autogluon.timeseries 1.4.1b20251016__py3-none-any.whl → 1.4.1b20251218__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

Files changed (90) hide show
  1. autogluon/timeseries/configs/hyperparameter_presets.py +7 -21
  2. autogluon/timeseries/configs/predictor_presets.py +23 -39
  3. autogluon/timeseries/dataset/ts_dataframe.py +97 -86
  4. autogluon/timeseries/learner.py +70 -35
  5. autogluon/timeseries/metrics/__init__.py +4 -4
  6. autogluon/timeseries/metrics/abstract.py +8 -8
  7. autogluon/timeseries/metrics/point.py +9 -9
  8. autogluon/timeseries/metrics/quantile.py +5 -5
  9. autogluon/timeseries/metrics/utils.py +4 -4
  10. autogluon/timeseries/models/__init__.py +2 -1
  11. autogluon/timeseries/models/abstract/abstract_timeseries_model.py +52 -39
  12. autogluon/timeseries/models/abstract/model_trial.py +2 -1
  13. autogluon/timeseries/models/abstract/tunable.py +8 -8
  14. autogluon/timeseries/models/autogluon_tabular/mlforecast.py +58 -62
  15. autogluon/timeseries/models/autogluon_tabular/per_step.py +26 -15
  16. autogluon/timeseries/models/autogluon_tabular/transforms.py +11 -9
  17. autogluon/timeseries/models/chronos/__init__.py +2 -1
  18. autogluon/timeseries/models/chronos/chronos2.py +395 -0
  19. autogluon/timeseries/models/chronos/model.py +126 -88
  20. autogluon/timeseries/models/chronos/{pipeline/utils.py → utils.py} +69 -37
  21. autogluon/timeseries/models/ensemble/__init__.py +36 -2
  22. autogluon/timeseries/models/ensemble/abstract.py +14 -46
  23. autogluon/timeseries/models/ensemble/array_based/__init__.py +3 -0
  24. autogluon/timeseries/models/ensemble/array_based/abstract.py +240 -0
  25. autogluon/timeseries/models/ensemble/array_based/models.py +185 -0
  26. autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py +12 -0
  27. autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py +88 -0
  28. autogluon/timeseries/models/ensemble/array_based/regressor/linear_stacker.py +186 -0
  29. autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py +94 -0
  30. autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py +107 -0
  31. autogluon/timeseries/models/ensemble/{greedy.py → ensemble_selection.py} +41 -61
  32. autogluon/timeseries/models/ensemble/per_item_greedy.py +172 -0
  33. autogluon/timeseries/models/ensemble/weighted/__init__.py +8 -0
  34. autogluon/timeseries/models/ensemble/weighted/abstract.py +45 -0
  35. autogluon/timeseries/models/ensemble/{basic.py → weighted/basic.py} +25 -22
  36. autogluon/timeseries/models/ensemble/weighted/greedy.py +62 -0
  37. autogluon/timeseries/models/gluonts/abstract.py +32 -31
  38. autogluon/timeseries/models/gluonts/dataset.py +11 -11
  39. autogluon/timeseries/models/gluonts/models.py +0 -7
  40. autogluon/timeseries/models/local/__init__.py +0 -7
  41. autogluon/timeseries/models/local/abstract_local_model.py +15 -18
  42. autogluon/timeseries/models/local/naive.py +2 -2
  43. autogluon/timeseries/models/local/npts.py +7 -1
  44. autogluon/timeseries/models/local/statsforecast.py +12 -12
  45. autogluon/timeseries/models/multi_window/multi_window_model.py +39 -24
  46. autogluon/timeseries/models/registry.py +3 -4
  47. autogluon/timeseries/models/toto/_internal/backbone/attention.py +3 -4
  48. autogluon/timeseries/models/toto/_internal/backbone/backbone.py +6 -6
  49. autogluon/timeseries/models/toto/_internal/backbone/rope.py +4 -9
  50. autogluon/timeseries/models/toto/_internal/backbone/rotary_embedding_torch.py +342 -0
  51. autogluon/timeseries/models/toto/_internal/backbone/scaler.py +2 -3
  52. autogluon/timeseries/models/toto/_internal/backbone/transformer.py +10 -10
  53. autogluon/timeseries/models/toto/_internal/dataset.py +2 -2
  54. autogluon/timeseries/models/toto/_internal/forecaster.py +8 -8
  55. autogluon/timeseries/models/toto/dataloader.py +4 -4
  56. autogluon/timeseries/models/toto/hf_pretrained_model.py +97 -16
  57. autogluon/timeseries/models/toto/model.py +35 -20
  58. autogluon/timeseries/predictor.py +527 -155
  59. autogluon/timeseries/regressor.py +27 -30
  60. autogluon/timeseries/splitter.py +3 -27
  61. autogluon/timeseries/trainer/ensemble_composer.py +444 -0
  62. autogluon/timeseries/trainer/model_set_builder.py +9 -9
  63. autogluon/timeseries/trainer/prediction_cache.py +16 -16
  64. autogluon/timeseries/trainer/trainer.py +300 -278
  65. autogluon/timeseries/trainer/utils.py +17 -0
  66. autogluon/timeseries/transforms/covariate_scaler.py +8 -8
  67. autogluon/timeseries/transforms/target_scaler.py +15 -15
  68. autogluon/timeseries/utils/constants.py +10 -0
  69. autogluon/timeseries/utils/datetime/lags.py +1 -3
  70. autogluon/timeseries/utils/datetime/seasonality.py +1 -3
  71. autogluon/timeseries/utils/features.py +31 -14
  72. autogluon/timeseries/utils/forecast.py +6 -7
  73. autogluon/timeseries/utils/timer.py +173 -0
  74. autogluon/timeseries/version.py +1 -1
  75. autogluon.timeseries-1.4.1b20251218-py3.11-nspkg.pth +1 -0
  76. {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/METADATA +39 -27
  77. autogluon_timeseries-1.4.1b20251218.dist-info/RECORD +103 -0
  78. {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/WHEEL +1 -1
  79. autogluon/timeseries/evaluator.py +0 -6
  80. autogluon/timeseries/models/chronos/pipeline/__init__.py +0 -10
  81. autogluon/timeseries/models/chronos/pipeline/base.py +0 -160
  82. autogluon/timeseries/models/chronos/pipeline/chronos.py +0 -544
  83. autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py +0 -580
  84. autogluon.timeseries-1.4.1b20251016-py3.9-nspkg.pth +0 -1
  85. autogluon.timeseries-1.4.1b20251016.dist-info/RECORD +0 -90
  86. {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info/licenses}/LICENSE +0 -0
  87. {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info/licenses}/NOTICE +0 -0
  88. {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/namespace_packages.txt +0 -0
  89. {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/top_level.txt +0 -0
  90. {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/zip-safe +0 -0
@@ -3,14 +3,15 @@ import os
3
3
  import shutil
4
4
  import warnings
5
5
  from pathlib import Path
6
- from typing import Any, Optional, Union
6
+ from typing import Any
7
7
 
