bioregistry 0.13.15__py3-none-any.whl → 0.13.17__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -235,12 +235,13 @@
235
235
  },
236
236
  "description": "<p><strong>Allotrope Merged Ontology Suite</strong></p> <p>The AFO is an ontology suite that provides a standard vocabulary and semantic model for the representation of laboratory analytical processes. The AFO suite is aligned at the upper layer to the Basic Formal Ontology (BFO). The core domains modeled include: Equipment, Material, Process, and Results.</p> <p>license: http://purl.allotrope.org/voc/creative-commons-attribution-license<br/> rights: http://purl.allotrope.org/voc/copyright<br/></p>",
237
237
  "homepage": "http://purl.allotrope.org",
238
+ "license": "http://purl.allotrope.org/voc/copyright",
238
239
  "name": "Allotrope Merged Ontology Suite",
239
240
  "prefix": "AFO",
240
241
  "publications": [
241
242
  "http://www.allotrope.org"
242
243
  ],
243
- "version": "REC/2025/06"
244
+ "version": "REC/2025/12"
244
245
  },
245
246
  "AFPO": {
246
247
  "contact": {
@@ -338,7 +339,7 @@
338
339
  "license": "CC-BY-4.0",
339
340
  "name": "AIdentifyAGE",
340
341
  "prefix": "AIDENTIFYAGE",
341
- "version": "v1.0.1-beta"
342
+ "version": "v1.0.2-beta"
342
343
  },
343
344
  "AIO": {
344
345
  "contact": {
@@ -514,7 +515,7 @@
514
515
  "license": "CC-BY-4.0",
515
516
  "name": "Ascomycete Phenotype Ontology",
516
517
  "prefix": "APO",
517
- "version": "2025-11-10"
518
+ "version": "2025-12-19"
518
519
  },
519
520
  "APOLLO-SV": {
520
521
  "contact": {
@@ -885,10 +886,10 @@
885
886
  "email": "jhc@lbl.gov",
886
887
  "name": "Harry Caufield"
887
888
  },
888
- "description": "The Biological and Environmental Research Variable Ontology (BERVO) is a model of the experimental variables, conditions, and concepts used in the study of environmental research, including studies in earth science, plant science, and geochemistry. , None",
889
+ "description": "The Biological and Environmental Research Variable Ontology (BERVO) is a model of the experimental variables, conditions, and concepts used in the study of environmental research, including studies in earth science, plant science, and geochemistry. , None, \"An ontology of variables for earth system simulation, partially derived from the EcoSIM framework.\"",
889
890
  "name": "The Biological and Environmental Research Variable Ontology",
890
891
  "prefix": "BERVO",
891
- "version": "2025-11-07"
892
+ "version": "2025-12-22"
892
893
  },
893
894
  "BFLC": {
894
895
  "contact": {
@@ -1016,7 +1017,7 @@
1016
1017
  "license": "CC0-1.0",
1017
1018
  "name": "Biolink Model",
1018
1019
  "prefix": "BIOLINK",
1019
- "version": "4.3.4"
1020
+ "version": "4.3.6"
1020
1021
  },
1021
1022
  "BIOMO": {
1022
1023
  "contact": {
@@ -1694,7 +1695,7 @@
1694
1695
  "name": "Chemical Entities of Biological Interest Ontology",
1695
1696
  "prefix": "CHEBI",
1696
1697
  "repository": "https://github.com/ebi-chebi/ChEBI",
1697
- "version": "246.0"
1698
+ "version": "248.0"
1698
1699
  },
1699
1700
  "CHEMBIO": {
1700
1701
  "contact": {
@@ -1870,7 +1871,7 @@
1870
1871
  "publications": [
1871
1872
  "https://www.ncbi.nlm.nih.gov/pubmed/27377652"
1872
1873
  ],
1873
- "version": "2025-11-25"
1874
+ "version": "2025-12-17"
1874
1875
  },
1875
1876
  "CLAO": {
1876
1877
  "contact": {
@@ -1918,6 +1919,17 @@
1918
1919
  "prefix": "CMDO",
1919
1920
  "version": "1.1.4"
1920
1921
  },
1922
+ "CMEO": {
1923
+ "contact": {
1924
+ "email": "komalsyeda29@gmail.com",
1925
+ "name": "Komal Gilani"
1926
+ },
1927
+ "description": "CMEO (Clinical Metadata Exploration Ontology) is an ontology for representing and querying study- and variable-level metadata from clinical cohort studies in a consistent, machine-interpretable way. CMEO models the semantics of data elements (variables) and their key metadata needed for cross-cohort discovery and harmonization—such as human-readable labels/definitions, domain/type information (e.g., condition, measurement, medication), permissible categorical values, units, visit/timepoint context, derivation/provenance (e.g., computed variables), and basic descriptive statistics. It is designed to support metadata-driven tasks including cohort cataloguing, feasibility assessment, study retrieval, and identification of compatible variables across studies—without requiring access to patient-level data. It is intended to interoperate with controlled vocabularies and common clinical terminologies by linking data elements and value sets to external concept identifiers (e.g., OMOP concept IDs, SNOMED CT, LOINC, RxNorm/ATC, UCUM) while remaining model-agnostic (i.e., not tied to a single CDM). , and identification of compatible variables across studies—without requiring access to patient-level data.\n\nCMEO is intended to interoperate with controlled vocabularies and common clinical terminologies by linking data elements and value sets to external concept identifiers (e.g., not tied to a single CDM).",
1928
+ "license": "CC-BY-4.0",
1929
+ "name": "Clinical Metadata Exploration Ontology",
1930
+ "prefix": "CMEO",
1931
+ "version": "version 2"
1932
+ },
1921
1933
  "CMO": {
1922
1934
  "contact": {
1923
1935
  "email": "akwitek@mcw.edu",
@@ -2004,7 +2016,7 @@
2004
2016
  "license": "CC0-1.0",
2005
2017
