autogluon.timeseries 1.4.1b20251016__py3-none-any.whl → 1.4.1b20251218__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.timeseries might be problematic. Click here for more details.
- autogluon/timeseries/configs/hyperparameter_presets.py +7 -21
- autogluon/timeseries/configs/predictor_presets.py +23 -39
- autogluon/timeseries/dataset/ts_dataframe.py +97 -86
- autogluon/timeseries/learner.py +70 -35
- autogluon/timeseries/metrics/__init__.py +4 -4
- autogluon/timeseries/metrics/abstract.py +8 -8
- autogluon/timeseries/metrics/point.py +9 -9
- autogluon/timeseries/metrics/quantile.py +5 -5
- autogluon/timeseries/metrics/utils.py +4 -4
- autogluon/timeseries/models/__init__.py +2 -1
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py +52 -39
- autogluon/timeseries/models/abstract/model_trial.py +2 -1
- autogluon/timeseries/models/abstract/tunable.py +8 -8
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py +58 -62
- autogluon/timeseries/models/autogluon_tabular/per_step.py +26 -15
- autogluon/timeseries/models/autogluon_tabular/transforms.py +11 -9
- autogluon/timeseries/models/chronos/__init__.py +2 -1
- autogluon/timeseries/models/chronos/chronos2.py +395 -0
- autogluon/timeseries/models/chronos/model.py +126 -88
- autogluon/timeseries/models/chronos/{pipeline/utils.py → utils.py} +69 -37
- autogluon/timeseries/models/ensemble/__init__.py +36 -2
- autogluon/timeseries/models/ensemble/abstract.py +14 -46
- autogluon/timeseries/models/ensemble/array_based/__init__.py +3 -0
- autogluon/timeseries/models/ensemble/array_based/abstract.py +240 -0
- autogluon/timeseries/models/ensemble/array_based/models.py +185 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py +12 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py +88 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/linear_stacker.py +186 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py +94 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py +107 -0
- autogluon/timeseries/models/ensemble/{greedy.py → ensemble_selection.py} +41 -61
- autogluon/timeseries/models/ensemble/per_item_greedy.py +172 -0
- autogluon/timeseries/models/ensemble/weighted/__init__.py +8 -0
- autogluon/timeseries/models/ensemble/weighted/abstract.py +45 -0
- autogluon/timeseries/models/ensemble/{basic.py → weighted/basic.py} +25 -22
- autogluon/timeseries/models/ensemble/weighted/greedy.py +62 -0
- autogluon/timeseries/models/gluonts/abstract.py +32 -31
- autogluon/timeseries/models/gluonts/dataset.py +11 -11
- autogluon/timeseries/models/gluonts/models.py +0 -7
- autogluon/timeseries/models/local/__init__.py +0 -7
- autogluon/timeseries/models/local/abstract_local_model.py +15 -18
- autogluon/timeseries/models/local/naive.py +2 -2
- autogluon/timeseries/models/local/npts.py +7 -1
- autogluon/timeseries/models/local/statsforecast.py +12 -12
- autogluon/timeseries/models/multi_window/multi_window_model.py +39 -24
- autogluon/timeseries/models/registry.py +3 -4
- autogluon/timeseries/models/toto/_internal/backbone/attention.py +3 -4
- autogluon/timeseries/models/toto/_internal/backbone/backbone.py +6 -6
- autogluon/timeseries/models/toto/_internal/backbone/rope.py +4 -9
- autogluon/timeseries/models/toto/_internal/backbone/rotary_embedding_torch.py +342 -0
- autogluon/timeseries/models/toto/_internal/backbone/scaler.py +2 -3
- autogluon/timeseries/models/toto/_internal/backbone/transformer.py +10 -10
- autogluon/timeseries/models/toto/_internal/dataset.py +2 -2
- autogluon/timeseries/models/toto/_internal/forecaster.py +8 -8
- autogluon/timeseries/models/toto/dataloader.py +4 -4
- autogluon/timeseries/models/toto/hf_pretrained_model.py +97 -16
- autogluon/timeseries/models/toto/model.py +35 -20
- autogluon/timeseries/predictor.py +527 -155
- autogluon/timeseries/regressor.py +27 -30
- autogluon/timeseries/splitter.py +3 -27
- autogluon/timeseries/trainer/ensemble_composer.py +444 -0
- autogluon/timeseries/trainer/model_set_builder.py +9 -9
- autogluon/timeseries/trainer/prediction_cache.py +16 -16
- autogluon/timeseries/trainer/trainer.py +300 -278
- autogluon/timeseries/trainer/utils.py +17 -0
- autogluon/timeseries/transforms/covariate_scaler.py +8 -8
- autogluon/timeseries/transforms/target_scaler.py +15 -15
- autogluon/timeseries/utils/constants.py +10 -0
- autogluon/timeseries/utils/datetime/lags.py +1 -3
- autogluon/timeseries/utils/datetime/seasonality.py +1 -3
- autogluon/timeseries/utils/features.py +31 -14
- autogluon/timeseries/utils/forecast.py +6 -7
- autogluon/timeseries/utils/timer.py +173 -0
- autogluon/timeseries/version.py +1 -1
- autogluon.timeseries-1.4.1b20251218-py3.11-nspkg.pth +1 -0
- {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/METADATA +39 -27
- autogluon_timeseries-1.4.1b20251218.dist-info/RECORD +103 -0
- {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/WHEEL +1 -1
- autogluon/timeseries/evaluator.py +0 -6
- autogluon/timeseries/models/chronos/pipeline/__init__.py +0 -10
- autogluon/timeseries/models/chronos/pipeline/base.py +0 -160
- autogluon/timeseries/models/chronos/pipeline/chronos.py +0 -544
- autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py +0 -580
- autogluon.timeseries-1.4.1b20251016-py3.9-nspkg.pth +0 -1
- autogluon.timeseries-1.4.1b20251016.dist-info/RECORD +0 -90
- {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info/licenses}/LICENSE +0 -0
- {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info/licenses}/NOTICE +0 -0
- {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.4.1b20251016.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/zip-safe +0 -0
|
@@ -5,7 +5,7 @@ import os
|
|
|
5
5
|
import pprint
|
|
6
6
|
import time
|
|
7
7
|
from pathlib import Path
|
|
8
|
-
from typing import Any, Literal,
|
|
8
|
+
from typing import Any, Literal, Type, cast, overload
|
|
9
9
|
|
|
10
10
|
import numpy as np
|
|
11
11
|
import pandas as pd
|
|
@@ -22,10 +22,9 @@ from autogluon.core.utils.loaders import load_pkl, load_str
|
|
|
22
22
|
from autogluon.core.utils.savers import save_pkl, save_str
|
|
23
23
|
from autogluon.timeseries import __version__ as current_ag_version
|
|
24
24
|
from autogluon.timeseries.configs import get_predictor_presets
|
|
25
|
-
from autogluon.timeseries.dataset
|
|
25
|
+
from autogluon.timeseries.dataset import TimeSeriesDataFrame
|
|
26
26
|
from autogluon.timeseries.learner import TimeSeriesLearner
|
|
27
27
|
from autogluon.timeseries.metrics import TimeSeriesScorer, check_get_evaluation_metric
|
|
28
|
-
from autogluon.timeseries.splitter import ExpandingWindowSplitter
|
|
29
28
|
from autogluon.timeseries.trainer import TimeSeriesTrainer
|
|
30
29
|
from autogluon.timeseries.utils.forecast import make_future_data_frame
|
|
31
30
|
|
|
@@ -67,7 +66,7 @@ class TimeSeriesPredictor:
|
|
|
67
66
|
|
|
68
67
|
If ``freq`` is provided when creating the predictor, all data passed to the predictor will be automatically
|
|
69
68
|
resampled at this frequency.
|
|
70
|
-
eval_metric :
|
|
69
|
+
eval_metric : str | TimeSeriesScorer, default = "WQL"
|
|
71
70
|
Metric by which predictions will be ultimately evaluated on future test data. AutoGluon tunes hyperparameters
|
|
72
71
|
in order to improve this metric on validation data, and ranks models (on validation data) according to this
|
|
73
72
|
metric.
|
|
@@ -125,7 +124,7 @@ class TimeSeriesPredictor:
|
|
|
125
124
|
debug messages from AutoGluon and all logging in dependencies (GluonTS, PyTorch Lightning, AutoGluon-Tabular, etc.)
|
|
126
125
|
log_to_file: bool, default = True
|
|
127
126
|
Whether to save the logs into a file for later reference
|
|
128
|
-
log_file_path:
|
|
127
|
+
log_file_path: str | Path, default = "auto"
|
|
129
128
|
File path to save the logs.
|
|
130
129
|
If auto, logs will be saved under ``predictor_path/logs/predictor_log.txt``.