8
8
  import numpy as np
9
9
  import pandas as pd
10
+ from typing_extensions import Self
10
11
 
11
12
  from autogluon.common.loaders import load_pkl
12
13
  from autogluon.common.space import Space
13
- from autogluon.timeseries.dataset.ts_dataframe import TimeSeriesDataFrame
14
+ from autogluon.timeseries.dataset import TimeSeriesDataFrame
14
15
  from autogluon.timeseries.models.abstract import AbstractTimeSeriesModel
15
16
  from autogluon.timeseries.utils.warning_filters import disable_duplicate_logs, warning_filter
16
17
 
@@ -81,31 +82,40 @@ MODEL_ALIASES = {
81
82
 
82
83
 
83
84
  class ChronosModel(AbstractTimeSeriesModel):
84
- """Chronos [Ansari2024]_ pretrained time series forecasting models which can be used for zero-shot forecasting or fine-tuned
85
- in a task-specific manner. Models can be based on the original
86
- `ChronosModel <https://github.com/amazon-science/chronos-forecasting/blob/main/src/chronos/chronos.py>`_ implementation,
87
- as well as a newer family of Chronos-Bolt models capable of much faster inference.
88
-
89
- The original Chronos is a family of pretrained models, based on the T5 family, with number of parameters ranging between
90
- 8M and 710M. The full collection of Chronos models is available on
91
- `Hugging Face <https://huggingface.co/collections/amazon/chronos-models-65f1791d630a8d57cb718444>`_. For Chronos small,
92
- base, and large variants a GPU is required to perform inference efficiently. Chronos takes a minimalistic approach to
93
- pretraining time series models, by discretizing time series data directly into bins which are treated as tokens,
94
- effectively performing regression by classification. This results in a simple and flexible framework
95
- for using any language model in the context of time series forecasting. See [Ansari2024]_ for more information.
96
-
97
- The newer Chronos-Bolt variants enable much faster inference by first "patching" the time series. The resulting
98
- time series is then fed into a T5 model for forecasting. The Chronos-Bolt variants are capable of much faster inference,
99
- and can all run on CPUs. Chronos-Bolt models are also available on Hugging Face <https://huggingface.co/autogluon/>`_.
100
-
101
- Both Chronos and Chronos-Bolt variants can be fine-tuned by setting ``fine_tune=True`` and selecting appropriate
102
- fine-tuning parameters such as the learning rate (``fine_tune_lr``) and max steps (``fine_tune_steps``).
85
+ """Chronos [Ansari2024]_ pretrained time series forecasting models which can be used for zero-shot
86
+ forecasting or fine-tuned in a task-specific manner.
87
+
88
+ Models can be based on the original
89
+ `Chronos <https://github.com/amazon-science/chronos-forecasting/blob/main/src/chronos/chronos.py>`_
90
+ implementation, as well as a newer family of
91
+ `Chronos-Bolt <https://github.com/amazon-science/chronos-forecasting/blob/main/src/chronos/chronos_bolt.py>`_
92
+ models capable of much faster inference.
93
+
94
+ The original Chronos is a family of pretrained models, based on the T5 family, with number of
95
+ parameters ranging between 8M and 710M. The full collection of Chronos models is available on
96
+ `Hugging Face <https://huggingface.co/collections/amazon/chronos-models-65f1791d630a8d57cb718444>`_.
97
+
98
+ For Chronos (original) ``small``, ``base``, and ``large`` variants a GPU is required to
99
+ perform inference efficiently. Chronos takes a minimalistic approach to pretraining time series
100
+ models, by discretizing time series data directly into bins which are treated as tokens,
101
+ effectively performing regression by classification. This results in a simple and flexible
102
+ framework for using any language model in the context of time series forecasting.
103
+ See [Ansari2024]_ for more information.
104
+
105
+ The newer Chronos-Bolt variants enable much faster inference by first "patching" the time series.
106
+ The resulting time series is then fed into a T5 model for forecasting. The Chronos-Bolt variants
107
+ are capable of much faster inference, and can all run on CPUs.
108
+
109
+ Both Chronos and Chronos-Bolt variants can be fine-tuned by setting ``fine_tune=True`` and selecting
110
+ appropriate fine-tuning parameters such as the learning rate (``fine_tune_lr``) and max steps
111
+ (``fine_tune_steps``).
103
112
 
