birder 0.3.3__py3-none-any.whl → 0.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- birder/adversarial/base.py +1 -1
- birder/adversarial/simba.py +4 -4
- birder/common/cli.py +1 -1
- birder/common/fs_ops.py +13 -13
- birder/common/lib.py +2 -2
- birder/common/masking.py +3 -3
- birder/common/training_cli.py +24 -2
- birder/common/training_utils.py +28 -4
- birder/data/collators/detection.py +9 -1
- birder/data/transforms/detection.py +27 -8
- birder/data/transforms/mosaic.py +1 -1
- birder/datahub/classification.py +3 -3
- birder/inference/classification.py +3 -3
- birder/inference/data_parallel.py +1 -1
- birder/inference/detection.py +5 -5
- birder/inference/wbf.py +1 -1
- birder/introspection/attention_rollout.py +6 -6
- birder/introspection/feature_pca.py +4 -4
- birder/introspection/gradcam.py +1 -1
- birder/introspection/guided_backprop.py +2 -2
- birder/introspection/transformer_attribution.py +4 -4
- birder/layers/attention_pool.py +2 -2
- birder/layers/layer_scale.py +1 -1
- birder/model_registry/model_registry.py +2 -1
- birder/net/__init__.py +4 -10
- birder/net/_rope_vit_configs.py +435 -0
- birder/net/_vit_configs.py +466 -0
- birder/net/alexnet.py +5 -5
- birder/net/base.py +28 -3
- birder/net/biformer.py +18 -17
- birder/net/cait.py +7 -7
- birder/net/cas_vit.py +1 -1
- birder/net/coat.py +27 -27
- birder/net/conv2former.py +3 -3
- birder/net/convmixer.py +1 -1
- birder/net/convnext_v1.py +3 -11
- birder/net/convnext_v1_iso.py +198 -0
- birder/net/convnext_v2.py +2 -10
- birder/net/crossformer.py +9 -9
- birder/net/crossvit.py +6 -6
- birder/net/cspnet.py +1 -1
- birder/net/cswin_transformer.py +10 -10
- birder/net/davit.py +11 -11
- birder/net/deit.py +68 -29
- birder/net/deit3.py +69 -204
- birder/net/densenet.py +9 -8
- birder/net/detection/__init__.py +4 -0
- birder/net/detection/{yolo_anchors.py → _yolo_anchors.py} +5 -5
- birder/net/detection/base.py +6 -5
- birder/net/detection/deformable_detr.py +31 -30
- birder/net/detection/detr.py +14 -11
- birder/net/detection/efficientdet.py +10 -29
- birder/net/detection/faster_rcnn.py +22 -22
- birder/net/detection/fcos.py +8 -8
- birder/net/detection/plain_detr.py +852 -0
- birder/net/detection/retinanet.py +4 -4
- birder/net/detection/rt_detr_v1.py +81 -25
- birder/net/detection/rt_detr_v2.py +1147 -0
- birder/net/detection/ssd.py +5 -5
- birder/net/detection/yolo_v2.py +12 -12
- birder/net/detection/yolo_v3.py +19 -19
- birder/net/detection/yolo_v4.py +16 -16
- birder/net/detection/yolo_v4_tiny.py +3 -3
- birder/net/dpn.py +1 -2
- birder/net/edgenext.py +5 -4
- birder/net/edgevit.py +13 -14
- birder/net/efficientformer_v1.py +3 -2
- birder/net/efficientformer_v2.py +18 -31
- birder/net/efficientnet_v2.py +3 -0
- birder/net/efficientvim.py +9 -9
- birder/net/efficientvit_mit.py +7 -7
- birder/net/efficientvit_msft.py +3 -3
- birder/net/fasternet.py +3 -3
- birder/net/fastvit.py +5 -12
- birder/net/flexivit.py +50 -58
- birder/net/focalnet.py +5 -9
- birder/net/gc_vit.py +11 -11
- birder/net/ghostnet_v1.py +1 -1
- birder/net/ghostnet_v2.py +1 -1
- birder/net/groupmixformer.py +13 -13
- birder/net/hgnet_v1.py +6 -6
- birder/net/hgnet_v2.py +4 -4
- birder/net/hiera.py +6 -6
- birder/net/hieradet.py +9 -9
- birder/net/hornet.py +3 -3
- birder/net/iformer.py +4 -4
- birder/net/inception_next.py +5 -15
- birder/net/inception_resnet_v1.py +3 -3
- birder/net/inception_resnet_v2.py +7 -4
- birder/net/inception_v3.py +3 -0
- birder/net/inception_v4.py +3 -0
- birder/net/levit.py +3 -3
- birder/net/lit_v1.py +13 -15
- birder/net/lit_v1_tiny.py +9 -9
- birder/net/lit_v2.py +14 -15
- birder/net/maxvit.py +11 -23
- birder/net/metaformer.py +5 -5
- birder/net/mim/crossmae.py +6 -6
- birder/net/mim/fcmae.py +3 -5
- birder/net/mim/mae_hiera.py +7 -7
- birder/net/mim/mae_vit.py +4 -6
- birder/net/mim/simmim.py +3 -4
- birder/net/mobilenet_v1.py +0 -9
- birder/net/mobilenet_v2.py +38 -44
- birder/net/{mobilenet_v3_large.py → mobilenet_v3.py} +37 -10
- birder/net/mobilenet_v4_hybrid.py +4 -4
- birder/net/mobileone.py +5 -12
- birder/net/mobilevit_v1.py +7 -34
- birder/net/mobilevit_v2.py +6 -54
- birder/net/moganet.py +8 -5
- birder/net/mvit_v2.py +30 -30
- birder/net/nextvit.py +2 -2
- birder/net/nfnet.py +4 -0