|
|
131
130
|
Will be ignored if ``log_to_file`` is set to False
|
|
@@ -146,20 +145,20 @@ class TimeSeriesPredictor:
|
|
|
146
145
|
|
|
147
146
|
def __init__(
|
|
148
147
|
self,
|
|
149
|
-
target:
|
|
150
|
-
known_covariates_names:
|
|
148
|
+
target: str | None = None,
|
|
149
|
+
known_covariates_names: list[str] | None = None,
|
|
151
150
|
prediction_length: int = 1,
|
|
152
|
-
freq:
|
|
153
|
-
eval_metric:
|
|
154
|
-
eval_metric_seasonal_period:
|
|
155
|
-
horizon_weight:
|
|
156
|
-
path:
|
|
151
|
+
freq: str | None = None,
|
|
152
|
+
eval_metric: str | TimeSeriesScorer | None = None,
|
|
153
|
+
eval_metric_seasonal_period: int | None = None,
|
|
154
|
+
horizon_weight: list[float] | None = None,
|
|
155
|
+
path: str | Path | None = None,
|
|
157
156
|
verbosity: int = 2,
|
|
158
157
|
log_to_file: bool = True,
|
|
159
|
-
log_file_path:
|
|
160
|
-
quantile_levels:
|
|
158
|
+
log_file_path: str | Path = "auto",
|
|
159
|
+
quantile_levels: list[float] | None = None,
|
|
161
160
|
cache_predictions: bool = True,
|
|
162
|
-
label:
|
|
161
|
+
label: str | None = None,
|
|
163
162
|
**kwargs,
|
|
164
163
|
):
|
|
165
164
|
self.verbosity = verbosity
|
|
@@ -221,20 +220,6 @@ class TimeSeriesPredictor:
|
|
|
221
220
|
ensemble_model_type=kwargs.pop("ensemble_model_type", None),
|
|
222
221
|
)
|
|
223
222
|
|
|
224
|
-
if "ignore_time_index" in kwargs:
|
|
225
|
-
raise TypeError(
|
|
226
|
-
"`ignore_time_index` argument to TimeSeriesPredictor.__init__() has been deprecated.\n"
|
|
227
|
-
"If your data has irregular timestamps, please either 1) specify the desired regular frequency when "
|
|
228
|
-
"creating the predictor as `TimeSeriesPredictor(freq=...)` or 2) manually convert timestamps to "
|
|
229
|
-
"regular frequency with `data.convert_frequency(freq=...)`."
|
|
230
|
-
)
|
|
231
|
-
for k in ["learner_type", "learner_kwargs"]:
|
|
232
|
-
if k in kwargs:
|
|
233
|
-
val = kwargs.pop(k)
|
|
234
|
-
logger.warning(
|
|
235
|
-
f"Passing `{k}` to TimeSeriesPredictor has been deprecated and will be removed in v1.4. "
|
|
236
|
-
f"The provided value {val} will be ignored."
|
|
237
|
-
)
|
|
238
223
|
if len(kwargs) > 0:
|
|
239
224
|
for key in kwargs:
|
|
240
225
|
raise TypeError(f"TimeSeriesPredictor.__init__() got an unexpected keyword argument '{key}'")
|
|
@@ -243,7 +228,16 @@ class TimeSeriesPredictor:
|
|
|
243
228
|
def _trainer(self) -> TimeSeriesTrainer:
|
|
244
229
|
return self._learner.load_trainer() # noqa
|
|
245
230
|
|
|
246
|
-
|
|
231
|
+
@property
|
|
232
|
+
def is_fit(self) -> bool:
|
|
233
|
+
return self._learner.is_fit
|
|
234
|
+
|
|
235
|
+
def _assert_is_fit(self, method_name: str) -> None:
|
|
236
|
+
"""Check if predictor is fit and raise AssertionError with informative message if not."""
|
|
237
|
+
if not self.is_fit:
|
|
238
|
+
raise AssertionError(f"Predictor is not fit. Call `.fit` before calling `.{method_name}`. ")
|
|
239
|
+
|
|
240
|
+
def _setup_log_to_file(self, log_to_file: bool, log_file_path: str | Path) -> None:
|
|
247
241
|
if log_to_file:
|
|
248
242
|
if log_file_path == "auto":
|
|
249
243
|
log_file_path = os.path.join(self.path, "logs", self._predictor_log_file_name)
|
|
@@ -253,7 +247,7 @@ class TimeSeriesPredictor:
|
|
|
253
247
|
|
|
254
248
|
def _to_data_frame(
|
|
255
249
|
self,
|
|
256
|
-
data:
|
|
250
|
+
data: TimeSeriesDataFrame | pd.DataFrame | Path | str,
|
|
257
251
|
name: str = "data",
|
|
258
252
|
) -> TimeSeriesDataFrame:
|
|
259
253
|
if isinstance(data, TimeSeriesDataFrame):
|
|
@@ -274,7 +268,7 @@ class TimeSeriesPredictor:
|
|
|
274
268
|
|
|
275
269
|
def _check_and_prepare_data_frame(
|
|
276
270
|
self,
|
|
277
|
-
data:
|
|
271
|
+
data: TimeSeriesDataFrame | pd.DataFrame | Path | str,
|
|
278
272
|
name: str = "data",
|
|
279
273
|
) -> TimeSeriesDataFrame:
|
|
280
274
|
"""Ensure that TimeSeriesDataFrame has a sorted index and a valid frequency.
|
|
@@ -283,7 +277,7 @@ class TimeSeriesPredictor:
|
|
|
283
277
|
|
|
284
278
|
Parameters
|
|
285
279
|
----------
|
|
286
|
-
data :
|
|
280
|
+
data : TimeSeriesDataFrame | pd.DataFrame | Path | str
|
|
287
281
|
Data as a dataframe or path to file storing the data.
|
|
288
282
|
name : str
|
|
289
283
|
Name of the data that will be used in log messages (e.g., 'train_data', 'tuning_data', or 'data').
|
|
@@ -326,7 +320,7 @@ class TimeSeriesPredictor:
|
|
|
326
320
|
return df
|
|
327
321
|
|
|
328
322
|
def _check_and_prepare_data_frame_for_evaluation(
|
|
329
|
-
self, data: TimeSeriesDataFrame, cutoff:
|
|
323
|
+
self, data: TimeSeriesDataFrame, cutoff: int | None = None, name: str = "data"
|
|
330
324
|
) -> TimeSeriesDataFrame:
|
|
331
325
|
"""
|
|
332
326
|
Make sure that provided evaluation data includes both historical and future time series values.
|
|
@@ -366,36 +360,10 @@ class TimeSeriesPredictor:
|
|
|
366
360
|
f"Median time series length is {median_length:.0f} (min={min_length}, max={max_length}). "
|
|
367
361
|
)
|
|
368
362
|
|
|
369
|
-
def _reduce_num_val_windows_if_necessary(
|
|
370
|
-
self,
|
|
371
|
-
train_data: TimeSeriesDataFrame,
|
|
372
|
-
original_num_val_windows: int,
|
|
373
|
-
val_step_size: int,
|
|
374
|
-
) -> int:
|
|
375
|
-
"""Adjust num_val_windows based on the length of time series in train_data.
|
|
376
|
-
|
|
377
|
-
Chooses num_val_windows such that TS with median length is long enough to perform num_val_windows validations
|
|
378
|
-
(at least 1, at most `original_num_val_windows`).
|
|
379
|
-
|
|
380
|
-
In other words, find largest `num_val_windows` that satisfies
|
|
381
|
-
median_length >= min_train_length + prediction_length + (num_val_windows - 1) * val_step_size
|
|
382
|
-
"""
|
|
383
|
-
median_length = train_data.num_timesteps_per_item().median()
|
|
384
|
-
num_val_windows_for_median_ts = int(
|
|
385
|
-
(median_length - self._min_train_length - self.prediction_length) // val_step_size + 1
|
|
386
|
-
)
|
|
387
|
-
new_num_val_windows = min(original_num_val_windows, max(1, num_val_windows_for_median_ts))
|
|
388
|
-
if new_num_val_windows < original_num_val_windows:
|
|
389
|
-
logger.warning(
|
|
390
|
-
f"Time series in train_data are too short for chosen num_val_windows={original_num_val_windows}. "
|
|
391
|
-
f"Reducing num_val_windows to {new_num_val_windows}."
|
|
392
|
-
)
|
|
393
|
-
return new_num_val_windows
|
|
394
|
-
|
|
395
363
|
def _filter_useless_train_data(
|
|
396
364
|
self,
|
|
397
365
|
train_data: TimeSeriesDataFrame,
|
|
398
|
-
num_val_windows: int,
|
|
366
|
+
num_val_windows: tuple[int, ...],
|
|
399
367
|
val_step_size: int,
|
|
400
368
|
) -> TimeSeriesDataFrame:
|
|
401
369
|
"""Remove time series from train_data that either contain all NaNs or are too short for chosen settings.