  "name": "Core Ontology for Biology and Biomedicine",
2006
2018
  "prefix": "COB",
2007
- "version": "2025-06-30"
2019
+ "version": "2025-12-12"
2008
2020
  },
2009
2021
  "CODO": {
2010
2022
  "description": "The initial version, CODO ontology v1.0 to v1.3, encompasses pivotal features such as classes like patients, clinical findings, symptoms, and properties like relationships between patients, travel history, and test results. It facilitates tracking specific pandemic cases, detailing how patients may have been infected, and identifying potential contacts at risk due to their connection with the infected individual. CODO also enables monitoring of clinical tests, travel history, available resources, and actual needs like ICU beds and invasive ventilators. With capabilities for advanced analytics, contact tracing, trend studies, and growth projections based on daily COVID-19 data, CODO supports the organization and representation of COVID-19 data on a daily basis. It allows semantic querying and data retrieval and aids in behavior analysis of the disease and transmission routes. In contrast, Version 1.4, also known as CODO_COVIDRO 1.4 or COVID-19 Drug and Risk Ontology (COViDRO), presents a formal model specifically designed to tackle the multifaceted challenges associated with COVID-19 treatment, risk factors, and drug interactions. The knowledge embedded in the COViDRO model is extracted from diverse medical literature and treatment guidelines provided by reputable organizations such as the World Health Organization (WHO), the National Institutes of Health (NIH), the Food and Drug Administration (FDA), and the Centers for Disease Control and Prevention (CDC). The model incorporates information on therapeutics, adverse effects, and drug interactions from authoritative medical literature, making a significant contribution to patient care, research, and public health strategies. COViDRO, or COVID-19 Drug and Risk Ontology 1.4, seamlessly integrates into knowledge graph information systems or recommender systems. It assists healthcare professionals in suggesting appropriate treatments by considering a comprehensive set of factors, abbreviated as \"PRADiCT\" (Patient Risk factors, Adverse effects, Drug interaction, Clinical findings, and Treatment procedure). These factors encompass patient risk level, risk factors (such as underlying health conditions, age, immunocompromised state, and occupation), drug interactions, drug adverse effects, clinical findings (including diagnosis, signs, symptoms, and status), and treatment procedures. By offering a standardized framework for organizing and integrating data from diverse sources like clinical trials, medical literature, and real-world patient data, COViDRO enhances informed decision-making, thereby elevating the quality of patient care. It stands as a patient-centric solution, facilitating COVID-19 treatment options and personalized care based on individual patient characteristics. CODO V1.5 extends the previous CODO V1.4 with the focus on COVID-19 Virus Genomics for representation of genomic sequence data. VGO model comprises 261 classes, 55 object properties, and 14 data properties. Designed to streamline the use and dissemination of COVID-19 genomic sequence data, VGO serves as a robust resource for researchers and healthcare professionals. It incorporates data from the Global Initiative on Sharing All Influenza Data (GISAID), which facilitates efficient querying and visualization of genomic data, thereby improving both accessibility and usability. VGO includes a variety of classes that represent COVID-19-related data such as variants, mutations, amino acids, genes, proteins, genome sequencing, samples, hosts, sampling strategies, and assembly methods. Furthermore, VGO supports automated reasoning, enhancing its functionality for in-depth analysis and interpretation. By integrating GISAID data into the VGO knowledge graph, the model not only enriches its conceptual representation but also optimizes the querying and visualization processes, making genomic data more accessible and usable for the scientific and medical communities.",
@@ -2032,10 +2044,10 @@
2032
2044
  "email": "bianca.loehnert@plus.ac.at",
2033
2045
  "name": "Bianca Löhnert"
2034
2046
  },
2035
- "description": "CogiTO relates Tasks from Cognitive Atlas to Hierarchical Event Descriptor (HED) tags via logical relationships (as equivalent class axioms) between concepts. In other words, terms for cognitive tasks are defined by their relation to HED tags. The purpose of this ontology is to enable querying partially annotated datasets either by a Cognitive Task or by HED tags.",
2047
+ "description": "CogiTO forms a semantic bridge between tasks from Cognitive Atlas and Hierarchical Event Descriptor (HED) in the form of equivalent class axioms. In other words, terms for cognitive tasks are defined by their relation to HED tags. The purpose of this ontology is to enable querying partially annotated datasets either by a Cognitive Task or by HED tags.",
2036
2048
  "name": "Cognitive Task Ontology",
2037
2049
  "prefix": "COGITO",
2038
- "version": "1.0.1"
2050
+ "version": "1.1.0"
2039
2051
  },
2040
2052
  "COGPO": {
2041
2053
  "contact": {
@@ -2521,6 +2533,15 @@
2521
2533
  "prefix": "CVDO",
2522
2534
  "version": "2024-05-17"
2523
2535
  },
