birder 0.3.3__py3-none-any.whl → 0.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- birder/adversarial/base.py +1 -1
- birder/adversarial/simba.py +4 -4
- birder/common/cli.py +1 -1
- birder/common/fs_ops.py +13 -13
- birder/common/lib.py +2 -2
- birder/common/masking.py +3 -3
- birder/common/training_cli.py +24 -2
- birder/common/training_utils.py +28 -4
- birder/data/collators/detection.py +9 -1
- birder/data/transforms/detection.py +27 -8
- birder/data/transforms/mosaic.py +1 -1
- birder/datahub/classification.py +3 -3
- birder/inference/classification.py +3 -3
- birder/inference/data_parallel.py +1 -1
- birder/inference/detection.py +5 -5
- birder/inference/wbf.py +1 -1
- birder/introspection/attention_rollout.py +6 -6
- birder/introspection/feature_pca.py +4 -4
- birder/introspection/gradcam.py +1 -1
- birder/introspection/guided_backprop.py +2 -2
- birder/introspection/transformer_attribution.py +4 -4
- birder/layers/attention_pool.py +2 -2
- birder/layers/layer_scale.py +1 -1
- birder/model_registry/model_registry.py +2 -1
- birder/net/__init__.py +4 -10
- birder/net/_rope_vit_configs.py +435 -0
- birder/net/_vit_configs.py +466 -0
- birder/net/alexnet.py +5 -5
- birder/net/base.py +28 -3
- birder/net/biformer.py +18 -17
- birder/net/cait.py +7 -7
- birder/net/cas_vit.py +1 -1
- birder/net/coat.py +27 -27
- birder/net/conv2former.py +3 -3
- birder/net/convmixer.py +1 -1
- birder/net/convnext_v1.py +3 -11
- birder/net/convnext_v1_iso.py +198 -0
- birder/net/convnext_v2.py +2 -10
- birder/net/crossformer.py +9 -9
- birder/net/crossvit.py +6 -6
- birder/net/cspnet.py +1 -1
- birder/net/cswin_transformer.py +10 -10
- birder/net/davit.py +11 -11
- birder/net/deit.py +68 -29
- birder/net/deit3.py +69 -204
- birder/net/densenet.py +9 -8
- birder/net/detection/__init__.py +4 -0
- birder/net/detection/{yolo_anchors.py → _yolo_anchors.py} +5 -5
- birder/net/detection/base.py +6 -5
- birder/net/detection/deformable_detr.py +31 -30
- birder/net/detection/detr.py +14 -11
- birder/net/detection/efficientdet.py +10 -29
- birder/net/detection/faster_rcnn.py +22 -22
- birder/net/detection/fcos.py +8 -8
- birder/net/detection/plain_detr.py +852 -0
- birder/net/detection/retinanet.py +4 -4
- birder/net/detection/rt_detr_v1.py +81 -25
- birder/net/detection/rt_detr_v2.py +1147 -0
- birder/net/detection/ssd.py +5 -5
- birder/net/detection/yolo_v2.py +12 -12
- birder/net/detection/yolo_v3.py +19 -19
- birder/net/detection/yolo_v4.py +16 -16
- birder/net/detection/yolo_v4_tiny.py +3 -3
- birder/net/dpn.py +1 -2
- birder/net/edgenext.py +5 -4
- birder/net/edgevit.py +13 -14
- birder/net/efficientformer_v1.py +3 -2
- birder/net/efficientformer_v2.py +18 -31
- birder/net/efficientnet_v2.py +3 -0
- birder/net/efficientvim.py +9 -9
- birder/net/efficientvit_mit.py +7 -7
- birder/net/efficientvit_msft.py +3 -3
- birder/net/fasternet.py +3 -3
- birder/net/fastvit.py +5 -12
- birder/net/flexivit.py +50 -58
- birder/net/focalnet.py +5 -9
- birder/net/gc_vit.py +11 -11
- birder/net/ghostnet_v1.py +1 -1
- birder/net/ghostnet_v2.py +1 -1
- birder/net/groupmixformer.py +13 -13
- birder/net/hgnet_v1.py +6 -6
- birder/net/hgnet_v2.py +4 -4
- birder/net/hiera.py +6 -6
- birder/net/hieradet.py +9 -9
- birder/net/hornet.py +3 -3
- birder/net/iformer.py +4 -4
- birder/net/inception_next.py +5 -15
- birder/net/inception_resnet_v1.py +3 -3
- birder/net/inception_resnet_v2.py +7 -4
- birder/net/inception_v3.py +3 -0
- birder/net/inception_v4.py +3 -0
- birder/net/levit.py +3 -3
- birder/net/lit_v1.py +13 -15
- birder/net/lit_v1_tiny.py +9 -9
- birder/net/lit_v2.py +14 -15
- birder/net/maxvit.py +11 -23
- birder/net/metaformer.py +5 -5
- birder/net/mim/crossmae.py +6 -6
- birder/net/mim/fcmae.py +3 -5
- birder/net/mim/mae_hiera.py +7 -7
- birder/net/mim/mae_vit.py +4 -6
- birder/net/mim/simmim.py +3 -4
- birder/net/mobilenet_v1.py +0 -9
- birder/net/mobilenet_v2.py +38 -44
- birder/net/{mobilenet_v3_large.py → mobilenet_v3.py} +37 -10
- birder/net/mobilenet_v4_hybrid.py +4 -4
- birder/net/mobileone.py +5 -12
- birder/net/mobilevit_v1.py +7 -34
- birder/net/mobilevit_v2.py +6 -54
- birder/net/moganet.py +8 -5
- birder/net/mvit_v2.py +30 -30
- birder/net/nextvit.py +2 -2
- birder/net/nfnet.py +4 -0
- birder/net/pit.py +11 -26
- birder/net/pvt_v1.py +9 -9
- birder/net/pvt_v2.py +10 -16
- birder/net/regionvit.py +15 -15
- birder/net/regnet.py +1 -1
- birder/net/repghost.py +5 -35
- birder/net/repvgg.py +3 -5
- birder/net/repvit.py +2 -2
- birder/net/resmlp.py +2 -2
- birder/net/resnest.py +4 -1
- birder/net/resnet_v1.py +125 -1
- birder/net/resnet_v2.py +75 -1
- birder/net/resnext.py +35 -1
- birder/net/rope_deit3.py +62 -151
- birder/net/rope_flexivit.py +46 -33
- birder/net/rope_vit.py +44 -758
- birder/net/sequencer2d.py +3 -4
- birder/net/shufflenet_v1.py +1 -1
- birder/net/shufflenet_v2.py +1 -1
- birder/net/simple_vit.py +69 -21
- birder/net/smt.py +8 -8
- birder/net/squeezenet.py +5 -12
- birder/net/squeezenext.py +0 -24
- birder/net/ssl/barlow_twins.py +1 -1
- birder/net/ssl/byol.py +2 -2
- birder/net/ssl/capi.py +4 -4
- birder/net/ssl/data2vec.py +1 -1
- birder/net/ssl/data2vec2.py +1 -1
- birder/net/ssl/dino_v2.py +13 -3
- birder/net/ssl/franca.py +28 -4
- birder/net/ssl/i_jepa.py +5 -5
- birder/net/ssl/ibot.py +1 -1
- birder/net/ssl/mmcr.py +1 -1
- birder/net/swiftformer.py +13 -3
- birder/net/swin_transformer_v1.py +4 -5
- birder/net/swin_transformer_v2.py +5 -8
- birder/net/tiny_vit.py +6 -19
- birder/net/transnext.py +19 -19
- birder/net/uniformer.py +4 -4
- birder/net/van.py +2 -2
- birder/net/vgg.py +1 -10
- birder/net/vit.py +72 -987
- birder/net/vit_parallel.py +35 -20
- birder/net/vit_sam.py +23 -48
- birder/net/vovnet_v2.py +1 -1
- birder/net/xcit.py +16 -13
- birder/ops/msda.py +4 -4
- birder/ops/swattention.py +10 -10
- birder/results/classification.py +3 -3
- birder/results/gui.py +8 -8
- birder/scripts/benchmark.py +37 -12
- birder/scripts/evaluate.py +1 -1
- birder/scripts/predict.py +3 -3
- birder/scripts/predict_detection.py +2 -2
- birder/scripts/train.py +63 -15
- birder/scripts/train_barlow_twins.py +10 -7
- birder/scripts/train_byol.py +10 -7
- birder/scripts/train_capi.py +15 -10
- birder/scripts/train_data2vec.py +10 -7
- birder/scripts/train_data2vec2.py +10 -7
- birder/scripts/train_detection.py +29 -14