|
|
@@ -406,7 +374,8 @@ class TimeSeriesPredictor:
|
|
|
406
374
|
In other words, this method removes from train_data all time series with only NaN values or length less than
|
|
407
375
|
min_train_length + prediction_length + (num_val_windows - 1) * val_step_size
|
|
408
376
|
"""
|
|
409
|
-
|
|
377
|
+
total_num_val_windows = sum(num_val_windows)
|
|
378
|
+
min_length = self._min_train_length + self.prediction_length + (total_num_val_windows - 1) * val_step_size
|
|
410
379
|
train_lengths = train_data.num_timesteps_per_item()
|
|
411
380
|
too_short_items = train_lengths.index[train_lengths < min_length]
|
|
412
381
|
|
|
@@ -417,7 +386,9 @@ class TimeSeriesPredictor:
|
|
|
417
386
|
)
|
|
418
387
|
train_data = train_data.query("item_id not in @too_short_items")
|
|
419
388
|
|
|
420
|
-
all_nan_items = train_data.item_ids[
|
|
389
|
+
all_nan_items = train_data.item_ids[
|
|
390
|
+
train_data[self.target].isna().groupby(TimeSeriesDataFrame.ITEMID, sort=False).all()
|
|
391
|
+
]
|
|
421
392
|
if len(all_nan_items) > 0:
|
|
422
393
|
logger.info(f"\tRemoving {len(all_nan_items)} time series consisting of only NaN values from train_data.")
|
|
423
394
|
train_data = train_data.query("item_id not in @all_nan_items")
|
|
@@ -435,27 +406,28 @@ class TimeSeriesPredictor:
|
|
|
435
406
|
@apply_presets(get_predictor_presets())
|
|
436
407
|
def fit(
|
|
437
408
|
self,
|
|
438
|
-
train_data:
|
|
439
|
-
tuning_data:
|
|
440
|
-
time_limit:
|
|
441
|
-
presets:
|
|
442
|
-
hyperparameters:
|
|
443
|
-
hyperparameter_tune_kwargs:
|
|
444
|
-
excluded_model_types:
|
|
445
|
-
|
|
446
|
-
|
|
447
|
-
|
|
409
|
+
train_data: TimeSeriesDataFrame | pd.DataFrame | Path | str,
|
|
410
|
+
tuning_data: TimeSeriesDataFrame | pd.DataFrame | Path | str | None = None,
|
|
411
|
+
time_limit: int | None = None,
|
|
412
|
+
presets: str | None = None,
|
|
413
|
+
hyperparameters: str | dict[str | Type, Any] | None = None,
|
|
414
|
+
hyperparameter_tune_kwargs: str | dict | None = None,
|
|
415
|
+
excluded_model_types: list[str] | None = None,
|
|
416
|
+
ensemble_hyperparameters: dict[str, Any] | list[dict[str, Any]] | None = None,
|
|
417
|
+
num_val_windows: int | tuple[int, ...] | Literal["auto"] = 1,
|
|
418
|
+
val_step_size: int | None = None,
|
|
419
|
+
refit_every_n_windows: int | None | Literal["auto"] = 1,
|
|
448
420
|
refit_full: bool = False,
|
|
449
421
|
enable_ensemble: bool = True,
|
|
450
422
|
skip_model_selection: bool = False,
|
|
451
|
-
random_seed:
|
|
452
|
-
verbosity:
|
|
423
|
+
random_seed: int | None = 123,
|
|
424
|
+
verbosity: int | None = None,
|
|
453
425
|
) -> "TimeSeriesPredictor":
|
|
454
426
|
"""Fit probabilistic forecasting models to the given time series dataset.
|
|
455
427
|
|
|
456
428
|
Parameters
|
|
457
429
|
----------
|
|
458
|
-
train_data :
|
|
430
|
+
train_data : TimeSeriesDataFrame | pd.DataFrame | Path | str
|
|
459
431
|
Training data in the :class:`~autogluon.timeseries.TimeSeriesDataFrame` format.
|
|
460
432
|
|
|
461
433
|
Time series with length ``<= (num_val_windows + 1) * prediction_length`` will be ignored during training.
|
|
@@ -481,7 +453,7 @@ class TimeSeriesPredictor:
|
|
|
481
453
|
|
|
482
454
|
If provided data is a ``pandas.DataFrame``, AutoGluon will attempt to convert it to a ``TimeSeriesDataFrame``.
|
|
483
455
|
If a ``str`` or a ``Path`` is provided, AutoGluon will attempt to load this file.
|
|
484
|
-
tuning_data :
|
|
456
|
+
tuning_data : TimeSeriesDataFrame | pd.DataFrame | Path | str, optional
|
|
485
457
|
Data reserved for model selection and hyperparameter tuning, rather than training individual models. Also
|
|
486
458
|
used to compute the validation scores. Note that only the last ``prediction_length`` time steps of each
|
|
487
459
|
time series are used for computing the validation score.
|
|
@@ -623,13 +595,39 @@ class TimeSeriesPredictor:
|
|
|
623
595
|
presets="high_quality",
|
|
624
596
|
excluded_model_types=["DeepAR"],
|
|
625
597
|
)
|
|
626
|
-
|
|
598
|
+
ensemble_hyperparameters : dict or list of dict, optional
|
|
599
|
+
Hyperparameters for ensemble models. Can be a single dict for one ensemble layer, or a list of dicts
|
|
600
|
+
for multiple ensemble layers (multi-layer stacking).
|
|
601
|
+
|
|
602
|
+
For single-layer ensembling (default)::
|
|
603
|
+
|
|
604
|
+
predictor.fit(
|
|
605
|
+
...,
|
|
606
|
+
ensemble_hyperparameters={"WeightedEnsemble": {"ensemble_size": 10}},
|
|
607
|
+
)
|
|
608
|
+
|
|
609
|
+
For multi-layer ensembling, provide a list where each element configures one ensemble layer::
|
|
610
|
+
|
|
611
|
+
predictor.fit(
|
|
612
|
+
...,
|
|
613
|
+
num_val_windows=(2, 3),
|
|
614
|
+
ensemble_hyperparameters=[
|
|
615
|
+
{"WeightedEnsemble": {"ensemble_size": 5}, "SimpleAverageEnsemble": {}}, # Layer 1
|
|
616
|
+
{"PerformanceWeightedEnsemble": {}}, # Layer 2
|
|
617
|
+
],
|
|
618
|
+
)
|
|
619
|
+
|
|
620
|
+
When using multi-layer ensembling, ``num_val_windows`` must be a tuple of integers, and ``len(ensemble_hyperparameters)`` must match ``len(num_val_windows)``.
|
|
621
|
+
num_val_windows : int | tuple[int, ...] | "auto", default = 1
|
|
627
622
|
Number of backtests done on ``train_data`` for each trained model to estimate the validation performance.
|
|
628
|
-
|
|
629
|
-
|
|
623
|
+
This parameter is also used to control multi-layer ensembling.
|
|
624
|
+
|
|
625
|
+
If set to ``"auto"``, the value will be determined automatically based on dataset properties (number of
|
|
626
|
+
time series and median time series length).
|
|
630
627
|
|
|
631
|
-
Increasing this parameter increases the training time roughly by a factor of
|
|
632
|
-
See ``refit_every_n_windows`` and ``val_step_size`` for
|
|
628
|
+
Increasing this parameter increases the training time roughly by a factor of
|
|
629
|
+
``num_val_windows // refit_every_n_windows``. See ``refit_every_n_windows`` and ``val_step_size`` for
|
|
630
|
+
details.
|
|
633
631
|
|
|
634
632
|
For example, for ``prediction_length=2``, ``num_val_windows=3`` and ``val_step_size=1`` the folds are::
|
|
635
633
|
|
|
@@ -640,17 +638,41 @@ class TimeSeriesPredictor:
|
|
|
640
638
|
|
|
641
639
|
where ``x`` are the train time steps and ``y`` are the validation time steps.
|
|
642
640
|
|
|
643
|
-
This
|
|
641
|
+
This parameter can also be used to control how many of the backtesting windows are reserved for training
|
|
642
|
+
multiple layers of ensemble models. By default, AutoGluon-TimeSeries uses only a single layer of ensembles
|
|
643
|
+
trained on the backtest windows specified by the ``num_val_windows`` parameter. However, the
|
|
644
|
+
``ensemble_hyperparameters`` argument can be used to specify multiple layers of ensembles. In this case,
|
|
645
|
+
a tuple of integers can be provided in ``num_val_windows`` to control how many of the backtesting windows
|
|
646
|
+
will be used to train which ensemble layers.