- birder/net/pit.py +11 -26
- birder/net/pvt_v1.py +9 -9
- birder/net/pvt_v2.py +10 -16
- birder/net/regionvit.py +15 -15
- birder/net/regnet.py +1 -1
- birder/net/repghost.py +5 -35
- birder/net/repvgg.py +3 -5
- birder/net/repvit.py +2 -2
- birder/net/resmlp.py +2 -2
- birder/net/resnest.py +4 -1
- birder/net/resnet_v1.py +125 -1
- birder/net/resnet_v2.py +75 -1
- birder/net/resnext.py +35 -1
- birder/net/rope_deit3.py +62 -151
- birder/net/rope_flexivit.py +46 -33
- birder/net/rope_vit.py +44 -758
- birder/net/sequencer2d.py +3 -4
- birder/net/shufflenet_v1.py +1 -1
- birder/net/shufflenet_v2.py +1 -1
- birder/net/simple_vit.py +69 -21
- birder/net/smt.py +8 -8
- birder/net/squeezenet.py +5 -12
- birder/net/squeezenext.py +0 -24
- birder/net/ssl/barlow_twins.py +1 -1
- birder/net/ssl/byol.py +2 -2
- birder/net/ssl/capi.py +4 -4
- birder/net/ssl/data2vec.py +1 -1
- birder/net/ssl/data2vec2.py +1 -1
- birder/net/ssl/dino_v2.py +13 -3
- birder/net/ssl/franca.py +28 -4
- birder/net/ssl/i_jepa.py +5 -5
- birder/net/ssl/ibot.py +1 -1
- birder/net/ssl/mmcr.py +1 -1
- birder/net/swiftformer.py +13 -3
- birder/net/swin_transformer_v1.py +4 -5
- birder/net/swin_transformer_v2.py +5 -8
- birder/net/tiny_vit.py +6 -19
- birder/net/transnext.py +19 -19
- birder/net/uniformer.py +4 -4
- birder/net/van.py +2 -2
- birder/net/vgg.py +1 -10
- birder/net/vit.py +72 -987
- birder/net/vit_parallel.py +35 -20
- birder/net/vit_sam.py +23 -48
- birder/net/vovnet_v2.py +1 -1
- birder/net/xcit.py +16 -13
- birder/ops/msda.py +4 -4
- birder/ops/swattention.py +10 -10
- birder/results/classification.py +3 -3
- birder/results/gui.py +8 -8
- birder/scripts/benchmark.py +37 -12
- birder/scripts/evaluate.py +1 -1
- birder/scripts/predict.py +3 -3
- birder/scripts/predict_detection.py +2 -2
- birder/scripts/train.py +63 -15
- birder/scripts/train_barlow_twins.py +10 -7
- birder/scripts/train_byol.py +10 -7
- birder/scripts/train_capi.py +15 -10
- birder/scripts/train_data2vec.py +10 -7
- birder/scripts/train_data2vec2.py +10 -7
- birder/scripts/train_detection.py +29 -14
- birder/scripts/train_dino_v1.py +13 -9
- birder/scripts/train_dino_v2.py +27 -14
- birder/scripts/train_dino_v2_dist.py +28 -15
- birder/scripts/train_franca.py +16 -9
- birder/scripts/train_i_jepa.py +12 -9
- birder/scripts/train_ibot.py +15 -11
- birder/scripts/train_kd.py +64 -17
- birder/scripts/train_mim.py +11 -8
- birder/scripts/train_mmcr.py +11 -8
- birder/scripts/train_rotnet.py +11 -7
- birder/scripts/train_simclr.py +10 -7
- birder/scripts/train_vicreg.py +10 -7
- birder/tools/adversarial.py +4 -4
- birder/tools/auto_anchors.py +5 -5
- birder/tools/avg_model.py +1 -1
- birder/tools/convert_model.py +30 -22
- birder/tools/det_results.py +1 -1
- birder/tools/download_model.py +1 -1
- birder/tools/ensemble_model.py +1 -1
- birder/tools/introspection.py +12 -3
- birder/tools/labelme_to_coco.py +2 -2
- birder/tools/model_info.py +15 -15
- birder/tools/pack.py +8 -8
- birder/tools/quantize_model.py +53 -4
- birder/tools/results.py +2 -2
- birder/tools/show_det_iterator.py +19 -6
- birder/tools/show_iterator.py +2 -2
- birder/tools/similarity.py +5 -5
- birder/tools/stats.py +4 -6
- birder/tools/voc_to_coco.py +1 -1
- birder/version.py +1 -1
- {birder-0.3.3.dist-info → birder-0.4.1.dist-info}/METADATA +3 -3
- birder-0.4.1.dist-info/RECORD +300 -0
- {birder-0.3.3.dist-info → birder-0.4.1.dist-info}/WHEEL +1 -1
- birder/net/mobilenet_v3_small.py +0 -43
- birder/net/se_resnet_v1.py +0 -105
- birder/net/se_resnet_v2.py +0 -59
- birder/net/se_resnext.py +0 -30
- birder-0.3.3.dist-info/RECORD +0 -299
- {birder-0.3.3.dist-info → birder-0.4.1.dist-info}/entry_points.txt +0 -0
- {birder-0.3.3.dist-info → birder-0.4.1.dist-info}/licenses/LICENSE +0 -0
- {birder-0.3.3.dist-info → birder-0.4.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,466 @@
|
|
|
1
|
+
"""
|
|
2
|
+
ViT model configuration registrations
|
|
3
|
+
|
|
4
|
+
This file contains *only* model variant definitions and their registration
|
|
5
|
+
with the global model registry. The actual ViT implementation lives in vit.py.
|
|
6
|
+
|
|
7
|
+
Naming:
|
|
8
|
+
- All model names must follow the ViT / RoPE ViT naming convention documented in rope_vit_configs.py.