104
113
  References
105
114
  ----------
106
115
  .. [Ansari2024] Ansari, Abdul Fatir, Stella, Lorenzo et al.
107
116
  "Chronos: Learning the Language of Time Series."
108
- http://arxiv.org/abs/2403.07815
117
+ Transactions on Machine Learning Research (2024).
118
+ https://openreview.net/forum?id=gerNCVqqtR
109
119
 
110
120
 
111
121
  Other Parameters
@@ -117,36 +127,47 @@ class ChronosModel(AbstractTimeSeriesModel):
117
127
  ``tiny``, ``mini`` , ``small``, ``base``, and ``large``. Chronos-Bolt models can be specified
118
128
  with ``bolt_tiny``, ``bolt_mini``, ``bolt_small``, and ``bolt_base``.
119
129
  batch_size : int, default = 256
120
- Size of batches used during inference. The default ``batch_size`` is selected based on the model type. For Chronos-Bolt
121
- models the ``batch_size`` is set to 256 whereas Chronos models used a ``batch_size`` of 16, except Chronos (Large) which
122
- uses 8. For the Chronos-Bolt models, the ``batch_size`` is reduced by a factor of 4 when the prediction horizon is greater
123
- than the model's default prediction length.
130
+ Size of batches used during inference.
131
+
132
+ The default ``batch_size`` is selected based on the model type. Chronos (original) models use a
133
+ ``batch_size`` of 16, except Chronos (Large) which uses 8.
134
+
135
+ For Chronos-Bolt models the ``batch_size`` is set to 256. However, ``batch_size`` is reduced by
136
+ a factor of 4 when the prediction horizon is greater than the model's
137
+ default prediction length.
124
138
  num_samples : int, default = 20
125
139
  Number of samples used during inference, only used for the original Chronos models
126
140
  device : str, default = None
127
- Device to use for inference (and fine-tuning, if enabled). If None, model will use the GPU if available.
128
- For larger Chronos model sizes ``small``, ``base``, and ``large``; inference will fail if no GPU is available.
129
- For Chronos-Bolt models, inference can be done on the CPU. Although fine-tuning the smaller Chronos models
130
- (``tiny`` and ``mini``) and all Chronos-Bolt is allowed on the CPU, we recommend using a GPU for faster fine-tuning.
141
+ Device to use for inference (and fine-tuning, if enabled). If None, model will use the GPU if
142
+ available. For larger Chronos model sizes ``small``, ``base``, and ``large``; inference will fail
143
+ if no GPU is available.
144
+
145
+ For Chronos-Bolt models, inference can be performed on the CPU. Although fine-tuning the smaller
146
+ Chronos models (``tiny`` and ``mini``) and all Chronos-Bolt is allowed on the CPU, we recommend
147
+ using a GPU for faster fine-tuning.
131
148
  context_length : int or None, default = None
132
- The context length to use in the model. Shorter context lengths will decrease model accuracy, but result
133
- in faster inference. If None, the model will infer context length from the data set length at inference
134
- time, but set it to a maximum of 2048. Note that this is only the context length used to pass data into
135
- the model. Individual model implementations may have different context lengths specified in their configuration,
136
- and may truncate the context further. For example, original Chronos models have a context length of 512, but
137
- Chronos-Bolt models handle contexts up to 2048.
138
- torch_dtype : torch.dtype or {"auto", "bfloat16", "float32", "float64"}, default = "auto"
139
- Torch data type for model weights, provided to ``from_pretrained`` method of Hugging Face AutoModels. If
140
- original Chronos models are specified and the model size is ``small``, ``base``, or ``large``, the
141
- ``torch_dtype`` will be set to ``bfloat16`` to enable inference on GPUs.
149
+ The context length to use in the model.
150
+
151
+ Shorter context lengths will decrease model accuracy, but result in faster inference. If None,
152
+ the model will infer context length from the data set length at inference time, but cap it at a
153
+ maximum of 2048.
154
+
155
+ Note that this is only the context length used to pass data into the model. Individual model
156
+ implementations may have different context lengths specified in their configuration, and may
157
+ truncate the context further. For example, original Chronos models have a context length of 512,
158
+ but Chronos-Bolt models handle contexts up to 2048.
159
+ torch_dtype : torch.dtype or {"auto", "bfloat16", "float32"}, default = "auto"
160
+ Torch data type for model weights, provided to ``from_pretrained`` method of Hugging Face
161
+ AutoModels. If original Chronos models are specified and the model size is ``small``, ``base``,
162
+ or ``large``, the ``torch_dtype`` will be set to ``bfloat16`` to enable inference on GPUs.
142
163
  data_loader_num_workers : int, default = 0
143
- Number of worker processes to be used in the data loader. See documentation on ``torch.utils.data.DataLoader``
144
- for more information.
164
+ Number of worker processes to be used in the data loader. See documentation on
165
+ ``torch.utils.data.DataLoader`` for more information.
145
166
  fine_tune : bool, default = False
146
167
  If True, the pretrained model will be fine-tuned
147
168
  fine_tune_lr : float, default = 1e-5
148
- The learning rate used for fine-tuning. This default is suitable for Chronos-Bolt models; for the original
149
- Chronos models, we recommend using a higher learning rate such as ``1e-4``
169
+ The learning rate used for fine-tuning. This default is suitable for Chronos-Bolt models; for
170
+ the original Chronos models, we recommend using a higher learning rate such as ``1e-4``.
150
171
  fine_tune_steps : int, default = 1000
151
172
  The number of gradient update steps to fine-tune for
152
173
  fine_tune_batch_size : int, default = 32
@@ -155,8 +176,9 @@ class ChronosModel(AbstractTimeSeriesModel):
155
176
  The size of the shuffle buffer to shuffle the data during fine-tuning. If None, shuffling will
156
177
  be turned off.
157
178
  eval_during_fine_tune : bool, default = False
158
- If True, validation will be performed during fine-tuning to select the best checkpoint.
159
- Setting this argument to True may result in slower fine-tuning.
179
+ If True, validation will be performed during fine-tuning to select the best checkpoint. Setting this
180
+ argument to True may result in slower fine-tuning. This parameter is ignored if ``skip_model_selection=True``
181
+ in ``TimeSeriesPredictor.fit``.
160
182
  fine_tune_eval_max_items : int, default = 256
161
183
  The maximum number of randomly-sampled time series to use from the validation set for evaluation
162
184
  during fine-tuning. If None, the entire validation dataset will be used.
@@ -164,11 +186,12 @@ class ChronosModel(AbstractTimeSeriesModel):
164
186
  Extra keyword arguments passed to ``transformers.TrainingArguments``
165
187
  keep_transformers_logs : bool, default = False
166
188
  If True, the logs generated by transformers will NOT be removed after fine-tuning
189
+ revision : str, default = None
190
+ Model revision to use (branch name or commit hash). If None, the default branch (usually "main") is used.
167
191
  """
168
192
 