|
|
647
|
+
|
|
648
|
+
For example, if ``len(ensemble_hyperparameters) == 2``, a 2-tuple ``num_val_windows=(2, 3)`` is analogous
|
|
649
|
+
to ``num_val_windows=5``, except the first layer of ensemble models will be trained on the first two
|
|
650
|
+
backtest windows, and the second layer will be trained on the latter three. Validation scores of all models
|
|
651
|
+
will be computed on the last three windows.
|
|
652
|
+
|
|
653
|
+
If ``len(ensemble_hyperparameters) == 1``, then ``num_val_windows=(5,)`` has the same effect as
|
|
654
|
+
``num_val_windows=5``.
|
|
655
|
+
|
|
656
|
+
If ``tuning_data`` is provided and ``len(ensemble_hyperparameters) == 1``, then this parameter is ignored.
|
|
657
|
+
Validation and ensemble training will be performed on ``tuning_data``.
|
|
658
|
+
|
|
659
|
+
If ``tuning_data`` is provided and ``len(ensemble_hyperparameters) > 1``, then this method expects that
|
|
660
|
+
``len(num_val_windows) > 1``. In this case, the last element of ``num_val_windows`` will be ignored. The
|
|
661
|
+
last layer of ensemble training will be performed on ``tuning_data``. Validation scores will likewise be
|
|
662
|
+
computed on ``tuning_data``.
|
|
663
|
+
|
|
644
664
|
val_step_size : int or None, default = None
|
|
645
665
|
Step size between consecutive validation windows. If set to ``None``, defaults to ``prediction_length``
|
|
646
666
|
provided when creating the predictor.
|
|
647
667
|
|
|
648
|
-
|
|
649
|
-
refit_every_n_windows: int
|
|
668
|
+
If ``tuning_data`` is provided and ``len(ensemble_hyperparameters) == 1``, then this parameter is ignored.
|
|
669
|
+
refit_every_n_windows: int | None | "auto", default = 1
|
|
650
670
|
When performing cross validation, each model will be retrained every ``refit_every_n_windows`` validation
|
|
651
671
|
windows, where the number of validation windows is specified by ``num_val_windows``. Note that in the
|
|
652
672
|
default setting where ``num_val_windows=1``, this argument has no effect.
|
|
653
673
|
|
|
674
|
+
If set to ``"auto"``, the value will be determined automatically based on ``num_val_windows``.
|
|
675
|
+
|
|
654
676
|
If set to ``None``, models will only be fit once for the first (oldest) validation window. By default,
|
|
655
677
|
``refit_every_n_windows=1``, i.e., all models will be refit for each validation window.
|
|
656
678
|
refit_full : bool, default = False
|
|
@@ -673,8 +695,10 @@ class TimeSeriesPredictor:
|
|
|
673
695
|
|
|
674
696
|
"""
|
|
675
697
|
time_start = time.time()
|
|
676
|
-
if self.
|
|
677
|
-
raise AssertionError(
|
|
698
|
+
if self.is_fit:
|
|
699
|
+
raise AssertionError(
|
|
700
|
+
"Predictor is already fit! To fit additional models create a new `TimeSeriesPredictor`."
|
|
701
|
+
)
|
|
678
702
|
|
|
679
703
|
if verbosity is None:
|
|
680
704
|
verbosity = self.verbosity
|
|
@@ -720,40 +744,57 @@ class TimeSeriesPredictor:
|
|
|
720
744
|
|
|
721
745
|
if val_step_size is None:
|
|
722
746
|
val_step_size = self.prediction_length
|
|
747
|
+
median_timeseries_length = int(train_data.num_timesteps_per_item().median())
|
|
748
|
+
|
|
749
|
+
# Early validation: check length mismatch when num_val_windows is explicitly provided
|
|
750
|
+
if num_val_windows != "auto" and ensemble_hyperparameters is not None:
|
|
751
|
+
num_layers = len(ensemble_hyperparameters) if isinstance(ensemble_hyperparameters, list) else 1
|
|
752
|
+
num_windows_tuple = num_val_windows if isinstance(num_val_windows, tuple) else (num_val_windows,)
|
|
753
|
+
if len(num_windows_tuple) != num_layers:
|
|
754
|
+
raise ValueError(
|
|
755
|
+
f"Length mismatch: num_val_windows has {len(num_windows_tuple)} element(s) but "
|
|
756
|
+
f"ensemble_hyperparameters has {num_layers} layer(s). These must match when num_val_windows "
|
|
757
|
+
f"is explicitly provided. Use num_val_windows='auto' to automatically determine the number of windows."
|
|
758
|
+
)
|
|
723
759
|
|
|
724
|
-
if num_val_windows
|
|
725
|
-
num_val_windows = self.
|
|
726
|
-
|
|
760
|
+
if num_val_windows == "auto":
|
|
761
|
+
num_val_windows = self._recommend_num_val_windows_auto(
|
|
762
|
+
median_timeseries_length=median_timeseries_length,
|
|
763
|
+
val_step_size=val_step_size,
|
|
764
|
+
num_items=train_data.num_items,
|
|
765
|
+
ensemble_hyperparameters=ensemble_hyperparameters,
|
|
727
766
|
)
|
|
767
|
+
logger.info(f"Automatically setting num_val_windows={num_val_windows} based on dataset properties")
|
|
768
|
+
|
|
769
|
+
num_val_windows, ensemble_hyperparameters = self._validate_and_normalize_validation_and_ensemble_inputs(
|
|
770
|
+
num_val_windows=num_val_windows,
|
|
771
|
+
ensemble_hyperparameters=ensemble_hyperparameters,
|
|
772
|
+
val_step_size=val_step_size,
|
|
773
|
+
median_timeseries_length=median_timeseries_length,
|
|
774
|
+
tuning_data_provided=tuning_data is not None,
|
|
775
|
+
)
|
|
728
776
|
|
|
729
777
|
if tuning_data is not None:
|
|
730
778
|
tuning_data = self._check_and_prepare_data_frame(tuning_data, name="tuning_data")
|
|
731
779
|
tuning_data = self._check_and_prepare_data_frame_for_evaluation(tuning_data, name="tuning_data")
|
|
732
780
|
logger.info(f"Provided tuning_data has {self._get_dataset_stats(tuning_data)}")
|
|
733
|
-
# TODO: Use num_val_windows to perform multi-window backtests on tuning_data
|
|
734
|
-
if num_val_windows > 0:
|
|
735
|
-
logger.warning(
|
|
736
|
-
"\tSetting num_val_windows = 0 (disabling backtesting on train_data) because tuning_data is provided."
|
|
737
|
-
)
|
|
738
|
-
num_val_windows = 0
|
|
739
781
|
|
|
740
|
-
if
|
|
741
|
-
|
|
782
|
+
if refit_every_n_windows == "auto":
|
|
783
|
+
refit_every_n_windows = self._recommend_refit_every_n_windows_auto(num_val_windows)
|
|
784
|
+
logger.info(
|
|
785
|
+
f"Automatically setting refit_every_n_windows={refit_every_n_windows} based on num_val_windows"
|
|
786
|
+
)
|
|
742
787
|
|
|
743
|
-
if num_val_windows <= 1 and refit_every_n_windows is not None and refit_every_n_windows > 1:
|
|
788
|
+
if sum(num_val_windows) <= 1 and refit_every_n_windows is not None and refit_every_n_windows > 1:
|
|
744
789
|
logger.warning(
|
|
745
|
-
f"\trefit_every_n_windows provided as {refit_every_n_windows} but num_val_windows is set to
|
|
746
|
-
"
|
|
790
|
+
f"\trefit_every_n_windows provided as {refit_every_n_windows} but num_val_windows is set to "
|
|
791
|
+
f"{num_val_windows}. refit_every_n_windows will have no effect."