- birder/scripts/train_dino_v1.py +13 -9
- birder/scripts/train_dino_v2.py +27 -14
- birder/scripts/train_dino_v2_dist.py +28 -15
- birder/scripts/train_franca.py +16 -9
- birder/scripts/train_i_jepa.py +12 -9
- birder/scripts/train_ibot.py +15 -11
- birder/scripts/train_kd.py +64 -17
- birder/scripts/train_mim.py +11 -8
- birder/scripts/train_mmcr.py +11 -8
- birder/scripts/train_rotnet.py +11 -7
- birder/scripts/train_simclr.py +10 -7
- birder/scripts/train_vicreg.py +10 -7
- birder/tools/adversarial.py +4 -4
- birder/tools/auto_anchors.py +5 -5
- birder/tools/avg_model.py +1 -1
- birder/tools/convert_model.py +30 -22
- birder/tools/det_results.py +1 -1
- birder/tools/download_model.py +1 -1
- birder/tools/ensemble_model.py +1 -1
- birder/tools/introspection.py +12 -3
- birder/tools/labelme_to_coco.py +2 -2
- birder/tools/model_info.py +15 -15
- birder/tools/pack.py +8 -8
- birder/tools/quantize_model.py +53 -4
- birder/tools/results.py +2 -2
- birder/tools/show_det_iterator.py +19 -6
- birder/tools/show_iterator.py +2 -2
- birder/tools/similarity.py +5 -5
- birder/tools/stats.py +4 -6
- birder/tools/voc_to_coco.py +1 -1
- birder/version.py +1 -1
- {birder-0.3.3.dist-info → birder-0.4.1.dist-info}/METADATA +3 -3
- birder-0.4.1.dist-info/RECORD +300 -0
- {birder-0.3.3.dist-info → birder-0.4.1.dist-info}/WHEEL +1 -1
- birder/net/mobilenet_v3_small.py +0 -43
- birder/net/se_resnet_v1.py +0 -105
- birder/net/se_resnet_v2.py +0 -59
- birder/net/se_resnext.py +0 -30
- birder-0.3.3.dist-info/RECORD +0 -299
- {birder-0.3.3.dist-info → birder-0.4.1.dist-info}/entry_points.txt +0 -0
- {birder-0.3.3.dist-info → birder-0.4.1.dist-info}/licenses/LICENSE +0 -0
- {birder-0.3.3.dist-info → birder-0.4.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,852 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Plain DETR, adapted from
|
|
3
|
+
https://github.com/impiga/Plain-DETR
|
|
4
|
+
|
|
5
|
+
Paper "DETR Doesn't Need Multi-Scale or Locality Design", https://arxiv.org/abs/2308.01904
|
|
6
|
+
|
|
7
|
+
Changes from original:
|
|
8
|
+
* Move background index to first from last (to be inline with the rest of Birder detectors)
|
|
9
|
+
* Removed two stage support
|
|
10
|
+
* Only support pre-norm (original supports both pre- and post-norm)
|
|
11
|
+
"""
|
|
12
|
+
|
|
13
|
+
# Reference license: MIT
|
|
14
|
+
|
|
15
|
+
import copy
|
|
16
|
+
import math
|
|
17
|
+
from typing import Any
|
|
18
|
+
from typing import Literal
|
|
19
|
+
from typing import Optional
|
|
20
|
+
|
|
21
|
+
import torch
|
|
22
|
+
import torch.nn.functional as F
|
|
23
|
+
from torch import nn
|
|
24
|
+
from torchvision.ops import MLP
|
|
25
|
+
from torchvision.ops import boxes as box_ops
|
|
26
|
+
from torchvision.ops import sigmoid_focal_loss
|
|
27
|
+
|
|
28
|
+
from birder.common import training_utils
|
|
29
|
+
from birder.model_registry import registry
|
|
30
|
+
from birder.net.base import DetectorBackbone
|
|
31
|
+
from birder.net.detection.base import DetectionBaseNet
|
|
32
|
+
from birder.net.detection.deformable_detr import HungarianMatcher
|
|
33
|
+
from birder.net.detection.deformable_detr import inverse_sigmoid
|
|
34
|
+
from birder.net.detection.detr import PositionEmbeddingSine
|
|
35
|
+
from birder.ops.soft_nms import SoftNMS
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
def _get_clones(module: nn.Module, N: int) -> nn.ModuleList:
|
|
39
|
+
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
class MultiheadAttention(nn.Module):
|
|
43
|
+
def __init__(self, d_model: int, num_heads: int, attn_drop: float = 0.0, proj_drop: float = 0.0) -> None:
|
|
44
|
+
super().__init__()
|
|
45
|
+
assert d_model % num_heads == 0, "d_model should be divisible by num_heads"
|
|
46
|
+
|
|
47
|
+
self.num_heads = num_heads
|
|
48
|
+
self.head_dim = d_model // num_heads
|
|
49
|
+
self.scale = self.head_dim**-0.5
|
|
50
|
+
|
|
51
|
+
self.q_proj = nn.Linear(d_model, d_model)
|
|
52
|
+
self.k_proj = nn.Linear(d_model, d_model)
|
|
53
|
+
self.v_proj = nn.Linear(d_model, d_model)
|
|
54
|
+
self.attn_drop = nn.Dropout(attn_drop)
|
|
55
|
+
self.proj = nn.Linear(d_model, d_model)
|
|
56
|
+
self.proj_drop = nn.Dropout(proj_drop)
|
|
57
|
+
|
|
58
|
+
self.reset_parameters()
|
|
59
|
+
|
|
60
|
+
def reset_parameters(self) -> None:
|
|
61
|
+
nn.init.xavier_uniform_(self.q_proj.weight)
|
|
62
|
+
nn.init.xavier_uniform_(self.k_proj.weight)
|
|
63
|
+
nn.init.xavier_uniform_(self.v_proj.weight)
|
|
64
|
+
nn.init.xavier_uniform_(self.proj.weight)
|
|
65
|
+
if self.q_proj.bias is not None:
|
|
66
|
+
nn.init.zeros_(self.q_proj.bias)
|
|
67
|
+
nn.init.zeros_(self.k_proj.bias)
|
|
68
|
+
nn.init.zeros_(self.v_proj.bias)
|
|
69
|
+
nn.init.zeros_(self.proj.bias)
|
|
70
|
+
|
|
71
|
+
def forward(
|
|
72
|
+
self,
|
|
73
|
+
query: torch.Tensor,
|
|
74
|
+
key: torch.Tensor,
|
|
75
|
+
value: torch.Tensor,
|
|
76
|
+
key_padding_mask: Optional[torch.Tensor] = None,
|
|
77
|
+
) -> torch.Tensor:
|
|
78
|
+
B, l_q, C = query.size()
|
|
79
|
+
q = self.q_proj(query).reshape(B, l_q, self.num_heads, self.head_dim).transpose(1, 2)
|
|
80
|
+
k = self.k_proj(key).reshape(B, key.size(1), self.num_heads, self.head_dim).transpose(1, 2)
|
|
81
|
+
v = self.v_proj(value).reshape(B, value.size(1), self.num_heads, self.head_dim).transpose(1, 2)
|
|
82
|
+
|
|
83
|
+
if key_padding_mask is not None:
|
|
84
|
+
# key_padding_mask is expected to be boolean (True = masked)
|
|
85
|
+
# SDPA expects True = attend, so we invert
|
|
86
|
+
attn_mask = ~key_padding_mask[:, None, None, :]
|
|
87
|
+
else:
|
|
88
|
+
attn_mask = None
|
|
89
|
+
|
|
90
|
+
attn = F.scaled_dot_product_attention( # pylint: disable=not-callable
|
|
91
|
+
q, k, v, attn_mask=attn_mask, dropout_p=self.attn_drop.p if self.training else 0.0, scale=self.scale
|
|
92
|
+
)
|
|
93
|
+
|
|
94
|
+
attn = attn.transpose(1, 2).reshape(B, l_q, C)
|
|
95
|
+
x = self.proj(attn)
|
|
96
|
+
x = self.proj_drop(x)
|
|
97
|
+
|
|
98
|
+
return x
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
class GlobalCrossAttention(nn.Module):
|
|
102
|
+
"""
|
|
103
|
+
Global cross-attention with Box-to-Pixel Relative Position Bias (BoxRPB)
|
|
104
|
+
|
|
105
|
+
This utilizes Box-to-Pixel Relative Position Bias (BoxRPB) to guide attention
|
|
106
|
+
using the spatial relationship between query boxes and image features.