169
193
  ag_priority = 55
170
- # default number of samples for prediction
171
- default_num_samples: int = 20
194
+ default_num_samples: int = 20 # default number of samples for prediction
172
195
  default_model_path = "autogluon/chronos-bolt-small"
173
196
  default_max_time_limit_ratio = 0.8
174
197
  maximum_context_length = 2048
@@ -176,18 +199,18 @@ class ChronosModel(AbstractTimeSeriesModel):
176
199
 
177
200
  def __init__(
178
201
  self,
179
- freq: Optional[str] = None,
202
+ freq: str | None = None,
180
203
  prediction_length: int = 1,
181
- path: Optional[str] = None,
182
- name: Optional[str] = None,
183
- eval_metric: Optional[str] = None,
184
- hyperparameters: Optional[dict[str, Any]] = None,
204
+ path: str | None = None,
205
+ name: str | None = None,
206
+ eval_metric: str | None = None,
207
+ hyperparameters: dict[str, Any] | None = None,
185
208
  **kwargs, # noqa
186
209
  ):
187
210
  hyperparameters = hyperparameters if hyperparameters is not None else {}
188
211
 
189
- model_path_input = hyperparameters.get("model_path", self.default_model_path)
190
- self.model_path = MODEL_ALIASES.get(model_path_input, model_path_input)
212
+ model_path_input: str = hyperparameters.get("model_path", self.default_model_path)
213
+ self.model_path: str = MODEL_ALIASES.get(model_path_input, model_path_input)
191
214
 
192
215
  name = name if name is not None else "Chronos"
193
216
  if not isinstance(model_path_input, Space):
@@ -206,9 +229,9 @@ class ChronosModel(AbstractTimeSeriesModel):
206
229
  **kwargs,
207
230
  )
208
231
 
209
- self._model_pipeline: Optional[Any] = None # of type BaseChronosPipeline
232
+ self._model_pipeline: Any | None = None # of type BaseChronosPipeline
210
233
 
211
- def save(self, path: Optional[str] = None, verbose: bool = True) -> str:
234
+ def save(self, path: str | None = None, verbose: bool = True) -> str:
212
235
  pipeline = self._model_pipeline
213
236
  self._model_pipeline = None
214
237
  path = super().save(path=path, verbose=verbose)
@@ -217,7 +240,7 @@ class ChronosModel(AbstractTimeSeriesModel):
217
240
  return str(path)
218
241
 
219
242
  @classmethod
220
- def load(cls, path: str, reset_paths: bool = True, verbose: bool = True) -> "ChronosModel":
243
+ def load(cls, path: str, reset_paths: bool = True, load_oof: bool = False, verbose: bool = True) -> Self:
221
244
  model = load_pkl.load(path=os.path.join(path, cls.model_file_name), verbose=verbose)
222
245
  if reset_paths:
223
246
  model.set_contexts(path)
@@ -272,15 +295,15 @@ class ChronosModel(AbstractTimeSeriesModel):
272
295
  """
273
296
  return self.ag_default_config.get("default_torch_dtype", "auto")
274
297
 
275
- def get_minimum_resources(self, is_gpu_available: bool = False) -> dict[str, Union[int, float]]:
276
- minimum_resources: dict[str, Union[int, float]] = {"num_cpus": 1}
298
+ def get_minimum_resources(self, is_gpu_available: bool = False) -> dict[str, int | float]:
299
+ minimum_resources: dict[str, int | float] = {"num_cpus": 1}
277
300
  # if GPU is available, we train with 1 GPU per trial
278
301
  if is_gpu_available:
279
302
  minimum_resources["num_gpus"] = self.min_num_gpus
280
303
  return minimum_resources
281
304
 