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
from birder.model_registry import registry
|
|
12
|
+
from birder.net.base import BaseNet
|
|
13
|
+
|
|
14
|
+
TINY = {"num_layers": 12, "num_heads": 3, "hidden_dim": 192, "mlp_dim": 768, "drop_path_rate": 0.0}
|
|
15
|
+
SMALL = {"num_layers": 12, "num_heads": 6, "hidden_dim": 384, "mlp_dim": 1536, "drop_path_rate": 0.0}
|
|
16
|
+
MEDIUM = {"num_layers": 12, "num_heads": 8, "hidden_dim": 512, "mlp_dim": 2048, "drop_path_rate": 0.0}
|
|
17
|
+
BASE = {"num_layers": 12, "num_heads": 12, "hidden_dim": 768, "mlp_dim": 3072, "drop_path_rate": 0.1}
|
|
18
|
+
LARGE = {"num_layers": 24, "num_heads": 16, "hidden_dim": 1024, "mlp_dim": 4096, "drop_path_rate": 0.1}
|
|
19
|
+
HUGE = {"num_layers": 32, "num_heads": 16, "hidden_dim": 1280, "mlp_dim": 5120, "drop_path_rate": 0.1}
|
|
20
|
+
|
|
21
|
+
# From "Getting vit in Shape: Scaling Laws for Compute-Optimal Model Design"
|
|
22
|
+
# Shape-optimized vision transformer (SoViT)
|
|
23
|
+
SO150 = {
|
|
24
|
+
"num_layers": 18,
|
|
25
|
+
"num_heads": 16,
|
|
26
|
+
"hidden_dim": 896, # Changed from 880 for RoPE divisibility
|
|
27
|
+
"mlp_dim": 2320,
|
|
28
|
+
"drop_path_rate": 0.1,
|
|
29
|
+
}
|
|
30
|
+
SO400 = {
|
|
31
|
+
"num_layers": 27,
|
|
32
|
+
"num_heads": 16,
|
|
33
|
+
"hidden_dim": 1152,
|
|
34
|
+
"mlp_dim": 4304,
|
|
35
|
+
"drop_path_rate": 0.1,
|
|
36
|
+
}
|
|
37
|
+
|
|
38
|
+
# From "Scaling Vision Transformers"
|
|
39
|
+
GIANT = {"num_layers": 40, "num_heads": 16, "hidden_dim": 1408, "mlp_dim": 6144, "drop_path_rate": 0.1}
|
|
40
|
+
GIGANTIC = {"num_layers": 48, "num_heads": 16, "hidden_dim": 1664, "mlp_dim": 8192, "drop_path_rate": 0.1}
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
def register_vit_configs(vit: type[BaseNet]) -> None:
|
|
44
|
+
registry.register_model_config(
|
|
45
|
+
"vit_t32",
|
|
46
|
+
vit,
|
|
47
|
+
config={"patch_size": 32, **TINY},
|
|
48
|
+
)
|
|
49
|
+
registry.register_model_config(
|
|
50
|
+
"vit_t16",
|
|
51
|
+
vit,
|
|
52
|
+
config={"patch_size": 16, **TINY},
|
|
53
|
+
)
|
|
54
|
+
registry.register_model_config(
|
|
55
|
+
"vit_t14",
|
|
56
|
+
vit,
|
|
57
|
+
config={"patch_size": 14, **TINY},
|
|
58
|
+
)
|
|
59
|
+
registry.register_model_config(
|
|
60
|
+
"vit_s32",
|
|
61
|
+
vit,
|
|
62
|
+
config={"patch_size": 32, **SMALL},
|
|
63
|
+
)
|
|
64
|
+
registry.register_model_config(
|
|
65
|
+
"vit_s16",
|
|
66
|
+
vit,
|
|
67
|
+
config={"patch_size": 16, **SMALL},
|
|
68
|
+
)
|
|
69
|
+
registry.register_model_config(
|
|
70
|
+
"vit_s16_ls",
|
|
71
|
+
vit,
|
|
72
|
+
config={"patch_size": 16, **SMALL, "layer_scale_init_value": 1e-5},
|
|
73
|
+
)
|
|
74
|
+
registry.register_model_config(
|
|
75
|
+
"vit_s16_pn",
|
|
76
|
+
vit,
|
|
77
|
+
config={"patch_size": 16, **SMALL, "pre_norm": True, "norm_layer_eps": 1e-5},
|
|
78
|
+
)
|
|
79
|
+
registry.register_model_config(
|
|
80
|
+
"vit_s14",
|
|
81
|
+
vit,
|
|
82
|
+
config={"patch_size": 14, **SMALL},
|
|
83
|
+
)
|
|
84
|
+
registry.register_model_config(
|
|
85
|
+
"vit_m32",
|
|
86
|
+
vit,
|
|
87
|
+
config={"patch_size": 32, **MEDIUM},
|
|
88
|
+
)
|
|
89
|
+
registry.register_model_config(
|
|
90
|
+
"vit_m16",
|
|
91
|
+
vit,
|
|
92
|
+
config={"patch_size": 16, **MEDIUM},
|
|
93
|
+
)
|
|
94
|
+
registry.register_model_config(
|
|
95
|
+
"vit_m14",
|
|
96
|
+
vit,
|
|
97
|
+
config={"patch_size": 14, **MEDIUM},
|
|
98
|
+
)
|
|
99
|
+
registry.register_model_config(
|
|
100
|
+
"vit_b32",
|
|
101
|
+
vit,
|
|
102
|
+
config={"patch_size": 32, **BASE, "drop_path_rate": 0.0}, # Override the BASE definition
|
|
103
|
+
)
|
|
104
|
+
registry.register_model_config(
|
|
105
|
+
"vit_b16",
|
|
106
|
+
vit,
|
|
107
|
+
config={"patch_size": 16, **BASE},
|
|
108
|
+
)
|
|
109
|
+
registry.register_model_config(
|
|
110
|
+
"vit_b16_ls",
|
|
111
|
+
vit,
|
|
112
|
+
config={"patch_size": 16, **BASE, "layer_scale_init_value": 1e-5},
|
|
113
|
+
)
|
|
114
|
+
registry.register_model_config(
|
|
115
|
+
"vit_b16_qkn_ls",
|
|
116
|
+
vit,
|
|
117
|
+
config={"patch_size": 16, **BASE, "layer_scale_init_value": 1e-5, "qk_norm": True},
|
|
118
|
+
)
|
|
119
|
+
registry.register_model_config(
|
|
120
|
+
"vit_b16_pn_quick_gelu",
|
|
121
|
+
vit,
|
|
122
|
+
config={"patch_size": 16, **BASE, "pre_norm": True, "norm_layer_eps": 1e-5, "act_layer_type": "quick_gelu"},