|
|
107
|
+
The bias calculation is decomposed into axial (x and y) components.
|
|
108
|
+
"""
|
|
109
|
+
|
|
110
|
+
def __init__(
|
|
111
|
+
self,
|
|
112
|
+
embed_dim: int,
|
|
113
|
+
num_heads: int,
|
|
114
|
+
dropout: float,
|
|
115
|
+
rpe_hidden_dim: int,
|
|
116
|
+
feature_stride: int,
|
|
117
|
+
rpe_type: Literal["linear", "log"],
|
|
118
|
+
) -> None:
|
|
119
|
+
super().__init__()
|
|
120
|
+
self.embed_dim = embed_dim
|
|
121
|
+
self.num_heads = num_heads
|
|
122
|
+
self.head_dim = embed_dim // num_heads
|
|
123
|
+
self.scale = self.head_dim**-0.5
|
|
124
|
+
self.feature_stride = feature_stride
|
|
125
|
+
self.rpe_type = rpe_type
|
|
126
|
+
|
|
127
|
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
|
128
|
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
|
129
|
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
|
130
|
+
self.out_proj = nn.Linear(embed_dim, embed_dim)
|
|
131
|
+
|
|
132
|
+
self.attn_drop = nn.Dropout(dropout)
|
|
133
|
+
self.proj_drop = nn.Dropout(dropout)
|
|
134
|
+
|
|
135
|
+
self.cpb_mlp_x = nn.Sequential(
|
|
136
|
+
nn.Linear(2, rpe_hidden_dim),
|
|
137
|
+
nn.ReLU(inplace=True),
|
|
138
|
+
nn.Linear(rpe_hidden_dim, num_heads, bias=False),
|
|
139
|
+
)
|
|
140
|
+
self.cpb_mlp_y = nn.Sequential(
|
|
141
|
+
nn.Linear(2, rpe_hidden_dim),
|
|
142
|
+
nn.ReLU(inplace=True),
|
|
143
|
+
nn.Linear(rpe_hidden_dim, num_heads, bias=False),
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
def forward(
|
|
147
|
+
self,
|
|
148
|
+
query: torch.Tensor,
|
|
149
|
+
key: torch.Tensor,
|
|
150
|
+
value: torch.Tensor,
|
|
151
|
+
reference_points: torch.Tensor,
|
|
152
|
+
spatial_shape: tuple[int, int],
|
|
153
|
+
key_padding_mask: Optional[torch.Tensor] = None,
|
|
154
|
+
) -> torch.Tensor:
|
|
155
|
+
B, num_queries, _ = query.size()
|
|
156
|
+
H, W = spatial_shape
|
|
157
|
+
|
|
158
|
+
q = self.q_proj(query)
|
|
159
|
+
k = self.k_proj(key)
|
|
160
|
+
v = self.v_proj(value)
|
|
161
|
+
|
|
162
|
+
q = q.view(B, num_queries, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
|
|
163
|
+
k = k.view(B, H * W, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
|
|
164
|
+
v = v.view(B, H * W, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
|
|
165
|
+
q = q * self.scale
|
|
166
|
+
|
|
167
|
+
attn = q @ k.transpose(-2, -1)
|
|
168
|
+
rpe = self._compute_box_rpe(reference_points, H, W, query.device)
|
|
169
|
+
attn = attn + rpe
|
|
170
|
+
|
|
171
|
+
if key_padding_mask is not None:
|
|
172
|
+
attn = attn.masked_fill(key_padding_mask[:, None, None, :], float("-inf"))
|
|
173
|
+
|
|
174
|
+
attn = F.softmax(attn, dim=-1)
|
|
175
|
+
attn = self.attn_drop(attn)
|
|
176
|
+
|
|
177
|
+
out = attn @ v
|
|
178
|
+
out = out.permute(0, 2, 1, 3).reshape(B, num_queries, self.embed_dim)
|
|
179
|
+
out = self.out_proj(out)
|
|
180
|
+
out = self.proj_drop(out)
|
|
181
|
+
|
|
182
|
+
return out
|
|
183
|
+
|
|
184
|
+
# pylint: disable=too-many-locals
|
|
185
|
+
def _compute_box_rpe(self, reference_points: torch.Tensor, H: int, W: int, device: torch.device) -> torch.Tensor:
|
|
186
|
+
B, n_q, _ = reference_points.size()
|
|
187
|
+
stride = self.feature_stride
|
|
188
|
+
|
|
189
|
+
# cxcywh to xyxy
|
|
190
|
+
cx, cy, bw, bh = reference_points.unbind(-1)
|
|
191
|
+
x1 = cx - bw / 2
|
|
192
|
+
y1 = cy - bh / 2
|
|
193
|
+
x2 = cx + bw / 2
|
|
194
|
+
y2 = cy + bh / 2
|
|
195
|
+
|
|
196
|
+
# Scale to pixel coordinates
|
|
197
|
+
x1 = x1 * (W * stride)
|
|
198
|
+
y1 = y1 * (H * stride)
|
|
199
|
+
x2 = x2 * (W * stride)
|
|
200
|
+
y2 = y2 * (H * stride)
|
|
201
|
+
|
|
202
|
+
# Pixel grid (cell centers)
|
|
203
|
+
pos_x = torch.linspace(0.5, W - 0.5, W, device=device) * stride
|
|
204
|
+
pos_y = torch.linspace(0.5, H - 0.5, H, device=device) * stride
|
|
205
|
+
|
|
206
|
+
# Box edge to pixel distances
|
|
207
|
+
delta_x1 = x1[:, :, None] - pos_x[None, None, :]
|
|
208
|
+
delta_x2 = x2[:, :, None] - pos_x[None, None, :]
|
|
209
|
+
delta_y1 = y1[:, :, None] - pos_y[None, None, :]
|
|
210
|
+
delta_y2 = y2[:, :, None] - pos_y[None, None, :]
|
|
211
|
+
|
|
212
|
+
if self.rpe_type == "log":
|
|
213
|
+
delta_x1 = torch.sign(delta_x1) * torch.log2(torch.abs(delta_x1) + 1.0) / 3.0
|
|
214
|
+
delta_x2 = torch.sign(delta_x2) * torch.log2(torch.abs(delta_x2) + 1.0) / 3.0
|
|
215
|
+
delta_y1 = torch.sign(delta_y1) * torch.log2(torch.abs(delta_y1) + 1.0) / 3.0
|
|
216
|
+
delta_y2 = torch.sign(delta_y2) * torch.log2(torch.abs(delta_y2) + 1.0) / 3.0
|
|
217
|
+
|
|
218
|
+
delta_x = torch.stack([delta_x1, delta_x2], dim=-1)
|
|
219
|
+
delta_y = torch.stack([delta_y1, delta_y2], dim=-1)
|
|
220
|
+
|
|
221
|
+
rpe_x = self.cpb_mlp_x(delta_x)
|
|
222
|
+
rpe_y = self.cpb_mlp_y(delta_y)
|
|
223
|
+
|
|
224
|
+
# Axial decomposition: rpe[h,w] = rpe_y[h] + rpe_x[w]
|
|
225
|
+
rpe = rpe_y[:, :, :, None, :] + rpe_x[:, :, None, :, :]
|
|
226
|
+
rpe = rpe.reshape(B, n_q, H * W, self.num_heads)
|
|
227
|
+
rpe = rpe.permute(0, 3, 1, 2)
|
|
228
|
+
|
|
229
|
+
return rpe
|
|
230
|
+
|
|
231
|
+
|
|
232
|
+
class GlobalDecoderLayer(nn.Module):
|
|
233
|
+
"""
|
|
234
|
+
Transformer decoder layer with global cross-attention and BoxRPB
|
|
235
|
+
"""
|
|
236
|
+
|
|
237
|
+
def __init__(
|
|
238
|
+
self,
|
|
239
|
+
d_model: int,
|
|
240
|
+
num_heads: int,
|
|
241