|
|
747
792
|
)
|
|
748
793
|
|
|
749
794
|
if not skip_model_selection:
|
|
750
|
-
|
|
751
|
-
|
|
752
|
-
)
|
|
753
|
-
|
|
754
|
-
val_splitter = ExpandingWindowSplitter(
|
|
755
|
-
prediction_length=self.prediction_length, num_val_windows=num_val_windows, val_step_size=val_step_size
|
|
756
|
-
)
|
|
795
|
+
# When tuning_data is provided, ignore the last element of num_val_windows for filtering purposes
|
|
796
|
+
filter_num_val_windows = num_val_windows[:-1] if tuning_data is not None else num_val_windows
|
|
797
|
+
train_data = self._filter_useless_train_data(train_data, filter_num_val_windows, val_step_size)
|
|
757
798
|
|
|
758
799
|
time_left = None if time_limit is None else time_limit - (time.time() - time_start)
|
|
759
800
|
self._learner.fit(
|
|
@@ -762,9 +803,11 @@ class TimeSeriesPredictor:
|
|
|
762
803
|
val_data=tuning_data,
|
|
763
804
|
hyperparameter_tune_kwargs=hyperparameter_tune_kwargs,
|
|
764
805
|
excluded_model_types=excluded_model_types,
|
|
806
|
+
ensemble_hyperparameters=ensemble_hyperparameters,
|
|
765
807
|
time_limit=time_left,
|
|
766
808
|
verbosity=verbosity,
|
|
767
|
-
|
|
809
|
+
num_val_windows=num_val_windows,
|
|
810
|
+
val_step_size=val_step_size,
|
|
768
811
|
refit_every_n_windows=refit_every_n_windows,
|
|
769
812
|
skip_model_selection=skip_model_selection,
|
|
770
813
|
enable_ensemble=enable_ensemble,
|
|
@@ -779,23 +822,152 @@ class TimeSeriesPredictor:
|
|
|
779
822
|
self.save()
|
|
780
823
|
return self
|
|
781
824
|
|
|
825
|
+
def _recommend_num_val_windows_auto(
|
|
826
|
+
self,
|
|
827
|
+
num_items: int,
|
|
828
|
+
median_timeseries_length: int,
|
|
829
|
+
val_step_size: int,
|
|
830
|
+
ensemble_hyperparameters: dict[str, Any] | list[dict[str, Any]] | None = None,
|
|
831
|
+
) -> tuple[int, ...]:
|
|
832
|
+
if num_items < 20:
|
|
833
|
+
recommended_windows = 5
|
|
834
|
+
elif num_items < 100:
|
|
835
|
+
recommended_windows = 3
|
|
836
|
+
else:
|
|
837
|
+
recommended_windows = 2
|
|
838
|
+
|
|
839
|
+
min_train_length = max(2 * self.prediction_length + 1, 10)
|
|
840
|
+
max_windows = int((median_timeseries_length - min_train_length - self.prediction_length) // val_step_size + 1)
|
|
841
|
+
total_windows = min(recommended_windows, max(1, max_windows))
|
|
842
|
+
|
|
843
|
+
num_layers = len(ensemble_hyperparameters) if isinstance(ensemble_hyperparameters, list) else 1
|
|
844
|
+
if total_windows >= num_layers:
|
|
845
|
+
# Distribute windows: most to first layer, 1 to each remaining layer
|
|
846
|
+
return (total_windows - num_layers + 1,) + (1,) * (num_layers - 1)
|
|
847
|
+
else:
|
|
848
|
+
# Insufficient windows: return tuple matching num_layers, will be reduced downstream
|
|
849
|
+
return (1,) * num_layers
|
|
850
|
+
|
|
851
|
+
def _recommend_refit_every_n_windows_auto(self, num_val_windows: tuple[int, ...]) -> int:
|
|
852
|
+
# Simple mapping for total_windows -> refit_ever_n_windows: 1 -> 1, 2 -> 1, 3 -> 2, 4 -> 2, 5 -> 2
|
|
853
|
+
total_windows = sum(num_val_windows)
|
|
854
|
+
return int(round(total_windows**0.5))
|
|
855
|
+
|
|
856
|
+
def _validate_and_normalize_validation_and_ensemble_inputs(
|
|
857
|
+
self,
|
|
858
|
+
num_val_windows: int | tuple[int, ...],
|
|
859
|
+
ensemble_hyperparameters: dict[str, Any] | list[dict[str, Any]] | None,
|
|
860
|
+
val_step_size: int,
|
|
861
|
+
median_timeseries_length: float,
|
|
862
|
+
tuning_data_provided: bool,
|
|
863
|
+
) -> tuple[tuple[int, ...], list[dict[str, Any]] | None]:
|
|
864
|
+
"""Validate and normalize num_val_windows and ensemble_hyperparameters for multi-layer ensembling."""
|
|
865
|
+
if ensemble_hyperparameters is not None and isinstance(ensemble_hyperparameters, dict):
|
|
866
|
+
ensemble_hyperparameters = [ensemble_hyperparameters]
|
|
867
|
+
|
|
868
|
+
num_val_windows = self._normalize_num_val_windows_input(num_val_windows, tuning_data_provided)
|
|
869
|
+
num_val_windows = self._reduce_num_val_windows_if_necessary(
|
|
870
|
+
num_val_windows, val_step_size, median_timeseries_length, tuning_data_provided
|
|
871
|
+
)
|
|
872
|
+
|
|
873
|
+
if ensemble_hyperparameters is not None and len(num_val_windows) < len(ensemble_hyperparameters):
|
|
874
|
+
logger.warning(
|
|
875
|
+
f"Time series too short: reducing ensemble layers from {len(ensemble_hyperparameters)} to "
|
|
876
|
+
f"{len(num_val_windows)}. Only the first {len(num_val_windows)} ensemble layer(s) will be trained."
|
|
877
|
+
)
|
|
878
|
+
ensemble_hyperparameters = ensemble_hyperparameters[: len(num_val_windows)]
|
|
879
|
+
|
|
880
|
+
return num_val_windows, ensemble_hyperparameters
|
|
881
|
+
|
|
882
|
+
def _normalize_num_val_windows_input(
|
|
883
|
+
self,
|
|
884
|
+
num_val_windows: int | tuple[int, ...],
|
|
885
|
+
tuning_data_provided: bool,
|
|
886
|
+
) -> tuple[int, ...]:
|
|
887
|
+
if isinstance(num_val_windows, int):
|
|
888
|
+
num_val_windows = (num_val_windows,)
|
|
889
|
+
if not isinstance(num_val_windows, tuple):
|
|
890
|
+
raise TypeError(f"num_val_windows must be int or tuple[int, ...], got {type(num_val_windows)}")
|
|
891
|
+
if len(num_val_windows) == 0:
|
|
892
|
+
raise ValueError("num_val_windows tuple cannot be empty")
|
|
893
|
+
if tuning_data_provided:
|
|
894
|
+
num_val_windows = num_val_windows[:-1] + (1,)
|
|
895
|
+
logger.warning(
|
|
896
|
+
f"\tTuning data is provided. Setting num_val_windows = {num_val_windows}. Validation scores will"
|
|
897
|
+
" be computed on a single window of tuning_data."
|
|
898
|
+
)
|
|
899
|
+
if not all(isinstance(n, int) and n > 0 for n in num_val_windows):
|
|
900
|
+
raise ValueError("All elements of num_val_windows must be positive integers.")
|
|
901
|
+
return num_val_windows
|
|
902
|
+
|
|
903
|
+
def _reduce_num_val_windows_if_necessary(
|
|
904
|
+
self,
|
|
905
|
+
num_val_windows: tuple[int, ...],
|
|
906
|
+
val_step_size: int,
|
|
907
|
+
median_time_series_length: float,
|
|
908
|
+
tuning_data_provided: bool,
|
|
909
|
+
) -> tuple[int, ...]:
|
|
910
|
+
"""Adjust num_val_windows based on the length of time series in train_data.
|
|
911
|
+
|
|
912
|
+
Chooses num_val_windows such that TS with median length is long enough to perform num_val_windows validations
|
|
913
|
+
(at least 1, at most `original_num_val_windows`).
|
|
914
|
+
|
|
915
|
+
In other words, find largest `num_val_windows` that satisfies
|
|
916
|
+
median_length >= min_train_length + prediction_length + (num_val_windows - 1) * val_step_size
|
|
917
|
+
|
|
918
|
+
If tuning_data is provided, the last element of `num_val_windows` is ignored when computing the number of
|
|
919
|
+
requested validation windows.
|
|
920
|
+
"""
|
|
921
|
+
num_val_windows_for_median_ts = int(
|
|
922
|
+
(median_time_series_length - self._min_train_length - self.prediction_length) // val_step_size + 1
|
|
923
|
+
)
|
|
924
|
+
max_allowed = max(1, num_val_windows_for_median_ts)
|
|
925
|
+
total_requested = sum(num_val_windows) if not tuning_data_provided else sum(num_val_windows[:-1])
|
|
926
|
+
|
|
927
|
+
if max_allowed >= total_requested:
|
|
928
|
+
return num_val_windows
|
|
929
|
+
|
|
930
|
+
logger.warning(
|
|
931
|
+
f"Time series in train_data are too short for chosen num_val_windows={num_val_windows}. "
|
|
932
|
+
f"Reducing num_val_windows to {max_allowed} total windows."