2536
+ "CVO": {
2537
+ "contact": {
2538
+ "email": "abid.fareedi@gmail.com",
2539
+ "name": "Abid Ali Fareedi"
2540
+ },
2541
+ "description": "CVDO is an ontology based on the OGMS model of disease, designed to describe entities related to cardiovascular diseases (including the diseases themselves, the underlying disorders, and the related pathological processes).",
2542
+ "name": "CardiovascularDiseaseOntology",
2543
+ "prefix": "CVO"
2544
+ },
2524
2545
  "CWD": {
2525
2546
  "contact": {
2526
2547
  "email": "rfurberg@rti.org",
@@ -2951,7 +2972,7 @@
2951
2972
  "publications": [
2952
2973
  "https://disease-ontology.org/community/publications"
2953
2974
  ],
2954
- "version": "2025-11-25"
2975
+ "version": "2025-12-23"
2955
2976
  },
2956
2977
  "DOREMUS-KEYS": {
2957
2978
  "contact": {
@@ -3037,7 +3058,7 @@
3037
3058
  "license": "CC-BY-3.0",
3038
3059
  "name": "The Drug Ontology",
3039
3060
  "prefix": "DRON",
3040
- "version": "2025-11-20"
3061
+ "version": "2025-12-19"
3041
3062
  },
3042
3063
  "DRPSNPTO": {
3043
3064
  "contact": {
@@ -3348,20 +3369,30 @@
3348
3369
  "name": "Christiane Pinkert"
3349
3370
  },
3350
3371
  "description": "The EDEM-CONNECTONTO has been created to incorporate domain knowledge about the various types of agitation observed in people with dementia (PwD), as well as the dyadic relationship existing between PwD and their informal caregivers. Furthermore, it offers a structured framework for non-pharmacological interventions, enabling caregivers to effectively manage and mitigate the bidirectional effects of agitation in PwD.",
3372
+ "license": "CC BY-NC-SA 4.0",
3351
3373
  "name": "eDEM-Connect: Ontology of Dementia-related Agitation and Relationship between Informal Caregivers and Persons with Dementia",
3352
3374
  "prefix": "EDEM-CONNECTONTO",
3353
- "version": "Version 1.0"
3375
+ "version": "Version_2.0"
3376
+ },
3377
+ "EDONTOLOGY": {
3378
+ "contact": {
3379
+ "email": "abid.fareedi@gmail.com",
3380
+ "name": "Abid Ali Fareedi"
3381
+ },
3382
+ "description": "This research work contributes in the field of Information logistics and ontology development in healthcare. An ontology based model that can fix information flow problems in the ward-round process of hospital unit. The ontology based model can be used to provide relevant information to the domain users according to their needs and demands. The ontology based model projects domain users profiling and describes their roles, information demands with competencies: skills, qualifications and experiences. The ontology based model will be implemented in OWL language that can be used in an application to support ward-round activities for achieving effective patient’s treatment process. For ontology development is concerned, different ontology development methodologies have been reviewed from literature review by the author to analyze the existing problems in the ward-round. This thesis incorporates Hybrid Methodology (HM) that helps to develop ontology based model that addresses information flow problems in ward-round. The proposed ontology based model is developed in web Ontology Language (OWL) supported tool protégé 4.0.2 that can be considered as foundation to develop a software product with the help of IT practitioners and developers to fulfill medical practitioner’s demands in ward-round’s context.",
3383
+ "name": "EmergencyDerpartmentOntology",
3384
+ "prefix": "EDONTOLOGY"
3354
3385
  },
3355
3386
  "EFO": {
3356
3387
  "contact": {
3357
3388
  "email": "efo-users@ebi.ac.uk",
3358
3389
  "name": "EFO User List"
3359
3390
  },
3360
- "description": "The Experimental Factor Ontology (EFO) is an application focused ontology modelling the experimental variables in multiple resources at the EBI and Open Targets. The ontology has been developed to increase the richness of the annotations that are currently made in resources and to promote consistent annotation, to facilitate automatic annotation and to integrate external data. The ontology pulls together classes from reference ontologies such as disease, cell line, cell type and anatomy and adds axiomatisation as necessary to connect areas such as disease to phenotype. Contact EFO users list for information: efo-users@ebi.ac.uk.",
3391
+ "description": "The Experimental Factor Ontology (EFO) is an application focused ontology modelling the experimental variables in multiple resources at the EBI and Open Targets. The ontology has been developed to increase the richness of the annotations that are currently made in resources and to promote consistent annotation, to facilitate automatic annotation and to integrate external data. The ontology pulls together classes from reference ontologies such as disease, cell line, cell type and anatomy and adds axiomatisation as necessary to connect areas such as disease to phenotype. Contact EFO users list for information: efo-users@ebi.ac.uk., The Experimental Factor Ontology (EFO) provides a systematic description of many experimental variables available in EBI databases, and for projects such as the NHGRI-EBI GWAS catalog. It combines parts of several biological ontologies, such as UBERON anatomy, ChEBI chemical compounds, Cell Ontology and the Monarch Disease Ontology (MONDO). The scope of EFO is to support the annotation, analysis and visualization of data handled by many groups at the EBI and as the core ontology for Open Targets.",