|
+
dim_feedforward: int,
|
|
242
|
+
dropout: float,
|
|
243
|
+
rpe_hidden_dim: int,
|
|
244
|
+
feature_stride: int,
|
|
245
|
+
rpe_type: Literal["linear", "log"],
|
|
246
|
+
) -> None:
|
|
247
|
+
super().__init__()
|
|
248
|
+
|
|
249
|
+
self.self_attn = MultiheadAttention(d_model, num_heads, attn_drop=dropout)
|
|
250
|
+
self.cross_attn = GlobalCrossAttention(
|
|
251
|
+
embed_dim=d_model,
|
|
252
|
+
num_heads=num_heads,
|
|
253
|
+
dropout=dropout,
|
|
254
|
+
rpe_hidden_dim=rpe_hidden_dim,
|
|
255
|
+
feature_stride=feature_stride,
|
|
256
|
+
rpe_type=rpe_type,
|
|
257
|
+
)
|
|
258
|
+
|
|
259
|
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
|
260
|
+
self.dropout = nn.Dropout(dropout)
|
|
261
|
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
|
262
|
+
|
|
263
|
+
self.norm1 = nn.LayerNorm(d_model)
|
|
264
|
+
self.norm2 = nn.LayerNorm(d_model)
|
|
265
|
+
self.norm3 = nn.LayerNorm(d_model)
|
|
266
|
+
self.dropout1 = nn.Dropout(dropout)
|
|
267
|
+
self.dropout2 = nn.Dropout(dropout)
|
|
268
|
+
self.dropout3 = nn.Dropout(dropout)
|
|
269
|
+
|
|
270
|
+
self.activation = nn.ReLU()
|
|
271
|
+
|
|
272
|
+
def forward(
|
|
273
|
+
self,
|
|
274
|
+
tgt: torch.Tensor,
|
|
275
|
+
memory: torch.Tensor,
|
|
276
|
+
query_pos: torch.Tensor,
|
|
277
|
+
memory_pos: torch.Tensor,
|
|
278
|
+
reference_points: torch.Tensor,
|
|
279
|
+
spatial_shape: tuple[int, int],
|
|
280
|
+
memory_key_padding_mask: Optional[torch.Tensor] = None,
|
|
281
|
+
) -> torch.Tensor:
|
|
282
|
+
tgt2 = self.norm1(tgt)
|
|
283
|
+
qk = tgt2 + query_pos
|
|
284
|
+
tgt2 = self.self_attn(qk, qk, tgt2)
|
|
285
|
+
tgt = tgt + self.dropout1(tgt2)
|
|
286
|
+
|
|
287
|
+
tgt2 = self.cross_attn(
|
|
288
|
+
query=self.norm2(tgt) + query_pos,
|
|
289
|
+
key=memory + memory_pos,
|
|
290
|
+
value=memory,
|
|
291
|
+
reference_points=reference_points,
|
|
292
|
+
spatial_shape=spatial_shape,
|
|
293
|
+
key_padding_mask=memory_key_padding_mask,
|
|
294
|
+
)
|
|
295
|
+
tgt = tgt + self.dropout2(tgt2)
|
|
296
|
+
|
|
297
|
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(self.norm3(tgt)))))
|
|
298
|
+
tgt = tgt + self.dropout3(tgt2)
|
|
299
|
+
|
|
300
|
+
return tgt
|
|
301
|
+
|
|
302
|
+
|
|
303
|
+
class GlobalDecoder(nn.Module):
|
|
304
|
+
def __init__(
|
|
305
|
+
self, decoder_layer: nn.Module, num_layers: int, norm: nn.Module, return_intermediate: bool, d_model: int
|
|
306
|
+
) -> None:
|
|
307
|
+
super().__init__()
|
|
308
|
+
self.layers = _get_clones(decoder_layer, num_layers)
|
|
309
|
+
self.num_layers = num_layers
|
|
310
|
+
self.norm = norm
|
|
311
|
+
self.return_intermediate = return_intermediate
|
|
312
|
+
self.d_model = d_model
|
|
313
|
+
|
|
314
|
+
self.bbox_embed: Optional[nn.ModuleList] = None
|
|
315
|
+
self.class_embed: Optional[nn.ModuleList] = None
|
|
316
|
+
|
|
317
|
+
self.reset_parameters()
|
|
318
|
+
|
|
319
|
+
def reset_parameters(self) -> None:
|
|
320
|
+
for m in self.modules():
|
|
321
|
+
if isinstance(m, nn.Linear):
|
|
322
|
+
nn.init.trunc_normal_(m.weight, std=0.02)
|
|
323
|
+
if m.bias is not None:
|
|
324
|
+
nn.init.zeros_(m.bias)
|
|
325
|
+
elif isinstance(m, nn.LayerNorm):
|
|
326
|
+
nn.init.zeros_(m.bias)
|
|
327
|
+
nn.init.ones_(m.weight)
|
|
328
|
+
|
|
329
|
+
for m in self.modules():
|
|
330
|
+
if m is not self and hasattr(m, "reset_parameters") is True and callable(m.reset_parameters) is True:
|
|
331
|
+
m.reset_parameters()
|
|
332
|
+
|
|
333
|
+
def forward(
|
|
334
|
+
self,
|
|
335
|
+
tgt: torch.Tensor,
|
|
336
|
+
memory: torch.Tensor,
|
|
337
|
+
query_pos: torch.Tensor,
|
|
338
|
+
memory_pos: torch.Tensor,
|
|
339
|
+
reference_points: torch.Tensor,
|
|
340
|
+
spatial_shape: tuple[int, int],
|
|
341
|
+
memory_key_padding_mask: Optional[torch.Tensor] = None,
|
|
342
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
343
|
+
output = tgt
|
|
344
|
+
intermediate = []
|
|
345
|
+
intermediate_reference_points = []
|
|
346
|
+
|
|
347
|
+
if self.bbox_embed is not None:
|
|
348
|
+
for layer, bbox_embed in zip(self.layers, self.bbox_embed):
|
|
349
|
+
reference_points_input = reference_points.detach().clamp(0, 1)
|
|
350
|
+
|
|
351
|
+
output = layer(
|
|
352
|
+
output,
|
|
353
|
+
memory,
|
|
354
|
+
query_pos=query_pos,
|
|
355
|
+
memory_pos=memory_pos,
|
|
356
|
+
reference_points=reference_points_input,
|
|
357
|
+
spatial_shape=spatial_shape,
|
|
358
|
+
memory_key_padding_mask=memory_key_padding_mask,
|
|
359
|
+
)
|
|
360
|
+
|
|
361
|
+
output_for_pred = self.norm(output)
|
|
362
|
+
tmp = bbox_embed(output_for_pred)
|
|
363
|
+
new_reference_points = tmp + inverse_sigmoid(reference_points)
|
|
364
|
+
new_reference_points = new_reference_points.sigmoid()
|
|
365
|
+
reference_points = new_reference_points.detach()
|
|
366
|
+
|
|
367
|
+
if self.return_intermediate is True:
|
|
368
|
+
intermediate.append(output_for_pred)
|
|
369
|
+
intermediate_reference_points.append(new_reference_points)
|
|
370
|
+
|
|
371
|
+
if self.return_intermediate is True:
|
|
372
|
+
return torch.stack(intermediate), torch.stack(intermediate_reference_points)
|
|
373
|
+
|
|
374
|
+
return output_for_pred.unsqueeze(0), new_reference_points.unsqueeze(0)
|
|
375
|
+
|
|
376
|
+
for layer in self.layers:
|
|
377
|
+
reference_points_input = reference_points.detach().clamp(0, 1)