|
|
933
|
+
)
|
|
934
|
+
|
|
935
|
+
result = list(num_val_windows)
|
|
936
|
+
|
|
937
|
+
# Starting from the last group of windows, reduce number of windows in each group by 1,
|
|
938
|
+
# until sum(num_val_windows) <= max_allowed is satisfied.
|
|
939
|
+
for i in range(len(result) - 1, -1, -1):
|
|
940
|
+
while result[i] > 1 and sum(result) > max_allowed:
|
|
941
|
+
result[i] -= 1
|
|
942
|
+
if sum(result) <= max_allowed:
|
|
943
|
+
break
|
|
944
|
+
|
|
945
|
+
# It is possible that the above for loop reduced the number of windows in each group to 1
|
|
946
|
+
# (i.e. result = [1] * len(num_val_windows)), but still sum(result) > max_allowed. In this
|
|
947
|
+
# case we set result = [1] * max_allowed
|
|
948
|
+
if sum(result) > max_allowed:
|
|
949
|
+
result = [1] * max_allowed
|
|
950
|
+
|
|
951
|
+
return tuple(result)
|
|
952
|
+
|
|
782
953
|
def model_names(self) -> list[str]:
|
|
783
954
|
"""Returns the list of model names trained by this predictor object."""
|
|
955
|
+
self._assert_is_fit("model_names")
|
|
784
956
|
return self._trainer.get_model_names()
|
|
785
957
|
|
|
786
958
|
def predict(
|
|
787
959
|
self,
|
|
788
|
-
data:
|
|
789
|
-
known_covariates:
|
|
790
|
-
model:
|
|
960
|
+
data: TimeSeriesDataFrame | pd.DataFrame | Path | str,
|
|
961
|
+
known_covariates: TimeSeriesDataFrame | pd.DataFrame | Path | str | None = None,
|
|
962
|
+
model: str | None = None,
|
|
791
963
|
use_cache: bool = True,
|
|
792
|
-
random_seed:
|
|
964
|
+
random_seed: int | None = 123,
|
|
793
965
|
) -> TimeSeriesDataFrame:
|
|
794
966
|
"""Return quantile and mean forecasts for the given dataset, starting from the end of each time series.
|
|
795
967
|
|
|
796
968
|
Parameters
|
|
797
969
|
----------
|
|
798
|
-
data :
|
|
970
|
+
data : TimeSeriesDataFrame | pd.DataFrame | Path | str
|
|
799
971
|
Historical time series data for which the forecast needs to be made.
|
|
800
972
|
|
|
801
973
|
The names and dtypes of columns and static features in ``data`` must match the ``train_data`` used to train
|
|
@@ -803,7 +975,7 @@ class TimeSeriesPredictor:
|
|
|
803
975
|
|
|
804
976
|
If provided data is a ``pandas.DataFrame``, AutoGluon will attempt to convert it to a ``TimeSeriesDataFrame``.
|
|
805
977
|
If a ``str`` or a ``Path`` is provided, AutoGluon will attempt to load this file.
|
|
806
|
-
known_covariates :
|
|
978
|
+
known_covariates : TimeSeriesDataFrame | pd.DataFrame | Path | str, optional
|
|
807
979
|
If ``known_covariates_names`` were specified when creating the predictor, it is necessary to provide the
|
|
808
980
|
values of the known covariates for each time series during the forecast horizon. Specifically:
|
|
809
981
|
|
|
@@ -853,6 +1025,7 @@ class TimeSeriesPredictor:
|
|
|
853
1025
|
B 2020-03-04 17.1
|
|
854
1026
|
2020-03-05 8.3
|
|
855
1027
|
"""
|
|
1028
|
+
self._assert_is_fit("predict")
|
|
856
1029
|
# Save original item_id order to return predictions in the same order as input data
|
|
857
1030
|
data = self._to_data_frame(data)
|
|
858
1031
|
original_item_id_order = data.item_ids
|
|
@@ -866,14 +1039,209 @@ class TimeSeriesPredictor:
|
|
|
866
1039
|
use_cache=use_cache,
|
|
867
1040
|
random_seed=random_seed,
|
|
868
1041
|
)
|
|
869
|
-
return cast(TimeSeriesDataFrame, predictions.reindex(original_item_id_order, level=ITEMID))
|
|
1042
|
+
return cast(TimeSeriesDataFrame, predictions.reindex(original_item_id_order, level=TimeSeriesDataFrame.ITEMID))
|
|
1043
|
+
|
|
1044
|
+
@overload
|
|
1045
|
+
def backtest_predictions(
|
|
1046
|
+
self,
|
|
1047
|
+
data: TimeSeriesDataFrame | None = None,
|
|
1048
|
+
*,
|
|
1049
|
+
model: str | None = None,
|
|
1050
|
+
num_val_windows: int | None = None,
|
|
1051
|
+
val_step_size: int | None = None,
|
|
1052
|
+
use_cache: bool = True,
|
|
1053
|
+
) -> list[TimeSeriesDataFrame]: ...
|
|
1054
|
+
|
|
1055
|
+
@overload
|
|
1056
|
+
def backtest_predictions(
|
|
1057
|
+
self,
|
|
1058
|
+
data: TimeSeriesDataFrame | None = None,
|
|
1059
|
+
*,
|
|
1060
|
+
model: list[str],
|
|
1061
|
+
num_val_windows: int | None = None,
|
|
1062
|
+
val_step_size: int | None = None,
|
|
1063
|
+
use_cache: bool = True,
|
|
1064
|
+
) -> dict[str, list[TimeSeriesDataFrame]]: ...
|
|
1065
|
+
|
|
1066
|
+
def backtest_predictions(
|
|
1067
|
+
self,
|
|
1068
|
+
data: TimeSeriesDataFrame | None = None,
|
|
1069
|
+
*,
|
|
1070
|
+
model: str | list[str] | None = None,
|
|
1071
|
+
num_val_windows: int | None = None,
|
|
1072
|
+
val_step_size: int | None = None,
|
|
1073
|
+
use_cache: bool = True,
|
|
1074
|
+
) -> list[TimeSeriesDataFrame] | dict[str, list[TimeSeriesDataFrame]]:
|
|
1075
|
+
"""Return predictions for multiple validation windows.
|
|
1076
|
+
|
|
1077
|
+
When ``data=None``, returns the predictions that were saved during training. Otherwise, generates new
|
|
1078
|
+
predictions by splitting ``data`` into multiple windows using an expanding window strategy.
|
|
1079
|
+
|
|
1080
|
+
The corresponding target values for each window can be obtained using
|
|
1081
|
+
:meth:`~autogluon.timeseries.TimeSeriesPredictor.backtest_targets`.
|
|
1082
|
+
|
|
1083
|
+
Parameters
|
|
1084
|
+
----------
|
|
1085
|
+
data : TimeSeriesDataFrame, optional
|
|
1086
|
+
Time series data to generate predictions for. If ``None``, returns the predictions that were saved
|
|
1087
|
+
during training on ``train_data``.
|
|
1088
|
+
|
|
1089
|
+
If provided, all time series in ``data`` must have length at least
|
|
1090
|
+
``prediction_length + (num_val_windows - 1) * val_step_size + 1``.
|
|
1091
|
+
|
|
1092
|
+
The names and dtypes of columns and static features in ``data`` must match the ``train_data`` used to train
|
|
1093
|
+
the predictor.
|
|
1094
|
+
model : str, list[str], or None, default = None
|
|
1095
|
+
Name of the model(s) to generate predictions with. By default, the best model during training
|
|
1096
|
+
(with highest validation score) will be used.
|
|
1097
|
+
|
|
1098
|
+
- If ``str``: Returns predictions for a single model as a list.
|
|
1099
|
+
- If ``list[str]``: Returns predictions for multiple models as a dict mapping model names to lists.
|
|
1100
|
+
- If ``None``: Uses the best model.
|
|
1101
|
+
num_val_windows : int, optional
|
|
1102
|
+
Number of validation windows to generate. If ``None``, uses the ``num_val_windows`` value from training
|
|
1103
|
+
configuration when ``data=None``, otherwise defaults to 1.
|
|
1104
|
+
|
|
1105
|
+
For example, with ``prediction_length=2``, ``num_val_windows=3``, and ``val_step_size=1``, the validation
|
|
1106
|
+
windows are::
|
|
1107
|
+
|
|
1108
|
+
|-------------------|
|
|
1109
|
+
| x x x x x y y - - |
|
|
1110
|
+
| x x x x x x y y - |
|
|
1111
|
+
| x x x x x x x y y |
|
|
1112
|
+
|
|
1113
|
+
where ``x`` denotes training time steps and ``y`` denotes validation time steps for each window.
|
|
1114
|
+
val_step_size : int, optional
|
|
1115
|
+
Number of time steps between the start of consecutive validation windows. If ``None``, defaults to
|
|
1116
|
+
``prediction_length``.
|
|
1117
|
+
use_cache : bool, default = True
|
|
1118
|
+
If True, will attempt to use cached predictions. If False, cached predictions will be ignored.
|
|
1119
|
+
This argument is ignored if ``cache_predictions`` was set to False when creating the ``TimeSeriesPredictor``.
|
|
1120
|
+
|
|
1121
|
+
Returns
|
|
1122
|
+
-------
|
|
1123
|
+
list[TimeSeriesDataFrame] or dict[str, list[TimeSeriesDataFrame]]
|
|
1124
|
+
Predictions for each validation window.
