autogluon.timeseries 1.4.1b20251016__py3-none-any.whl → 1.4.1b20251218__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.timeseries might be problematic. Click here for more details.
- autogluon/timeseries/configs/hyperparameter_presets.py +7 -21
- autogluon/timeseries/configs/predictor_presets.py +23 -39
- autogluon/timeseries/dataset/ts_dataframe.py +97 -86
- autogluon/timeseries/learner.py +70 -35
- autogluon/timeseries/metrics/__init__.py +4 -4
- autogluon/timeseries/metrics/abstract.py +8 -8
- autogluon/timeseries/metrics/point.py +9 -9
- autogluon/timeseries/metrics/quantile.py +5 -5
- autogluon/timeseries/metrics/utils.py +4 -4
- autogluon/timeseries/models/__init__.py +2 -1
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py +52 -39
- autogluon/timeseries/models/abstract/model_trial.py +2 -1
- autogluon/timeseries/models/abstract/tunable.py +8 -8
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py +58 -62
- autogluon/timeseries/models/autogluon_tabular/per_step.py +26 -15
- autogluon/timeseries/models/autogluon_tabular/transforms.py +11 -9
- autogluon/timeseries/models/chronos/__init__.py +2 -1
- autogluon/timeseries/models/chronos/chronos2.py +395 -0
- autogluon/timeseries/models/chronos/model.py +126 -88
- autogluon/timeseries/models/chronos/{pipeline/utils.py → utils.py} +69 -37
- autogluon/timeseries/models/ensemble/__init__.py +36 -2
- autogluon/timeseries/models/ensemble/abstract.py +14 -46
- autogluon/timeseries/models/ensemble/array_based/__init__.py +3 -0
- autogluon/timeseries/models/ensemble/array_based/abstract.py +240 -0
- autogluon/timeseries/models/ensemble/array_based/models.py +185 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py +12 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py +88 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/linear_stacker.py +186 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py +94 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py +107 -0
- autogluon/timeseries/models/ensemble/{greedy.py → ensemble_selection.py} +41 -61
- autogluon/timeseries/models/ensemble/per_item_greedy.py +172 -0
- autogluon/timeseries/models/ensemble/weighted/__init__.py +8 -0
- autogluon/timeseries/models/ensemble/weighted/abstract.py +45 -0
- autogluon/timeseries/models/ensemble/{basic.py → weighted/basic.py} +25 -22
- autogluon/timeseries/models/ensemble/weighted/greedy.py +62 -0
- autogluon/timeseries/models/gluonts/abstract.py +32 -31
- autogluon/timeseries/models/gluonts/dataset.py +11 -11
- autogluon/timeseries/models/gluonts/models.py +0 -7
- autogluon/timeseries/models/local/__init__.py +0 -7
- autogluon/timeseries/models/local/abstract_local_model.py +15 -18
- autogluon/timeseries/models/local/naive.py +2 -2
- autogluon/timeseries/models/local/npts.py +7 -1
- autogluon/timeseries/models/local/statsforecast.py +12 -12
- autogluon/timeseries/models/multi_window/multi_window_model.py +39 -24
- autogluon/timeseries/models/registry.py +3 -4
- autogluon/timeseries/models/toto/_internal/backbone/attention.py +3 -4
- autogluon/timeseries/models/toto/_internal/backbone/backbone.py +6 -6
- autogluon/timeseries/models/toto/_internal/backbone/rope.py +4 -9
- autogluon/timeseries/models/toto/_internal/backbone/rotary_embedding_torch.py +342 -0
- autogluon/timeseries/models/toto/_internal/backbone/scaler.py +2 -3
- autogluon/timeseries/models/toto/_internal/backbone/transformer.py +10 -10
- autogluon/timeseries/models/toto/_internal/dataset.py +2 -2
- autogluon/timeseries/models/toto/_internal/forecaster.py +8 -8
- autogluon/timeseries/models/toto/dataloader.py +4 -4
- autogluon/timeseries/models/toto/hf_pretrained_model.py +97 -16
- autogluon/timeseries/models/toto/model.py +35 -20
- autogluon/timeseries/predictor.py +527 -155
- autogluon/timeseries/regressor.py +27 -30
- autogluon/timeseries/splitter.py +3 -27
- autogluon/timeseries/trainer/ensemble_composer.py +444 -0
- autogluon/timeseries/trainer/model_set_builder.py +9 -9
- autogluon/timeseries/trainer/prediction_cache.py +16 -16
- autogluon/timeseries/trainer/trainer.py +300 -278
- autogluon/timeseries/trainer/utils.py +17 -0
- autogluon/timeseries/transforms/covariate_scaler.py +8 -8
- autogluon/timeseries/transforms/target_scaler.py +15 -15
- autogluon/timeseries/utils/constants.py +10 -0
- autogluon/timeseries/utils/datetime/lags.py +1 -3
- autogluon/timeseries/utils/datetime/seasonality.py +1 -3
- autogluon/timeseries/utils/features.py +31 -14
- autogluon/timeseries/utils/forecast.py +6 -7
- autogluon/timeseries/utils/timer.py +173 -0
- autogluon/timeseries/version.py +1 -1
- autogluon.timeseries-1.4.1b20251218-py3.11-nspkg.pth +1 -0
- {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/METADATA +39 -27
- autogluon_timeseries-1.4.1b20251218.dist-info/RECORD +103 -0
- {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/WHEEL +1 -1
- autogluon/timeseries/evaluator.py +0 -6
- autogluon/timeseries/models/chronos/pipeline/__init__.py +0 -10
- autogluon/timeseries/models/chronos/pipeline/base.py +0 -160
- autogluon/timeseries/models/chronos/pipeline/chronos.py +0 -544
- autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py +0 -580
- autogluon.timeseries-1.4.1b20251016-py3.9-nspkg.pth +0 -1
- autogluon.timeseries-1.4.1b20251016.dist-info/RECORD +0 -90
- {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info/licenses}/LICENSE +0 -0
- {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info/licenses}/NOTICE +0 -0
- {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/zip-safe +0 -0
|
@@ -5,7 +5,7 @@ import time
|
|
|
5
5
|
import traceback
|
|
6
6
|
from collections import defaultdict
|
|
7
7
|
from pathlib import Path
|
|
8
|
-
from typing import Any, Literal
|
|
8
|
+
from typing import Any, Literal
|
|
9
9
|
|
|
10
10
|
import networkx as nx
|
|
11
11
|
import numpy as np
|
|
@@ -20,18 +20,20 @@ from autogluon.core.utils.savers import save_pkl
|
|
|
20
20
|
from autogluon.timeseries import TimeSeriesDataFrame
|
|
21
21
|
from autogluon.timeseries.metrics import TimeSeriesScorer, check_get_evaluation_metric
|
|
22
22
|
from autogluon.timeseries.models.abstract import AbstractTimeSeriesModel, TimeSeriesModelBase
|
|
23
|
-
from autogluon.timeseries.models.ensemble import AbstractTimeSeriesEnsembleModel
|
|
23
|
+
from autogluon.timeseries.models.ensemble import AbstractTimeSeriesEnsembleModel
|
|
24
24
|
from autogluon.timeseries.models.multi_window import MultiWindowBacktestingModel
|
|
25
25
|
from autogluon.timeseries.splitter import AbstractWindowSplitter, ExpandingWindowSplitter
|
|
26
|
+
from autogluon.timeseries.trainer.ensemble_composer import EnsembleComposer, validate_ensemble_hyperparameters
