biopipen 0.34.6__py3-none-any.whl → 0.34.26__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. biopipen/__init__.py +1 -1
  2. biopipen/core/config.toml +4 -0
  3. biopipen/core/filters.py +1 -1
  4. biopipen/core/testing.py +2 -1
  5. biopipen/ns/cellranger.py +33 -3
  6. biopipen/ns/regulatory.py +4 -0
  7. biopipen/ns/scrna.py +548 -98
  8. biopipen/ns/scrna_metabolic_landscape.py +4 -0
  9. biopipen/ns/tcr.py +256 -16
  10. biopipen/ns/web.py +5 -0
  11. biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte +9 -9
  12. biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte +9 -8
  13. biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte +9 -9
  14. biopipen/reports/tcr/ClonalStats.svelte +1 -0
  15. biopipen/scripts/cellranger/CellRangerCount.py +55 -11
  16. biopipen/scripts/cellranger/CellRangerVdj.py +54 -8
  17. biopipen/scripts/regulatory/MotifAffinityTest.R +21 -5
  18. biopipen/scripts/regulatory/MotifAffinityTest_AtSNP.R +9 -2
  19. biopipen/scripts/regulatory/MotifAffinityTest_MotifBreakR.R +15 -6
  20. biopipen/scripts/regulatory/VariantMotifPlot.R +1 -1
  21. biopipen/scripts/regulatory/motifs-common.R +3 -2
  22. biopipen/scripts/scrna/AnnData2Seurat.R +2 -1
  23. biopipen/scripts/scrna/CellCellCommunication.py +26 -14
  24. biopipen/scripts/scrna/CellCellCommunicationPlots.R +23 -4
  25. biopipen/scripts/scrna/CellSNPLite.py +30 -0
  26. biopipen/scripts/scrna/CellTypeAnnotation-celltypist.R +27 -36
  27. biopipen/scripts/scrna/CellTypeAnnotation-direct.R +42 -26
  28. biopipen/scripts/scrna/CellTypeAnnotation-hitype.R +11 -13
  29. biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R +5 -8
  30. biopipen/scripts/scrna/CellTypeAnnotation-sctype.R +5 -8
  31. biopipen/scripts/scrna/CellTypeAnnotation.R +26 -3
  32. biopipen/scripts/scrna/MQuad.py +25 -0
  33. biopipen/scripts/scrna/MarkersFinder.R +128 -30
  34. biopipen/scripts/scrna/ModuleScoreCalculator.R +9 -1
  35. biopipen/scripts/scrna/PseudoBulkDEG.R +113 -27
  36. biopipen/scripts/scrna/ScFGSEA.R +23 -26
  37. biopipen/scripts/scrna/ScVelo.py +20 -8
  38. biopipen/scripts/scrna/SeuratClusterStats-clustree.R +1 -1
  39. biopipen/scripts/scrna/SeuratClusterStats-features.R +6 -1
  40. biopipen/scripts/scrna/SeuratClustering.R +5 -1
  41. biopipen/scripts/scrna/SeuratMap2Ref.R +1 -2
  42. biopipen/scripts/scrna/SeuratPreparing.R +19 -11
  43. biopipen/scripts/scrna/SeuratSubClustering.R +1 -1
  44. biopipen/scripts/scrna/Slingshot.R +2 -4
  45. biopipen/scripts/scrna/TopExpressingGenes.R +1 -4
  46. biopipen/scripts/scrna/celltypist-wrapper.py +140 -4
  47. biopipen/scripts/scrna/scvelo_paga.py +313 -0
  48. biopipen/scripts/scrna/seurat_anndata_conversion.py +18 -1
  49. biopipen/scripts/tcr/{TCRClustering.R → CDR3Clustering.R} +63 -23
  50. biopipen/scripts/tcr/ClonalStats.R +76 -35
  51. biopipen/utils/misc.py +104 -9
  52. {biopipen-0.34.6.dist-info → biopipen-0.34.26.dist-info}/METADATA +5 -2
  53. {biopipen-0.34.6.dist-info → biopipen-0.34.26.dist-info}/RECORD +55 -53
  54. {biopipen-0.34.6.dist-info → biopipen-0.34.26.dist-info}/WHEEL +1 -1
  55. biopipen/utils/common_docstrs.py +0 -103
  56. {biopipen-0.34.6.dist-info → biopipen-0.34.26.dist-info}/entry_points.txt +0 -0
@@ -21,7 +21,7 @@ VIZ_TYPE_TO_SECTION <- list(
21
21
  abundance = "Clonal Abundance",
22
22
  length = "Clonal Sequence Length",
23
23
  residency = "Clonal Residency",
24
- dynamics = "Clonal Dynamics",
24
+ stat = "Clonal Statistics",
25
25
  composition = "Clonal Composition",
26
26
  overlap = "Clonal Overlap",
27
27
  diversity = "Clonal Diversity",
@@ -114,15 +114,15 @@ get_plot_descr <- function(viz_type, case) {
114
114
  )
115
115
  }
116
116
  out <- glue("{out} The clones are identified by {case$clone_call %||% 'aa'} and {case$chain %||% 'both'} chain(s) was/were used.")
117
- } else if (identical(viz_type, "dynamics")) {
117
+ } else if (identical(viz_type, "stat")) {
118
118
  if (case$plot_type %in% c("sankey", "alluvial")) {
119
119
  out <- glue(
120
- "This {case$plot_type} plot illustrates the dynamics of clones across different groups. ",
120
+ "This {case$plot_type} plot illustrates the statistics of clones across different groups. ",
121
121
  "The bars are showing the groups and the flow/links are showing the transitions of the clones. "
122
122
  )
123
123
  } else { # trend
124
124
  out <- glue(
125
- "This trend plot illustrates the dynamics of clones across different groups. ",
125
+ "This trend plot illustrates the statistics of clones across different groups. ",
126
126
  "The x-axis represents the groups, while the y-axis denotes the number/fraction of clones. ",
127
127
  "The links between the groups are showing the transitions of the clones. "
128
128
  )
@@ -429,18 +429,21 @@ cases <- list_rename(cases, function(name, case) {
429
429
  })
430
430
 
431
431
  do_case <- function(name, case) {
432
- log$info("- Processing case: {name}")
432
+ log$info("- Case: {name}")
433
433
  info <- case_info(name, outdir, is_dir = FALSE, create = TRUE)
434
434
 
435
- case <- extract_vars(case, "viz_type", "descr", "devpars", "more_formats", "save_code", subset_ = "subset")
435
+ case <- extract_vars(case, "viz_type", "descr", "devpars", "more_formats", "save_code", "save_data", subset_ = "subset")
436
436
 