3361
3392
  "homepage": "http://www.ebi.ac.uk/efo",
3362
3393
  "name": "Experimental Factor Ontology",
3363
3394
  "prefix": "EFO",
3364
- "version": "3.84.0"
3395
+ "version": "3.85.0"
3365
3396
  },
3366
3397
  "EGO": {
3367
3398
  "contact": {
@@ -3765,14 +3796,15 @@
3765
3796
  },
3766
3797
  "EVI": {
3767
3798
  "contact": {
3768
- "email": "ma3xy@virginia.edu",
3769
- "name": "Sadnan Al Manir"
3799
+ "email": "jniestroy@gmail.com",
3800
+ "name": "Justin Niestroy"
3770
3801
  },
3771
- "description": "The Evidence Graph ontology extends core concepts from the W3C Provenance Ontology PROV-O and Bioschemas' Profiles to describe evidence for correctness of findings in biomedical publications. The semantic data model in EVI is expressed using OWL2 Web Ontology Language.",
3772
- "homepage": "https://evidencegraph.github.io/EVI/",
3802
+ "description": "The Evidence Graph ontology extends core concepts from the W3C Provenance Ontology PROV-O and Bioschemas' Profiles to describe evidence for correctness of findings in biomedical publications. The semantic data model in EVI is expressed using OWL2 Web Ontology Language., The Evidence Graph ontology extends core concepts from the W3C Provenance Ontology PROV-O and Bioschemas' Profiles to describe evidence for correctness of findings in biomedical publications. The semantic data model in EVI is expressed using OWL2 Web Ontology Language (OWL2).",
3803
+ "homepage": "https://fairscape.github.io/EVI/",
3804
+ "license": "CC BY-NC-SA 2.0",
3773
3805
  "name": "Evidence Graph Ontology",
3774
3806
  "prefix": "EVI",
3775
- "version": "1.1"
3807
+ "version": "1.3"
3776
3808
  },
3777
3809
  "EVORAO": {
3778
3810
  "contact": {
@@ -3784,7 +3816,7 @@
3784
3816
  "license": "CC0-1.0",
3785
3817
  "name": "European Viral Outbreak Response Alliance Ontology",
3786
3818
  "prefix": "EVORAO",
3787
- "version": "1.0.10769"
3819
+ "version": "1.0.10806"
3788
3820
  },
3789
3821
  "EVS": {
3790
3822
  "contact": {
@@ -4181,6 +4213,14 @@
4181
4213
  "prefix": "FIX",
4182
4214
  "version": "1.2"
4183
4215
  },
4216
+ "FL8DSIP": {
4217
+ "contact": {
4218
+ "email": "lina.dadic.ld@gmail.com",
4219
+ "name": "Lina"
4220
+ },
4221
+ "name": "Fieldlab 8 - Ontology",
4222
+ "prefix": "FL8DSIP"
4223
+ },
4184
4224
  "FLDLB3": {
4185
4225
  "contact": {
4186
4226
  "email": "rensanderson7@gmail.com",
@@ -4295,14 +4335,15 @@
4295
4335
  "email": "damion_dooley@sfu.ca",
4296
4336
  "name": "Damion Dooley"
4297
4337
  },
4298
- "description": "FoodOn is an ontology built to represent entities which bear a “food role” and is initially focused on categorizing and processing of food for humans. We aim to develop semantics for food safety, food security, the agricultural and animal husbandry practices linked to food production, culinary, nutritional and chemical ingredients and processes. FoodOn belongs to the OBOFoundry.org family of ontologies.",
4338
+ "description": "FoodOn is an ontology built to represent entities which bear a “food role” and is initially focused on categorizing and processing of food for humans. We aim to develop semantics for food safety, food security, the agricultural and animal husbandry practices linked to food production, culinary, nutritional and chemical ingredients and processes. FoodOn belongs to the OBOFoundry.org family of ontologies., FoodOn is a consortium-driven project to build a comprehensive and easily accessible global farm-to-fork ontology about food, that accurately and consistently describes foods commonly known in cultures from around the world. See https://foodon.org for more details.",
4299
4339
  "homepage": "http://foodon.org",
4340
+ "license": "CC-BY-4.0",
4300
4341
  "name": "The FoodOn Food Ontology",
4301
4342
  "prefix": "FOODON",
4302
4343
  "publications": [
4303
4344
  "https://www.nature.com/articles/s41538-018-0032-6"
4304
4345
  ],
4305
- "version": "2025-06-07"
4346
+ "version": "2025-12-30"
4306
4347
  },
4307
4348
  "FOUR-M_VOCABS": {
4308
4349
  "contact": {
@@ -5047,6 +5088,15 @@
5047
5088
  "name": "HierarchicalDMProcessOnto",
5048
5089
  "prefix": "HDMPONTO"
5049
5090
  },
5091
+ "HDS": {
5092
+ "contact": {
5093
+ "email": "jstocker@eepa.be",
5094
+ "name": "Joëlle Stocker"
5095
+ },
5096
+ "description": "The humanitarian data space vocabulary describes entities and relationships relevant for humanitarian applications, specifically focusing on events related to sexual violence, human trafficking and refugee protection. The aim of this vocabulary is to report on situations and incidents that are taking place on the ground into the humanitarian data space.",
5097
+ "name": "Humanitarian Data Space",
5098
+ "prefix": "HDS"
5099
+ },
5050
5100
  "HECON": {
5051
5101
  "contact": {
5052
5102
  "email": "alba.morales-tirado@open.ac.uk",
@@ -5399,7 +5449,17 @@
5399
5449
  "license": "CC-BY-4.0",
5400
5450
  "name": "HPO - ORDO Ontological Module",
5401
5451
  "prefix": "HOOM",
5402
- "version": "2.4"
5452
+ "version": "2.5"
5453
+ },
5454
+ "HOOM_V3": {
5455
+ "contact": {
5456
+ "email": "marc.hanauer@inserm.fr",
5457
+ "name": "marc hanauer"
5458
+ },
5459