|
|
26
27
|
from autogluon.timeseries.utils.features import (
|
|
27
28
|
ConstantReplacementFeatureImportanceTransform,
|
|
28
29
|
CovariateMetadata,
|
|
29
30
|
PermutationFeatureImportanceTransform,
|
|
30
31
|
)
|
|
31
|
-
from autogluon.timeseries.utils.warning_filters import disable_tqdm
|
|
32
|
+
from autogluon.timeseries.utils.warning_filters import disable_tqdm
|
|
32
33
|
|
|
33
34
|
from .model_set_builder import TrainableModelSetBuilder, contains_searchspace
|
|
34
35
|
from .prediction_cache import PredictionCache, get_prediction_cache
|
|
36
|
+
from .utils import log_scores_and_times
|
|
35
37
|
|
|
36
38
|
logger = logging.getLogger("autogluon.timeseries.trainer")
|
|
37
39
|
|
|
@@ -45,16 +47,16 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
45
47
|
self,
|
|
46
48
|
path: str,
|
|
47
49
|
prediction_length: int = 1,
|
|
48
|
-
eval_metric:
|
|
50
|
+
eval_metric: str | TimeSeriesScorer | None = None,
|
|
49
51
|
save_data: bool = True,
|
|
50
52
|
skip_model_selection: bool = False,
|
|
51
53
|
enable_ensemble: bool = True,
|
|
52
54
|
verbosity: int = 2,
|
|
53
|
-
|
|
54
|
-
|
|
55
|
+
num_val_windows: tuple[int, ...] = (1,),
|
|
56
|
+
val_step_size: int | None = None,
|
|
57
|
+
refit_every_n_windows: int | None = 1,
|
|
55
58
|
# TODO: Set cache_predictions=False by default once all models in default presets have a reasonable inference speed
|
|
56
59
|
cache_predictions: bool = True,
|
|
57
|
-
ensemble_model_type: Optional[Type] = None,
|
|
58
60
|
**kwargs,
|
|
59
61
|
):
|
|
60
62
|
super().__init__(
|
|
@@ -71,13 +73,11 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
71
73
|
self.skip_model_selection = skip_model_selection
|
|
72
74
|
# Ensemble cannot be fit if val_scores are not computed
|
|
73
75
|
self.enable_ensemble = enable_ensemble and not skip_model_selection
|
|
74
|
-
if ensemble_model_type is None:
|
|
75
|
-
ensemble_model_type = GreedyEnsemble
|
|
76
|
-
else:
|
|
76
|
+
if kwargs.get("ensemble_model_type") is not None:
|
|
77
77
|
logger.warning(
|
|
78
|
-
"Using a custom `ensemble_model_type` is
|
|
78
|
+
"Using a custom `ensemble_model_type` is no longer supported. Use the `ensemble_hyperparameters` "
|
|
79
|
+
"argument to `fit` instead."
|
|
79
80
|
)
|
|
80
|
-
self.ensemble_model_type: Type[AbstractTimeSeriesEnsembleModel] = ensemble_model_type
|
|
81
81
|
|
|
82
82
|
self.verbosity = verbosity
|
|
83
83
|
|
|
@@ -86,10 +86,16 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
86
86
|
self.model_refit_map = {}
|
|
87
87
|
|
|
88
88
|
self.eval_metric = check_get_evaluation_metric(eval_metric, prediction_length=prediction_length)
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
89
|
+
|
|
90
|
+
self.num_val_windows = num_val_windows
|
|
91
|
+
|
|
92
|
+
# Validate num_val_windows
|
|
93
|
+
if len(self.num_val_windows) == 0:
|
|
94
|
+
raise ValueError("num_val_windows cannot be empty")
|
|
95
|
+
if not all(isinstance(w, int) and w > 0 for w in self.num_val_windows):
|
|
96
|
+
raise ValueError(f"num_val_windows must contain only positive integers, got {self.num_val_windows}")
|
|
97
|
+
|
|
98
|
+
self.val_step_size = val_step_size
|
|
93
99
|
self.refit_every_n_windows = refit_every_n_windows
|
|
94
100
|
self.hpo_results = {}
|
|
95
101
|
|
|
@@ -112,14 +118,14 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
112
118
|
path = os.path.join(self.path_data, "train.pkl")
|
|
113
119
|
return load_pkl.load(path=path)
|
|
114
120
|
|
|
115
|
-
def load_val_data(self) ->
|
|
121
|
+
def load_val_data(self) -> TimeSeriesDataFrame | None:
|
|
116
122
|
path = os.path.join(self.path_data, "val.pkl")
|
|
117
123
|
if os.path.exists(path):
|
|
118
124
|
return load_pkl.load(path=path)
|
|
119
125
|
else:
|
|
120
126
|
return None
|
|
121
127
|
|
|
122
|
-
def load_data(self) -> tuple[TimeSeriesDataFrame,
|
|
128
|
+
def load_data(self) -> tuple[TimeSeriesDataFrame, TimeSeriesDataFrame | None]:
|
|
123
129
|
train_data = self.load_train_data()
|
|
124
130
|
val_data = self.load_val_data()
|
|
125
131
|
return train_data, val_data
|
|
@@ -142,7 +148,7 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
142
148
|
def _add_model(
|
|
143
149
|
self,
|
|
144
150
|
model: TimeSeriesModelBase,
|
|
145
|
-
base_models:
|
|
151
|
+
base_models: list[str] | None = None,
|
|
146
152
|
):
|
|
147
153
|
"""Add a model to the model graph of the trainer. If the model is an ensemble, also add
|
|
148
154
|
information about dependencies to the model graph (list of models specified via ``base_models``).
|
|
@@ -174,8 +180,8 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
174
180
|
for base_model in base_models:
|
|
175
181
|
self.model_graph.add_edge(base_model, model.name)
|
|
176
182
|
|
|
177
|
-
def
|
|
178
|
-
"""Get a dictionary mapping each model to their
|
|
183
|
+
def _get_model_layers(self) -> dict[str, int]:
|
|
184
|
+
"""Get a dictionary mapping each model to their layer in the model graph"""
|
|
179
185
|
|
|
180
186
|
# get nodes without a parent
|
|
181
187
|
rootset = set(self.model_graph.nodes)
|
|
@@ -188,14 +194,14 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
188
194
|
for dest_node in paths_to:
|
|
189
195
|
paths_from[dest_node][source_node] = paths_to[dest_node]
|
|
190
196
|
|
|
191
|
-
# determine
|
|
192
|
-
|
|
197
|
+
# determine layers
|
|
198
|
+
layers = {}
|
|
193
199
|
for n in paths_from:
|
|
194
|
-
|
|
200
|
+
layers[n] = max(paths_from[n].get(src, 0) for src in rootset)
|
|
195
201
|
|
|
196
|
-
return
|
|
202
|
+
return layers
|
|
197
203
|
|
|
198
|
-
def get_models_attribute_dict(self, attribute: str, models:
|
|
204
|
+
def get_models_attribute_dict(self, attribute: str, models: list[str] | None = None) -> dict[str, Any]:
|
|
199
205
|
"""Get an attribute from the `model_graph` for each of the model names
|
|
200
206
|
specified. If `models` is none, the attribute will be returned for all models"""
|
|
201
207
|
results = {}
|
|
@@ -213,25 +219,25 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
213
219
|
if len(models) == 1:
|
|
214
220
|
return models[0]
|
|
215
221
|
model_performances = self.get_models_attribute_dict(attribute="val_score")
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
(m, model_performances[m],
|
|
222
|
+
model_layers = self._get_model_layers()
|
|
223
|
+
model_name_score_layer_list = [
|
|
224
|
+
(m, model_performances[m], model_layers.get(m, 0)) for m in models if model_performances[m] is not None
|
|
219
225
|
]
|
|
220
226
|
|
|
221
|
-
if not
|
|
227
|
+
if not model_name_score_layer_list:
|
|
222
228
|
raise ValueError("No fitted models have validation scores computed.")