437
437
  if (!is.null(subset_)) {
438
438
  case$data <- ScRepSubset(screp, subset_)
439
439
  } else {
440
440
  case$data <- screp
441
441
  }
442
-
443
- plot_fn <- paste0("Clonal", tools::toTitleCase(viz_type), "Plot")
442
+ fnname <- tools::toTitleCase(viz_type)
443
+ if (fnname == "Geneusage") {
444
+ fnname <- "GeneUsage"
445
+ }
446
+ plot_fn <- paste0("Clonal", fnname, "Plot")
444
447
  plot_fn <- utils::getFromNamespace(plot_fn, "scplotter")
445
448
  if (is.null(plot_fn)) {
446
449
  stop("Error: Unknown visualization type: ", viz_type)
@@ -449,35 +452,73 @@ do_case <- function(name, case) {
449
452
  p <- do_call(plot_fn, case)
450
453
  save_plot(p, info$prefix, devpars, formats = unique(c("png", more_formats)))
451
454
 
452
- report <- list(
453
- kind = "table_image",
454
- src = paste0(info$prefix, ".png"),
455
- download = list(),
456
- descr = html_escape(descr %||% get_plot_descr(viz_type, case)),
457
- name = html_escape(info$name)
458
- )
459
- exformats <- setdiff(more_formats, "png")
460
- if (length(exformats) > 0) {
461
- report$download <- lapply(exformats, function(fmt) {
462
- paste0(info$prefix, ".", fmt)
463
- })
464
- }
465
-
466
- if (isTRUE(save_code)) {
467
- save_plotcode(
468
- p,
469
- setup = c('library(scplotter)', '', 'load("data.RData")'),
470
- prefix = info$prefix,
471
- "case"
455
+ if (save_data) {
456
+ pdata <- attr(p, "data") %||% p$data
457
+ if (!inherits(pdata, "data.frame") && !inherits(pdata, "matrix")) {
458
+ stop("'save_data = TRUE' is not supported for viz_type: ", viz_type, " and plot_type: ", case$plot_type)
459
+ }
460
+ write.table(pdata, paste0(info$prefix, ".data.txt"), sep="\t", quote=FALSE, row.names=FALSE)
461
+ reporter$add2(
462
+ list(
463
+ name = "Plot",
464
+ contents = list(
465
+ list(
466
+ kind = "descr",
467
+ content = html_escape(descr %||% get_plot_descr(viz_type, case))
468
+ ),
469
+ reporter$image(
470
+ info$prefix, more_formats, save_code, kind = "image"
471
+ )
472
+ )
473
+ ),
474
+ list(
475
+ name = "Data",
476
+ contents = list(
477
+ list(
478
+ kind = "descr",
479
+ content = "The data used to generate the plot."
480
+ ),
481
+ list(
482
+ kind = "table",
483
+ src = paste0(info$prefix, ".data.txt"),
484
+ data = list(nrows = 100)
485
+ )
486
+ )
487
+ ),
488
+ hs = c(info$section, info$name),
489
+ ui = "tabs"
472
490
  )
473
- report$download <- c(report$download, list(list(
474
- src = paste0(info$prefix, ".code.zip"),
475
- tip = "Download the code to reproduce the plot",
476
- icon = "Code"
477
- )))
478
- }
491
+ } else {
492
+ report <- list(
493
+ kind = "table_image",
494
+ src = paste0(info$prefix, ".png"),
495
+ download = list(),
496
+ descr = html_escape(descr %||% get_plot_descr(viz_type, case)),
497
+ name = html_escape(info$name)
498
+ )
499
+ exformats <- setdiff(more_formats, "png")
500
+ if (length(exformats) > 0) {
501
+ report$download <- lapply(exformats, function(fmt) {
502
+ paste0(info$prefix, ".", fmt)
503
+ })
504
+ }
479
505
 
480
- reporter$add2(report, hs = c(info$section, info$name), ui = "table_of_images:2")
506
+ if (isTRUE(save_code)) {
507
+ save_plotcode(
508
+ p,
509
+ setup = c('library(scplotter)', '', 'load("data.RData")'),
510
+ prefix = info$prefix,
511
+ "case"
512
+ )
513
+ report$download <- c(report$download, list(list(
514
+ src = paste0(info$prefix, ".code.zip"),
515
+ tip = "Download the code to reproduce the plot",
516
+ icon = "Code"
517
+ )))
518
+ }
519
+
520
+ reporter$add2(report, hs = c(info$section, info$name), ui = "table_of_images:2")
521
+ }
481
522
  }
482
523
 
483
524
  lapply(names(cases), function(name) do_case(name, cases[[name]]))
biopipen/utils/misc.py CHANGED
@@ -23,15 +23,94 @@ _handler.setFormatter(
23
23
  logger.addHandler(_handler)
24
24
 
25
25
 
26
- def exec_code(code, global_vars=None, local_vars=None, return_var=None):
27
- global_vars = global_vars or {}
28
- local_vars = local_vars or {}
29
- exec(code, global_vars, local_vars)
26
+ def require_package(
27
+ package: str,
28
+ version: str | None = None,
29
+ python: str | None = None,
30
+ ) -> None:
31
+ """Require a Python package to be installed with optional version check.
30
32
 
31
- if return_var is not None:
32
- return local_vars[return_var]
33
+ The version specifier should follow the format used by pip, e.g., '>=1.2.3'.
34
+ Multiple version specifiers can be separated by commas, e.g., '>=1.2.3,<2.0.0'.
33
35
 
34
- return None
36
+ Args:
37
+ package (str): The name of the package to check.
38
+ version (str | None): The version specifier string.
39
+ python (str | None): The Python interpreter to use.
40
+ """
41
+ if not python:
42
+ import importlib
43
+ from importlib.metadata import version as get_version
44
+ from packaging.specifiers import SpecifierSet
45
+
46
+ try:
47
+ importlib.import_module(package)
48
+ except ImportError:
49
+ raise ImportError(f"Package '{package}' is required but not installed.")
50
+
51
+ if version:
52
+ installed_version = get_version(package)
53
+ specifier = SpecifierSet(version)
54
+ if installed_version not in specifier:
55
+ raise ImportError(
56
+ f"Package '{package}' version '{installed_version}' does not "
57
+ f"satisfy the requirement '{package}{version}'."
58
+ )
59
+ else:
60
+ import subprocess
61
+ from packaging.specifiers import SpecifierSet
62
+
63
+ # Check if package is installed using the specified Python interpreter
64
+ try:
65
+ result = subprocess.run(
66
+ [python, "-c", f"import {package}"],
67
+ capture_output=True,
68
+ text=True,
69
+ timeout=10,
70
+ )
71
+ if result.returncode != 0:
72
+ raise ImportError(
73
+ f"Package '{package}' is required but not installed in {python}."
74
+ )
75
+ except subprocess.TimeoutExpired:
76
+ raise ImportError(
77
+ f"Timeout while checking if package '{package}' is "
78
+ f"installed in {python}."
79
+ )
80
+ except FileNotFoundError:
81
+ raise ImportError(f"Python interpreter '{python}' not found.")
82
+
83
+ if version:
84
+ # Get the installed version
85
+ try:
86
+ version_cmd = (
87
+ f"from importlib.metadata import version; "
88
+ f"print(version('{package}'))"
89
+ )
90
+ result = subprocess.run(
91
+ [python, "-c", version_cmd],
92
+ capture_output=True,
93
+ text=True,
94
+ timeout=10,
95
+ )
96
+ if result.returncode != 0:
97
+ raise ImportError(
98
+ f"Failed to get version of package '{package}' "
99
+ f"in {python}."
100
+ )
101
+ installed_version = result.stdout.strip()
102
+ specifier = SpecifierSet(version)
103
+ if installed_version not in specifier:
104
+ raise ImportError(
105
+ f"Package '{package}' version '{installed_version}' "
106
+ f"in {python} does not satisfy the requirement "
107
+ f"'{package}{version}'."
108
+ )
109
+ except subprocess.TimeoutExpired:
110
+ raise ImportError(
111
+ f"Timeout while checking version of package '{package}' "
112
+ f"in {python}."
113
+ )
35
114
 