|
|
1125
|
+
|
|
1126
|
+
- If ``model`` is a ``str`` or ``None``: Returns a list of length ``num_val_windows``, where each element
|
|
1127
|
+
contains the predictions for one validation window.
|
|
1128
|
+
- If ``model`` is a ``list[str]``: Returns a dict mapping each model name to a list of predictions for
|
|
1129
|
+
each validation window.
|
|
1130
|
+
|
|
1131
|
+
Examples
|
|
1132
|
+
--------
|
|
1133
|
+
Make predictions on new data with the best model
|
|
1134
|
+
|
|
1135
|
+
>>> predictor.backtest_predictions(test_data, num_val_windows=2)
|
|
1136
|
+
|
|
1137
|
+
Load validation predictions for all models that were saved during training
|
|
1138
|
+
|
|
1139
|
+
>>> predictor.backtest_predictions(model=predictor.model_names())
|
|
1140
|
+
|
|
1141
|
+
See Also
|
|
1142
|
+
--------
|
|
1143
|
+
backtest_targets
|
|
1144
|
+
Return target values aligned with predictions.
|
|
1145
|
+
evaluate
|
|
1146
|
+
Evaluate forecast accuracy on a hold-out set.
|
|
1147
|
+
predict
|
|
1148
|
+
Generate forecasts for future time steps.
|
|
1149
|
+
"""
|
|
1150
|
+
self._assert_is_fit("backtest_predictions")
|
|
1151
|
+
if data is not None:
|
|
1152
|
+
data = self._check_and_prepare_data_frame(data)
|
|
1153
|
+
|
|
1154
|
+
if model is None:
|
|
1155
|
+
model_names = [self.model_best]
|
|
1156
|
+
elif isinstance(model, str):
|
|
1157
|
+
model_names = [model]
|
|
1158
|
+
else:
|
|
1159
|
+
model_names = model
|
|
1160
|
+
|
|
1161
|
+
result = self._learner.backtest_predictions(
|
|
1162
|
+
data=data,
|
|
1163
|
+
model_names=model_names,
|
|
1164
|
+
num_val_windows=num_val_windows,
|
|
1165
|
+
val_step_size=val_step_size,
|
|
1166
|
+
use_cache=use_cache,
|
|
1167
|
+
)
|
|
1168
|
+
|
|
1169
|
+
if isinstance(model, list):
|
|
1170
|
+
return result
|
|
1171
|
+
else:
|
|
1172
|
+
return result[model_names[0]]
|
|
1173
|
+
|
|
1174
|
+
def backtest_targets(
|
|
1175
|
+
self,
|
|
1176
|
+
data: TimeSeriesDataFrame | None = None,
|
|
1177
|
+
*,
|
|
1178
|
+
num_val_windows: int | None = None,
|
|
1179
|
+
val_step_size: int | None = None,
|
|
1180
|
+
) -> list[TimeSeriesDataFrame]:
|
|
1181
|
+
"""Return target values for each validation window.
|
|
1182
|
+
|
|
1183
|
+
Returns the actual target values corresponding to each validation window used in
|
|
1184
|
+
:meth:`~autogluon.timeseries.TimeSeriesPredictor.backtest_predictions`. The returned targets are aligned
|
|
1185
|
+
with the predictions, making it easy to compute custom evaluation metrics or analyze forecast errors.
|
|
1186
|
+
|
|
1187
|
+
Parameters
|
|
1188
|
+
----------
|
|
1189
|
+
data : TimeSeriesDataFrame, optional
|
|
1190
|
+
Time series data to extract targets from. If ``None``, returns the targets from the validation windows
|
|
1191
|
+
used during training.
|
|
1192
|
+
|
|
1193
|
+
If provided, all time series in ``data`` must have length at least
|
|
1194
|
+
``prediction_length + (num_val_windows - 1) * val_step_size + 1``.
|
|
1195
|
+
|
|
1196
|
+
The names and dtypes of columns and static features in ``data`` must match the ``train_data`` used to train
|
|
1197
|
+
the predictor.
|
|
1198
|
+
num_val_windows : int, optional
|
|
1199
|
+
Number of validation windows to extract targets for. If ``None``, uses the ``num_val_windows`` value from
|
|
1200
|
+
training configuration when ``data=None``, otherwise defaults to 1.
|
|
1201
|
+
|
|
1202
|
+
This should match the ``num_val_windows`` argument passed to
|
|
1203
|
+
:meth:`~autogluon.timeseries.TimeSeriesPredictor.backtest_predictions`.
|
|
1204
|
+
val_step_size : int, optional
|
|
1205
|
+
Number of time steps between the start of consecutive validation windows. If ``None``, defaults to
|
|
1206
|
+
``prediction_length``.
|
|
1207
|
+
|
|
1208
|
+
This should match the ``val_step_size`` argument passed to
|
|
1209
|
+
:meth:`~autogluon.timeseries.TimeSeriesPredictor.backtest_predictions`.
|
|
1210
|
+
|
|
1211
|
+
Returns
|
|
1212
|
+
-------
|
|
1213
|
+
list[TimeSeriesDataFrame]
|
|
1214
|
+
Target values for each validation window. Returns a list of length ``num_val_windows``,
|
|
1215
|
+
where each element contains the full time series data for one validation window.
|
|
1216
|
+
Each dataframe includes both historical context and the last ``prediction_length`` time steps
|
|
1217
|
+
that represent the target values to compare against predictions.
|
|
1218
|
+
|
|
1219
|
+
The returned targets are aligned with the output of
|
|
1220
|
+
:meth:`~autogluon.timeseries.TimeSeriesPredictor.backtest_predictions`, so ``targets[i]`` corresponds
|
|
1221
|
+
to ``predictions[i]`` for the i-th validation window.
|
|
1222
|
+
|
|
1223
|
+
See Also
|
|
1224
|
+
--------
|
|
1225
|
+
backtest_predictions
|
|
1226
|
+
Return predictions for multiple validation windows.
|
|
1227
|
+
evaluate
|
|
1228
|
+
Evaluate forecast accuracy on a hold-out set.
|
|
1229
|
+
"""
|
|
1230
|
+
self._assert_is_fit("backtest_targets")
|
|
1231
|
+
if data is not None:
|
|
1232
|
+
data = self._check_and_prepare_data_frame(data)
|
|
1233
|
+
return self._learner.backtest_targets(
|
|
1234
|
+
data=data,
|
|
1235
|
+
num_val_windows=num_val_windows,
|
|
1236
|
+
val_step_size=val_step_size,
|
|
1237
|
+
)
|
|
870
1238
|
|
|
871
1239
|
def evaluate(
|
|
872
1240
|
self,
|
|
873
|
-
data:
|
|
874
|
-
model:
|
|
875
|
-
metrics:
|
|
876
|
-
cutoff:
|
|
1241
|
+
data: TimeSeriesDataFrame | pd.DataFrame | Path | str,
|
|
1242
|
+
model: str | None = None,
|
|
1243
|
+
metrics: str | TimeSeriesScorer | list[str | TimeSeriesScorer] | None = None,
|
|
1244
|
+
cutoff: int | None = None,
|
|
877
1245
|
display: bool = False,
|
|
878
1246
|
use_cache: bool = True,
|
|
879
1247
|
) -> dict[str, float]:
|
|
@@ -890,7 +1258,7 @@ class TimeSeriesPredictor:
|
|
|
890
1258
|
|
|
891
1259
|
Parameters
|
|
892
1260
|
----------
|
|
893
|
-
data :
|
|
1261
|
+
data : TimeSeriesDataFrame | pd.DataFrame | Path | str
|
|
894
1262
|
The data to evaluate the best model on. If a ``cutoff`` is not provided, the last ``prediction_length``
|
|
895
1263
|
time steps of each time series in ``data`` will be held out for prediction and forecast accuracy will
|
|
896
1264
|
be calculated on these time steps. When a ``cutoff`` is provided, the ``-cutoff``-th to the
|
|
@@ -907,7 +1275,7 @@ class TimeSeriesPredictor:
|
|
|
907
1275
|
model : str, optional
|
|
908
1276
|
Name of the model that you would like to evaluate. By default, the best model during training
|
|
909
1277
|
(with highest validation score) will be used.
|
|
910
|
-
metrics : str, TimeSeriesScorer or list[
|
|
1278
|
+
metrics : str, TimeSeriesScorer or list[str | TimeSeriesScorer], optional
|
|
911
1279
|
Metric or a list of metrics to compute scores with. Defaults to ``self.eval_metric``. Supports both
|
|
912
1280
|
metric names as strings and custom metrics based on TimeSeriesScorer.
|
|
913
1281
|
cutoff : int, optional
|
|
@@ -928,7 +1296,7 @@ class TimeSeriesPredictor:
|
|
|
928
1296
|
will have their signs flipped to obey this convention. For example, negative MAPE values will be reported.