282
305
  def load_model_pipeline(self, is_training: bool = False):
283
- from .pipeline import BaseChronosPipeline
306
+ from chronos import BaseChronosPipeline
284
307
 
285
308
  gpu_available = self._is_gpu_available()
286
309
 
@@ -291,12 +314,14 @@ class ChronosModel(AbstractTimeSeriesModel):
291
314
  "`import torch; torch.cuda.is_available()` returns `True`."
292
315
  )
293
316
 
294
- device = self.device or ("cuda" if gpu_available else "cpu")
317
+ device = (self.device or "cuda") if gpu_available else "cpu"
295
318
 
319
+ assert self.model_path is not None
296
320
  pipeline = BaseChronosPipeline.from_pretrained(
297
321
  self.model_path,
298
322
  device_map=device,
299
323
  torch_dtype=self.torch_dtype,
324
+ revision=self.get_hyperparameter("revision"),
300
325
  )
301
326
 
302
327
  self._model_pipeline = pipeline
@@ -339,6 +364,7 @@ class ChronosModel(AbstractTimeSeriesModel):
339
364
  "eval_during_fine_tune": False,
340
365
  "fine_tune_eval_max_items": 256,
341
366
  "fine_tune_shuffle_buffer_size": 10_000,
367
+ "revision": None,
342
368
  }
343
369
 
344
370
  @property
@@ -360,6 +386,7 @@ class ChronosModel(AbstractTimeSeriesModel):
360
386
  "fine_tune_eval_max_items",
361
387
  "fine_tune_trainer_kwargs",
362
388
  "keep_transformers_logs",
389
+ "revision",
363
390
  ]
364
391
 
365
392
  def _get_fine_tune_trainer_kwargs(self, init_args, eval_during_fine_tune: bool):
@@ -416,20 +443,24 @@ class ChronosModel(AbstractTimeSeriesModel):
416
443
  def _fit(
417
444
  self,
418
445
  train_data: TimeSeriesDataFrame,
419
- val_data: Optional[TimeSeriesDataFrame] = None,
420
- time_limit: Optional[int] = None,
446
+ val_data: TimeSeriesDataFrame | None = None,
447
+ time_limit: float | None = None,
448
+ num_cpus: int | None = None,
449
+ num_gpus: int | None = None,
450
+ verbosity: int = 2,
421
451
  **kwargs,
422
452
  ) -> None:
423
453
  import transformers
454
+ from chronos import ChronosBoltPipeline, ChronosPipeline
424
455
  from packaging import version
425
456
  from transformers.trainer import PrinterCallback, Trainer, TrainingArguments
426
457
 
427
- from .pipeline import ChronosBoltPipeline, ChronosPipeline
428
- from .pipeline.utils import (
458
+ from .utils import (
429
459
  ChronosFineTuningDataset,
430
460
  EvaluateAndSaveFinalStepCallback,
431
461
  LoggerCallback,
432
462
  TimeLimitCallback,
463
+ update_output_quantiles,
433
464
  )
434
465
 
435
466
  # TODO: Add support for fine-tuning models with context_length longer than the pretrained model
@@ -437,7 +468,6 @@ class ChronosModel(AbstractTimeSeriesModel):
437
468
  # verbosity < 3: all logs and warnings from transformers will be suppressed
438
469
  # verbosity >= 3: progress bar and loss logs will be logged
439
470
  # verbosity 4: everything will be logged
440
- verbosity = kwargs.get("verbosity", 2)
441
471
  for logger_name in logging.root.manager.loggerDict:
442
472
  if "transformers" in logger_name:
443
473
  transformers_logger = logging.getLogger(logger_name)
@@ -486,7 +516,7 @@ class ChronosModel(AbstractTimeSeriesModel):
486
516
  f"Fine-tuning prediction_length has been changed to {fine_tune_prediction_length}."
487
517
  )
488
518
  if self.quantile_levels != self.model_pipeline.quantiles:
489
- self.model_pipeline.model.update_output_quantiles(self.quantile_levels)
519
+ update_output_quantiles(self.model_pipeline.model, self.quantile_levels)
490
520
  logger.info(f"\tChronos-Bolt will be fine-tuned with quantile_levels={self.quantile_levels}")
491
521
  else:
492
522
  raise ValueError(f"Unsupported model pipeline: {type(self.model_pipeline)}")
@@ -517,7 +547,7 @@ class ChronosModel(AbstractTimeSeriesModel):
517
547
  # transformers changed the argument name from `evaluation_strategy` to `eval_strategy`
518
548
  fine_tune_trainer_kwargs["eval_strategy"] = fine_tune_trainer_kwargs.pop("evaluation_strategy")
519
549
 
520
- training_args = TrainingArguments(**fine_tune_trainer_kwargs, **pipeline_specific_trainer_kwargs)
550
+ training_args = TrainingArguments(**fine_tune_trainer_kwargs, **pipeline_specific_trainer_kwargs) # type: ignore
521
551
  tokenizer_train_dataset = ChronosFineTuningDataset(
522
552
  target_df=train_data,
523
553
  target_column=self.target,
@@ -533,6 +563,7 @@ class ChronosModel(AbstractTimeSeriesModel):
533
563
  if time_limit is not None:
534
564
  callbacks.append(TimeLimitCallback(time_limit=time_limit))
535
565
 