+ "description": "Orphanet provides phenotypic annotations of the rare diseases in the Orphanet nomenclature using the Human Phenotype Ontology (HPO). HOOM is a module that qualifies the annotation between a clinical entity and phenotypic abnormalities according to a frequency and by integrating the notion of diagnostic criterion. This new model of HOOM, used between ORDO and HPO is no more based on OBAN modelisation. It provides ORDO diseases concept annotated with HPO terms in a lightweight new dataset.",
5460
+ "name": "HOOM_New_Model",
5461
+ "prefix": "HOOM_V3",
5462
+ "version": "3.0"
5403
5463
  },
5404
5464
  "HORD": {
5405
5465
  "contact": {
@@ -5477,8 +5537,7 @@
5477
5537
  },
5478
5538
  "description": "A collection of curated and standardized values used by the HuBMAP (Human BioMolecular Atlas Program) and SenNet (Cellular Senescence Network) metadata records to ensure uniformity in the description of samples and single-cell data produced by the consortium.",
5479
5539
  "name": "HuBMAP Research Attributes Value Set",
5480
- "prefix": "HRAVS",
5481
- "version": "2.13.10"
5540
+ "prefix": "HRAVS"
5482
5541
  },
5483
5542
  "HRDO": {
5484
5543
  "contact": {
@@ -6696,6 +6755,21 @@
6696
6755
  "name": "Loggerhead Nesting Ontology",
6697
6756
  "prefix": "LHN"
6698
6757
  },
6758
+ "LHO": {
6759
+ "contact": {
6760
+ "email": "sabanoor8867@gmail.com",
6761
+ "name": "Saba Noor"
6762
+ },
6763
+ "description": "The Livestock Health Ontology (LHO) extends the DECIDE ontology specifically designed for salmon usecase. LHO contains information on the health and well-being of livestock animal species such as cattle, pigs, and poultry. Furthermore, it represents the explicit structured and standardized framework for specific domain knowledge and data integration of livestock species. During the development process, knowledge can be retrieved from domain experts, and after the retrieving process, the prototype is designed for reasoning and planning of data related to cattle, pigs, and poultry. Moreover, LHO contains information regarding farms Identifications, their samples, geolocation, breed, diagnostic tests, Pathogen identifications, and Pathogen results for specific bacteria such as Histophilus Somni (HS), Mannheimia Haemolytica (MH), Pasteurella Multocida (PM), Bovine Coronavirus (BCV) bacterial mycoplasma and aerobic culture results for the respiratory diseases in cattle. This information is represented as concepts of classes, subclasses, and their relationship in the form of object and data properties. For pigs, it includes FarmType, age, weight, and pathogens like PRRS, SwineInfluenza, and M_Hyponemoniea. In poultry, LHO incorporates FarmType, with specific pathogen names such as Infectious Bronchitis (IB), providing a concise overview of health aspects across livestock species. ), Salmon case study demonstrates the semantic modeling and integration of aquaculture-specific attributes such as hasMortality, hasActualBiomass, hasWaterType, and hasLocalAuthority. The data supports epidemiological analysis of fish health by mapping samples and measurements to environmental and production factors.",
6764
+ "homepage": "https://bioportal.bioontology.org/ontologies/LHO",
6765
+ "license": "https://opensource.org/licenses/MIT",
6766
+ "name": "LivestockHealthOntology",
6767
+ "prefix": "LHO",
6768
+ "publications": [
6769
+ "https://zenodo.org/records/14049611"
6770
+ ],
6771
+ "version": "V1.4"
6772
+ },
6699
6773
  "LIB": {
6700
6774
  "name": "MWS-WSM",
6701
6775
  "prefix": "LIB"
@@ -7143,7 +7217,7 @@
7143
7217
  },
7144
7218
  "description": "An ontology representing the structure of model card reports - reports that describe basic characteristics of machine learning models for the public and consumers., An ontology representing the model card structure",
7145
7219
  "homepage": "https://github.com/UTHealth-Ontology/MCRO",
7146
- "license": "CC-BY-3.0",
7220
+ "license": "CC-BY-4.0",
7147
7221
  "name": "Model Card Report Ontology",
7148
7222
  "prefix": "MCRO",
7149
7223
  "version": "2023-03-07"
@@ -7361,7 +7435,7 @@
7361
7435
  "license": "CC-BY-4.0",
7362
7436
  "name": "METPO",
7363
7437
  "prefix": "METPO",
7364
- "version": "2025-11-25"
7438
+ "version": "2025-12-12"
7365
7439
  },
7366
7440
  "MF": {
7367
7441
  "contact": {
@@ -7740,7 +7814,7 @@
7740
7814
  "publications": [
7741
7815
  "https://mondo.monarchinitiative.org/pages/resources/"
7742
7816
  ],
7743
- "version": "2025-11-04"
7817
+ "version": "2026-01-06"
7744
7818
  },
7745
7819
  "MONO": {
7746
7820
  "contact": {
@@ -7811,7 +7885,7 @@
7811
7885
  "homepage": "http://www.informatics.jax.org/searches/MP_form.shtml",
7812
7886
  "name": "Mammalian Phenotype Ontology",
7813
7887
  "prefix": "MP",
7814
- "version": "2025-11-19"
7888
+ "version": "2025-12-18"
7815
7889
  },
7816
7890
  "MPATH": {
7817
7891
  "contact": {
@@ -8050,6 +8124,7 @@
8050
8124
  },
8051
8125
  "description": "Vocabulary for clinical care, translational and basic research, and public information and administrative activities.",
8052
8126
  "homepage": "https://ncithesaurus.nci.nih.gov/ncitbrowser/",
8127
+ "license": "CC-BY-4.0",
8053
8128
  "name": "National Cancer Institute Thesaurus",
8054
8129
  "prefix": "NCIT",
8055
8130
  "version": "24.01e"
@@ -8096,6 +8171,16 @@
8096
8171
  "prefix": "NDDO",
8097
8172
  "version": "0.2"
8098
8173
  },
8174
+ "NDDRFO": {
8175
+ "contact": {