36
115
 
37
116
  def run_command(
@@ -80,6 +159,7 @@ def run_command(
80
159
  kwargs["stdin"] = PIPE
81
160
 
82
161
  return_stdout = False
162
+ stdout_file = None
83
163
  if kwargs.get("stdout") is True:
84
164
  kwargs["stdout"] = PIPE
85
165
  elif kwargs.get("stdout") in ("RETURN", "return"):
@@ -88,7 +168,8 @@ def run_command(
88
168
  elif isinstance(kwargs.get("stdout"), (str, Path)):
89
169
  if isinstance(kwargs["stdout"], str):
90
170
  kwargs["stdout"] = Path(kwargs["stdout"])
91
- kwargs["stdout"] = kwargs["stdout"].open("w")
171
+ stdout_file = kwargs["stdout"].open("w")
172
+ kwargs["stdout"] = stdout_file
92
173
  kwargs["close_fds"] = True
93
174
 
94
175
  if kwargs.get("stderr") is True:
@@ -96,6 +177,10 @@ def run_command(
96
177
  elif kwargs.get("stderr") in ("STDOUT", "stdout"):
97
178
  kwargs["stderr"] = STDOUT
98
179
 
180
+ # Enable line buffering for stdout/stderr when redirecting to files or pipes
181
+ if kwargs.get("bufsize") == 1:
182
+ kwargs.setdefault("universal_newlines", True)
183
+
99
184
  if fg:
100
185
  if kwargs.get("stdout") or kwargs.get("stderr"):
101
186
  raise ValueError(
@@ -120,6 +205,10 @@ def run_command(
120
205
  if fg or wait or return_stdout:
121
206
  rc = p.wait()
122
207
  if rc != 0:
208
+ if stdout_file:
209
+ stdout_file.close()
210
+ if return_stdout and p.stdout:
211
+ p.stdout.close()
123
212
  raise RuntimeError(
124
213
  f"Failed to run command: rc={rc}\n"
125
214
  f"Command (list): {cmd}\n"
@@ -127,7 +216,13 @@ def run_command(
127
216
  )
128
217
 
129
218
  if return_stdout:
130
- return p.stdout.read().decode() # type: ignore
219
+ try:
220
+ return p.stdout.read().decode() # type: ignore
221
+ finally:
222
+ p.stdout.close() # type: ignore
223
+
224
+ if stdout_file:
225
+ stdout_file.close()
131
226
 