566
+ tokenizer_val_dataset: ChronosFineTuningDataset | None = None
536
567
  if val_data is not None:
537
568
  callbacks.append(EvaluateAndSaveFinalStepCallback())
538
569
  # evaluate on a randomly-sampled subset
@@ -548,6 +579,7 @@ class ChronosModel(AbstractTimeSeriesModel):
548
579
  )
549
580
  val_data = val_data.loc[eval_items]
550
581
 
582
+ assert isinstance(val_data, TimeSeriesDataFrame)
551
583
  tokenizer_val_dataset = ChronosFineTuningDataset(
552
584
  target_df=val_data,
553
585
  target_column=self.target,
@@ -561,7 +593,7 @@ class ChronosModel(AbstractTimeSeriesModel):
561
593
  model=self.model_pipeline.inner_model,
562
594
  args=training_args,
563
595
  train_dataset=tokenizer_train_dataset,
564
- eval_dataset=tokenizer_val_dataset if val_data is not None else None,
596
+ eval_dataset=tokenizer_val_dataset,
565
597
  callbacks=callbacks,
566
598
  )
567
599
 
@@ -572,7 +604,7 @@ class ChronosModel(AbstractTimeSeriesModel):
572
604
  if verbosity >= 3:
573
605
  logger.warning(
574
606
  "Transformers logging is turned on during fine-tuning. Note that losses reported by transformers "
575
- "may not correspond to those specified via `eval_metric`."
607
+ "do not correspond to those specified via `eval_metric`."
576
608
  )
577
609
  trainer.add_callback(LoggerCallback())
578
610
 
@@ -592,9 +624,9 @@ class ChronosModel(AbstractTimeSeriesModel):
592
624
  context_length: int,
593
625
  batch_size: int,
594
626
  num_workers: int = 0,
595
- time_limit: Optional[float] = None,
627
+ time_limit: float | None = None,
596
628
  ):
597
- from .pipeline.utils import ChronosInferenceDataLoader, ChronosInferenceDataset, timeout_callback
629
+ from .utils import ChronosInferenceDataLoader, ChronosInferenceDataset, timeout_callback
598
630
 
599
631
  chronos_dataset = ChronosInferenceDataset(
600
632
  target_df=data,
@@ -607,7 +639,7 @@ class ChronosModel(AbstractTimeSeriesModel):
607
639
  batch_size=batch_size,
608
640
  shuffle=False,
609
641
  num_workers=num_workers,
610
- on_batch=timeout_callback(seconds=time_limit),
642
+ after_batch=timeout_callback(seconds=time_limit),
611
643
  )
612
644
 
613
645
  def _get_context_length(self, data: TimeSeriesDataFrame) -> int:
@@ -620,10 +652,10 @@ class ChronosModel(AbstractTimeSeriesModel):
620
652
  def _predict(
621
653
  self,
622
654
  data: TimeSeriesDataFrame,
623
- known_covariates: Optional[TimeSeriesDataFrame] = None,
655
+ known_covariates: TimeSeriesDataFrame | None = None,
624
656
  **kwargs,
625
657
  ) -> TimeSeriesDataFrame:
626
- from .pipeline import ChronosBoltPipeline
658
+ from chronos import ChronosBoltPipeline, ChronosPipeline
627
659
 
628
660
  # We defer initialization of the model pipeline. i.e., the model is only loaded to device memory
629
661
  # during inference. We also infer the maximum length of the time series in the inference data set
@@ -635,20 +667,26 @@ class ChronosModel(AbstractTimeSeriesModel):
635
667
  # (according to its config.json file) of 512, it will further truncate the series during inference.
636
668
  context_length = self._get_context_length(data)
637
669
 
670
+ extra_predict_kwargs = (
671
+ {"num_samples": self.num_samples} if isinstance(self.model_pipeline, ChronosPipeline) else {}
672
+ )
673
+
674
+ # adapt batch size for Chronos bolt if requested prediction length is longer than model prediction length
675
+ batch_size = self.batch_size
676
+ model_prediction_length = None
677
+ if isinstance(self.model_pipeline, ChronosBoltPipeline):
678
+ model_prediction_length = self.model_pipeline.model.config.chronos_config.get("prediction_length")
679
+ if model_prediction_length and self.prediction_length > model_prediction_length:
680
+ batch_size = max(1, batch_size // 4)
681
+ logger.debug(
682
+ f"\tThe prediction_length {self.prediction_length} exceeds model's prediction_length {model_prediction_length}. "
683
+ f"The inference batch_size has been reduced from {self.batch_size} to {batch_size} to avoid OOM errors."
684
+ )
685
+
638
686
  with warning_filter(all_warnings=True):
639
687
  import torch
640
688
 
641
689
  self.model_pipeline.model.eval()
642
- batch_size = self.batch_size
643
- if (
644
- isinstance(self.model_pipeline, ChronosBoltPipeline)
645
- and self.prediction_length > self.model_pipeline.model_prediction_length
646
- ):
647
- batch_size = max(1, batch_size // 4)
648
- logger.debug(
649
- f"\tThe prediction_length {self.prediction_length} exceeds model's prediction_length {self.model_pipeline.model_prediction_length}. "
650
- f"The inference batch_size has been reduced from {self.batch_size} to {batch_size} to avoid OOM errors."
651
- )
652
690
 