|
|
223
229
|
|
|
224
230
|
# rank models in terms of validation score. if two models have the same validation score,
|
|
225
|
-
# rank them by their
|
|
231
|
+
# rank them by their layer in the model graph (lower layer models are preferred).
|
|
226
232
|
return max(
|
|
227
|
-
|
|
228
|
-
key=lambda mns: (mns[1], -mns[2]), # (score, -
|
|
233
|
+
model_name_score_layer_list,
|
|
234
|
+
key=lambda mns: (mns[1], -mns[2]), # (score, -layer)
|
|
229
235
|
)[0]
|
|
230
236
|
|
|
231
|
-
def get_model_names(self,
|
|
237
|
+
def get_model_names(self, layer: int | None = None) -> list[str]:
|
|
232
238
|
"""Get model names that are registered in the model graph"""
|
|
233
|
-
if
|
|
234
|
-
return list(node for node, l in self.
|
|
239
|
+
if layer is not None:
|
|
240
|
+
return list(node for node, l in self._get_model_layers().items() if l == layer) # noqa: E741
|
|
235
241
|
return list(self.model_graph.nodes)
|
|
236
242
|
|
|
237
243
|
def get_info(self, include_model_info: bool = False) -> dict[str, Any]:
|
|
@@ -259,32 +265,13 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
259
265
|
|
|
260
266
|
return info
|
|
261
267
|
|
|
262
|
-
def _train_single(
|
|
263
|
-
self,
|
|
264
|
-
train_data: TimeSeriesDataFrame,
|
|
265
|
-
model: AbstractTimeSeriesModel,
|
|
266
|
-
val_data: Optional[TimeSeriesDataFrame] = None,
|
|
267
|
-
time_limit: Optional[float] = None,
|
|
268
|
-
) -> AbstractTimeSeriesModel:
|
|
269
|
-
"""Train the single model and return the model object that was fitted. This method
|
|
270
|
-
does not save the resulting model."""
|
|
271
|
-
model.fit(
|
|
272
|
-
train_data=train_data,
|
|
273
|
-
val_data=val_data,
|
|
274
|
-
time_limit=time_limit,
|
|
275
|
-
verbosity=self.verbosity,
|
|
276
|
-
val_splitter=self.val_splitter,
|
|
277
|
-
refit_every_n_windows=self.refit_every_n_windows,
|
|
278
|
-
)
|
|
279
|
-
return model
|
|
280
|
-
|
|
281
268
|
def tune_model_hyperparameters(
|
|
282
269
|
self,
|
|
283
270
|
model: AbstractTimeSeriesModel,
|
|
284
271
|
train_data: TimeSeriesDataFrame,
|
|
285
|
-
time_limit:
|
|
286
|
-
val_data:
|
|
287
|
-
hyperparameter_tune_kwargs:
|
|
272
|
+
time_limit: float | None = None,
|
|
273
|
+
val_data: TimeSeriesDataFrame | None = None,
|
|
274
|
+
hyperparameter_tune_kwargs: str | dict = "auto",
|
|
288
275
|
):
|
|
289
276
|
default_num_trials = None
|
|
290
277
|
if time_limit is None and (
|
|
@@ -300,7 +287,7 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
300
287
|
hyperparameter_tune_kwargs=hyperparameter_tune_kwargs,
|
|
301
288
|
time_limit=time_limit,
|
|
302
289
|
default_num_trials=default_num_trials,
|
|
303
|
-
val_splitter=self.
|
|
290
|
+
val_splitter=self._get_val_splitter(use_val_data=val_data is not None),
|
|
304
291
|
refit_every_n_windows=self.refit_every_n_windows,
|
|
305
292
|
)
|
|
306
293
|
total_tuning_time = time.time() - tuning_start_time
|
|
@@ -310,11 +297,21 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
310
297
|
# add each of the trained HPO configurations to the trained models
|
|
311
298
|
for model_hpo_name, model_info in hpo_models.items():
|
|
312
299
|
model_path = os.path.join(self.path, model_info["path"])
|
|
300
|
+
|
|
313
301
|
# Only load model configurations that didn't fail
|
|
314
|
-
if Path(model_path).exists():
|
|
315
|
-
|
|
316
|
-
|
|
317
|
-
|
|
302
|
+
if not Path(model_path).exists():
|
|
303
|
+
continue
|
|
304
|
+
|
|
305
|
+
model_hpo = self.load_model(model_hpo_name, path=model_path, model_type=type(model))
|
|
306
|
+
|
|
307
|
+
# override validation score to align evaluations on the final ensemble layer's window
|
|
308
|
+
if isinstance(model_hpo, MultiWindowBacktestingModel):
|
|
309
|
+
model_hpo.val_score = float(
|
|
310
|
+
np.mean([info["val_score"] for info in model_hpo.info_per_val_window[-self.num_val_windows[-1] :]])
|
|
311
|
+
)
|
|
312
|
+
|
|
313
|
+
self._add_model(model_hpo)
|
|
314
|
+
model_names_trained.append(model_hpo.name)
|
|
318
315
|
|
|
319
316
|
logger.info(f"\tTrained {len(model_names_trained)} models while tuning {model.name}.")
|
|
320
317
|
|
|
@@ -335,8 +332,8 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
335
332
|
self,
|
|
336
333
|
train_data: TimeSeriesDataFrame,
|
|
337
334
|
model: AbstractTimeSeriesModel,
|
|
338
|
-
val_data:
|
|
339
|
-
time_limit:
|
|
335
|
+
val_data: TimeSeriesDataFrame | None = None,
|
|
336
|
+
time_limit: float | None = None,
|
|
340
337
|
) -> list[str]:
|
|
341
338
|
"""Fit and save the given model on given training and validation data and save the trained model.
|
|
342
339
|
|
|
@@ -353,18 +350,39 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
353
350
|
logger.info(f"\tSkipping {model.name} due to lack of time remaining.")