132
227
  return p
133
228
 
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.3
1
+ Metadata-Version: 2.4
2
2
  Name: biopipen
3
- Version: 0.34.6
3
+ Version: 0.34.26
4
4
  Summary: Bioinformatics processes/pipelines that can be run from `pipen run`
5
5
  License: MIT
6
6
  Author: pwwang
@@ -13,12 +13,15 @@ Classifier: Programming Language :: Python :: 3.10
13
13
  Classifier: Programming Language :: Python :: 3.11
14
14
  Classifier: Programming Language :: Python :: 3.12
15
15
  Classifier: Programming Language :: Python :: 3.13
16
+ Classifier: Programming Language :: Python :: 3.14
17
+ Provides-Extra: log2file
16
18
  Provides-Extra: runinfo
17
19
  Requires-Dist: datar[pandas] (>=0.15.8,<0.16.0)
18
20
  Requires-Dist: pipen-board[report] (>=0.17,<0.18)
19
21
  Requires-Dist: pipen-cli-run (>=0.15,<0.16)
20
22
  Requires-Dist: pipen-deprecated (>=0.0,<0.1)
21
23
  Requires-Dist: pipen-filters (>=0.15,<0.16)
24
+ Requires-Dist: pipen-log2file (>=0.10.2,<0.11.0) ; extra == "log2file"
22
25
  Requires-Dist: pipen-poplog (>=0.3,<0.4)
23
26
  Requires-Dist: pipen-runinfo (>=0.9,<0.10) ; extra == "runinfo"
24
27
  Requires-Dist: pipen-verbose (>=0.14,<0.15)
@@ -1,15 +1,15 @@
1
- biopipen/__init__.py,sha256=QHGuacl6zpfoE0OOXgLhITO4iY3VuSxXyJ6Kvvrpg-E,23
1
+ biopipen/__init__.py,sha256=rIXEwO7es8MXz_mI7AEkKrxT65G5y0OrKNxLmmq9N2c,24
2
2
  biopipen/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
3
  biopipen/core/config.py,sha256=edK5xnDhM8j27srDzsxubi934NMrglLoKrdcC8qsEPk,1069
4
- biopipen/core/config.toml,sha256=lZV_vbYWk6uqm19ZWJcsZCcSNqAdIfN2fOfamzxZpg4,2148
4
+ biopipen/core/config.toml,sha256=hArI_h6iryrS5QMhfgGXdje7WGxj_DWcLjGjulHwBdQ,2264
5
5
  biopipen/core/defaults.py,sha256=yPeehPLk_OYCf71IgRVCWuQRxLAMixDF81Ium0HtPKI,344
6
- biopipen/core/filters.py,sha256=jrSlJ_x-ysx9YZ8NcfFfo1fPOITBp772-NtRxDyszas,9324
6
+ biopipen/core/filters.py,sha256=MbGhByMJT0Vo4tKPHdFdpfd3sTsCxGgpjYZUKn7aXD0,9357
7
7
  biopipen/core/proc.py,sha256=jSdwm0IYjCnil0a3eYScKfq-JbTlVWwamT7Yjgaz-Ec,996
8
- biopipen/core/testing.py,sha256=OoKBRYWfNvhG_Iqic575U_TbX77C3AlALuAyqn2LvI0,3832
8
+ biopipen/core/testing.py,sha256=383wr9WFAzlYSmH7_5_TjEei2VCo78WWGU71OdvLkjg,3923
9
9
  biopipen/ns/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  biopipen/ns/bam.py,sha256=hjUne8jCpOLaObF9u5EvVJDaiOHoEdvSb94Bm0Zg-fQ,13942
11
11
  biopipen/ns/bed.py,sha256=EqpSa7Hx6GImvJNghtV4uDo2PnPXeUt1Yq9AFWJP9_8,8159
12
- biopipen/ns/cellranger.py,sha256=rZKE3eHbxMrUzw3XJihAYOuq07OA6fmvbnJcwdHiLzs,5876
12
+ biopipen/ns/cellranger.py,sha256=Hm8E-ONKN8_PmqUMUyEdaQEQi0oDAk9QtfPfRebArRQ,8067
13
13
  biopipen/ns/cellranger_pipeline.py,sha256=IjCCGpr1HB3R4nRyBcAgWmF0HsLYmHd6nGMn2-wkWOM,4075
14
14
  biopipen/ns/cnv.py,sha256=QzAearaaQG3n9lEyI79Nm9dUxWRov72XN8voRHcy74s,7810
15
15
  biopipen/ns/cnvkit.py,sha256=mxL-_jgFAAU9SD9gwSUC_CpFd1w3jt-fkbj_ZSZ-iHQ,31130
@@ -20,16 +20,16 @@ biopipen/ns/gsea.py,sha256=eMGj6lljdMds2Pzs3Mcab0lQPU4vtgRTKMhAsKXpxYo,9742
20
20
  biopipen/ns/misc.py,sha256=0jDPvpRL3EUIf2ipTjKqLTZgnallLWEjSxzTpS-geTQ,4355
21
21
  biopipen/ns/plot.py,sha256=N41_izb6zi-XArUly5WhLebapNXbTNSgGlOCCwtrDlY,18282
22
22
  biopipen/ns/protein.py,sha256=YJtlKoHI2p5yHdxKeQnNtm5QrbxDGOq1UXOdt_7tlTs,6391
23
- biopipen/ns/regulatory.py,sha256=gJjGVpJrdv-rg2t5UjK4AGuvtLNymaNYNvoD8PhlbvE,15929
23
+ biopipen/ns/regulatory.py,sha256=WlnX_R8jEFyxCjk8mru5Qu5iCQJLzjMWiWGoc3gygzc,16221
24
24
  biopipen/ns/rnaseq.py,sha256=bKAa6friFWof4yDTWZQahm1MS-lrdetO1GqDKdfxXYc,7708
25
- biopipen/ns/scrna.py,sha256=ELhCbY2Vu8qHmDHlrI32gyaOxDO2ugFLz4WIV9kARfQ,144750
26
- biopipen/ns/scrna_metabolic_landscape.py,sha256=EwLMrsj_pTqvyAgtHLoishjQxCg_j8n5OofuTofUph0,22096
25
+ biopipen/ns/scrna.py,sha256=-KuTXv9SKDUIre-GxBo4KAyhz2hxnPJJktgYv_nw-sA,168624
26
+ biopipen/ns/scrna_metabolic_landscape.py,sha256=MoJSH4HITXLRCWhXi3h_ONjxpMSmQ684RMtFRJM57YA,22337
27
27
  biopipen/ns/snp.py,sha256=iXWrw7Lmhf4_ct57HGT7JGTClCXUD4sZ2FzOgsC2pTg,28123
28
28
  biopipen/ns/stats.py,sha256=DlPyK5Vsg6ZEkV9SDS3aAw21eXzvOHgqeZDkXPhg7go,20509
29
29
  biopipen/ns/tcgamaf.py,sha256=AFbUJIxiMSvsVY3RcHgjRFuMnNh2DG3Mr5slLNEyz6o,1455
30
- biopipen/ns/tcr.py,sha256=XvhbZcVzdJYCjGe61G_EitdRpZyDnyDsaMNPlyH5590,99676
30
+ biopipen/ns/tcr.py,sha256=BBd9I7AK6aWtrTuM_85kui8ekDwsHOqCWyrq6iGP2Lw,109689
31
31
  biopipen/ns/vcf.py,sha256=zjOH2qiSJsHACLmBqV-Tew-mn-peZgvYLAWjTLh7uTI,23823
32
- biopipen/ns/web.py,sha256=8VY4Xsb8UrzS4IkGUX_84GQP1JG6NcTZrV7f9tA1tUI,5458
32
+ biopipen/ns/web.py,sha256=4cmxV3LusyQbyjLL0l0wTbNtepaC__5_g5w1GnKY6wo,5749