|
|
378
|
+
|
|
379
|
+
output = layer(
|
|
380
|
+
output,
|
|
381
|
+
memory,
|
|
382
|
+
query_pos=query_pos,
|
|
383
|
+
memory_pos=memory_pos,
|
|
384
|
+
reference_points=reference_points_input,
|
|
385
|
+
spatial_shape=spatial_shape,
|
|
386
|
+
memory_key_padding_mask=memory_key_padding_mask,
|
|
387
|
+
)
|
|
388
|
+
|
|
389
|
+
output_for_pred = self.norm(output)
|
|
390
|
+
|
|
391
|
+
if self.return_intermediate is True:
|
|
392
|
+
intermediate.append(output_for_pred)
|
|
393
|
+
intermediate_reference_points.append(reference_points)
|
|
394
|
+
|
|
395
|
+
if self.return_intermediate is True:
|
|
396
|
+
return torch.stack(intermediate), torch.stack(intermediate_reference_points)
|
|
397
|
+
|
|
398
|
+
return output_for_pred.unsqueeze(0), reference_points.unsqueeze(0)
|
|
399
|
+
|
|
400
|
+
|
|
401
|
+
class TransformerEncoderLayer(nn.Module):
|
|
402
|
+
def __init__(self, d_model: int, num_heads: int, dim_feedforward: int, dropout: float) -> None:
|
|
403
|
+
super().__init__()
|
|
404
|
+
self.self_attn = MultiheadAttention(d_model, num_heads, attn_drop=dropout)
|
|
405
|
+
|
|
406
|
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
|
407
|
+
self.dropout = nn.Dropout(dropout)
|
|
408
|
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
|
409
|
+
|
|
410
|
+
self.norm1 = nn.LayerNorm(d_model)
|
|
411
|
+
self.norm2 = nn.LayerNorm(d_model)
|
|
412
|
+
self.dropout1 = nn.Dropout(dropout)
|
|
413
|
+
self.dropout2 = nn.Dropout(dropout)
|
|
414
|
+
|
|
415
|
+
self.activation = nn.ReLU()
|
|
416
|
+
|
|
417
|
+
def forward(
|
|
418
|
+
self, src: torch.Tensor, pos: torch.Tensor, src_key_padding_mask: Optional[torch.Tensor] = None
|
|
419
|
+
) -> torch.Tensor:
|
|
420
|
+
src2 = self.norm1(src)
|
|
421
|
+
q = src2 + pos
|
|
422
|
+
k = src2 + pos
|
|
423
|
+
|
|
424
|
+
src2 = self.self_attn(q, k, src2, key_padding_mask=src_key_padding_mask)
|
|
425
|
+
src = src + self.dropout1(src2)
|
|
426
|
+
|
|
427
|
+
src2 = self.linear2(self.dropout(self.activation(self.linear1(self.norm2(src)))))
|
|
428
|
+
src = src + self.dropout2(src2)
|
|
429
|
+
|
|
430
|
+
return src
|
|
431
|
+
|
|
432
|
+
|
|
433
|
+
class TransformerEncoder(nn.Module):
|
|
434
|
+
def __init__(self, encoder_layer: nn.Module, num_layers: int) -> None:
|
|
435
|
+
super().__init__()
|
|
436
|
+
self.layers = _get_clones(encoder_layer, num_layers)
|
|
437
|
+
|
|
438
|
+
def forward(self, x: torch.Tensor, pos: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
439
|
+
out = x
|
|
440
|
+
for layer in self.layers:
|
|
441
|
+
out = layer(out, pos=pos, src_key_padding_mask=mask)
|
|
442
|
+
|
|
443
|
+
return out
|
|
444
|
+
|
|
445
|
+
|
|
446
|
+
# pylint: disable=invalid-name
|
|
447
|
+
class Plain_DETR(DetectionBaseNet):
|
|
448
|
+
default_size = (640, 640)
|
|
449
|
+
block_group_regex = r"encoder\.layers\.(\d+)|decoder\.layers\.(\d+)"
|
|
450
|
+
|
|
451
|
+
# pylint: disable=too-many-locals
|
|
452
|
+
def __init__(
|
|
453
|
+
self,
|
|
454
|
+
num_classes: int,
|
|
455
|
+
backbone: DetectorBackbone,
|
|
456
|
+
*,
|
|
457
|
+
config: Optional[dict[str, Any]] = None,
|
|
458
|
+
size: Optional[tuple[int, int]] = None,
|
|
459
|
+
export_mode: bool = False,
|
|
460
|
+
) -> None:
|
|
461
|
+
super().__init__(num_classes, backbone, config=config, size=size, export_mode=export_mode)
|
|
462
|
+
assert self.config is not None, "must set config"
|
|
463
|
+
|
|
464
|
+
# Sigmoid based classification (like multi-label networks)
|
|
465
|
+
self.num_classes = self.num_classes - 1
|
|
466
|
+
|
|
467
|
+
hidden_dim = 256
|
|
468
|
+
num_heads = 8
|
|
469
|
+
dropout = 0.0
|
|
470
|
+
return_intermediate = True
|
|
471
|
+
dim_feedforward: int = self.config.get("dim_feedforward", 2048)
|
|
472
|
+
num_encoder_layers: int = self.config["num_encoder_layers"]
|
|
473
|
+
num_decoder_layers: int = self.config["num_decoder_layers"]
|
|
474
|
+
num_queries_one2one: int = self.config.get("num_queries_one2one", 300)
|
|
475
|
+
num_queries_one2many: int = self.config.get("num_queries_one2many", 0)
|
|
476
|
+
k_one2many: int = self.config.get("k_one2many", 6)
|
|
477
|
+
lambda_one2many: float = self.config.get("lambda_one2many", 1.0)
|
|
478
|
+
rpe_hidden_dim: int = self.config.get("rpe_hidden_dim", 512)
|
|
479
|
+
rpe_type: Literal["linear", "log"] = self.config.get("rpe_type", "linear")
|
|
480
|
+
box_refine: bool = self.config.get("box_refine", True)
|
|
481
|
+
soft_nms: bool = self.config.get("soft_nms", False)
|
|
482
|
+
|
|
483
|
+
self.soft_nms = None
|
|
484
|
+
if soft_nms is True:
|
|
485
|
+
self.soft_nms = SoftNMS()
|
|
486
|
+
|
|
487
|
+
self.hidden_dim = hidden_dim
|
|
488
|
+
self.num_queries_one2one = num_queries_one2one
|
|
489
|
+
self.num_queries_one2many = num_queries_one2many
|
|
490
|
+
self.k_one2many = k_one2many
|
|
491
|
+
self.lambda_one2many = lambda_one2many
|
|
492
|
+
self.box_refine = box_refine
|
|
493
|
+
self.num_queries = self.num_queries_one2one + self.num_queries_one2many
|
|
494
|
+
if hasattr(self.backbone, "max_stride") is True:
|
|
495
|
+
self.feature_stride = self.backbone.max_stride
|
|
496
|
+
else:
|
|
497
|
+
self.feature_stride = 32
|
|
498
|
+
|
|
499
|
+
if num_encoder_layers == 0:
|
|
500
|
+
self.encoder = None
|
|
501
|
+
else:
|
|
502
|
+