|
|
354
351
|
return model_names_trained
|
|
355
352
|
|
|
356
|
-
model
|
|
353
|
+
model.fit(
|
|
354
|
+
train_data=train_data,
|
|
355
|
+
val_data=None if isinstance(model, MultiWindowBacktestingModel) else val_data,
|
|
356
|
+
time_limit=time_limit,
|
|
357
|
+
verbosity=self.verbosity,
|
|
358
|
+
val_splitter=self._get_val_splitter(use_val_data=val_data is not None),
|
|
359
|
+
refit_every_n_windows=self.refit_every_n_windows,
|
|
360
|
+
)
|
|
361
|
+
|
|
357
362
|
fit_end_time = time.time()
|
|
358
363
|
model.fit_time = model.fit_time or (fit_end_time - fit_start_time)
|
|
359
364
|
|
|
360
365
|
if time_limit is not None:
|
|
361
366
|
time_limit = time_limit - (fit_end_time - fit_start_time)
|
|
362
|
-
if val_data is not None
|
|
367
|
+
if val_data is not None:
|
|
363
368
|
model.score_and_cache_oof(
|
|
364
369
|
val_data, store_val_score=True, store_predict_time=True, time_limit=time_limit
|
|
365
370
|
)
|
|
366
371
|
|
|
367
|
-
|
|
372
|
+
# by default, MultiWindowBacktestingModel computes validation score on all windows. However,
|
|
373
|
+
# when doing multi-layer stacking, the trainer only scores on the windows of the last layer.
|
|
374
|
+
# we override the val_score to align scores.
|
|
375
|
+
if isinstance(model, MultiWindowBacktestingModel):
|
|
376
|
+
model.val_score = float(
|
|
377
|
+
np.mean([info["val_score"] for info in model.info_per_val_window[-self.num_val_windows[-1] :]])
|
|
378
|
+
)
|
|
379
|
+
|
|
380
|
+
log_scores_and_times(
|
|
381
|
+
val_score=model.val_score,
|
|
382
|
+
fit_time=model.fit_time,
|
|
383
|
+
predict_time=model.predict_time,
|
|
384
|
+
eval_metric_name=self.eval_metric.name_with_sign,
|
|
385
|
+
)
|
|
368
386
|
|
|
369
387
|
self.save_model(model=model)
|
|
370
388
|
except TimeLimitExceeded:
|
|
@@ -380,34 +398,64 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
380
398
|
|
|
381
399
|
return model_names_trained
|
|
382
400
|
|
|
383
|
-
def
|
|
384
|
-
self,
|
|
385
|
-
val_score: Optional[float] = None,
|
|
386
|
-
fit_time: Optional[float] = None,
|
|
387
|
-
predict_time: Optional[float] = None,
|
|
388
|
-
):
|
|
389
|
-
if val_score is not None:
|
|
390
|
-
logger.info(f"\t{val_score:<7.4f}".ljust(15) + f"= Validation score ({self.eval_metric.name_with_sign})")
|
|
391
|
-
if fit_time is not None:
|
|
392
|
-
logger.info(f"\t{fit_time:<7.2f} s".ljust(15) + "= Training runtime")
|
|
393
|
-
if predict_time is not None:
|
|
394
|
-
logger.info(f"\t{predict_time:<7.2f} s".ljust(15) + "= Validation (prediction) runtime")
|
|
395
|
-
|
|
396
|
-
def _train_multi(
|
|
401
|
+
def fit(
|
|
397
402
|
self,
|
|
398
403
|
train_data: TimeSeriesDataFrame,
|
|
399
|
-
hyperparameters:
|
|
400
|
-
val_data:
|
|
401
|
-
|
|
402
|
-
|
|
403
|
-
|
|
404
|
-
|
|
405
|
-
|
|
404
|
+
hyperparameters: str | dict[Any, dict],
|
|
405
|
+
val_data: TimeSeriesDataFrame | None = None,
|
|
406
|
+
ensemble_hyperparameters: dict | list[dict] | None = None,
|
|
407
|
+
hyperparameter_tune_kwargs: str | dict | None = None,
|
|
408
|
+
excluded_model_types: list[str] | None = None,
|
|
409
|
+
time_limit: float | None = None,
|
|
410
|
+
random_seed: int | None = None,
|
|
411
|
+
):
|
|
412
|
+
"""Fit a set of timeseries models specified by the `hyperparameters`
|
|
413
|
+
dictionary that maps model names to their specified hyperparameters.
|
|
414
|
+
|
|
415
|
+
Parameters
|
|
416
|
+
----------
|
|
417
|
+
train_data
|
|
418
|
+
Training data for fitting time series timeseries models.
|
|
419
|
+
hyperparameters
|
|
420
|
+
A dictionary mapping selected model names, model classes or model factory to hyperparameter
|
|
421
|
+
settings. Model names should be present in `trainer.presets.DEFAULT_MODEL_NAMES`. Optionally,
|
|
422
|
+
the user may provide one of "default", "light" and "very_light" to specify presets.
|
|
423
|
+
val_data
|
|
424
|
+
Optional validation data set to report validation scores on.
|
|
425
|
+
ensemble_hyperparameters
|
|
426
|
+
A dictionary mapping ensemble names to their specified hyperparameters. Ensemble names
|
|
427
|
+
should be defined in the models.ensemble namespace. defaults to `{"GreedyEnsemble": {}}`
|
|
428
|
+
which only fits a greedy weighted ensemble with default hyperparameters. Providing an
|
|
429
|
+
empty dictionary disables ensemble training.
|
|
430
|
+
hyperparameter_tune_kwargs
|
|
431
|
+
Args for hyperparameter tuning
|
|
432
|
+
excluded_model_types
|
|
433
|
+
Names of models that should not be trained, even if listed in `hyperparameters`.
|
|
434
|
+
time_limit
|
|
435
|
+
Time limit for training
|
|
436
|
+
random_seed
|
|
437
|
+
Random seed that will be set to each model during training
|
|
438
|
+
"""
|
|
406
439
|
logger.info(f"\nStarting training. Start time is {time.strftime('%Y-%m-%d %H:%M:%S')}")
|
|
407
440
|
|
|
441
|
+
# Handle ensemble hyperparameters
|
|
442
|
+
if ensemble_hyperparameters is None:
|
|
443
|
+
ensemble_hyperparameters = [{"GreedyEnsemble": {}}]
|
|
444
|
+
if isinstance(ensemble_hyperparameters, dict):
|
|
445
|
+
ensemble_hyperparameters = [ensemble_hyperparameters]
|
|
446
|
+
validate_ensemble_hyperparameters(ensemble_hyperparameters)
|
|
447
|
+
|
|
408
448
|
time_start = time.time()
|
|
409
449
|
hyperparameters = copy.deepcopy(hyperparameters)
|
|
410
450
|
|
|
451
|
+
if val_data is not None:
|
|
452
|
+
if self.num_val_windows[-1] != 1:
|
|
453
|
+
raise ValueError(
|
|
454
|
+
f"When val_data is provided, the last element of num_val_windows must be 1, "
|
|
455
|
+
f"got {self.num_val_windows[-1]}"
|
|
456
|
+
)
|
|
457
|
+
multi_window = self._get_val_splitter(use_val_data=val_data is not None).num_val_windows > 0
|
|
458
|
+
|
|
411
459
|
if self.save_data and not self.is_data_saved:
|
|
412
460
|
self.save_train_data(train_data)
|
|
413
461
|
if val_data is not None:
|
|
@@ -418,7 +466,7 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
418
466
|
hyperparameters=hyperparameters,
|
|
419
467
|
hyperparameter_tune=hyperparameter_tune_kwargs is not None, # TODO: remove hyperparameter_tune
|
|
420
468
|
freq=train_data.freq,
|
|
421
|
-
multi_window=
|
|
469
|
+
multi_window=multi_window,
|
|
422
470
|
excluded_model_types=excluded_model_types,
|
|
423
471
|
)
|
|
424
472
|
|
|
@@ -487,42 +535,16 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
487
535
|
train_data, model=model, val_data=val_data, time_limit=time_left_for_model
|
|
488
536
|
)
|
|
489
537
|
|
|
490
|
-
if self.enable_ensemble:
|
|
491
|
-
|
|
492
|
-
|
|
493
|
-
|
|
494
|
-
|
|
495
|
-
|
|
496
|
-
|
|
497
|
-
|
|
498
|
-
|
|
499
|
-
|
|
500
|
-
f"Time left: {time_left_for_ensemble:.1f} seconds"
|
|
501
|
-
)
|
|
502
|
-
elif len(models_available_for_ensemble) <= 1:
|
|
503
|
-
logger.info(
|
|
504
|
-
"Not fitting ensemble as "
|
|
505
|
-
+ (
|
|
506
|
-
"no models were successfully trained."