|
|
123
|
+
)
|
|
124
|
+
registry.register_model_config(
|
|
125
|
+
"vit_b14",
|
|
126
|
+
vit,
|
|
127
|
+
config={"patch_size": 14, **BASE},
|
|
128
|
+
)
|
|
129
|
+
registry.register_model_config(
|
|
130
|
+
"vit_so150m_p14_avg",
|
|
131
|
+
vit,
|
|
132
|
+
config={"patch_size": 14, **SO150, "class_token": False},
|
|
133
|
+
)
|
|
134
|
+
registry.register_model_config(
|
|
135
|
+
"vit_so150m_p14_ap",
|
|
136
|
+
vit,
|
|
137
|
+
config={"patch_size": 14, **SO150, "class_token": False, "attn_pool_head": True},
|
|
138
|
+
)
|
|
139
|
+
registry.register_model_config(
|
|
140
|
+
"vit_l32",
|
|
141
|
+
vit,
|
|
142
|
+
config={"patch_size": 32, **LARGE},
|
|
143
|
+
)
|
|
144
|
+
registry.register_model_config(
|
|
145
|
+
"vit_l16",
|
|
146
|
+
vit,
|
|
147
|
+
config={"patch_size": 16, **LARGE},
|
|
148
|
+
)
|
|
149
|
+
registry.register_model_config(
|
|
150
|
+
"vit_l14",
|
|
151
|
+
vit,
|
|
152
|
+
config={"patch_size": 14, **LARGE},
|
|
153
|
+
)
|
|
154
|
+
registry.register_model_config(
|
|
155
|
+
"vit_l14_pn",
|
|
156
|
+
vit,
|
|
157
|
+
config={"patch_size": 14, **LARGE, "pre_norm": True, "norm_layer_eps": 1e-5},
|
|
158
|
+
)
|
|
159
|
+
registry.register_model_config(
|
|
160
|
+
"vit_l14_pn_quick_gelu",
|
|
161
|
+
vit,
|
|
162
|
+
config={"patch_size": 14, **LARGE, "pre_norm": True, "norm_layer_eps": 1e-5, "act_layer_type": "quick_gelu"},
|
|
163
|
+
)
|
|
164
|
+
registry.register_model_config(
|
|
165
|
+
"vit_so400m_p14_ap",
|
|
166
|
+
vit,
|
|
167
|
+
config={"patch_size": 14, **SO400, "class_token": False, "attn_pool_head": True},
|
|
168
|
+
)
|
|
169
|
+
registry.register_model_config(
|
|
170
|
+
"vit_h16",
|
|
171
|
+
vit,
|
|
172
|
+
config={"patch_size": 16, **HUGE},
|
|
173
|
+
)
|
|
174
|
+
registry.register_model_config(
|
|
175
|
+
"vit_h14",
|
|
176
|
+
vit,
|
|
177
|
+
config={"patch_size": 14, **HUGE},
|
|
178
|
+
)
|
|
179
|
+
registry.register_model_config( # From "Scaling Vision Transformers"
|
|
180
|
+
"vit_g16",
|
|
181
|
+
vit,
|
|
182
|
+
config={"patch_size": 16, **GIANT},
|
|
183
|
+
)
|
|
184
|
+
registry.register_model_config( # From "Scaling Vision Transformers"
|
|
185
|
+
"vit_g14",
|
|
186
|
+
vit,
|
|
187
|
+
config={"patch_size": 14, **GIANT},
|
|
188
|
+
)
|
|
189
|
+
registry.register_model_config( # From "Scaling Vision Transformers"
|
|
190
|
+
"vit_gigantic14",
|
|
191
|
+
vit,
|
|
192
|
+
config={"patch_size": 14, **GIGANTIC},
|
|
193
|
+
)
|
|
194
|
+
registry.register_model_config( # From "PaLI: A Jointly-Scaled Multilingual Language-Image Model"
|
|
195
|
+
"vit_e14",
|
|
196
|
+
vit,
|
|
197
|
+
config={
|
|
198
|
+
"patch_size": 14,
|
|
199
|
+
"num_layers": 56,
|
|
200
|
+
"num_heads": 16,
|
|
201
|
+
"hidden_dim": 1792,
|
|
202
|
+
"mlp_dim": 15360,
|
|
203
|
+
"drop_path_rate": 0.1,
|
|
204
|
+
},
|
|
205
|
+
)
|
|
206
|
+
registry.register_model_config( # From "Scaling Language-Free Visual Representation Learning"
|
|
207
|
+
"vit_1b_p16", # AKA vit_giant2 from DINOv2
|
|
208
|
+
vit,
|
|
209
|
+
config={
|
|
210
|
+
"patch_size": 16,
|
|
211
|
+
"num_layers": 40,
|
|
212
|
+
"num_heads": 24,
|
|
213
|
+
"hidden_dim": 1536,
|
|
214
|
+
"mlp_dim": 6144,
|
|
215
|
+
"drop_path_rate": 0.1,
|
|
216
|
+
},
|
|
217
|
+
)
|
|
218
|
+
|
|
219
|
+
# With registers
|
|
220
|
+
####################
|
|
221
|
+
|
|
222
|
+
registry.register_model_config(
|
|
223
|
+
"vit_reg1_t32",
|
|
224
|
+
vit,
|
|
225
|
+
config={"patch_size": 32, **TINY, "num_reg_tokens": 1},
|
|
226
|
+
)
|
|
227
|
+
registry.register_model_config(
|
|
228
|
+
"vit_reg1_t16",
|
|
229
|
+
vit,
|
|
230
|
+
config={"patch_size": 16, **TINY, "num_reg_tokens": 1},
|
|
231
|
+
)
|
|
232
|
+
registry.register_model_config(
|
|
233
|
+
"vit_reg1_t14",
|
|
234
|
+
vit,
|
|
235
|
+
config={"patch_size": 14, **TINY, "num_reg_tokens": 1},
|
|
236
|
+
)
|
|
237
|
+
registry.register_model_config(
|
|
238
|
+
"vit_reg1_s32",
|
|
239
|
+
vit,
|
|
240
|
+
config={"patch_size": 32, **SMALL, "num_reg_tokens": 1},
|
|
241
|
+
)
|
|
242
|
+
registry.register_model_config(
|
|
243
|
+
"vit_reg1_s16",
|
|
244
|
+
vit,
|
|
245
|
+
config={"patch_size": 16, **SMALL, "num_reg_tokens": 1},
|
|
246
|
+
)
|
|
247
|
+
registry.register_model_config(
|
|
248
|
+
"vit_reg1_s16_ls",
|
|
249
|
+
vit,
|
|
250
|
+
config={"patch_size": 16, **SMALL, "layer_scale_init_value": 1e-5, "num_reg_tokens": 1},