653
691
  inference_data_loader = self._get_inference_data_loader(
654
692
  data=data,
@@ -666,7 +704,7 @@ class ChronosModel(AbstractTimeSeriesModel):
666
704
  batch,
667
705
  prediction_length=self.prediction_length,
668
706
  quantile_levels=self.quantile_levels,
669
- num_samples=self.num_samples,
707
+ **extra_predict_kwargs,
670
708
  )
671
709
  except torch.OutOfMemoryError as ex:
672
710
  logger.error(
@@ -692,7 +730,7 @@ class ChronosModel(AbstractTimeSeriesModel):
692
730
  return TimeSeriesDataFrame(df)
693
731
 
694
732
  def _more_tags(self) -> dict:
695
- do_fine_tune = self.get_hyperparameters()["fine_tune"]
733
+ do_fine_tune = self.get_hyperparameter("fine_tune")
696
734
  return {
697
735
  "allow_nan": True,
698
736
  "can_use_train_data": do_fine_tune,
@@ -1,26 +1,23 @@
1
1
  import logging
2
- import os
3
- import re
4
2
  import time
5
3
  from itertools import chain, cycle
6
- from pathlib import Path
7
- from typing import TYPE_CHECKING, Callable, Iterable, Iterator, Literal, Optional
4
+ from typing import TYPE_CHECKING, Callable, Iterable, Iterator, Literal
8
5
 
9
6
  import numpy as np
10
7
  import torch
8
+ from chronos.chronos_bolt import ChronosBoltModelForForecasting, ResidualBlock
11
9
  from gluonts.dataset.field_names import FieldName
12
10
  from gluonts.transform import ExpectedNumInstanceSampler, InstanceSplitter, ValidationSplitSampler
13
11
  from torch.utils.data import IterableDataset
14
12
  from transformers import TrainerCallback
15
13
 
16
- from autogluon.common.loaders.load_s3 import download, list_bucket_prefix_suffix_contains_s3
17
14
  from autogluon.core.utils.exceptions import TimeLimitExceeded
18
- from autogluon.timeseries.dataset.ts_dataframe import TimeSeriesDataFrame
15
+ from autogluon.timeseries.dataset import TimeSeriesDataFrame
19
16
  from autogluon.timeseries.models.gluonts.dataset import SimpleGluonTSDataset
20
17
 
21
18
  if TYPE_CHECKING:
22
19
  # TODO: fix the underlying reason for this circular import, the pipeline should handle tokenization
23
- from autogluon.timeseries.models.chronos.pipeline.chronos import ChronosTokenizer
20
+ from chronos import ChronosTokenizer
24
21
 
25
22
 
26
23
  logger = logging.getLogger("autogluon.timeseries.models.chronos")
@@ -96,7 +93,7 @@ class ChronosFineTuningDataset(IterableDataset):
96
93
  target_column: str = "target",
97
94
  context_length: int = 512,
98
95
  prediction_length: int = 64,
99
- tokenizer: Optional["ChronosTokenizer"] = None,
96
+ tokenizer: "ChronosTokenizer | None" = None,
100
97
  mode: Literal["training", "validation"] = "training",
101
98
  ) -> None:
102
99
  super().__init__()
@@ -132,11 +129,11 @@ class ChronosFineTuningDataset(IterableDataset):
132
129
  def _create_training_data(self, data: Iterable[dict]):
133
130
  data = chain.from_iterable(cycle([data]))
134
131
  split_transform = self._create_instance_splitter("training")
135
- data = split_transform.apply(data, is_train=True)
132
+ data = split_transform.apply(data, is_train=True) # type: ignore
136
133
  return data
137
134
 
138
135
  def _create_validation_data(self, data: Iterable[dict]):
139
- data = self._create_instance_splitter("validation").apply(data, is_train=False)
136
+ data = self._create_instance_splitter("validation").apply(data, is_train=False) # type: ignore
140
137
  return data
141
138
 
142
139
  def to_chronos_format(self, entry: dict) -> dict:
@@ -190,12 +187,14 @@ class ChronosFineTuningDataset(IterableDataset):
190
187
  iterable = self._create_training_data(self.gluonts_dataset)
191
188
  elif self.mode == "validation":
192
189
  iterable = self._create_validation_data(self.gluonts_dataset)
190
+ else:
191
+ raise ValueError(f"Unknown mode {self.mode}")
193
192
 
194
193
  format_transform_fn = self.to_chronos_format if self.tokenizer is not None else self.to_chronos_bolt_format
195
194
  for entry in iterable:
196
195
  yield format_transform_fn(entry)
197
196
 
198
- def shuffle(self, shuffle_buffer_size: Optional[int] = None):
197
+ def shuffle(self, shuffle_buffer_size: int | None = None):
199
198
  """Returns a (pseudo) shuffled version of this iterable dataset.
200
199
 
201
200
  Parameters
@@ -220,27 +219,6 @@ def left_pad_and_stack_1D(tensors: list[torch.Tensor]) -> torch.Tensor:
220
219
  return torch.stack(padded)
221
220
 
222
221
 
223
- def cache_model_from_s3(s3_uri: str, force=False):
224
- if re.match("^s3://([^/]+)/(.*?([^/]+)/?)$", s3_uri) is None:
225
- raise ValueError(f"Not a valid S3 URI: {s3_uri}")
226
-
227
- # we expect the prefix to point to a "directory" on S3
228
- if not s3_uri.endswith("/"):
229
- s3_uri += "/"
230
-
231
- cache_home = Path(os.environ.get("XDG_CACHE_HOME") or Path.home() / ".cache")
232
- bucket, prefix = s3_uri.replace("s3://", "").split("/", 1)
233
- bucket_cache_path = cache_home / "autogluon" / "timeseries" / bucket
234
-
235
- for obj_path in list_bucket_prefix_suffix_contains_s3(bucket=bucket, prefix=prefix):
236
- destination_path = bucket_cache_path / obj_path
237
- if not force and destination_path.exists():
238
- continue
239
- download(bucket, obj_path, local_path=str(destination_path))
240
-
241
- return str(bucket_cache_path / prefix)
242
-
243
-
244
222
  class ChronosInferenceDataset:
245
223
  """A container for time series datasets that implements the ``torch.utils.data.Dataset`` interface"""
246
224
 