8176
+ "email": "bairong.shen@scu.edu.cn",
8177
+ "name": "Bairong Shen"
8178
+ },
8179
+ "description": "Neurodegenerative Diseases Risk Factor Ontology (NDDRFO) is a disease-specific ontology that characterizes the knowledge field of risk factors for neurodegenerative diseases.",
8180
+ "name": "Neurodegenerative Disease Risk Factor Ontology",
8181
+ "prefix": "NDDRFO",
8182
+ "version": "V1.0.0"
8183
+ },
8099
8184
  "NDFRT": {
8100
8185
  "contact": {
8101
8186
  "email": "michael.lincoln@va.gov",
@@ -8656,7 +8741,7 @@
8656
8741
  "publications": [
8657
8742
  "http://purl.obolibrary.org/obo/obi/Technical_Reports"
8658
8743
  ],
8659
- "version": "2025-10-14"
8744
+ "version": "2025-12-18"
8660
8745
  },
8661
8746
  "OBIB": {
8662
8747
  "contact": {
@@ -9101,9 +9186,10 @@
9101
9186
  },
9102
9187
  "description": "OHMI is a biomedical ontology that represents the entities and relations in the domain of host-microbiome interactions.",
9103
9188
  "homepage": "https://github.com/ohmi-ontology/ohmi",
9189
+ "license": "CC-BY-4.0",
9104
9190
  "name": "Ontology of Host-Microbe Interactions",
9105
9191
  "prefix": "OHMI",
9106
- "version": "2019-09-17"
9192
+ "version": "2025-12-28"
9107
9193
  },
9108
9194
  "OHPI": {
9109
9195
  "contact": {
@@ -9135,10 +9221,11 @@
9135
9221
  "email": "jiezhen@umich.edu",
9136
9222
  "name": "Jie Zheng"
9137
9223
  },
9138
- "description": "The Ontology of Laboratory Animal Science (OLAS) is established as a community-based biomedical ontology in the field of laboratory animal science, with the aim to ontologically represent entities and the relations among the entities related to laboratory animal science.",
9224
+ "description": "The Ontology of Laboratory Animal Science (OLAS) is established as a community-based biomedical ontology in the field of laboratory animal science, with the aim to ontologically represent entities and the relations among the entities related to laboratory animal science., OLAS is a biomedical ontology in the area of laboratory animal science.",
9225
+ "license": "CC-BY-4.0",
9139
9226
  "name": "Ontology of Laboratory Animal Science",
9140
9227
  "prefix": "OLAS",
9141
- "version": "2025-05-08"
9228
+ "version": "2025-12-22"
9142
9229
  },
9143
9230
  "OLATDV": {
9144
9231
  "contact": {
@@ -9777,7 +9864,7 @@
9777
9864
  "license": "CC-BY-4.0",
9778
9865
  "name": "Orphanet Rare Disease Ontology",
9779
9866
  "prefix": "ORDO",
9780
- "version": "4.7"
9867
+ "version": "4.8"
9781
9868
  },
9782
9869
  "OREX-SAM": {
9783
9870
  "contact": {
@@ -10216,7 +10303,7 @@
10216
10303
  "publications": [
10217
10304
  "http://planteome.org/pub"
10218
10305
  ],
10219
- "version": "releases/2023-11-10"
10306
+ "version": "v2025-10-30"
10220
10307
  },
10221
10308
  "PEDTERM": {
10222
10309
  "contact": {
@@ -10278,14 +10365,15 @@
10278
10365
  "email": "abdullahibnkawu@gmail.com",
10279
10366
  "name": "Abdullahi Abubakar Kawu"
10280
10367
  },
10281
- "description": "This ontology seeks to capture the provenance and data quality associated with PGHD shared with an EHR. The objective is to have an ontological formal representation of the provenance and contextual data related to PGHD shared with EHR, in order to offer clinicians a means to use PGHD data for decision making and treatment support.",
10368
+ "description": "This ontology seeks to capture the provenance and data quality associated with PGHD shared with an EHR. The objective is to have an ontological formal representation of the provenance and contextual data related to PGHD shared with EHR, in order to offer clinicians a means to use PGHD data for decision making and treatment support., Patient Generated Health Data (PGHD) refer to health data collected by patient or their relatives. This ontology seeks to capture information about the data, the provenance and data quality associated with PGHD shared with an EHR.",
10282
10369
  "homepage": "https://w3id.org/pghdprovo",
10283
- "name": "Context and Provenance Based Standardized Patient Generated Health Data Shared with an Electronic Health Record",
10370
+ "license": "CC-BY-4.0",
10371
+ "name": "PGHDProvo: Context and Provenance Based Standardized Patient Generated Health Data Shared with an Electronic Health Record",
10284
10372
  "prefix": "PGHDPROV",
10285
10373
  "publications": [
10286
- "https://abdullahikawu.github.io/PGHD"
10374
+ "https://doi.org/10.1007/978-3-031-95841-0_37"
10287
10375
  ],
10288
- "version": "1.0.0"
10376
+ "version": "1.0"
10289
10377
  },
10290
10378
  "PGHD_CONNECT": {
10291
10379
  "contact": {
@@ -10349,7 +10437,7 @@
10349
10437
  "license": "CC0-1.0",
10350
10438
  "name": "Promoting Health Aging through Semantic Enrichment of Solitude Research",
10351
10439
  "prefix": "PHASES",
10352
- "version": "2025-05-16"
10440
+ "version": "2025-12-23"
10353
10441
  },
10354
10442
  "PHENOMEBLAST": {
10355
10443
  "name": "PhenomeBLAST Ontology",
@@ -10479,11 +10567,12 @@
10479
10567
  "email": "cooperl@science.oregonstate.edu",
10480
10568
  "name": "Laurel Cooper"
10481
10569
  },
10482
- "description": "This ontology describes biotic and abiotic stresses that a plant may encounter.",
10570
+ "description": "This ontology describes biotic and abiotic stresses that a plant may encounter., An ontology describing biotic and abiotic plant stresses.",