|
|
251
|
+
)
|
|
252
|
+
registry.register_model_config(
|
|
253
|
+
"vit_reg1_s16_rms_ls",
|
|
254
|
+
vit,
|
|
255
|
+
config={
|
|
256
|
+
"patch_size": 16,
|
|
257
|
+
**SMALL,
|
|
258
|
+
"layer_scale_init_value": 1e-5,
|
|
259
|
+
"num_reg_tokens": 1,
|
|
260
|
+
"norm_layer_type": "RMSNorm",
|
|
261
|
+
},
|
|
262
|
+
)
|
|
263
|
+
registry.register_model_config(
|
|
264
|
+
"vit_reg1_s14",
|
|
265
|
+
vit,
|
|
266
|
+
config={"patch_size": 14, **SMALL, "num_reg_tokens": 1},
|
|
267
|
+
)
|
|
268
|
+
registry.register_model_config(
|
|
269
|
+
"vit_reg4_m32",
|
|
270
|
+
vit,
|
|
271
|
+
config={"patch_size": 32, **MEDIUM, "num_reg_tokens": 4},
|
|
272
|
+
)
|
|
273
|
+
registry.register_model_config(
|
|
274
|
+
"vit_reg4_m16",
|
|
275
|
+
vit,
|
|
276
|
+
config={"patch_size": 16, **MEDIUM, "num_reg_tokens": 4},
|
|
277
|
+
)
|
|
278
|
+
registry.register_model_config(
|
|
279
|
+
"vit_reg4_m16_rms_avg",
|
|
280
|
+
vit,
|
|
281
|
+
config={"patch_size": 16, **MEDIUM, "num_reg_tokens": 4, "class_token": False, "norm_layer_type": "RMSNorm"},
|
|
282
|
+
)
|
|
283
|
+
registry.register_model_config(
|
|
284
|
+
"vit_reg4_m14",
|
|
285
|
+
vit,
|
|
286
|
+
config={"patch_size": 14, **MEDIUM, "num_reg_tokens": 4},
|
|
287
|
+
)
|
|
288
|
+
registry.register_model_config(
|
|
289
|
+
"vit_reg4_b32",
|
|
290
|
+
vit,
|
|
291
|
+
config={"patch_size": 32, **BASE, "num_reg_tokens": 4, "drop_path_rate": 0.0}, # Override the BASE definition
|
|
292
|
+
)
|
|
293
|
+
registry.register_model_config(
|
|
294
|
+
"vit_reg4_b16",
|
|
295
|
+
vit,
|
|
296
|
+
config={"patch_size": 16, **BASE, "num_reg_tokens": 4},
|
|
297
|
+
)
|
|
298
|
+
registry.register_model_config(
|
|
299
|
+
"vit_reg4_b16_avg",
|
|
300
|
+
vit,
|
|
301
|
+
config={"patch_size": 16, **BASE, "num_reg_tokens": 4, "class_token": False},
|
|
302
|
+
)
|
|
303
|
+
registry.register_model_config(
|
|
304
|
+
"vit_reg4_b14",
|
|
305
|
+
vit,
|
|
306
|
+
config={"patch_size": 14, **BASE, "num_reg_tokens": 4},
|
|
307
|
+
)
|
|
308
|
+
registry.register_model_config(
|
|
309
|
+
"vit_reg8_b14_ap",
|
|
310
|
+
vit,
|
|
311
|
+
config={"patch_size": 14, **BASE, "num_reg_tokens": 8, "class_token": False, "attn_pool_head": True},
|
|
312
|
+
)
|
|
313
|
+
registry.register_model_config(
|
|
314
|
+
"vit_reg4_so150m_p16_avg",
|
|
315
|
+
vit,
|
|
316
|
+
config={"patch_size": 16, **SO150, "num_reg_tokens": 4, "class_token": False},
|
|
317
|
+
)
|
|
318
|
+
registry.register_model_config(
|
|
319
|
+
"vit_reg8_so150m_p16_swiglu_ap",
|
|
320
|
+
vit,
|
|
321
|
+
config={
|
|
322
|
+
"patch_size": 16,
|
|
323
|
+
**SO150,
|
|
324
|
+
"num_reg_tokens": 8,
|
|
325
|
+
"class_token": False,
|
|
326
|
+
"attn_pool_head": True,
|
|
327
|
+
"mlp_layer_type": "SwiGLU_FFN",
|
|
328
|
+
},
|
|
329
|
+
)
|
|
330
|
+
registry.register_model_config(
|
|
331
|
+
"vit_reg4_so150m_p14_avg",
|
|
332
|
+
vit,
|
|
333
|
+
config={"patch_size": 14, **SO150, "num_reg_tokens": 4, "class_token": False},
|
|
334
|
+
)
|
|
335
|
+
registry.register_model_config(
|
|
336
|
+
"vit_reg4_so150m_p14_ls",
|
|
337
|
+
vit,
|
|
338
|
+
config={"patch_size": 14, **SO150, "layer_scale_init_value": 1e-5, "num_reg_tokens": 4},
|
|
339
|
+
)
|
|
340
|
+
registry.register_model_config(
|
|
341
|
+
"vit_reg4_so150m_p14_ap",
|
|
342
|
+
vit,
|
|
343
|
+
config={"patch_size": 14, **SO150, "num_reg_tokens": 4, "class_token": False, "attn_pool_head": True},
|
|
344
|
+
)
|
|
345
|
+
registry.register_model_config(
|
|
346
|
+
"vit_reg4_so150m_p14_aps",
|
|
347
|
+
vit,
|
|
348
|
+
config={
|
|
349
|
+
"patch_size": 14,
|
|
350
|
+
**SO150,
|
|
351
|
+
"num_reg_tokens": 4,
|
|
352
|
+
"class_token": False,
|
|
353
|
+
"attn_pool_head": True,
|
|
354
|
+
"attn_pool_special_tokens": True,
|
|
355
|
+
},
|
|
356
|
+
)
|
|
357
|
+
registry.register_model_config(
|
|
358
|
+
"vit_reg8_so150m_p14_avg",
|
|
359
|
+
vit,
|
|
360
|
+
config={"patch_size": 14, **SO150, "num_reg_tokens": 8, "class_token": False},
|
|
361
|
+
)
|
|
362
|
+
registry.register_model_config(
|
|
363
|
+
"vit_reg8_so150m_p14_swiglu",
|
|
364
|
+
vit,
|
|
365
|
+
config={"patch_size": 14, **SO150, "num_reg_tokens": 8, "mlp_layer_type": "SwiGLU_FFN"},
|
|
366
|
+
)
|
|
367
|
+
registry.register_model_config(
|
|
368
|
+
"vit_reg8_so150m_p14_swiglu_avg",
|
|
369
|
+
vit,
|
|
370
|
+