encoder_layer = TransformerEncoderLayer(hidden_dim, num_heads, dim_feedforward, dropout)
|
|
503
|
+
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers)
|
|
504
|
+
|
|
505
|
+
decoder_layer = GlobalDecoderLayer(
|
|
506
|
+
hidden_dim,
|
|
507
|
+
num_heads=num_heads,
|
|
508
|
+
dim_feedforward=dim_feedforward,
|
|
509
|
+
dropout=dropout,
|
|
510
|
+
rpe_hidden_dim=rpe_hidden_dim,
|
|
511
|
+
feature_stride=self.feature_stride,
|
|
512
|
+
rpe_type=rpe_type,
|
|
513
|
+
)
|
|
514
|
+
decoder_norm = nn.LayerNorm(hidden_dim)
|
|
515
|
+
self.decoder = GlobalDecoder(
|
|
516
|
+
decoder_layer,
|
|
517
|
+
num_decoder_layers,
|
|
518
|
+
decoder_norm,
|
|
519
|
+
return_intermediate=return_intermediate,
|
|
520
|
+
d_model=hidden_dim,
|
|
521
|
+
)
|
|
522
|
+
|
|
523
|
+
self.class_embed = nn.Linear(hidden_dim, self.num_classes)
|
|
524
|
+
self.bbox_embed = MLP(hidden_dim, [hidden_dim, hidden_dim, 4], activation_layer=nn.ReLU)
|
|
525
|
+
self.query_embed = nn.Embedding(self.num_queries, hidden_dim * 2)
|
|
526
|
+
self.reference_point_head = MLP(hidden_dim, [hidden_dim, hidden_dim, 4], activation_layer=nn.ReLU)
|
|
527
|
+
self.input_proj = nn.Conv2d(
|
|
528
|
+
self.backbone.return_channels[-1], hidden_dim, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0)
|
|
529
|
+
)
|
|
530
|
+
self.pos_enc = PositionEmbeddingSine(hidden_dim // 2, normalize=True)
|
|
531
|
+
self.matcher = HungarianMatcher(cost_class=2, cost_bbox=5, cost_giou=2)
|
|
532
|
+
|
|
533
|
+
if box_refine is True:
|
|
534
|
+
self.class_embed = _get_clones(self.class_embed, num_decoder_layers)
|
|
535
|
+
self.bbox_embed = _get_clones(self.bbox_embed, num_decoder_layers)
|
|
536
|
+
self.decoder.bbox_embed = self.bbox_embed
|
|
537
|
+
else:
|
|
538
|
+
self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_decoder_layers)])
|
|
539
|
+
self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_decoder_layers)])
|
|
540
|
+
|
|
541
|
+
if self.export_mode is False:
|
|
542
|
+
self.forward = torch.compiler.disable(recursive=False)(self.forward) # type: ignore[method-assign]
|
|
543
|
+
|
|
544
|
+
# Weights initialization
|
|
545
|
+
prior_prob = 0.01
|
|
546
|
+
bias_value = -math.log((1 - prior_prob) / prior_prob)
|
|
547
|
+
for class_embed in self.class_embed:
|
|
548
|
+
nn.init.constant_(class_embed.bias, bias_value)
|
|
549
|
+
|
|
550
|
+
for idx, bbox_embed in enumerate(self.bbox_embed):
|
|
551
|
+
last_linear = [m for m in bbox_embed.modules() if isinstance(m, nn.Linear)][-1]
|
|
552
|
+
nn.init.zeros_(last_linear.weight)
|
|
553
|
+
nn.init.zeros_(last_linear.bias)
|
|
554
|
+
if idx == 0:
|
|
555
|
+
nn.init.constant_(last_linear.bias[2:], -2.0) # Small initial wh
|
|
556
|
+
|
|
557
|
+
ref_last_linear = [m for m in self.reference_point_head.modules() if isinstance(m, nn.Linear)][-1]
|
|
558
|
+
nn.init.zeros_(ref_last_linear.weight)
|
|
559
|
+
nn.init.zeros_(ref_last_linear.bias)
|
|
560
|
+
|
|
561
|
+
def reset_classifier(self, num_classes: int) -> None:
|
|
562
|
+
self.num_classes = num_classes
|
|
563
|
+
num_decoder_layers = len(self.class_embed)
|
|
564
|
+
self.class_embed = nn.ModuleList([nn.Linear(self.hidden_dim, num_classes) for _ in range(num_decoder_layers)])
|
|
565
|
+
|
|
566
|
+
prior_prob = 0.01
|
|
567
|
+
bias_value = -math.log((1 - prior_prob) / prior_prob)
|
|
568
|
+
for class_embed in self.class_embed:
|
|
569
|
+
nn.init.constant_(class_embed.bias, bias_value)
|
|
570
|
+
|
|
571
|
+
def freeze(self, freeze_classifier: bool = True) -> None:
|
|
572
|
+
for param in self.parameters():
|
|
573
|
+
param.requires_grad_(False)
|
|
574
|
+
|
|
575
|
+
if freeze_classifier is False:
|
|
576
|
+
for param in self.class_embed.parameters():
|
|
577
|
+
param.requires_grad_(True)
|
|
578
|
+
|
|
579
|
+
def _get_src_permutation_idx(self, indices: list[torch.Tensor]) -> tuple[torch.Tensor, torch.Tensor]:
|
|
580
|
+
batch_idx = torch.concat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
|
|
581
|
+
src_idx = torch.concat([src for (src, _) in indices])
|
|
582
|
+
return (batch_idx, src_idx)
|
|
583
|
+
|
|
584
|
+
def _class_loss(
|
|
585
|
+
self,
|
|
586
|
+
cls_logits: torch.Tensor,
|
|
587
|
+
targets: list[dict[str, torch.Tensor]],
|
|
588
|
+
indices: list[torch.Tensor],
|
|
589
|
+
num_boxes: int,
|
|
590
|
+
) -> torch.Tensor:
|
|
591
|
+
idx = self._get_src_permutation_idx(indices)
|
|
592
|
+
target_classes_o = torch.concat([t["labels"][J] for t, (_, J) in zip(targets, indices)], dim=0)
|
|
593
|
+
|
|
594
|
+
target_classes_onehot = torch.zeros(
|
|
595
|
+
cls_logits.size(0),
|
|
596
|
+
cls_logits.size(1),
|
|
597
|
+
cls_logits.size(2) + 1,
|
|
598
|
+
dtype=cls_logits.dtype,
|
|
599
|
+
device=cls_logits.device,
|
|
600
|
+
)
|
|
601
|
+
target_classes_onehot[idx[0], idx[1], target_classes_o] = 1
|
|
602
|
+
target_classes_onehot = target_classes_onehot[:, :, :-1]
|
|
603
|
+
|
|
604
|
+
loss = sigmoid_focal_loss(cls_logits, target_classes_onehot, alpha=0.25, gamma=2.0)
|
|
605
|
+
loss_ce = (loss.mean(1).sum() / num_boxes) * cls_logits.size(1)
|
|
606
|
+
|
|
607
|
+
return loss_ce
|
|
608
|
+
|
|
609
|
+
def _box_loss(
|
|
610
|
+
self,
|
|
611
|
+
box_output: torch.Tensor,
|
|
612
|
+
targets: list[dict[str, torch.Tensor]],
|
|
613
|
+
indices: list[torch.Tensor],
|
|
614
|
+
num_boxes: int,
|
|
615
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