10483
10571
  "homepage": "https://github.com/Planteome/plant-stress-ontology",
10572
+ "license": "CC-BY-4.0",
10484
10573
  "name": "Plant Stress Ontology",
10485
10574
  "prefix": "PLANTSO",
10486
- "version": "2023-11-14"
10575
+ "version": "2025-12-16"
10487
10576
  },
10488
10577
  "PLIO": {
10489
10578
  "contact": {
@@ -10691,6 +10780,17 @@
10691
10780
  ],
10692
10781
  "version": "71.0"
10693
10782
  },
10783
+ "PREFER": {
10784
+ "contact": {
10785
+ "email": "shawntanzk@outlook.com",
10786
+ "name": "Shawn Zheng Kai Tan"
10787
+ },
10788
+ "description": "PREFER is an ontology designed to integrate high-throughput bioprocess data, covering operational, environmental and process parameters across different scales of a precision fermentation process, to accelerate the development and scaling of biosustainable production processes., An ontology for PREcision FERmentation.",
10789
+ "license": "CC-BY-4.0",
10790
+ "name": "Precision Fermentation Ontology",
10791
+ "prefix": "PREFER",
10792
+ "version": "2025-12-22"
10793
+ },
10694
10794
  "PREGONTO": {
10695
10795
  "contact": {
10696
10796
  "email": "h.s.liyanage@surrey.ac.uk",
@@ -10942,7 +11042,7 @@
10942
11042
  "homepage": "https://www.rsna.org/practice-tools/data-tools-and-standards/radlex-radiology-lexicon",
10943
11043
  "name": "Radiology Lexicon",
10944
11044
  "prefix": "RADLEX",
10945
- "version": "4.2"
11045
+ "version": "4.3"
10946
11046
  },
10947
11047
  "RADMO": {
10948
11048
  "name": "RADx Metadata Ontology",
@@ -10996,7 +11096,7 @@
10996
11096
  "publications": [
10997
11097
  "https://doi.org/10.1080/09553002.2023.2173823"
10998
11098
  ],
10999
- "version": "2025-11-26"
11099
+ "version": "2025-12-11"
11000
11100
  },
11001
11101
  "RCD": {
11002
11102
  "contact": {
@@ -11246,11 +11346,11 @@
11246
11346
  },
11247
11347
  "ROADMAP": {
11248
11348
  "contact": {
11249
- "email": "ckahn@upenn.edu",
11250
- "name": "Charles Kahn"
11349
+ "email": "informatics@rsna.org",
11350
+ "name": "Radiological Society of North America (RSNA)"
11251
11351
  },
11252
11352
  "description": "ROADMAP provides a controlled terminology for the metadata that describe AI models and datasets. It builds on \"model cards\" and \"datasheets for datasets\" with imaging-specific descriptors. It includes a comprehensive set of metrics to assess the performance of AI models that work with images, text, and/or discrete data.",
11253
- "name": "Radiology Ontology of AI Models, Datasets and Projects",
11353
+ "name": "Radiology Ontology of AI Datasets, Models and Projects",
11254
11354
  "prefix": "ROADMAP",
11255
11355
  "repository": "https://github.com/RSNA/ROADMAP",
11256
11356
  "version": "2025-11"
@@ -11511,7 +11611,7 @@
11511
11611
  "email": "ga.ubbiali@gmail.com",
11512
11612
  "name": "Giorgio A. Ubbiali"
11513
11613
  },
11514
- "description": "SCO is a middle-level ontology, representing the major theoretical challenges to sustainability: 1) The polysemy of the term sustainability. 2) The relationship between sustainability and sustainable development. 3) The complexity underlying sustainability. SCO aims to play a pivotal role in harmonizing and integrating top-level and domain ontologies regarding sustainability., SCO V1.1.0 aligns with two Top-Level Ontologies (TLOs), Basic Formal Ontology (BFO) and Unified Foundational Ontology (UFO). SCO V1.1.0 is comprised of two segments: SCO-B (B for BFO) and SCO-U (U for UFO). SCO-B aligns the SCO vocabulary with BFO (as SCO V1.0.0). SCO-U aligns the SCO vocabulary with gUFO (UFO implementation in the Web Ontology Language (OWL)). This file provides SCO-U segment. References – TLOs: https://github.com/BFO-ontology/BFO-2020 https://ontouml.readthedocs.io/en/latest/intro/ufo.html https://nemo-ufes.github.io/gufo/, representing the major theoretical challenges to sustainability:\n1) The polysemy of the term sustainability.\n2) The relationship between sustainability and sustainable development.\n3) The complexity underlying sustainability.\nSCO aims to play a pivotal role in harmonizing and integrating top-level and domain ontologies regarding sustainability., Basic Formal Ontology (BFO) and Unified Foundational Ontology (UFO). SCO V1.1.0 is comprised of two segments: SCO-B (B for BFO) and SCO-U (U for UFO). SCO-B aligns the SCO vocabulary with BFO (as SCO V1.0.0). SCO-U aligns the SCO vocabulary with gUFO (UFO implementation in the Web Ontology Language (OWL)). This file provides SCO-U segment.\n\nReferences – TLOs: \nhttps://github.com/BFO-ontology/BFO-2020 \nhttps://ontouml.readthedocs.io/en/latest/intro/ufo.html \nhttps://nemo-ufes.github.io/gufo/",
11614
+ "description": "SCO is a middle-level ontology, representing the major theoretical challenges to sustainability: 1) The polysemy of the term sustainability. 2) The relationship between sustainability and sustainable development. 3) The complexity underlying sustainability. SCO aims to play a pivotal role in harmonizing and integrating top-level and domain ontologies regarding sustainability., SCO V1.1.0 aligns with two Top-Level Ontologies (TLOs), Basic Formal Ontology (BFO) and Unified Foundational Ontology (UFO). SCO V1.1.0 is comprised of two segments: SCO-B (B for BFO) and SCO-U (U for UFO). SCO-B aligns the SCO vocabulary with BFO (as SCO V1.0.0). SCO-U aligns the SCO vocabulary with gUFO (UFO implementation in the Web Ontology Language (OWL)). This file provides SCO-U segment. References – TLOs: https://github.com/BFO-ontology/BFO-2020 https://ontouml.readthedocs.io/en/latest/intro/ufo.html https://nemo-ufes.github.io/gufo/",