config={"patch_size": 14, **SO150, "num_reg_tokens": 8, "class_token": False, "mlp_layer_type": "SwiGLU_FFN"},
|
|
371
|
+
)
|
|
372
|
+
registry.register_model_config(
|
|
373
|
+
"vit_reg8_so150m_p14_ap",
|
|
374
|
+
vit,
|
|
375
|
+
config={"patch_size": 14, **SO150, "num_reg_tokens": 8, "class_token": False, "attn_pool_head": True},
|
|
376
|
+
)
|
|
377
|
+
registry.register_model_config(
|
|
378
|
+
"vit_reg4_l32",
|
|
379
|
+
vit,
|
|
380
|
+
config={"patch_size": 32, **LARGE, "num_reg_tokens": 4},
|
|
381
|
+
)
|
|
382
|
+
registry.register_model_config(
|
|
383
|
+
"vit_reg4_l16",
|
|
384
|
+
vit,
|
|
385
|
+
config={"patch_size": 16, **LARGE, "num_reg_tokens": 4},
|
|
386
|
+
)
|
|
387
|
+
registry.register_model_config(
|
|
388
|
+
"vit_reg8_l16_avg",
|
|
389
|
+
vit,
|
|
390
|
+
config={"patch_size": 16, **LARGE, "num_reg_tokens": 8, "class_token": False},
|
|
391
|
+
)
|
|
392
|
+
registry.register_model_config(
|
|
393
|
+
"vit_reg8_l16_aps",
|
|
394
|
+
vit,
|
|
395
|
+
config={
|
|
396
|
+
"patch_size": 16,
|
|
397
|
+
**LARGE,
|
|
398
|
+
"num_reg_tokens": 8,
|
|
399
|
+
"class_token": False,
|
|
400
|
+
"attn_pool_head": True,
|
|
401
|
+
"attn_pool_special_tokens": True,
|
|
402
|
+
},
|
|
403
|
+
)
|
|
404
|
+
registry.register_model_config(
|
|
405
|
+
"vit_reg4_l14",
|
|
406
|
+
vit,
|
|
407
|
+
config={"patch_size": 14, **LARGE, "num_reg_tokens": 4},
|
|
408
|
+
)
|
|
409
|
+
registry.register_model_config( # DeiT III style
|
|
410
|
+
"vit_reg4_l14_nps_ls",
|
|
411
|
+
vit,
|
|
412
|
+
config={
|
|
413
|
+
"pos_embed_special_tokens": False,
|
|
414
|
+
"patch_size": 14,
|
|
415
|
+
**LARGE,
|
|
416
|
+
"layer_scale_init_value": 1e-5,
|
|
417
|
+
"num_reg_tokens": 4,
|
|
418
|
+
},
|
|
419
|
+
)
|
|
420
|
+
registry.register_model_config(
|
|
421
|
+
"vit_reg8_l14_ap",
|
|
422
|
+
vit,
|
|
423
|
+
config={"patch_size": 14, **LARGE, "num_reg_tokens": 8, "class_token": False, "attn_pool_head": True},
|
|
424
|
+
)
|
|
425
|
+
registry.register_model_config(
|
|
426
|
+
"vit_reg8_l14_rms_ap",
|
|
427
|
+
vit,
|
|
428
|
+
config={
|
|
429
|
+
"patch_size": 14,
|
|
430
|
+
**LARGE,
|
|
431
|
+
"num_reg_tokens": 8,
|
|
432
|
+
"class_token": False,
|
|
433
|
+
"attn_pool_head": True,
|
|
434
|
+
"norm_layer_type": "RMSNorm",
|
|
435
|
+
},
|
|
436
|
+
)
|
|
437
|
+
registry.register_model_config(
|
|
438
|
+
"vit_reg8_so400m_p14_ap",
|
|
439
|
+
vit,
|
|
440
|
+
config={"patch_size": 14, **SO400, "num_reg_tokens": 8, "class_token": False, "attn_pool_head": True},
|
|
441
|
+
)
|
|
442
|
+
registry.register_model_config(
|
|
443
|
+
"vit_reg4_h16",
|
|
444
|
+
vit,
|
|
445
|
+
config={"patch_size": 16, **HUGE, "num_reg_tokens": 4},
|
|
446
|
+
)
|
|
447
|
+
registry.register_model_config(
|
|
448
|
+
"vit_reg4_h14",
|
|
449
|
+
vit,
|
|
450
|
+
config={"patch_size": 14, **HUGE, "num_reg_tokens": 4},
|
|
451
|
+
)
|
|
452
|
+
registry.register_model_config( # From "Scaling Vision Transformers"
|
|
453
|
+
"vit_reg4_g16",
|
|
454
|
+
vit,
|
|
455
|
+
config={"patch_size": 16, **GIANT, "num_reg_tokens": 4},
|
|
456
|
+
)
|
|
457
|
+
registry.register_model_config( # From "Scaling Vision Transformers"
|
|
458
|
+
"vit_reg4_g14",
|
|
459
|
+
vit,
|
|
460
|
+
config={"patch_size": 14, **GIANT, "num_reg_tokens": 4},
|
|
461
|
+
)
|
|
462
|
+
registry.register_model_config( # From "Scaling Vision Transformers"
|
|
463
|
+
"vit_reg4_gigantic14",
|
|
464
|
+
vit,
|
|
465
|
+
config={"patch_size": 14, **GIGANTIC, "num_reg_tokens": 4},
|
|
466
|
+
)
|
birder/net/alexnet.py
CHANGED
|
@@ -27,17 +27,17 @@ class AlexNet(BaseNet):
|
|
|
27
27
|
assert self.config is None, "config not supported"
|
|
28
28
|
|
|
29
29
|
self.body = nn.Sequential(
|
|
30
|
-
nn.Conv2d(self.input_channels, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)
|
|
30
|
+
nn.Conv2d(self.input_channels, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)),
|
|
31
31
|
nn.ReLU(inplace=True),
|
|
32
32
|
nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2), padding=(0, 0)),
|
|
33
|
-
nn.Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)
|
|
33
|
+
nn.Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)),
|
|
34
34
|
nn.ReLU(inplace=True),
|
|
35
35
|
nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2), padding=(0, 0)),
|
|
36
|
-
nn.Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
|
36
|
+