33
33
  biopipen/reports/bam/CNAClinic.svelte,sha256=D4IxQcgDCPQZMbXog-aZP5iJEQTK2N4i0C60e_iXyfs,213
34
34
  biopipen/reports/bam/CNVpytor.svelte,sha256=SJdM0j8nUujDDTI13uJjJnpi2vokveK8VOXxyVQq7Yk,1252
35
35
  biopipen/reports/bam/ControlFREEC.svelte,sha256=OwN96RW0dN-gtQ1zWKbXYZCYkkrOC0RQmP3UG4x7zqU,837
@@ -51,16 +51,16 @@ biopipen/reports/scrna/DimPlots.svelte,sha256=ubIx8dgppzSB8WS_B4LN2T3bOTerP4Ck6o
51
51
  biopipen/reports/scrna/MarkersFinder.svelte,sha256=77rD1psj0VJykPDhfwS-B8mubvaasREAE6RYR2atTN4,444
52
52
  biopipen/reports/scrna/MetaMarkers.svelte,sha256=iIFRKjvVYrM1AtDWqq8UfeS8q23R8FKg2yepKAw2KSE,508
53
53
  biopipen/reports/scrna/RadarPlots.svelte,sha256=g_fp9d3vdnzk-egXPhkhhfWXOeG569Rj8rYLRIKmlLc,396
54
- biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte,sha256=0AmtzoGZXh5OnxGtZd5NBItVd-BeuGk9mEIhhWa1ab8,2527
55
- biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte,sha256=RpIT1O3yiJEEqRcdS-ydYDghChQ0YLbD1RtSK2CQS_k,5654
56
- biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte,sha256=kW6AxFr7VnX9yVL74IbUEBuI7xRfbmnROXR6C7jRets,3009
54
+ biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte,sha256=4ruKluhHiKG1_sLnkCddYWIeVGXN6uzL_k2yl3jsS8k,2527
55
+ biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte,sha256=nA35qYGDGdeFcMLqrP_T5VDpFKIA_p3wrnhiMQXlPLQ,5655
56
+ biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte,sha256=hSVrDzVo1vEIh2XQTFL36hBpg_VCObXwKzeaCTZRWUU,3009
57
57
  biopipen/reports/snp/PlinkCallRate.svelte,sha256=u0JGUzBS6MJR38TrI7tz08E7uFJToFPeALinu-KLUOg,706
58
58
  biopipen/reports/snp/PlinkFreq.svelte,sha256=GCLQXL3OY4b8BDzaLZ3vHVrsv2lNm5657UaSdiimE9w,523
59
59
  biopipen/reports/snp/PlinkHWE.svelte,sha256=zlAbn0DLwGBka-X9-MQplpfYkQIanH-QhgQL2GtK0UA,490
60
60
  biopipen/reports/snp/PlinkHet.svelte,sha256=xUkzAPjaun8Zz9CwAiEP-sm0jzdOwq3D_EmmQcs7I0U,533
61
61
  biopipen/reports/snp/PlinkIBD.svelte,sha256=Uuoe_5X073tttL4Dh_eMoPf-TlaBteR8jP28k9A7lzU,495
62
62
  biopipen/reports/tcr/CDR3AAPhyschem.svelte,sha256=Szz3_sM86cBxkEboAVRvtb7_pCbX8A7MYOvzvQ81Rf4,1526
63
- biopipen/reports/tcr/ClonalStats.svelte,sha256=yxSzrEGYiq9pcAZRtSCuHB4KOq4A1I-sXJ73Wb4OEBQ,367
63
+ biopipen/reports/tcr/ClonalStats.svelte,sha256=oLTOWNnwwvVIWTt9v6Sl7gYuPe2X68YwMxr1YA2ywA4,462
64
64
  biopipen/reports/tcr/CloneResidency.svelte,sha256=pzjkdGAhB7STxlXkTY5wnTT3plhkAPKMdGa6jwKuwoc,470
65
65
  biopipen/reports/tcr/Immunarch.svelte,sha256=jHOGUCWREaDNUf1_s6h9Kx_sp-y_dDRqY1rWrx0o0LM,433
66
66
  biopipen/reports/tcr/SampleDiversity.svelte,sha256=GrPUpQ6aJPtyQHoFL9ayG6knpW6yZznqwo0ZVZ2tMl4,5524
@@ -85,9 +85,9 @@ biopipen/scripts/bed/BedLiftOver.sh,sha256=gTIYN_KnNtPxKTjGdk4EYhwQ-kgPN5rO5YVvG
85
85
  biopipen/scripts/bed/BedtoolsIntersect.py,sha256=lFE2I8fgpjKCqOJM_qH5cs0l7dXv1c3w36eTXzujBj8,1736
86
86
  biopipen/scripts/bed/BedtoolsMakeWindows.py,sha256=HRYFwCOU_MzhmnwimhPH5jBnIftEXBdkpK5U9tCJ2Xw,1436
87
87
  biopipen/scripts/bed/BedtoolsMerge.py,sha256=d20obKLaJQALDNQ-Jz--OiL8klHGN44octkKx1ysJ04,381
88
- biopipen/scripts/cellranger/CellRangerCount.py,sha256=Te_tscWv_r2oTKPezN0zAkfuoQ3wwNqZC1IrsXjySYk,3307
88
+ biopipen/scripts/cellranger/CellRangerCount.py,sha256=F0U76QA9M7DndscpQZhh-_10r7nPgG80J0LXtlskhE0,5079
89
89
  biopipen/scripts/cellranger/CellRangerSummary.R,sha256=eLcgU3b2HdK0AaKNz1-B14atptJTsJFpr2W-VYx1C18,10788
90
- biopipen/scripts/cellranger/CellRangerVdj.py,sha256=APatSSEjRdOYF2lF-kafJACtvR8l8UlvKJQDtn9Gk18,2287
90
+ biopipen/scripts/cellranger/CellRangerVdj.py,sha256=A_SiqfOKa5oxvKWLyguw4AW83FjBBO2ZbjUdWMZScc8,4224
91
91
  biopipen/scripts/cnv/AneuploidyScore.R,sha256=b8B3uT8drOPxTWMFKU0BgVxtc8xTq8SD00dJWwoHxrE,9287
92
92
  biopipen/scripts/cnv/AneuploidyScoreSummary.R,sha256=cj9pEFOry-yKET0H6-_PQsAy1Rgp0KCEPqXq6_V1cgY,12322
93
93
  biopipen/scripts/cnv/TMADScore.R,sha256=xQ3qImpbgVafXNP2bbCZQ6dZ6YTKFpcrUbM7su2PKfs,1514
@@ -128,26 +128,27 @@ biopipen/scripts/protein/PDB2Fasta.py,sha256=HVsoRRpieobuPwemCz30_N0rJ7T4aGFTQKZ
128
128
  biopipen/scripts/protein/Prodigy.py,sha256=elA62U7WJ89TGEKobvjjd3Refjzr61S69PiVO0qF6DE,4493
129
129
  biopipen/scripts/protein/ProdigySummary.R,sha256=qP30GYFpmxCvcfT2IVbJImGMgOdreKi-m1nyUqH6480,3799
130
130
  biopipen/scripts/protein/RMSD.py,sha256=zE0g9QKWqqpC8lhGoQIF54VqDw37FaOUkvk0vtYf4-c,6250
131
- biopipen/scripts/regulatory/MotifAffinityTest.R,sha256=1CUy9domUc3N8FM12bJJYxPSLPwXwwSeHDy7zWf6yAQ,2974
132
- biopipen/scripts/regulatory/MotifAffinityTest_AtSNP.R,sha256=ZTFrD3g6dDHCb7dZPt7DfkSMFyfMdB8or6clCudMPmw,4366
133
