
|
+
(jnp.float32, jnp.bfloat16, jnp.float16),
|
174
|
+
(partial(brainstate.functional.gelu, approximate=False),
|
175
|
+
partial(brainstate.functional.gelu, approximate=True),
|
176
|
+
brainstate.functional.relu,
|
177
|
+
brainstate.functional.softplus,
|
178
|
+
brainstate.functional.sparse_plus,
|
179
|
+
brainstate.functional.sigmoid,
|
180
|
+
# brainstate.functional.squareplus,
|
181
|
+
brainstate.functional.mish)))
|
182
|
+
def testDtypeMatchesInput(self, dtype, fn):
|
183
|
+
x = jnp.zeros((), dtype=dtype)
|
184
|
+
out = fn(x)
|
185
|
+
self.assertEqual(out.dtype, dtype)
|
186
|
+
|
187
|
+
def testEluMemory(self):
|
188
|
+
# see https://github.com/google/jax/pull/1640
|
189
|
+
with jax.enable_checks(False): # With checks we materialize the array
|
190
|
+
jax.make_jaxpr(lambda: brainstate.functional.elu(jnp.ones((10 ** 12,)))) # don't oom
|
191
|
+
|
192
|
+
def testHardTanhMemory(self):
|
193
|
+
# see https://github.com/google/jax/pull/1640
|
194
|
+
with jax.enable_checks(False): # With checks we materialize the array
|
195
|
+
jax.make_jaxpr(lambda: brainstate.functional.hard_tanh(jnp.ones((10 ** 12,)))) # don't oom
|
196
|
+
|
197
|
+
@parameterized.parameters([brainstate.functional.softmax, brainstate.functional.log_softmax])
|
198
|
+
def testSoftmaxEmptyArray(self, fn):
|
199
|
+
x = jnp.array([], dtype=float)
|
200
|
+
self.assertArraysEqual(fn(x), x)
|
201
|
+
|
202
|
+
@parameterized.parameters([brainstate.functional.softmax, brainstate.functional.log_softmax])
|
203
|
+
def testSoftmaxEmptyMask(self, fn):
|
204
|
+
x = jnp.array([5.5, 1.3, -4.2, 0.9])
|
205
|
+
m = jnp.zeros_like(x, dtype=bool)
|
206
|
+
expected = jnp.full_like(x, 0.0 if fn is brainstate.functional.softmax else -jnp.inf)
|
207
|
+
self.assertArraysEqual(fn(x, where=m), expected)
|
208
|
+
|
209
|
+
@parameterized.parameters([brainstate.functional.softmax, brainstate.functional.log_softmax])
|
210
|
+
def testSoftmaxWhereMask(self, fn):
|
211
|
+
x = jnp.array([5.5, 1.3, -4.2, 0.9])
|
212
|
+
m = jnp.array([True, False, True, True])
|
213
|
+
|
214
|
+
out = fn(x, where=m)
|
215
|
+
self.assertAllClose(out[m], fn(x[m]))
|
216
|
+
|
217
|
+
probs = out if fn is brainstate.functional.softmax else jnp.exp(out)
|
218
|
+
self.assertAllClose(probs.sum(), 1.0)
|
219
|
+
|
220
|
+
@parameterized.parameters([brainstate.functional.softmax, brainstate.functional.log_softmax])
|
221
|
+
def testSoftmaxWhereGrad(self, fn):
|
222
|
+
# regression test for https://github.com/google/jax/issues/19490
|
223
|
+
x = jnp.array([36., 10000.])
|
224
|
+
mask = x < 1000
|
225
|
+
|
226
|
+
f = lambda x, mask: fn(x, where=mask)[0]
|
227
|
+
|
228
|
+
self.assertAllClose(jax.grad(f)(x, mask), jnp.zeros_like(x))
|
229
|
+
|
230
|
+
def testSoftmaxGrad(self):
|
231
|
+
x = jnp.array([5.5, 1.3, -4.2, 0.9])
|
232
|
+
jtu.check_grads(brainstate.functional.softmax, (x,), order=2, atol=5e-3)
|
233
|
+
|
234
|
+
def testStandardizeWhereMask(self):
|
235
|
+
x = jnp.array([5.5, 1.3, -4.2, 0.9])
|
236
|
+
m = jnp.array([True, False, True, True])
|
237
|
+
x_filtered = jnp.take(x, jnp.array([0, 2, 3]))
|
238
|
+
|
239
|
+
out_masked = jnp.take(brainstate.functional.standardize(x, where=m), jnp.array([0, 2, 3]))
|
240
|
+
out_filtered = brainstate.functional.standardize(x_filtered)
|
241
|
+
|
242
|
+
self.assertAllClose(out_masked, out_filtered)
|
243
|
+
|
244
|
+
def testOneHot(self):
|
245
|
+
actual = brainstate.functional.one_hot(jnp.array([0, 1, 2]), 3)
|
246
|
+
expected = jnp.array([[1., 0., 0.],
|
247
|
+
[0., 1., 0.],
|
248
|
+
[0., 0., 1.]])