11515
11615
  "homepage": "https://www.w3id.org/sco/repo",
11516
11616
  "license": "CC-BY-4.0",
11517
11617
  "name": "Sustainability Core Ontology - Segment U",
@@ -11528,7 +11628,7 @@
11528
11628
  "email": "ga.ubbiali@gmail.com",
11529
11629
  "name": "Giorgio A. Ubbiali"
11530
11630
  },
11531
- "description": "The Sustainability Core Ontology (SCO) is a middle-level ontology, covering the terminology related to the three major theoretical challenges of sustainability: 1) The polysemy of the term sustainability. 2) The relationship between sustainability and sustainable development. 3) The complexity underlying sustainability. SCO is designed to be the pivotal resource upon which to harmonize and integrate ontologies regarding sustainability. The ultimate goal is to establish a family of interoperable sustainability ontologies. Currently, SCO employs Basic Formal Ontology (BFO) and Unified Foundational Ontology (UFO) as the upper-level ontologies. SCO V1.1.0 is the current release and is comprised of two segments: SCO-B (B for BFO) and SCO-U (U for UFO). SCO-B aligns the SCO vocabulary with BFO. SCO-U aligns the SCO vocabulary with gUFO (UFO implementation in the Web Ontology Language (OWL)). SCO V1.1.0. covers three natural languages, English, French, and Italian. SCO V1.1.0. conforms to OBO-Foundry principles. The most recent version of SCO-B segment can always be found at https://w3id.org/sco. The most recent version of SCO-U segment can always be found at https://w3id.org/sco/sco-u., SCO is a middle-level ontology, representing the major theoretical challenges to sustainability:\n1) The polysemy of the term sustainability.\n2) The relationship between sustainability and sustainable development.\n3) The complexity underlying sustainability.\nSCO aims to play a pivotal role in harmonizing and integrating top-level and domain ontologies regarding sustainability., SCO V1.1.0 aligns with two Top-Level Ontologies (TLOs), Basic Formal Ontology (BFO) and Unified Foundational Ontology (UFO). SCO V1.1.0 is comprised of two segments: SCO-B (B for BFO) and SCO-U (U for UFO). SCO-B aligns the SCO vocabulary with BFO (as SCO V1.0.0). SCO-U aligns the SCO vocabulary with gUFO (UFO implementation in the Web Ontology Language (OWL)). This file provides SCO-B segment.\n\nReferences – TLOs: \nhttps://github.com/BFO-ontology/BFO-2020 \nhttps://ontouml.readthedocs.io/en/latest/intro/ufo.html \nhttps://nemo-ufes.github.io/gufo/",
11631
+ "description": "The Sustainability Core Ontology (SCO) is a middle-level ontology, covering the terminology related to the three major theoretical challenges of sustainability: 1) The polysemy of the term sustainability. 2) The relationship between sustainability and sustainable development. 3) The complexity underlying sustainability. SCO is designed to be the pivotal resource upon which to harmonize and integrate ontologies regarding sustainability. The ultimate goal is to establish a family of interoperable sustainability ontologies. Currently, SCO employs Basic Formal Ontology (BFO) and Unified Foundational Ontology (UFO) as the upper-level ontologies. SCO V1.1.0 is the current release and is comprised of two segments: SCO-B (B for BFO) and SCO-U (U for UFO). SCO-B aligns the SCO vocabulary with BFO. SCO-U aligns the SCO vocabulary with gUFO (UFO implementation in the Web Ontology Language (OWL)). SCO V1.1.0. conforms to OBO-Foundry principles. The most recent version of SCO-B segment can always be found at https://w3id.org/sco. The most recent version of SCO-U segment can always be found at https://w3id.org/sco/sco-u. This file provides SCO-B segment. References – TLOs: https://github.com/BFO-ontology/BFO-2020 https://ontouml.readthedocs.io/en/latest/intro/ufo.html https://nemo-ufes.github.io/gufo/",
11532
11632
  "homepage": "https://www.w3id.org/sco/repo",
11533
11633
  "license": "CC-BY-4.0",
11534
11634
  "name": "Sustainability Core Ontology",
@@ -11755,7 +11855,7 @@
11755
11855
  "license": "CC-BY-3.0",
11756
11856
  "name": "Space Life Sciences Ontology",
11757
11857
  "prefix": "SLSO",
11758
- "version": "2025-09-16"
11858
+ "version": "2025-12-11"
11759
11859
  },
11760
11860
  "SL_DIS": {
11761
11861
  "contact": {
@@ -12819,7 +12919,7 @@
12819
12919
  "license": "CC-BY-4.0",
12820
12920
  "name": "vfb_drivers",
12821
12921
  "prefix": "VFB_DRIVERS",
12822
- "version": "2025-11-24"
12922
+ "version": "2026-01-05"
12823
12923
  },
12824
12924
  "VHOG": {
12825
12925
  "contact": {
@@ -12915,7 +13015,7 @@
12915
13015
  "license": "CC-BY-4.0",
12916
13016
  "name": "Vaccine Ontology",
12917
13017
  "prefix": "VO",
12918
- "version": "2025-11-01"
13018
+ "version": "2025-12-03"
12919
13019
  },
12920
13020
  "VODANA-GENERAL": {
12921
13021
  "contact": {
@@ -13087,8 +13187,7 @@
13087
13187
  "prefix": "VT",
13088
13188
  "publications": [
13089
13189
  "https://www.animalgenome.org/bioinfo/projects/vt/"
13090
- ],
13091
- "version": "2025-11-25"
13190
+ ]
13092
13191
  },
13093
13192
  "VTO": {
13094
13193
  "contact": {