- biopipen/scripts/regulatory/MotifAffinityTest_MotifBreakR.R,sha256=wx0KM_96iQKmoZ7ZQ8ahSLrOzkyQtsAO41vH3NGxABM,3304
131
+ biopipen/scripts/regulatory/MotifAffinityTest.R,sha256=7kQFV9ExawMkCfLJ-mIsnxbXazL57D1-hVBWcHEPrus,3466
132
+ biopipen/scripts/regulatory/MotifAffinityTest_AtSNP.R,sha256=pFO6SVo_h1lRdNhq-GOX5jD8jF9PlXz0_XnRDpy9RXg,4670
133
+ biopipen/scripts/regulatory/MotifAffinityTest_MotifBreakR.R,sha256=Z-OcUuLPScX5kZvozNGhtawdkbF33ckiuBsSrXRAApk,3853
134
134
  biopipen/scripts/regulatory/MotifScan.py,sha256=mxhRWp6NBGEMpWJOpwqIvzkKlrgnRvJApyCU91svh8E,5399
135
- biopipen/scripts/regulatory/VariantMotifPlot.R,sha256=-uG0gqJsCX1WKohC5-q93cp3Iysl1SzI1PLiKpROl4g,2839
136
- biopipen/scripts/regulatory/motifs-common.R,sha256=41CqfXtxbbKsk7bF_pG5wq2sNfSR4NzSA5yK2ZG1JtQ,13305
135
+ biopipen/scripts/regulatory/VariantMotifPlot.R,sha256=cHngquU7zVCUhh8zGi40k1o7oeWLfuF78Ycljo_Ql88,2849
136
+ biopipen/scripts/regulatory/motifs-common.R,sha256=ES2UaFE68yULd4mfw7-T0zUcXQtb_uI6IDS-hQsVSvQ,13369
137
137
  biopipen/scripts/rnaseq/Simulation-ESCO.R,sha256=cdADB5dpkI5hvzDPw5PyrhOyRFU4PMLgSsa84YOZALc,6424
138
138
  biopipen/scripts/rnaseq/Simulation-RUVcorr.R,sha256=oZJHHEMdH7SBIkhCrgkpNYroBkF0dtr20U3ugY9I9hM,1202
139
139
  biopipen/scripts/rnaseq/Simulation.R,sha256=LvIjL_onCA8GJR5TPiREUkN_NlMz_ngcw6PezWKc2x0,809
140
140
  biopipen/scripts/rnaseq/UnitConversion.R,sha256=xuoj9AdFiCKNztpCmzwCz9VxmUAE-FslZ_LgjOm7dhM,11360
141
- biopipen/scripts/scrna/AnnData2Seurat.R,sha256=wc5PDbK9TkuJtoXXxF4W1ODylWhyfKWd3vV_AdOcTjM,1118
141
+ biopipen/scripts/scrna/AnnData2Seurat.R,sha256=RL1mBEG1fM8FK-SEO-GncgqzcbCJF_1e9pQTAwoOKzw,1161
142
142
  biopipen/scripts/scrna/CCPlotR-patch.R,sha256=KpB8fwacBaWaUNjIidcLUkMShLjS4Gq9UY8LUgIITB0,8369
143
- biopipen/scripts/scrna/CellCellCommunication.py,sha256=Wg0uFSo0Yt0wq6UT1TBodyK8GtWQXGv7hXRfM665paU,4354
144
- biopipen/scripts/scrna/CellCellCommunicationPlots.R,sha256=4l2EJVd1y94Nfry8fuRL9OSF6AhS8PGBekimpRUu3s8,1919
145
- biopipen/scripts/scrna/CellTypeAnnotation-celltypist.R,sha256=CwYR8WWQMf8r7V2CTalG4kxdKnYMtyhpJBe9zP2sQWA,6964
146
- biopipen/scripts/scrna/CellTypeAnnotation-direct.R,sha256=w3CKRUA9NZfC3TFbU8I35L4XJ6MtVaWX-VnV7ScZlBI,2196
147
- biopipen/scripts/scrna/CellTypeAnnotation-hitype.R,sha256=vvjhxin4aoA9heecey0dpr6ofirybygY3ApjgtQW89Y,2094
148
- biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R,sha256=xxB4K1MzBSNQnDxa44s5ExeU67MbncOBf8lGFr7RvwQ,1870
149
- biopipen/scripts/scrna/CellTypeAnnotation-sctype.R,sha256=1BZ8tOJsB7lRtrYXtImxly-he4gfDTfGqbwK35yJjYw,4604
150
- biopipen/scripts/scrna/CellTypeAnnotation.R,sha256=o9lR8QrJVNLiDpSnNrWhb_jxRdj5C639ZRJmvXul6zs,955
143
+ biopipen/scripts/scrna/CellCellCommunication.py,sha256=80YaNPf3I69Yj3d7xZS3bwBpqIHlymm3NflHfDfhVc4,4616
144
+ biopipen/scripts/scrna/CellCellCommunicationPlots.R,sha256=IcqqhVWasSE54PDWaw85u5_yup_YHVNNwZI7oOy9250,2456
145
+ biopipen/scripts/scrna/CellSNPLite.py,sha256=n6Zvc5iZI6ver5QHxDJ-BpYqeCdafF7rZBvaB2aP534,893
146
+ biopipen/scripts/scrna/CellTypeAnnotation-celltypist.R,sha256=vN3GF5zGkspfNHbevXDZJ-6Y1vjDfy_nZmSqyBRK5U0,6403
147
+ biopipen/scripts/scrna/CellTypeAnnotation-direct.R,sha256=IbLTf5YstWKheUxF-_Be2OM-RsITQrKiDCRJypoIKb0,2869
148
+ biopipen/scripts/scrna/CellTypeAnnotation-hitype.R,sha256=KhkLeyNMS1gK_WsgXwRHUdvgW5JSN-G4mh-7AnL2hMw,1989
149
+ biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R,sha256=pWO-aiHfhj5ZRiOu1tmzeAzYqVlMTf5kfFLcEMJeUNA,1761
150
+ biopipen/scripts/scrna/CellTypeAnnotation-sctype.R,sha256=GSfTSH8fkwa_Dd45u3gpQLfbMStjH_F0re5zwnZUURQ,4527
151
+ biopipen/scripts/scrna/CellTypeAnnotation.R,sha256=iquKkQfjwPvBUqI7An_2qAaNRvTvWOPPbQBi9jrDcvA,1614
151
152
  biopipen/scripts/scrna/CellsDistribution.R,sha256=4xmBJ2Fv24HCcOVJgCtEX-mWyFg0PMoB6eS7yqUXlUE,19734
152
153
  biopipen/scripts/scrna/DimPlots.R,sha256=oKhygoWQOCck8OlpnOrNJg0CS2q-r8Com1dfjTvQzvU,1575
153
154
  biopipen/scripts/scrna/ExprImputation-alra.R,sha256=iAUVwDkejt4oEphpr8tQGWFcyTg1jF-VbWLQvs5Y56c,3122
@@ -155,38 +156,40 @@ biopipen/scripts/scrna/ExprImputation-rmagic.R,sha256=ePgbMZ_3bKbeUrjsMdkdtBM_MS
155
156
  biopipen/scripts/scrna/ExprImputation-scimpute.R,sha256=MI_bYfvCDKJsuGntUxfx_-NdrssBoQgL95-DGwJVE5s,1191
156
157
  biopipen/scripts/scrna/ExprImputation.R,sha256=GcdZJpkDpq88hRQjtLZY5-byp8V43stEFm5T-pQbU6A,319
157
158
  biopipen/scripts/scrna/LoomTo10X.R,sha256=c6F0p1udsL5UOlb84-53K5BsjSDWkdFyYTt5NQmlIec,1059
158
- biopipen/scripts/scrna/MarkersFinder.R,sha256=P6BgseCrXTeJR8X52hzD16qBUuCeHmPc96h5pKE_-qY,24207
159
+ biopipen/scripts/scrna/MQuad.py,sha256=DyXPDiE36hQPKr9X9_lK_WYabm8b9MiQMN1PMnA2A1U,709