616
|
+
idx = self._get_src_permutation_idx(indices)
|
|
617
|
+
src_boxes = box_output[idx]
|
|
618
|
+
target_boxes = torch.concat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)
|
|
619
|
+
|
|
620
|
+
loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction="none")
|
|
621
|
+
loss_bbox = loss_bbox.sum() / num_boxes
|
|
622
|
+
|
|
623
|
+
loss_giou = 1 - torch.diag(
|
|
624
|
+
box_ops.generalized_box_iou(
|
|
625
|
+
box_ops.box_convert(src_boxes, in_fmt="cxcywh", out_fmt="xyxy"),
|
|
626
|
+
box_ops.box_convert(target_boxes, in_fmt="cxcywh", out_fmt="xyxy"),
|
|
627
|
+
)
|
|
628
|
+
)
|
|
629
|
+
loss_giou = loss_giou.sum() / num_boxes
|
|
630
|
+
|
|
631
|
+
return (loss_bbox, loss_giou)
|
|
632
|
+
|
|
633
|
+
@torch.jit.unused # type: ignore[untyped-decorator]
|
|
634
|
+
@torch.compiler.disable() # type: ignore[untyped-decorator]
|
|
635
|
+
def compute_loss(
|
|
636
|
+
self,
|
|
637
|
+
targets: list[dict[str, torch.Tensor]],
|
|
638
|
+
cls_logits: torch.Tensor,
|
|
639
|
+
box_output: torch.Tensor,
|
|
640
|
+
cls_logits_one2many: Optional[torch.Tensor] = None,
|
|
641
|
+
box_output_one2many: Optional[torch.Tensor] = None,
|
|
642
|
+
) -> dict[str, torch.Tensor]:
|
|
643
|
+
# Compute the average number of target boxes across all nodes, for normalization purposes
|
|
644
|
+
num_boxes = sum(len(t["labels"]) for t in targets)
|
|
645
|
+
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=cls_logits.device)
|
|
646
|
+
if training_utils.is_dist_available_and_initialized() is True:
|
|
647
|
+
torch.distributed.all_reduce(num_boxes)
|
|
648
|
+
|
|
649
|
+
num_boxes = torch.clamp(num_boxes / training_utils.get_world_size(), min=1).item()
|
|
650
|
+
|
|
651
|
+
loss_ce_list = []
|
|
652
|
+
loss_bbox_list = []
|
|
653
|
+
loss_giou_list = []
|
|
654
|
+
for idx in range(cls_logits.size(0)):
|
|
655
|
+
indices = self.matcher(cls_logits[idx], box_output[idx], targets)
|
|
656
|
+
loss_ce_i = self._class_loss(cls_logits[idx], targets, indices, num_boxes)
|
|
657
|
+
loss_bbox_i, loss_giou_i = self._box_loss(box_output[idx], targets, indices, num_boxes)
|
|
658
|
+
loss_ce_list.append(loss_ce_i)
|
|
659
|
+
loss_bbox_list.append(loss_bbox_i)
|
|
660
|
+
loss_giou_list.append(loss_giou_i)
|
|
661
|
+
|
|
662
|
+
loss_ce = torch.stack(loss_ce_list).sum() * 2
|
|
663
|
+
loss_bbox = torch.stack(loss_bbox_list).sum() * 5
|
|
664
|
+
loss_giou = torch.stack(loss_giou_list).sum() * 2
|
|
665
|
+
|
|
666
|
+
# One2many loss (hybrid matching)
|
|
667
|
+
if cls_logits_one2many is not None and box_output_one2many is not None:
|
|
668
|
+
targets_one2many = [
|
|
669
|
+
{"boxes": t["boxes"].repeat(self.k_one2many, 1), "labels": t["labels"].repeat(self.k_one2many)}
|
|
670
|
+
for t in targets
|
|
671
|
+
]
|
|
672
|
+
num_boxes_one2many = num_boxes * self.k_one2many
|
|
673
|
+
|
|
674
|
+
loss_ce_list_one2many = []
|
|
675
|
+
loss_bbox_list_one2many = []
|
|
676
|
+
loss_giou_list_one2many = []
|
|
677
|
+
for idx in range(cls_logits_one2many.size(0)):
|
|
678
|
+
indices = self.matcher(cls_logits_one2many[idx], box_output_one2many[idx], targets_one2many)
|
|
679
|
+
loss_ce_i = self._class_loss(cls_logits_one2many[idx], targets_one2many, indices, num_boxes_one2many)
|
|
680
|
+
loss_bbox_i, loss_giou_i = self._box_loss(
|
|
681
|
+
box_output_one2many[idx], targets_one2many, indices, num_boxes_one2many
|
|
682
|
+
)
|
|
683
|
+
loss_ce_list_one2many.append(loss_ce_i)
|
|
684
|
+
loss_bbox_list_one2many.append(loss_bbox_i)
|
|
685
|
+
loss_giou_list_one2many.append(loss_giou_i)
|
|
686
|
+
|
|
687
|
+
loss_ce += torch.stack(loss_ce_list_one2many).sum() * 2 * self.lambda_one2many
|
|
688
|
+
loss_bbox += torch.stack(loss_bbox_list_one2many).sum() * 5 * self.lambda_one2many
|
|
689
|
+
loss_giou += torch.stack(loss_giou_list_one2many).sum() * 2 * self.lambda_one2many
|
|
690
|
+
|
|
691
|
+
losses = {
|
|
692
|
+
"labels": loss_ce,
|
|
693
|
+
"boxes": loss_bbox,
|
|
694
|
+
"giou": loss_giou,
|
|
695
|
+
}
|
|
696
|
+
|
|
697
|
+
return losses
|
|
698
|
+
|
|
699
|
+
def postprocess_detections(
|
|
700
|
+
self, class_logits: torch.Tensor, box_regression: torch.Tensor, image_shapes: list[tuple[int, int]]
|
|
701
|
+
) -> list[dict[str, torch.Tensor]]:
|
|
702
|
+
prob = class_logits.sigmoid()
|
|
703
|
+
scores, labels = prob.max(-1)
|
|
704
|
+
labels = labels + 1 # Background offset
|
|
705
|
+
|
|
706
|
+
# TorchScript doesn't support creating tensor from tuples, convert everything to lists
|
|
707
|
+
target_sizes = torch.tensor([list(s) for s in image_shapes], device=class_logits.device)
|
|
708
|
+
|
|
709
|
+
# Convert to [x0, y0, x1, y1] format
|
|
710
|
+
boxes = box_ops.box_convert(box_regression, in_fmt="cxcywh", out_fmt="xyxy")
|
|
711
|
+
|
|
712
|
+
# Convert from relative [0, 1] to absolute [0, height] coordinates
|
|
713
|
+
img_h, img_w = target_sizes.unbind(1)
|
|
714
|
+
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
|
|
715
|
+
boxes = boxes * scale_fct[:, None, :]
|
|
716
|
+
|
|
717
|
+
detections: list[dict[str, torch.Tensor]] = []
|
|
718
|
+
for s, l, b in zip(scores, labels, boxes):
|
|
719
|
+
# Non-maximum suppression
|
|
720
|
+
if self.soft_nms is not None:
|
|
721
|
+
soft_scores, keep = self.soft_nms(b, s, l, score_threshold=0.001)
|
|
722
|
+
s[keep] = soft_scores
|
|