|
|
507
|
-
if not models_available_for_ensemble
|
|
508
|
-
else "only 1 model was trained."
|
|
509
|
-
)
|
|
510
|
-
)
|
|
511
|
-
else:
|
|
512
|
-
try:
|
|
513
|
-
model_names_trained.append(
|
|
514
|
-
self.fit_ensemble(
|
|
515
|
-
data_per_window=self._get_ensemble_oof_data(train_data=train_data, val_data=val_data),
|
|
516
|
-
model_names=models_available_for_ensemble,
|
|
517
|
-
time_limit=time_left_for_ensemble,
|
|
518
|
-
)
|
|
519
|
-
)
|
|
520
|
-
except Exception as err: # noqa
|
|
521
|
-
logger.error(
|
|
522
|
-
"\tWarning: Exception caused ensemble to fail during training... Skipping this model."
|
|
523
|
-
)
|
|
524
|
-
logger.error(f"\t{err}")
|
|
525
|
-
logger.debug(traceback.format_exc())
|
|
538
|
+
if self.enable_ensemble and ensemble_hyperparameters:
|
|
539
|
+
model_names = self.get_model_names(layer=0)
|
|
540
|
+
ensemble_names = self._fit_ensembles(
|
|
541
|
+
data_per_window=self._get_validation_windows(train_data, val_data),
|
|
542
|
+
predictions_per_window=self._get_base_model_predictions(model_names),
|
|
543
|
+
time_limit=None if time_limit is None else time_limit - (time.time() - time_start),
|
|
544
|
+
ensemble_hyperparameters=ensemble_hyperparameters,
|
|
545
|
+
num_windows_per_layer=self.num_val_windows,
|
|
546
|
+
)
|
|
547
|
+
model_names_trained.extend(ensemble_names)
|
|
526
548
|
|
|
527
549
|
logger.info(f"Training complete. Models trained: {model_names_trained}")
|
|
528
550
|
logger.info(f"Total runtime: {time.time() - time_start:.2f} s")
|
|
@@ -536,82 +558,64 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
536
558
|
|
|
537
559
|
return model_names_trained
|
|
538
560
|
|
|
539
|
-
def
|
|
540
|
-
self, train_data: TimeSeriesDataFrame, val_data: Optional[TimeSeriesDataFrame]
|
|
541
|
-
) -> list[TimeSeriesDataFrame]:
|
|
542
|
-
if val_data is None:
|
|
543
|
-
return [val_fold for _, val_fold in self.val_splitter.split(train_data)]
|
|
544
|
-
else:
|
|
545
|
-
return [val_data]
|
|
546
|
-
|
|
547
|
-
def _get_ensemble_model_name(self) -> str:
|
|
548
|
-
"""Ensure we don't have name collisions in the ensemble model name"""
|
|
549
|
-
ensemble_name = "WeightedEnsemble"
|
|
550
|
-
increment = 1
|
|
551
|
-
while ensemble_name in self._get_banned_model_names():
|
|
552
|
-
increment += 1
|
|
553
|
-
ensemble_name = f"WeightedEnsemble_{increment}"
|
|
554
|
-
return ensemble_name
|
|
555
|
-
|
|
556
|
-
def fit_ensemble(
|
|
561
|
+
def _fit_ensembles(
|
|
557
562
|
self,
|
|
563
|
+
*,
|
|
558
564
|
data_per_window: list[TimeSeriesDataFrame],
|
|
559
|
-
|
|
560
|
-
time_limit:
|
|
561
|
-
|
|
562
|
-
|
|
563
|
-
|
|
564
|
-
|
|
565
|
-
|
|
566
|
-
|
|
567
|
-
for model_name in model_names:
|
|
568
|
-
predictions_per_window[model_name] = self._get_model_oof_predictions(model_name=model_name)
|
|
569
|
-
|
|
570
|
-
time_start = time.time()
|
|
571
|
-
ensemble = self.ensemble_model_type(
|
|
572
|
-
name=self._get_ensemble_model_name(),
|
|
565
|
+
predictions_per_window: dict[str, list[TimeSeriesDataFrame]],
|
|
566
|
+
time_limit: float | None,
|
|
567
|
+
ensemble_hyperparameters: list[dict],
|
|
568
|
+
num_windows_per_layer: tuple[int, ...],
|
|
569
|
+
) -> list[str]:
|
|
570
|
+
ensemble_composer = EnsembleComposer(
|
|
571
|
+
path=self.path,
|
|
572
|
+
prediction_length=self.prediction_length,
|
|
573
573
|
eval_metric=self.eval_metric,
|
|
574
574
|
target=self.target,
|
|
575
|
-
|
|
576
|
-
|
|
577
|
-
freq=data_per_window[0].freq,
|
|
575
|
+
ensemble_hyperparameters=ensemble_hyperparameters,
|
|
576
|
+
num_windows_per_layer=num_windows_per_layer,
|
|
578
577
|
quantile_levels=self.quantile_levels,
|
|
579
|
-
|
|
578
|
+
model_graph=self.model_graph,
|
|
579
|
+
).fit(
|
|
580
|
+
data_per_window=data_per_window,
|
|
581
|
+
predictions_per_window=predictions_per_window,
|
|
582
|
+
time_limit=time_limit,
|
|
580
583
|
)
|
|
581
|
-
|
|
582
|
-
|
|
583
|
-
|
|
584
|
-
|
|
585
|
-
|
|
586
|
-
|
|
587
|
-
|
|
588
|
-
|
|
589
|
-
|
|
590
|
-
|
|
591
|
-
|
|
592
|
-
|
|
593
|
-
|
|
594
|
-
|
|
595
|
-
|
|
596
|
-
|
|
597
|
-
|
|
598
|
-
|
|
599
|
-
|
|
600
|
-
|
|
601
|
-
|
|
602
|
-
val_score=ensemble.val_score,
|
|
603
|
-
fit_time=ensemble.fit_time,
|
|
604
|
-
predict_time=ensemble.predict_time,
|
|
584
|
+
|
|
585
|
+
ensembles_trained = []
|
|
586
|
+
for _, model, base_models in ensemble_composer.iter_ensembles():
|
|
587
|
+
self._add_model(model=model, base_models=base_models)
|
|
588
|
+
self.save_model(model=model)
|
|
589
|
+
ensembles_trained.append(model.name)
|
|
590
|
+
|
|
591
|
+
return ensembles_trained
|
|
592
|
+
|
|
593
|
+
def _get_validation_windows(self, train_data: TimeSeriesDataFrame, val_data: TimeSeriesDataFrame | None):
|
|
594
|
+
train_splitter = self._get_val_splitter(use_val_data=val_data is not None)
|
|
595
|
+
return [val_fold for _, val_fold in train_splitter.split(train_data)] + (
|
|
596
|
+
[] if val_data is None else [val_data]
|
|
597
|
+
)
|
|
598
|
+
|
|
599
|
+
def _get_val_splitter(self, use_val_data: bool = False) -> AbstractWindowSplitter:
|
|
600
|
+
num_windows_from_train = sum(self.num_val_windows[:-1]) if use_val_data else sum(self.num_val_windows)
|
|
601
|
+
return ExpandingWindowSplitter(
|
|
602
|
+
prediction_length=self.prediction_length,
|
|
603
|
+
num_val_windows=num_windows_from_train,
|
|
604
|
+
val_step_size=self.val_step_size,
|
|
605
605
|
)
|
|
606
|
-
|
|
607
|
-
|
|
608
|
-
|
|
606
|
+
|
|
607
|
+
def _get_base_model_predictions(self, model_names: list[str]) -> dict[str, list[TimeSeriesDataFrame]]:
|
|
608
|
+
"""Get base model predictions for ensemble training / inference."""