160
+ biopipen/scripts/scrna/MarkersFinder.R,sha256=_FTYEmNihXgH7Y18_d1pCfxpuW6VdQ6hzad5SbuhAQg,29093
159
161
  biopipen/scripts/scrna/MetaMarkers.R,sha256=BgYaWYEj6obwqaZaDWqNPtxb1IEEAnXAeBE0Ji9PvBA,12426
160
- biopipen/scripts/scrna/ModuleScoreCalculator.R,sha256=-tByCPk7i070LynAb0z2ANeRxr1QqiKP0dfrJm52jH4,4198
161
- biopipen/scripts/scrna/PseudoBulkDEG.R,sha256=32Hd3x2WyTFv175Os4bxf6goAcIq7QN8m1i7i7emnMI,22308
162
+ biopipen/scripts/scrna/ModuleScoreCalculator.R,sha256=_mvo35a-wk5miUb_kMIVwvKK0b6InRa1NKtN8zznGwk,4457
163
+ biopipen/scripts/scrna/PseudoBulkDEG.R,sha256=Cc60g4VteEshUbCIfL-gn9axTwWsqwxVDWXl977tp8w,25215
162
164
  biopipen/scripts/scrna/RadarPlots.R,sha256=Kn1E-hpczuujpgNjR8MqeIIVN-S3PbpmfcKWGKcNCVY,14546
163
165
  biopipen/scripts/scrna/SCImpute.R,sha256=dSJOHhmJ3x_72LBRXT72dbCti5oiB85CJ-OjWtqONbk,2958
164
- biopipen/scripts/scrna/ScFGSEA.R,sha256=Cbr1RE4jD3CbR7K4Y1XWKfcqiqhZmzATCKEd3ysCnCc,11517
166
+ biopipen/scripts/scrna/ScFGSEA.R,sha256=eWfp3n-b9hRoIRboTd7_wjNQbpJl5Q1PNDysYXaw-AY,11431
165
167
  biopipen/scripts/scrna/ScSimulation.R,sha256=q0-dXD9px1cApc_TxGmR-OdNHE8W1VSVWfSI57B96bo,1697
166
- biopipen/scripts/scrna/ScVelo.py,sha256=SPUZFgZW1Zhw-bnjJo98RK0vpuNFODQ8Q3eTguNc84k,21359
168
+ biopipen/scripts/scrna/ScVelo.py,sha256=6pDi-4AQBmSU3koMYZAWBQdKMAAbVECizDBtSQ2NdV8,21771
167
169
  biopipen/scripts/scrna/Seurat2AnnData.R,sha256=F8g5n2CqX4-KBggxd8ittz8TejYuqqNLMudAHdFt1QM,184
168
- biopipen/scripts/scrna/SeuratClusterStats-clustree.R,sha256=K2pRNe3qFjTJY3VL4EQFxoU1Lzp5DUavhcfx6HZk2J8,3954
170
+ biopipen/scripts/scrna/SeuratClusterStats-clustree.R,sha256=D2zLxvlD5p3U74YYxdV4T4B9A6lFMZu5NmNx6naQxJg,3978
169
171
  biopipen/scripts/scrna/SeuratClusterStats-dimplots.R,sha256=2YNUxPz1xwND9yrOtBZ75u-wwnmkJUkoUyeBlJvBWKQ,1541
170
- biopipen/scripts/scrna/SeuratClusterStats-features.R,sha256=G-4wNGGZPCEXup1u9dQwSQ6P-oZVRU_faFMoXfAn6i8,7320
172
+ biopipen/scripts/scrna/SeuratClusterStats-features.R,sha256=8GtL7ysCacCpnt2vrkAfC47k1N-x3jhUSf-ZxOFIf60,7469
171
173
  biopipen/scripts/scrna/SeuratClusterStats-ngenes.R,sha256=BN8HSl1HoZp8ibESaCVEJPCBWzmu1AFLMgW5ZeZphS0,3077
172
174
  biopipen/scripts/scrna/SeuratClusterStats-stats.R,sha256=xu256GS80jV8kZePn7qFncK58dYSHzaQY3_SDnuxv6E,3598
173
175
  biopipen/scripts/scrna/SeuratClusterStats.R,sha256=ITFqh7p1ggtDXzVxbBEO2TcdOw4dA6oGhL5m7hFAQmU,1838
174
- biopipen/scripts/scrna/SeuratClustering.R,sha256=W9HI3Fk3u8MVNycffip8LYRnGg7pW07io7YbtfSk2Pw,979
176
+ biopipen/scripts/scrna/SeuratClustering.R,sha256=8w7cdojAlyyZ4oFB_QSLI1W7xPMiPeceM9GacOQk7r8,1110
175
177
  biopipen/scripts/scrna/SeuratFilter.R,sha256=BrYK0MLdaTtQvInMaQsmOt7oH_hlks0M1zykkJtg2lM,509
176
178
  biopipen/scripts/scrna/SeuratLoading.R,sha256=23KAgsj0-XZhOOdUlLrb3r17St4LzZq230UlfIjLn_E,892
177
- biopipen/scripts/scrna/SeuratMap2Ref.R,sha256=bSk-GPe5jZl6QGiNN7VrD7oAlbLjg9Vo5-t6ua28dyM,3631
179
+ biopipen/scripts/scrna/SeuratMap2Ref.R,sha256=pQFNHOLvOscLdMheLbRYH0WxoFtIu4ellsux8w_QjZ0,3571
178
180
  biopipen/scripts/scrna/SeuratMetadataMutater.R,sha256=22Kh9G3awSOvyeFZk5I8Sgg-fbu4gClAvHf_wJOxWnU,1020
179
- biopipen/scripts/scrna/SeuratPreparing.R,sha256=5mWDYwVBCncj_z3U8LGZ9xCQnax0gQJpEyGPZ7NykXk,8313
181
+ biopipen/scripts/scrna/SeuratPreparing.R,sha256=w490ofbdhnkJGOPQ75a-tift4dIu9DafGkT7vjpqI-Q,8753
180
182
  biopipen/scripts/scrna/SeuratSplit.R,sha256=vdK11V39_Uo_NaOh76QWCtxObGaEr5Ynxqq0hTiSvsU,754
181
- biopipen/scripts/scrna/SeuratSubClustering.R,sha256=bsBzhzSsdqOy3aqNu_Cbx7qtRI7PDLnWRhUpoo8uvSw,1628
183
+ biopipen/scripts/scrna/SeuratSubClustering.R,sha256=WfxlZdX_HW7_wrYYWWQWboAPyA90g8kA3xNI8Idqnk8,1617
182
184
  biopipen/scripts/scrna/SeuratSubset.R,sha256=yVA11NVE2FSSw-DhxQcJRapns0tNNHdyDYi5epO6SKM,1776
183
185
  biopipen/scripts/scrna/SeuratTo10X.R,sha256=1mh1R0Qlo1iHVrpMLUXyLDOA92QKJ4GzTMURTFRqsWg,901
184
- biopipen/scripts/scrna/Slingshot.R,sha256=wo1zq2Wl6u1HODNzZGjjQLcqKeh9sh7FXPs_iKu6tqw,1750
186
+ biopipen/scripts/scrna/Slingshot.R,sha256=TmYrVXNYCElZjjMLp4rAFX05NvZl8rmK5YjvsZ_ZZ0Y,1771
185
187
  biopipen/scripts/scrna/Subset10X.R,sha256=dT1QY5mHaDcqOMgAtTfyU1FRBNFtfg3nMGCubvBJcSQ,2671
186
- biopipen/scripts/scrna/TopExpressingGenes.R,sha256=9xXx7U6ZLNeZslqhYuxWYQJmgUsTD3qXFew-7zYCJu8,6910
187
- biopipen/scripts/scrna/celltypist-wrapper.py,sha256=UMCPCpH4MhAvAAtw_HQKac5NlmEW4cwcy_5O6NG4sIo,1919
188
+ biopipen/scripts/scrna/TopExpressingGenes.R,sha256=hBgavmTZTRJ_h0cZkxDAWeNYdVk945j-WjUHivUhrg0,6824
189
+ biopipen/scripts/scrna/celltypist-wrapper.py,sha256=JHFmW9NKWU8TZLbVbEH1YgrAjwid7r3St_gYcdNlxls,7793