nn.Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
|
37
37
|
nn.ReLU(inplace=True),
|
|
38
|
-
nn.Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
|
38
|
+
nn.Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
|
39
39
|
nn.ReLU(inplace=True),
|
|
40
|
-
nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
|
40
|
+
nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
|
41
41
|
nn.ReLU(inplace=True),
|
|
42
42
|
nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2), padding=(0, 0)),
|
|
43
43
|
nn.AdaptiveAvgPool2d(output_size=(6, 6)),
|
birder/net/base.py
CHANGED
|
@@ -5,6 +5,7 @@ from typing import Literal
|
|
|
5
5
|
from typing import NotRequired
|
|
6
6
|
from typing import Optional
|
|
7
7
|
from typing import TypedDict
|
|
8
|
+
from typing import overload
|
|
8
9
|
|
|
9
10
|
import torch
|
|
10
11
|
import torch.nn.functional as F
|
|
@@ -54,6 +55,30 @@ def make_divisible(v: float, divisor: int, min_value: Optional[int] = None) -> i
|
|
|
54
55
|
return new_v
|
|
55
56
|
|
|
56
57
|
|
|
58
|
+
@overload
|
|
59
|
+
def normalize_out_indices(out_indices: None, num_layers: int) -> None: ...
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
@overload
|
|
63
|
+
def normalize_out_indices(out_indices: list[int], num_layers: int) -> list[int]: ...
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
def normalize_out_indices(out_indices: Optional[list[int]], num_layers: int) -> Optional[list[int]]:
|
|
67
|
+
if out_indices is None:
|
|
68
|
+
return None
|
|
69
|
+
|
|
70
|
+
normalized_indices = []
|
|
71
|
+
for idx in out_indices:
|
|
72
|
+
if idx < 0:
|
|
73
|
+
idx = num_layers + idx
|
|
74
|
+
if idx < 0 or idx >= num_layers:
|
|
75
|
+
raise ValueError(f"out_indices contains invalid index for num_layers={num_layers}")
|
|
76
|
+
|
|
77
|
+
normalized_indices.append(idx)
|
|
78
|
+
|
|
79
|
+
return normalized_indices
|
|
80
|
+
|
|
81
|
+
|
|
57
82
|
# class MiscNet(nn.Module):
|
|
58
83
|
# """
|
|
59
84
|
# Base class for general-purpose neural networks with automatic model registration
|
|
@@ -137,8 +162,8 @@ class BaseNet(nn.Module):
|
|
|
137
162
|
|
|
138
163
|
self.dynamic_size = False
|
|
139
164
|
|
|
140
|
-
self.classifier: nn.Module
|
|
141
165
|
self.embedding_size: int
|
|
166
|
+
self.classifier: nn.Module
|
|
142
167
|
|
|
143
168
|
def create_classifier(self, embed_dim: Optional[int] = None) -> nn.Module:
|
|
144
169
|
if self.num_classes == 0:
|
|
@@ -274,7 +299,7 @@ def pos_embedding_sin_cos_2d(
|
|
|
274
299
|
) -> torch.Tensor:
|
|
275
300
|
# assert (dim % 4) == 0, "feature dimension must be multiple of 4 for sin-cos emb"
|
|
276
301
|
|
|
277
|
-
|
|
302
|
+
y, x = torch.meshgrid(torch.arange(h, device=device), torch.arange(w, device=device), indexing="ij")
|
|
278
303
|
omega = torch.arange(dim // 4, device=device) / (dim // 4 - 1)
|
|
279
304
|
omega = 1.0 / (temperature**omega)
|
|
280
305
|
|
|
@@ -294,7 +319,7 @@ def interpolate_attention_bias(
|
|
|
294
319
|
new_resolution: tuple[int, int],
|
|
295
320
|
mode: Literal["bilinear", "bicubic"] = "bicubic",
|
|
296
321
|
) -> torch.Tensor:
|
|
297
|
-
|
|
322
|
+
H, _ = attention_bias.size()
|
|
298
323
|
|
|
299
324
|
# Interpolate
|
|
300
325
|
orig_dtype = attention_bias.dtype
|
birder/net/biformer.py
CHANGED
|
@@ -8,6 +8,7 @@ Changes from original:
|
|
|
8
8
|
* All attention types are in (B, C, H, W)
|
|
9
9
|
* Using the newer Bi-Level Routing Attention implementation
|
|
10
10
|
* Dynamic n_win size (image size // 32)
|
|
11
|
+
* Stem bias term removed
|
|
11
12
|
"""
|
|
12
13
|
|
|
13
14
|
# Reference license: Apache-2.0
|
|
@@ -29,7 +30,7 @@ from birder.net.base import DetectorBackbone
|
|
|
29
30
|
|
|
30
31
|
|
|
31
32
|
def _grid2seq(x: torch.Tensor, region_size: tuple[int, int], num_heads: int) -> tuple[torch.Tensor, int, int]:
|
|
32
|
-
|
|
33
|
+
B, C, H, W = x.size()
|
|
33
34
|
region_h = H // region_size[0]
|
|
34
35
|
region_w = W // region_size[1]
|
|
35
36
|
x = x.view(B, num_heads, C // num_heads, region_h, region_size[0], region_w, region_size[1])
|
|
@@ -39,7 +40,7 @@ def _grid2seq(x: torch.Tensor, region_size: tuple[int, int], num_heads: int) ->
|
|
|
39
40
|
|
|
40
41
|
|
|
41
42
|
def _seq2grid(x: torch.Tensor, region_h: int, region_w: int, region_size: tuple[int, int]) -> torch.Tensor:
|
|
42
|
-
|
|
43
|
+
bs, n_head, _, _, head_dim = x.size()
|
|
43
44
|