|
249
|
+
self.assertAllClose(actual, expected, check_dtypes=False)
|
250
|
+
|
251
|
+
actual = brainstate.functional.one_hot(jnp.array([1, 2, 0]), 3)
|
252
|
+
expected = jnp.array([[0., 1., 0.],
|
253
|
+
[0., 0., 1.],
|
254
|
+
[1., 0., 0.]])
|
255
|
+
self.assertAllClose(actual, expected, check_dtypes=False)
|
256
|
+
|
257
|
+
def testOneHotOutOfBound(self):
|
258
|
+
actual = brainstate.functional.one_hot(jnp.array([-1, 3]), 3)
|
259
|
+
expected = jnp.array([[0., 0., 0.],
|
260
|
+
[0., 0., 0.]])
|
261
|
+
self.assertAllClose(actual, expected, check_dtypes=False)
|
262
|
+
|
263
|
+
def testOneHotNonArrayInput(self):
|
264
|
+
actual = brainstate.functional.one_hot([0, 1, 2], 3)
|
265
|
+
expected = jnp.array([[1., 0., 0.],
|
266
|
+
[0., 1., 0.],
|
267
|
+
[0., 0., 1.]])
|
268
|
+
self.assertAllClose(actual, expected, check_dtypes=False)
|
269
|
+
|
270
|
+
def testOneHotCustomDtype(self):
|
271
|
+
actual = brainstate.functional.one_hot(jnp.array([0, 1, 2]), 3, dtype=jnp.bool_)
|
272
|
+
expected = jnp.array([[True, False, False],
|
273
|
+
[False, True, False],
|
274
|
+
[False, False, True]])
|
275
|
+
self.assertAllClose(actual, expected)
|
276
|
+
|
277
|
+
def testOneHotAxis(self):
|
278
|
+
expected = jnp.array([[0., 1., 0.],
|
279
|
+
[0., 0., 1.],
|
280
|
+
[1., 0., 0.]]).T
|
281
|
+
|
282
|
+
actual = brainstate.functional.one_hot(jnp.array([1, 2, 0]), 3, axis=0)
|
283
|
+
self.assertAllClose(actual, expected, check_dtypes=False)
|
284
|
+
|
285
|
+
actual = brainstate.functional.one_hot(jnp.array([1, 2, 0]), 3, axis=-2)
|
286
|
+
self.assertAllClose(actual, expected, check_dtypes=False)
|
287
|
+
|
288
|
+
def testTanhExists(self):
|
289
|
+
print(brainstate.functional.tanh) # doesn't crash
|
290
|
+
|
291
|
+
def testCustomJVPLeak(self):
|
292
|
+
# https://github.com/google/jax/issues/8171
|
293
|
+
@jax.jit
|
294
|
+
def fwd():
|
295
|
+
a = jnp.array(1.)
|
296
|
+
|
297
|
+
def f(hx, _):
|
298
|
+
hx = brainstate.functional.sigmoid(hx + a)
|
299
|
+
return hx, None
|
300
|
+
|
301
|
+
hx = jnp.array(0.)
|
302
|
+
jax.lax.scan(f, hx, None, length=2)
|
303
|
+
|
304
|
+
with jax.checking_leaks():
|
305
|
+
fwd() # doesn't crash
|
306
|
+
|
307
|
+
def testCustomJVPLeak2(self):
|
308
|
+
# https://github.com/google/jax/issues/8171
|
309
|
+
# The above test uses jax.brainstate.functional.sigmoid, as in the original #8171, but that
|
310
|
+
# function no longer actually has a custom_jvp! So we inline the old def.
|
311
|
+
|
312
|
+
@jax.custom_jvp
|
313
|
+
def sigmoid(x):
|
314
|
+
one = jnp.float32(1)
|
315
|
+
return jax.lax.div(one, jax.lax.add(one, jax.lax.exp(jax.lax.neg(x))))
|
316
|
+
|
317
|
+
sigmoid.defjvps(lambda g, ans, x: g * ans * (jnp.float32(1) - ans))
|
318
|
+
|
319
|
+
@jax.jit
|
320
|
+
def fwd():
|
321
|
+
a = jnp.array(1., 'float32')
|
322
|
+
|
323
|
+
def f(hx, _):
|
324
|
+
hx = sigmoid(hx + a)
|
325
|
+
return hx, None
|
326
|
+
|
327
|
+
hx = jnp.array(0., 'float32')
|
328
|
+
jax.lax.scan(f, hx, None, length=2)
|
329
|
+
|
330
|
+
with jax.checking_leaks():
|
331
|
+
fwd() # doesn't crash
|