|
|
609
|
+
predictions_per_window = {}
|
|
610
|
+
for model_name in model_names:
|
|
611
|
+
predictions_per_window[model_name] = self._get_model_oof_predictions(model_name)
|
|
612
|
+
return predictions_per_window
|
|
609
613
|
|
|
610
614
|
def leaderboard(
|
|
611
615
|
self,
|
|
612
|
-
data:
|
|
616
|
+
data: TimeSeriesDataFrame | None = None,
|
|
613
617
|
extra_info: bool = False,
|
|
614
|
-
extra_metrics:
|
|
618
|
+
extra_metrics: list[str | TimeSeriesScorer] | None = None,
|
|
615
619
|
use_cache: bool = True,
|
|
616
620
|
) -> pd.DataFrame:
|
|
617
621
|
logger.debug("Generating leaderboard for all models trained")
|
|
@@ -701,7 +705,7 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
701
705
|
return df[explicit_column_order]
|
|
702
706
|
|
|
703
707
|
def persist(
|
|
704
|
-
self, model_names:
|
|
708
|
+
self, model_names: Literal["all", "best"] | list[str] = "all", with_ancestors: bool = False
|
|
705
709
|
) -> list[str]:
|
|
706
710
|
if model_names == "all":
|
|
707
711
|
model_names = self.get_model_names()
|
|
@@ -726,7 +730,7 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
726
730
|
|
|
727
731
|
return model_names
|
|
728
732
|
|
|
729
|
-
def unpersist(self, model_names:
|
|
733
|
+
def unpersist(self, model_names: Literal["all"] | list[str] = "all") -> list[str]:
|
|
730
734
|
if model_names == "all":
|
|
731
735
|
model_names = list(self.models.keys())
|
|
732
736
|
if not isinstance(model_names, list):
|
|
@@ -738,9 +742,7 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
738
742
|
unpersisted_models.append(model)
|
|
739
743
|
return unpersisted_models
|
|
740
744
|
|
|
741
|
-
def _get_model_for_prediction(
|
|
742
|
-
self, model: Optional[Union[str, TimeSeriesModelBase]] = None, verbose: bool = True
|
|
743
|
-
) -> str:
|
|
745
|
+
def _get_model_for_prediction(self, model: str | TimeSeriesModelBase | None = None, verbose: bool = True) -> str:
|
|
744
746
|
"""Given an optional identifier or model object, return the name of the model with which to predict.
|
|
745
747
|
|
|
746
748
|
If the model is not provided, this method will default to the best model according to the validation score.
|
|
@@ -766,10 +768,10 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
766
768
|
def predict(
|
|
767
769
|
self,
|
|
768
770
|
data: TimeSeriesDataFrame,
|
|
769
|
-
known_covariates:
|
|
770
|
-
model:
|
|
771
|
+
known_covariates: TimeSeriesDataFrame | None = None,
|
|
772
|
+
model: str | TimeSeriesModelBase | None = None,
|
|
771
773
|
use_cache: bool = True,
|
|
772
|
-
random_seed:
|
|
774
|
+
random_seed: int | None = None,
|
|
773
775
|
) -> TimeSeriesDataFrame:
|
|
774
776
|
model_name = self._get_model_for_prediction(model)
|
|
775
777
|
model_pred_dict, _ = self.get_model_pred_dict(
|
|
@@ -784,7 +786,7 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
784
786
|
raise ValueError(f"Model {model_name} failed to predict. Please check the model's logs.")
|
|
785
787
|
return predictions
|
|
786
788
|
|
|
787
|
-
def _get_eval_metric(self, metric:
|
|
789
|
+
def _get_eval_metric(self, metric: str | TimeSeriesScorer | None) -> TimeSeriesScorer:
|
|
788
790
|
if metric is None:
|
|
789
791
|
return self.eval_metric
|
|
790
792
|
else:
|
|
@@ -799,7 +801,7 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
799
801
|
self,
|
|
800
802
|
data: TimeSeriesDataFrame,
|
|
801
803
|
predictions: TimeSeriesDataFrame,
|
|
802
|
-
metric:
|
|
804
|
+
metric: str | TimeSeriesScorer | None = None,
|
|
803
805
|
) -> float:
|
|
804
806
|
"""Compute the score measuring how well the predictions align with the data."""
|
|
805
807
|
return self._get_eval_metric(metric).score(
|
|
@@ -811,8 +813,8 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
811
813
|
def score(
|
|
812
814
|
self,
|
|
813
815
|
data: TimeSeriesDataFrame,
|
|
814
|
-
model:
|
|
815
|
-
metric:
|
|
816
|
+
model: str | TimeSeriesModelBase | None = None,
|
|
817
|
+
metric: str | TimeSeriesScorer | None = None,
|
|
816
818
|
use_cache: bool = True,
|
|
817
819
|
) -> float:
|
|
818
820
|
eval_metric = self._get_eval_metric(metric)
|
|
@@ -822,8 +824,8 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
822
824
|
def evaluate(
|
|
823
825
|
self,
|
|
824
826
|
data: TimeSeriesDataFrame,
|
|
825
|
-
model:
|
|
826
|
-
metrics:
|
|
827
|
+
model: str | TimeSeriesModelBase | None = None,
|
|
828
|
+
metrics: str | TimeSeriesScorer | list[str | TimeSeriesScorer] | None = None,
|
|
827
829
|
use_cache: bool = True,
|
|
828
830
|
) -> dict[str, float]:
|
|
829
831
|
past_data, known_covariates = data.get_model_inputs_for_scoring(
|
|
@@ -844,13 +846,13 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
844
846
|
self,
|
|
845
847
|
data: TimeSeriesDataFrame,
|
|
846
848
|
features: list[str],
|
|
847
|
-
model:
|
|
848
|
-
metric:
|
|
849
|
-
time_limit:
|
|
849
|
+
model: str | TimeSeriesModelBase | None = None,
|
|
850
|
+
metric: str | TimeSeriesScorer | None = None,
|
|
851
|
+
time_limit: float | None = None,
|
|
850
852
|
method: Literal["naive", "permutation"] = "permutation",
|
|
851
853
|
subsample_size: int = 50,
|
|
852
|
-
num_iterations:
|
|
853
|
-
random_seed:
|
|
854
|
+
num_iterations: int | None = None,
|
|
855
|
+
random_seed: int | None = None,
|
|
854
856
|
relative_scores: bool = False,
|
|
855
857
|
include_confidence_band: bool = True,
|
|
856
858
|
confidence_level: float = 0.99,
|
|
@@ -867,9 +869,6 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
867
869
|
# start timer and cap subsample size if it's greater than the number of items in the provided data set
|
|
868
870
|
time_start = time.time()
|
|
869
871
|
if subsample_size > data.num_items:
|
|
870
|
-
logger.info(
|
|
871
|
-
f"Subsample_size {subsample_size} is larger than the number of items in the data and will be ignored"
|
|
872
|
-
)
|
|
873
872
|
subsample_size = data.num_items
|
|
874
873
|
|
|
875
874
|
# set default number of iterations and cap iterations if the number of items in the data is smaller
|
|
@@ -949,7 +948,7 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
949
948
|
|
|
950
949
|
return importance_df
|
|
951
950
|
|
|
952
|
-
def _model_uses_feature(self, model:
|
|
951
|
+
def _model_uses_feature(self, model: str | TimeSeriesModelBase, feature: str) -> bool:
|
|
953
952
|
"""Check if the given model uses the given feature."""