x = x.view(bs, n_head, region_h, region_w, region_size[0], region_size[1], head_dim)
|
|
44
45
|
x = torch.einsum("bmhwpqd->bmdhpwq", x).reshape(
|
|
45
46
|
bs, n_head * head_dim, region_h * region_size[0], region_w * region_size[1]
|
|
@@ -59,7 +60,7 @@ def regional_routing_attention_torch(
|
|
|
59
60
|
auto_pad: bool,
|
|
60
61
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
61
62
|
kv_region_size = region_size
|
|
62
|
-
|
|
63
|
+
bs, n_head, q_nregion, topk = region_graph.size()
|
|
63
64
|
|
|
64
65
|
# Pad to deal with any input size
|
|
65
66
|
q_pad_b = 0
|
|
@@ -67,13 +68,13 @@ def regional_routing_attention_torch(
|
|
|
67
68
|
kv_pad_b = 0
|
|
68
69
|
kv_pad_r = 0
|
|
69
70
|
if auto_pad is True:
|
|
70
|
-
|
|
71
|
+
_, _, h_q, w_q = query.size()
|
|
71
72
|
q_pad_b = (region_size[0] - h_q % region_size[0]) % region_size[0]
|
|
72
73
|
q_pad_r = (region_size[1] - w_q % region_size[1]) % region_size[1]
|
|
73
74
|
if q_pad_b > 0 or q_pad_r > 0:
|
|
74
75
|
query = F.pad(query, (0, q_pad_r, 0, q_pad_b))
|
|
75
76
|
|
|
76
|
-
|
|
77
|
+
_, _, h_k, w_k = key.size()
|
|
77
78
|
kv_pad_b = (kv_region_size[0] - h_k % kv_region_size[0]) % kv_region_size[0]
|
|
78
79
|
kv_pad_r = (kv_region_size[1] - w_k % kv_region_size[1]) % kv_region_size[1]
|
|
79
80
|
if kv_pad_r > 0 or kv_pad_b > 0:
|
|
@@ -86,12 +87,12 @@ def regional_routing_attention_torch(
|
|
|
86
87
|
w_k = None
|
|
87
88
|
|
|
88
89
|
# To sequence format
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
90
|
+
query, q_region_h, q_region_w = _grid2seq(query, region_size=region_size, num_heads=n_head)
|
|
91
|
+
key, _, _ = _grid2seq(key, region_size=kv_region_size, num_heads=n_head)
|
|
92
|
+
value, _, _ = _grid2seq(value, region_size=kv_region_size, num_heads=n_head)
|
|
92
93
|
|
|
93
94
|
# Gather key and values
|
|
94
|
-
|
|
95
|
+
bs, n_head, kv_nregion, kv_region_size, head_dim = key.size()
|
|
95
96
|
broadcasted_region_graph = region_graph.view(bs, n_head, q_nregion, topk, 1, 1).expand(
|
|
96
97
|
-1, -1, -1, -1, kv_region_size, head_dim
|
|
97
98
|
)
|
|
@@ -145,12 +146,12 @@ class BiLevelRoutingAttention(nn.Module):
|
|
|
145
146
|
self.output_linear = nn.Conv2d(dim, dim, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0))
|
|
146
147
|
|
|
147
148
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
148
|
-
|
|
149
|
+
_, _, H, W = x.size()
|
|
149
150
|
region_size = (H // self.n_win_h, W // self.n_win_w)
|
|
150
151
|
|
|
151
152
|
# Linear projection
|
|
152
153
|
qkv = self.qkv_linear(x)
|
|
153
|
-
|
|
154
|
+
q, k, v = qkv.chunk(3, dim=1)
|
|
154
155
|
|
|
155
156
|
# Region-to-region routing
|
|
156
157
|
q_r = F.avg_pool2d( # pylint: disable=not-callable
|
|
@@ -162,11 +163,11 @@ class BiLevelRoutingAttention(nn.Module):
|
|
|
162
163
|
q_r = q_r.permute(0, 2, 3, 1).flatten(1, 2) # (n, (hw), c)
|
|
163
164
|
k_r = k_r.flatten(2, 3) # (n, c, (hw))
|
|
164
165
|
a_r = q_r @ k_r
|
|
165
|
-
|
|
166
|
+
_, idx_r = torch.topk(a_r, k=self.topk, dim=-1)
|
|
166
167
|
idx_r = idx_r.unsqueeze_(1).expand(-1, self.num_heads, -1, -1)
|
|
167
168
|
|
|
168
169
|
# Token to token attention
|
|
169
|
-
|
|
170
|
+
output, _ = regional_routing_attention_torch(
|
|
170
171
|
q, k, v, scale=self.scale, region_graph=idx_r, region_size=region_size, auto_pad=True
|
|
171
172
|
)
|
|
172
173
|
|
|
@@ -189,12 +190,12 @@ class Attention(nn.Module):
|
|
|
189
190
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
190
191
|
|
|
191
192
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
192
|
-
|
|
193
|
+
B, C, H, W = x.size()
|
|
193
194
|
x = x.permute(0, 2, 3, 1).reshape(B, H * W, C)
|
|
194
195
|
|
|
195
196
|
N = H * W
|
|
196
197
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
197
|
-
|
|
198
|
+
q, k, v = qkv.unbind(0)
|
|
198
199
|
|
|
199
200
|
x = F.scaled_dot_product_attention( # pylint: disable=not-callable
|
|
200
201
|
q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0, scale=self.scale
|
|
@@ -236,8 +237,8 @@ class AttentionLePE(nn.Module):
|
|
|
236
237
|
)
|
|
237
238
|
|
|
238
239
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
239
|
-
|
|
240
|
-
|
|
240
|
+
B, C, H, W = x.size()
|
|
241
|
+
q, k, v = self.qkv(x).chunk(3, dim=1)
|
|
241
242
|
|
|
242
243
|
attn = q.view(B, self.num_heads, self.head_dim, H * W).transpose(-1, -2) @ k.view(
|
|
243
244
|
B, self.num_heads, self.head_dim, H * W
|