@@ -277,10 +255,10 @@ class ChronosInferenceDataset:
277
255
 
278
256
  class ChronosInferenceDataLoader(torch.utils.data.DataLoader):
279
257
  def __init__(self, *args, **kwargs):
280
- self.callback: Callable = kwargs.pop("on_batch", lambda: None)
258
+ self.callback: Callable = kwargs.pop("after_batch", lambda: None)
281
259
  super().__init__(*args, **kwargs)
282
260
 
283
- def __iter__(self):
261
+ def __iter__(self): # type: ignore
284
262
  for item in super().__iter__():
285
263
  yield item
286
264
  self.callback()
@@ -297,7 +275,7 @@ class EvaluateAndSaveFinalStepCallback(TrainerCallback):
297
275
 
298
276
 
299
277
  class TimeLimitCallback(TrainerCallback):
300
- def __init__(self, time_limit: int):
278
+ def __init__(self, time_limit: float):
301
279
  """
302
280
  Callback to stop training once a specified time has elapsed.
303
281
 
@@ -321,12 +299,13 @@ class TimeLimitCallback(TrainerCallback):
321
299
 
322
300
  class LoggerCallback(TrainerCallback):
323
301
  def on_log(self, args, state, control, logs=None, **kwargs):
324
- logs.pop("total_flos", None)
302
+ if logs:
303
+ logs.pop("total_flos", None)
325
304
  if state.is_local_process_zero:
326
305
  logger.info(logs)
327
306
 
328
307
 
329
- def timeout_callback(seconds: Optional[float]) -> Callable:
308
+ def timeout_callback(seconds: float | None) -> Callable:
330
309
  """Return a callback object that raises an exception if time limit is exceeded."""
331
310
  start_time = time.monotonic()
332
311
 
@@ -335,3 +314,56 @@ def timeout_callback(seconds: Optional[float]) -> Callable:
335
314
  raise TimeLimitExceeded
336
315
 
337
316
  return callback
317
+
318
+
319
+ def update_output_quantiles(model: ChronosBoltModelForForecasting, new_quantiles: list[float]) -> None:
320
+ """In-place updates model's output layer to support only the specified new quantiles by copying
321
+ weights from closest existing quantiles.
322
+ """
323
+ old_quantiles = model.chronos_config.quantiles
324
+ new_quantiles = sorted(new_quantiles)
325
+
326
+ if new_quantiles == old_quantiles:
327
+ return
328
+
329
+ model.chronos_config.quantiles = new_quantiles
330
+ model.num_quantiles = len(new_quantiles)
331
+ model.register_buffer("quantiles", torch.tensor(new_quantiles, dtype=model.dtype), persistent=False)
332
+
333
+ old_output_layer = model.output_patch_embedding
334
+ new_output_layer = ResidualBlock(
335
+ in_dim=model.config.d_model,
336
+ h_dim=model.config.d_ff,
337
+ out_dim=len(new_quantiles) * model.chronos_config.prediction_length,
338
+ act_fn_name=model.config.dense_act_fn,
339
+ dropout_p=model.config.dropout_rate,
340
+ )
341
+
342
+ # hidden_layer is shared across all quantiles
343
+ new_output_layer.hidden_layer.weight.data.copy_(old_output_layer.hidden_layer.weight.data)
344
+ if old_output_layer.hidden_layer.bias is not None:
345
+ new_output_layer.hidden_layer.bias.data.copy_(old_output_layer.hidden_layer.bias.data)
346
+
347
+ def copy_quantile_weights(src_idx: int, dst_idx: int):
348
+ """Copy weights for one quantile from src_idx to dst_idx"""
349
+ prediction_length = model.chronos_config.prediction_length
350
+ src_start, src_end = src_idx * prediction_length, (src_idx + 1) * prediction_length
351
+ dst_start, dst_end = dst_idx * prediction_length, (dst_idx + 1) * prediction_length
352
+
353
+ for layer_name in ["output_layer", "residual_layer"]:
354
+ old_layer_attr = getattr(old_output_layer, layer_name)
355
+ new_layer_attr = getattr(new_output_layer, layer_name)
356
+
357
+ new_layer_attr.weight[dst_start:dst_end] = old_layer_attr.weight[src_start:src_end]
358
+ if old_layer_attr.bias is not None:
359
+ new_layer_attr.bias[dst_start:dst_end] = old_layer_attr.bias[src_start:src_end]
360
+
361
+ with torch.no_grad():
362
+ for new_idx, new_q in enumerate(new_quantiles):
363
+ closest_q = min(old_quantiles, key=lambda x: abs(x - new_q))
364
+ closest_idx = old_quantiles.index(closest_q)
365
+ copy_quantile_weights(closest_idx, new_idx)
366
+
367
+ model.output_patch_embedding = new_output_layer
368
+ model.config.chronos_config["quantiles"] = new_quantiles
369
+ model.chronos_config.quantiles = new_quantiles