188
190
  biopipen/scripts/scrna/sctype.R,sha256=NaUJkABwF5G1UVm1CCtcMbwLSj94Mo24mbYCKFqo1Bw,6524
189
- biopipen/scripts/scrna/seurat_anndata_conversion.py,sha256=Ya0Wn2TLg1j66N41PdiXXGE8LtE51eC8XnkGi_q2ey8,2437
191
+ biopipen/scripts/scrna/scvelo_paga.py,sha256=hN7tE9Ay4n64GAo_l_zME2AO8m8o1nFV_iLCibkkoKE,11987
192
+ biopipen/scripts/scrna/seurat_anndata_conversion.py,sha256=LbfJNhbEeQkYQ2gObYyzr5TdCYyGL350_uT97sT-1CM,3022
190
193
  biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R,sha256=ybgUpjex2VHS4aqPMJdNMw4pV305PctGXjGmzdVLMgI,17822
191
194
  biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R,sha256=fUIibKV-zqqm-ppjUlTY4eq7zNPACmUG8OZ2n48VnBA,19462
192
195
  biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R,sha256=Kd60fZsC1IBQ3hYN4LjofWpJmY-CoXh1veNQvOGAiqs,9127
@@ -212,7 +215,8 @@ biopipen/scripts/tcgamaf/MafAddChr.py,sha256=uo1utaK3Df88aU7xubKw85Ni7W06md8bQlw
212
215
  biopipen/scripts/tcgamaf/maf2vcf.pl,sha256=hJKcH-NbgWK6fmK7f3qex7ozJJl-PqCNPXqpwfcHwJg,22707
213
216
  biopipen/scripts/tcr/Attach2Seurat.R,sha256=0KZaBkuPvqOBXq4ZG3pzIIua5HL-161K5dVXRoCysy4,1366
214
217
  biopipen/scripts/tcr/CDR3AAPhyschem.R,sha256=vU-5sjFZktSzBBj4f1frIGChOV8P8Uf0mMWS2Njdsww,15204
215
- biopipen/scripts/tcr/ClonalStats.R,sha256=skqPMTHL8zMGIZ2Q_gKXm9UDFRR-wFRurtrmvbQp7pg,29340
218
+ biopipen/scripts/tcr/CDR3Clustering.R,sha256=B3ZVxDtf2kk51APiMSNmImKzFldfyq0aojBAxLphUPc,11025
219
+ biopipen/scripts/tcr/ClonalStats.R,sha256=UeCasHqBu6RyK6d_rPMmfhqsvRKQvi6iNMWNgme2D8s,30933
216
220
  biopipen/scripts/tcr/CloneResidency.R,sha256=3pong__cdn2bW7pctq4TLcEdcj_xNigzyKnznnmc1i8,22021
217
221
  biopipen/scripts/tcr/CloneSizeQQPlot.R,sha256=zw5WPgq_lbfdDb9Ou07boh9D2FYjXZtCQKZCP0PKMYw,4561
218
222
  biopipen/scripts/tcr/GIANA/GIANA.py,sha256=jo0d58K57CF4W6mc2Q-hQn9rLl6oLHTsr5JceP8xqN0,54874
@@ -237,7 +241,6 @@ biopipen/scripts/tcr/SampleDiversity.R,sha256=oipN4-2nQZe8bYjI0lZ0SvZ7T8GZ_FWkpk
237
241
  biopipen/scripts/tcr/ScRepCombiningExpression.R,sha256=sYn6BEUB53Z3pF7IAjYpewGYBvVBwzJqoAOPpcAxzQo,1011
238
242
  biopipen/scripts/tcr/ScRepLoading.R,sha256=COdY7KotlYemq4LDJT3d08NlzOzRwrDUTrNUdt4P66A,5732
239
243
  biopipen/scripts/tcr/TCRClusterStats.R,sha256=ns3S95DVDBuhSe1YgTZ1OksbfBgREO2Tnp1d4QzbTw0,13530
240
- biopipen/scripts/tcr/TCRClustering.R,sha256=K01qYLNhXrMmPb3TJE504lpRXnfizUNZ5q75nL7dxBg,9152
241
244
  biopipen/scripts/tcr/TCRDock.py,sha256=Oyw27k6vr0pnJ0w1-lrk5b6sZ_IOf6TmbhSxQae-3Q8,3148
242
245
  biopipen/scripts/tcr/TESSA.R,sha256=iXkgQMEP2OlrhdjQ0lHSdH6ehqMXBry__0KVifddWVE,5871
243
246
  biopipen/scripts/tcr/TESSA_source/Atchley_factors.csv,sha256=SumqDOqP67P54uM7Cuc5_O_rySTWcGo7eX3psMSPX9s,763
@@ -278,13 +281,12 @@ biopipen/scripts/web/GCloudStorageDownloadBucket.py,sha256=EnjEnCL52-X8v8d5tMvhJ
278
281
  biopipen/scripts/web/GCloudStorageDownloadFile.py,sha256=2txA7W0AfnnuyocZtLp20I-RFAF2dCbL8sL7NzKkiyI,839
279
282
  biopipen/scripts/web/gcloud_common.py,sha256=rMa42CRw3iJGV1OnG8A2KqLWFp8BocCH2nXRgkNSh1A,1254
280
283
  biopipen/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
281
- biopipen/utils/common_docstrs.py,sha256=tz3h1Uj6_plAT08DGpYi661JIkBmnwHXpatdqbKjeEc,6470
282
284
  biopipen/utils/gene.py,sha256=ToRgAPYc8E72Hm6uYi84ImQaRMPZp5rN7O4CxK7vCag,4477
283
- biopipen/utils/misc.py,sha256=pDZ-INWVNqHuXYvcjmu8KqNAigkh2lsHy0BxX44CPvc,4048
285
+ biopipen/utils/misc.py,sha256=mxv2bjg3J9vdqw7JDmG26DuA-3ds6mg7T6bmY2vzZI8,7727
284
286
  biopipen/utils/reference.py,sha256=Oc6IlA1giLxymAuI7DO-IQLHQ7-DbsWzOQE86oTDfMU,5955
285
287
  biopipen/utils/reporter.py,sha256=VwLl6xyVDWnGY7NEXyqBlkW8expKJoNQ5iTyZSELf5c,4922
286
288
  biopipen/utils/vcf.py,sha256=MmMbAtLUcKPp02jUdk9TzuET2gWSeoWn7xgoOXFysK0,9393
287
- biopipen-0.34.6.dist-info/METADATA,sha256=xjkZ-4jHx3uZyZwVYbfc0vlPlatZ927dHLpxm6y9ys0,975
288
- biopipen-0.34.6.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
289
- biopipen-0.34.6.dist-info/entry_points.txt,sha256=BYqHGBQJxyFDNLYqgH64ycI5PYwnlqwYcCFsMvJgzAU,653
290
- biopipen-0.34.6.dist-info/RECORD,,
289
+ biopipen-0.34.26.dist-info/METADATA,sha256=TPW1_7FA3U6GvLyIihc7X1JhfP8FKnR63J9MH4TqpYQ,1123
290
+ biopipen-0.34.26.dist-info/WHEEL,sha256=zp0Cn7JsFoX2ATtOhtaFYIiE2rmFAD4OcMhtUki8W3U,88
291
+ biopipen-0.34.26.dist-info/entry_points.txt,sha256=BYqHGBQJxyFDNLYqgH64ycI5PYwnlqwYcCFsMvJgzAU,653
292
+ biopipen-0.34.26.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 2.1.3
2
+ Generator: poetry-core 2.2.1
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any