723
|
+
|
|
724
|
+
b = b[keep]
|
|
725
|
+
s = s[keep]
|
|
726
|
+
l = l[keep] # noqa: E741
|
|
727
|
+
|
|
728
|
+
detections.append(
|
|
729
|
+
{
|
|
730
|
+
"boxes": b,
|
|
731
|
+
"scores": s,
|
|
732
|
+
"labels": l,
|
|
733
|
+
}
|
|
734
|
+
)
|
|
735
|
+
|
|
736
|
+
return detections
|
|
737
|
+
|
|
738
|
+
# pylint: disable=too-many-locals
|
|
739
|
+
def forward(
|
|
740
|
+
self,
|
|
741
|
+
x: torch.Tensor,
|
|
742
|
+
targets: Optional[list[dict[str, torch.Tensor]]] = None,
|
|
743
|
+
masks: Optional[torch.Tensor] = None,
|
|
744
|
+
image_sizes: Optional[list[list[int]]] = None,
|
|
745
|
+
) -> tuple[list[dict[str, torch.Tensor]], dict[str, torch.Tensor]]:
|
|
746
|
+
self._input_check(targets)
|
|
747
|
+
images = self._to_img_list(x, image_sizes)
|
|
748
|
+
|
|
749
|
+
features: dict[str, torch.Tensor] = self.backbone.detection_features(x)
|
|
750
|
+
src = features[self.backbone.return_stages[-1]]
|
|
751
|
+
src = self.input_proj(src)
|
|
752
|
+
B, _, H, W = src.size()
|
|
753
|
+
|
|
754
|
+
if masks is not None:
|
|
755
|
+
masks = F.interpolate(masks[None].float(), size=(H, W), mode="nearest").to(torch.bool)[0]
|
|
756
|
+
mask_flatten = masks.flatten(1)
|
|
757
|
+
else:
|
|
758
|
+
mask_flatten = None
|
|
759
|
+
|
|
760
|
+
pos = self.pos_enc(src, masks)
|
|
761
|
+
src = src.flatten(2).permute(0, 2, 1)
|
|
762
|
+
pos = pos.flatten(2).permute(0, 2, 1)
|
|
763
|
+
|
|
764
|
+
if self.encoder is not None:
|
|
765
|
+
memory = self.encoder(src, pos=pos, mask=mask_flatten)
|
|
766
|
+
else:
|
|
767
|
+
memory = src
|
|
768
|
+
|
|
769
|
+
# Use all queries during training, only one2one during inference
|
|
770
|
+
if self.training is True and self.num_queries_one2many > 0:
|
|
771
|
+
num_queries_to_use = self.num_queries_one2one + self.num_queries_one2many
|
|
772
|
+
else:
|
|
773
|
+
num_queries_to_use = self.num_queries_one2one
|
|
774
|
+
|
|
775
|
+
query_embed = self.query_embed.weight[:num_queries_to_use]
|
|
776
|
+
query_embed, query_pos = torch.split(query_embed, self.hidden_dim, dim=1)
|
|
777
|
+
query_embed = query_embed.unsqueeze(0).expand(B, -1, -1)
|
|
778
|
+
query_pos = query_pos.unsqueeze(0).expand(B, -1, -1)
|
|
779
|
+
|
|
780
|
+
reference_points = self.reference_point_head(query_pos).sigmoid()
|
|
781
|
+
|
|
782
|
+
hs, inter_references = self.decoder(
|
|
783
|
+
tgt=query_embed,
|
|
784
|
+
memory=memory,
|
|
785
|
+
query_pos=query_pos,
|
|
786
|
+
memory_pos=pos,
|
|
787
|
+
reference_points=reference_points,
|
|
788
|
+
spatial_shape=(H, W),
|
|
789
|
+
memory_key_padding_mask=mask_flatten,
|
|
790
|
+
)
|
|
791
|
+
|
|
792
|
+
outputs_classes = []
|
|
793
|
+
outputs_coords = []
|
|
794
|
+
for lvl, (class_embed, bbox_embed) in enumerate(zip(self.class_embed, self.bbox_embed)):
|
|
795
|
+
outputs_class = class_embed(hs[lvl])
|
|
796
|
+
outputs_classes.append(outputs_class)
|
|
797
|
+
|
|
798
|
+
if self.box_refine is True:
|
|
799
|
+
outputs_coord = inter_references[lvl]
|
|
800
|
+
else:
|
|
801
|
+
tmp = bbox_embed(hs[lvl])
|
|
802
|
+
tmp = tmp + inverse_sigmoid(reference_points)
|
|
803
|
+
outputs_coord = tmp.sigmoid()
|
|
804
|
+
|
|
805
|
+
outputs_coords.append(outputs_coord)
|
|
806
|
+
|
|
807
|
+
outputs_class = torch.stack(outputs_classes)
|
|
808
|
+
outputs_coord = torch.stack(outputs_coords)
|
|
809
|
+
|
|
810
|
+
losses = {}
|
|
811
|
+
detections: list[dict[str, torch.Tensor]] = []
|
|
812
|
+
if self.training is True:
|
|
813
|
+
assert targets is not None, "targets should not be none when in training mode"
|
|
814
|
+
|
|
815
|
+
for idx, target in enumerate(targets):
|
|
816
|
+
boxes = target["boxes"]
|
|
817
|
+
boxes = box_ops.box_convert(boxes, in_fmt="xyxy", out_fmt="cxcywh")
|
|
818
|
+
boxes = boxes / torch.tensor(images.image_sizes[idx][::-1] * 2, dtype=torch.float32, device=x.device)
|
|
819
|
+
targets[idx]["boxes"] = boxes
|
|
820
|
+
targets[idx]["labels"] = target["labels"] - 1 # No background
|
|
821
|
+
|
|
822
|
+
# Split outputs for one2one and one2many
|
|
823
|
+
outputs_class_one2one = outputs_class[:, :, : self.num_queries_one2one]
|
|
824
|
+
outputs_coord_one2one = outputs_coord[:, :, : self.num_queries_one2one]
|
|
825
|
+
|
|
826
|
+
if self.num_queries_one2many > 0:
|
|
827
|
+
outputs_class_one2many = outputs_class[:, :, self.num_queries_one2one :]
|
|
828
|
+
outputs_coord_one2many = outputs_coord[:, :, self.num_queries_one2one :]
|
|
829
|
+
else:
|
|
830
|
+
outputs_class_one2many = None
|
|
831
|
+
outputs_coord_one2many = None
|
|
832
|
+
|
|
833
|
+
losses = self.compute_loss(
|
|
834
|
+
targets, outputs_class_one2one, outputs_coord_one2one, outputs_class_one2many, outputs_coord_one2many
|
|
835
|
+
)
|
|
836
|
+
|
|
837
|
+
else:
|
|
838
|
+
detections = self.postprocess_detections(outputs_class[-1], outputs_coord[-1], images.image_sizes)
|
|
839
|
+
|
|
840
|
+
return (detections, losses)
|
|
841
|
+
|
|
842
|
+
|
|
843
|
+
registry.register_model_config(
|
|
844
|
+
"plain_detr_lite",
|
|
845
|
+
Plain_DETR,
|
|
846
|
+
config={"num_encoder_layers": 1, "num_decoder_layers": 3, "box_refine": False},
|
|
847
|
+
)
|
|
848
|
+
registry.register_model_config(
|
|
849
|
+
"plain_detr",
|
|
850
|
+
Plain_DETR,
|
|
851
|
+
config={"num_encoder_layers": 0, "num_decoder_layers": 6, "num_queries_one2many": 1500},
|
|
852
|
+
)
|