|
|
954
953
|
models_with_ancestors = set(self.get_minimum_model_set(model))
|
|
955
954
|
|
|
@@ -962,6 +961,72 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
962
961
|
|
|
963
962
|
return False
|
|
964
963
|
|
|
964
|
+
def backtest_predictions(
|
|
965
|
+
self,
|
|
966
|
+
data: TimeSeriesDataFrame | None,
|
|
967
|
+
model_names: list[str],
|
|
968
|
+
num_val_windows: int | None = None,
|
|
969
|
+
val_step_size: int | None = None,
|
|
970
|
+
use_cache: bool = True,
|
|
971
|
+
) -> dict[str, list[TimeSeriesDataFrame]]:
|
|
972
|
+
if data is None:
|
|
973
|
+
assert num_val_windows is None, "num_val_windows must be None when data is None"
|
|
974
|
+
assert val_step_size is None, "val_step_size must be None when data is None"
|
|
975
|
+
return {model_name: self._get_model_oof_predictions(model_name) for model_name in model_names}
|
|
976
|
+
|
|
977
|
+
if val_step_size is None:
|
|
978
|
+
val_step_size = self.prediction_length
|
|
979
|
+
if num_val_windows is None:
|
|
980
|
+
num_val_windows = 1
|
|
981
|
+
|
|
982
|
+
splitter = ExpandingWindowSplitter(
|
|
983
|
+
prediction_length=self.prediction_length,
|
|
984
|
+
num_val_windows=num_val_windows,
|
|
985
|
+
val_step_size=val_step_size,
|
|
986
|
+
)
|
|
987
|
+
|
|
988
|
+
result: dict[str, list[TimeSeriesDataFrame]] = {model_name: [] for model_name in model_names}
|
|
989
|
+
for past_data, full_data in splitter.split(data):
|
|
990
|
+
known_covariates = full_data.slice_by_timestep(-self.prediction_length, None)[
|
|
991
|
+
self.covariate_metadata.known_covariates
|
|
992
|
+
]
|
|
993
|
+
pred_dict, _ = self.get_model_pred_dict(
|
|
994
|
+
model_names=model_names,
|
|
995
|
+
data=past_data,
|
|
996
|
+
known_covariates=known_covariates,
|
|
997
|
+
use_cache=use_cache,
|
|
998
|
+
)
|
|
999
|
+
for model_name in model_names:
|
|
1000
|
+
result[model_name].append(pred_dict[model_name]) # type: ignore
|
|
1001
|
+
|
|
1002
|
+
return result
|
|
1003
|
+
|
|
1004
|
+
def backtest_targets(
|
|
1005
|
+
self,
|
|
1006
|
+
data: TimeSeriesDataFrame | None,
|
|
1007
|
+
num_val_windows: int | None = None,
|
|
1008
|
+
val_step_size: int | None = None,
|
|
1009
|
+
) -> list[TimeSeriesDataFrame]:
|
|
1010
|
+
if data is None:
|
|
1011
|
+
assert num_val_windows is None, "num_val_windows must be None when data is None"
|
|
1012
|
+
assert val_step_size is None, "val_step_size must be None when data is None"
|
|
1013
|
+
train_data = self.load_train_data()
|
|
1014
|
+
val_data = self.load_val_data()
|
|
1015
|
+
return self._get_validation_windows(train_data=train_data, val_data=val_data)
|
|
1016
|
+
|
|
1017
|
+
if val_step_size is None:
|
|
1018
|
+
val_step_size = self.prediction_length
|
|
1019
|
+
if num_val_windows is None:
|
|
1020
|
+
num_val_windows = 1
|
|
1021
|
+
|
|
1022
|
+
splitter = ExpandingWindowSplitter(
|
|
1023
|
+
prediction_length=self.prediction_length,
|
|
1024
|
+
num_val_windows=num_val_windows,
|
|
1025
|
+
val_step_size=val_step_size,
|
|
1026
|
+
)
|
|
1027
|
+
|
|
1028
|
+
return [val_fold for _, val_fold in splitter.split(data)]
|
|
1029
|
+
|
|
965
1030
|
def _add_ci_to_feature_importance(
|
|
966
1031
|
self, importance_df: pd.DataFrame, confidence_level: float = 0.99
|
|
967
1032
|
) -> pd.DataFrame:
|
|
@@ -991,10 +1056,10 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
991
1056
|
|
|
992
1057
|
def _predict_model(
|
|
993
1058
|
self,
|
|
994
|
-
model:
|
|
1059
|
+
model: str | TimeSeriesModelBase,
|
|
995
1060
|
data: TimeSeriesDataFrame,
|
|
996
|
-
model_pred_dict: dict[str,
|
|
997
|
-
known_covariates:
|
|
1061
|
+
model_pred_dict: dict[str, TimeSeriesDataFrame | None],
|
|
1062
|
+
known_covariates: TimeSeriesDataFrame | None = None,
|
|
998
1063
|
) -> TimeSeriesDataFrame:
|
|
999
1064
|
"""Generate predictions using the given model.
|
|
1000
1065
|
|
|
@@ -1007,10 +1072,10 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
1007
1072
|
|
|
1008
1073
|
def _get_inputs_to_model(
|
|
1009
1074
|
self,
|
|
1010
|
-
model:
|
|
1075
|
+
model: str | TimeSeriesModelBase,
|
|
1011
1076
|
data: TimeSeriesDataFrame,
|
|
1012
|
-
model_pred_dict: dict[str,
|
|
1013
|
-
) ->
|
|
1077
|
+
model_pred_dict: dict[str, TimeSeriesDataFrame | None],
|
|
1078
|
+
) -> TimeSeriesDataFrame | dict[str, TimeSeriesDataFrame | None]:
|
|
1014
1079
|
"""Get the first argument that should be passed to model.predict.
|
|
1015
1080
|
|
|
1016
1081
|
This method assumes that model_pred_dict contains the predictions of all base models, if model is an ensemble.
|
|
@@ -1028,11 +1093,11 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
1028
1093
|
self,
|
|
1029
1094
|
model_names: list[str],
|
|
1030
1095
|
data: TimeSeriesDataFrame,
|
|
1031
|
-
known_covariates:
|
|
1096
|
+
known_covariates: TimeSeriesDataFrame | None = None,
|
|
1032
1097
|
raise_exception_if_failed: bool = True,
|
|
1033
1098
|
use_cache: bool = True,
|
|
1034
|
-
random_seed:
|
|
1035
|
-
) -> tuple[dict[str,
|
|
1099
|
+
random_seed: int | None = None,
|
|
1100
|
+
) -> tuple[dict[str, TimeSeriesDataFrame | None], dict[str, float]]:
|
|
1036
1101
|
"""Return a dictionary with predictions of all models for the given dataset.
|
|
1037
1102
|
|
|
1038
1103
|
Parameters
|
|
@@ -1064,8 +1129,8 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
1064
1129
|
for model_name in model_names:
|
|
1065
1130
|
model_set.update(self.get_minimum_model_set(model_name))
|
|
1066
1131
|
if len(model_set) > 1:
|
|
1067
|
-
|
|
1068
|
-
model_set = sorted(model_set, key=
|
|
1132
|
+
model_to_layer = self._get_model_layers()
|
|
1133
|
+
model_set = sorted(model_set, key=model_to_layer.get) # type: ignore
|
|
1069
1134
|
logger.debug(f"Prediction order: {model_set}")
|
|
1070
1135
|
|
|
1071
1136
|
failed_models = []
|
|
@@ -1115,7 +1180,7 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
1115
1180
|
return dict(pred_time_dict_total)
|
|
1116
1181
|
|
|
1117
1182
|
def _merge_refit_full_data(
|
|
1118
|
-
self, train_data: TimeSeriesDataFrame, val_data:
|
|
1183
|
+
self, train_data: TimeSeriesDataFrame, val_data: TimeSeriesDataFrame | None
|
|
1119
1184
|
) -> TimeSeriesDataFrame:
|
|
1120
1185
|
if val_data is None:
|
|
1121
1186
|
return train_data
|
|
@@ -1125,9 +1190,9 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
1125
1190
|
|
|
1126
1191
|
def refit_single_full(
|
|
1127
1192
|
self,
|
|
1128
|
-
train_data:
|
|
1129
|
-
val_data:
|
|
1130
|
-
models:
|
|
1193
|
+
train_data: TimeSeriesDataFrame | None = None,
|
|
1194
|
+
val_data: TimeSeriesDataFrame | None = None,
|
|
1195
|
+
models: list[str] | None = None,
|
|
1131
1196
|
) -> list[str]:
|
|
1132
1197
|
train_data = train_data or self.load_train_data()
|
|
1133
1198
|
val_data = val_data or self.load_val_data()
|
|
@@ -1136,12 +1201,12 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
1136
1201
|
if models is None:
|
|
1137
1202
|
models = self.get_model_names()
|
|
1138
1203
|
|
|
1139
|
-
|
|
1140
|
-
|
|
1204
|
+
model_to_layer = self._get_model_layers()
|
|
1205
|
+
models_sorted_by_layer = sorted(models, key=model_to_layer.get) # type: ignore
|
|
1141
1206
|
|
|
1142
1207
|
model_refit_map = {}
|
|
1143
1208
|
models_trained_full = []
|
|
1144
|
-
for model in
|
|
1209
|
+
for model in models_sorted_by_layer:
|
|
1145
1210
|
model = self.load_model(model)
|
|
1146
1211
|
model_name = model.name
|
|
1147
1212
|
if model._get_tags()["can_refit_full"]:
|
|
@@ -1206,11 +1271,11 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
1206
1271
|
|
|
1207
1272
|
def get_trainable_base_models(
|
|
1208
1273
|
self,
|
|
1209
|
-
hyperparameters:
|
|
1274
|
+
hyperparameters: str | dict[str, Any],
|
|
1210
1275
|
*,
|
|
1211
1276
|
multi_window: bool = False,
|
|
1212
|
-
freq:
|
|
1213
|
-
excluded_model_types:
|
|
1277
|
+
freq: str | None = None,
|
|
1278
|
+
excluded_model_types: list[str] | None = None,
|
|
1214
1279
|
hyperparameter_tune: bool = False,
|
|
1215
1280
|
) -> list[AbstractTimeSeriesModel]:
|
|
1216
1281
|
return TrainableModelSetBuilder(
|
|
@@ -1228,46 +1293,3 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
|
1228
1293
|
excluded_model_types=excluded_model_types,
|
|
1229
1294
|
banned_model_names=self._get_banned_model_names(),
|
|
1230
1295
|
)
|
|
1231
|
-
|
|
1232
|
-
def fit(
|
|
1233
|
-
self,
|
|
1234
|
-
train_data: TimeSeriesDataFrame,
|
|
1235
|
-
hyperparameters: Union[str, dict[Any, dict]],
|
|
1236
|
-
val_data: Optional[TimeSeriesDataFrame] = None,
|
|
1237
|
-
hyperparameter_tune_kwargs: Optional[Union[str, dict]] = None,
|
|
1238
|
-
excluded_model_types: Optional[list[str]] = None,
|
|
1239
|
-
time_limit: Optional[float] = None,
|
|
1240
|
-
random_seed: Optional[int] = None,
|
|
1241
|
-
):
|
|
1242
|
-
"""
|
|
1243
|
-
Fit a set of timeseries models specified by the `hyperparameters`
|
|
1244
|
-
dictionary that maps model names to their specified hyperparameters.
|
|
1245
|
-
|
|
1246
|
-
Parameters
|
|
1247
|
-
----------
|
|
1248
|
-
train_data
|
|
1249
|
-
Training data for fitting time series timeseries models.
|
|
1250
|
-
hyperparameters
|
|
1251
|
-
A dictionary mapping selected model names, model classes or model factory to hyperparameter
|
|
1252
|
-
settings. Model names should be present in `trainer.presets.DEFAULT_MODEL_NAMES`. Optionally,
|
|
1253
|
-
the user may provide one of "default", "light" and "very_light" to specify presets.
|
|
1254
|
-
val_data
|
|
1255
|
-
Optional validation data set to report validation scores on.
|
|
1256
|
-
hyperparameter_tune_kwargs
|
|
1257
|
-
Args for hyperparameter tuning
|
|
1258
|
-
excluded_model_types
|
|
1259
|
-
Names of models that should not be trained, even if listed in `hyperparameters`.
|
|
1260
|
-
time_limit
|
|
1261
|
-
Time limit for training
|
|
1262
|
-
random_seed
|
|
1263
|
-
Random seed that will be set to each model during training
|
|
1264
|
-
"""
|
|
1265
|
-
self._train_multi(
|
|
1266
|
-
train_data,
|
|
1267
|
-
val_data=val_data,
|
|
1268
|
-
hyperparameters=hyperparameters,
|
|
1269
|
-
hyperparameter_tune_kwargs=hyperparameter_tune_kwargs,
|
|
1270
|
-
excluded_model_types=excluded_model_types,
|
|
1271
|
-
time_limit=time_limit,
|
|
1272
|
-
random_seed=random_seed,
|
|
1273
|
-
)
|