|
|
929
1297
|
To get the ``eval_metric`` score, do ``output[predictor.eval_metric.name]``.
|
|
930
1298
|
"""
|
|
931
|
-
|
|
1299
|
+
self._assert_is_fit("evaluate")
|
|
932
1300
|
data = self._check_and_prepare_data_frame(data)
|
|
933
1301
|
data = self._check_and_prepare_data_frame_for_evaluation(data, cutoff=cutoff)
|
|
934
1302
|
|
|
@@ -940,15 +1308,15 @@ class TimeSeriesPredictor:
|
|
|
940
1308
|
|
|
941
1309
|
def feature_importance(
|
|
942
1310
|
self,
|
|
943
|
-
data:
|
|
944
|
-
model:
|
|
945
|
-
metric:
|
|
946
|
-
features:
|
|
947
|
-
time_limit:
|
|
1311
|
+
data: TimeSeriesDataFrame | pd.DataFrame | Path | str | None = None,
|
|
1312
|
+
model: str | None = None,
|
|
1313
|
+
metric: str | TimeSeriesScorer | None = None,
|
|
1314
|
+
features: list[str] | None = None,
|
|
1315
|
+
time_limit: float | None = None,
|
|
948
1316
|
method: Literal["naive", "permutation"] = "permutation",
|
|
949
1317
|
subsample_size: int = 50,
|
|
950
|
-
num_iterations:
|
|
951
|
-
random_seed:
|
|
1318
|
+
num_iterations: int | None = None,
|
|
1319
|
+
random_seed: int | None = 123,
|
|
952
1320
|
relative_scores: bool = False,
|
|
953
1321
|
include_confidence_band: bool = True,
|
|
954
1322
|
confidence_level: float = 0.99,
|
|
@@ -1045,6 +1413,7 @@ class TimeSeriesPredictor:
|
|
|
1045
1413
|
'importance': The estimated feature importance score.
|
|
1046
1414
|
'stddev': The standard deviation of the feature importance score. If NaN, then not enough ``num_iterations`` were used.
|
|
1047
1415
|
"""
|
|
1416
|
+
self._assert_is_fit("feature_importance")
|
|
1048
1417
|
if data is not None:
|
|
1049
1418
|
data = self._check_and_prepare_data_frame(data)
|
|
1050
1419
|
data = self._check_and_prepare_data_frame_for_evaluation(data)
|
|
@@ -1063,7 +1432,7 @@ class TimeSeriesPredictor:
|
|
|
1063
1432
|
include_confidence_band=include_confidence_band,
|
|
1064
1433
|
confidence_level=confidence_level,
|
|
1065
1434
|
)
|
|
1066
|
-
return fi_df
|
|
1435
|
+
return fi_df.sort_values("importance", ascending=False)
|
|
1067
1436
|
|
|
1068
1437
|
@classmethod
|
|
1069
1438
|
def _load_version_file(cls, path: str) -> str:
|
|
@@ -1091,7 +1460,7 @@ class TimeSeriesPredictor:
|
|
|
1091
1460
|
return version
|
|
1092
1461
|
|
|
1093
1462
|
@classmethod
|
|
1094
|
-
def load(cls, path:
|
|
1463
|
+
def load(cls, path: str | Path, require_version_match: bool = True) -> "TimeSeriesPredictor":
|
|
1095
1464
|
"""Load an existing ``TimeSeriesPredictor`` from given ``path``.
|
|
1096
1465
|
|
|
1097
1466
|
.. warning::
|
|
@@ -1175,15 +1544,14 @@ class TimeSeriesPredictor:
|
|
|
1175
1544
|
@property
|
|
1176
1545
|
def model_best(self) -> str:
|
|
1177
1546
|
"""Returns the name of the best model from trainer."""
|
|
1547
|
+
self._assert_is_fit("model_best")
|
|
1178
1548
|
if self._trainer.model_best is not None:
|
|
1179
1549
|
models = self._trainer.get_model_names()
|
|
1180
1550
|
if self._trainer.model_best in models:
|
|
1181
1551
|
return self._trainer.model_best
|
|
1182
1552
|
return self._trainer.get_model_best()
|
|
1183
1553
|
|
|
1184
|
-
def persist(
|
|
1185
|
-
self, models: Union[Literal["all", "best"], list[str]] = "best", with_ancestors: bool = True
|
|
1186
|
-
) -> list[str]:
|
|
1554
|
+
def persist(self, models: Literal["all", "best"] | list[str] = "best", with_ancestors: bool = True) -> list[str]:
|
|
1187
1555
|
"""Persist models in memory for reduced inference latency. This is particularly important if the models are being used for online
|
|
1188
1556
|
inference where low latency is critical. If models are not persisted in memory, they are loaded from disk every time they are
|
|
1189
1557
|
asked to make predictions. This is especially cumbersome for large deep learning based models which have to be loaded into
|
|
@@ -1206,6 +1574,7 @@ class TimeSeriesPredictor:
|
|
|
1206
1574
|
list_of_models : list[str]
|
|
1207
1575
|
List of persisted model names.
|
|
1208
1576
|
"""
|
|
1577
|
+
self._assert_is_fit("persist")
|
|
1209
1578
|
return self._learner.persist_trainer(models=models, with_ancestors=with_ancestors)
|
|
1210
1579
|
|
|
1211
1580
|
def unpersist(self) -> list[str]:
|
|
@@ -1224,10 +1593,10 @@ class TimeSeriesPredictor:
|
|
|
1224
1593
|
|
|
1225
1594
|
def leaderboard(
|
|
1226
1595
|
self,
|
|
1227
|
-
data:
|
|
1228
|
-
cutoff:
|
|
1596
|
+
data: TimeSeriesDataFrame | pd.DataFrame | Path | str | None = None,
|
|
1597
|
+
cutoff: int | None = None,
|
|
1229
1598
|
extra_info: bool = False,
|
|
1230
|
-
extra_metrics:
|
|
1599
|
+
extra_metrics: list[str | TimeSeriesScorer] | None = None,
|
|
1231
1600
|
display: bool = False,
|
|
1232
1601
|
use_cache: bool = True,
|
|
1233
1602
|
**kwargs,
|
|
@@ -1252,7 +1621,7 @@ class TimeSeriesPredictor:
|
|
|
1252
1621
|
|
|
1253
1622
|
Parameters
|
|
1254
1623
|
----------
|
|
1255
|
-
data :
|
|
1624
|
+
data : TimeSeriesDataFrame | pd.DataFrame | Path | str, optional
|
|
1256
1625
|
dataset used for additional evaluation. Must include both historical and future data (i.e., length of all
|
|
1257
1626
|
time series in ``data`` must be at least ``prediction_length + 1``, if ``cutoff`` is not provided,
|
|
1258
1627
|
``-cutoff + 1`` otherwise).
|
|
@@ -1271,7 +1640,7 @@ class TimeSeriesPredictor:
|
|
|
1271
1640
|
If True, the leaderboard will contain an additional column ``hyperparameters`` with the hyperparameters used
|
|
1272
1641
|
by each model during training. An empty dictionary ``{}`` means that the model was trained with default
|
|
1273
1642
|
hyperparameters.
|
|
1274
|
-
extra_metrics : list[
|
|
1643
|
+
extra_metrics : list[str | TimeSeriesScorer], optional
|
|
1275
1644
|
A list of metrics to calculate scores for and include in the output DataFrame.
|
|
1276
1645
|
|
|
1277
1646
|
Only valid when ``data`` is specified. The scores refer to the scores on ``data`` (same data as used to
|
|
@@ -1293,6 +1662,7 @@ class TimeSeriesPredictor:
|
|
|
1293
1662
|
The leaderboard containing information on all models and in order of best model to worst in terms of
|
|
1294
1663
|
test performance.
|
|
1295
1664
|
"""
|
|
1665
|
+
self._assert_is_fit("leaderboard")
|
|
1296
1666
|
if "silent" in kwargs:
|
|
1297
1667
|
# keep `silent` logic for backwards compatibility
|
|
1298
1668
|
assert isinstance(kwargs["silent"], bool)
|
|
@@ -1317,12 +1687,12 @@ class TimeSeriesPredictor:
|
|
|
1317
1687
|
print(leaderboard)
|
|
1318
1688
|
return leaderboard
|
|
1319
1689
|
|
|
1320
|
-
def make_future_data_frame(self, data:
|
|
1690
|
+
def make_future_data_frame(self, data: TimeSeriesDataFrame | pd.DataFrame | Path | str) -> pd.DataFrame:
|
|
1321
1691
|
"""Generate a dataframe with the ``item_id`` and ``timestamp`` values corresponding to the forecast horizon.
|
|
1322
1692
|
|
|
1323
1693
|
Parameters
|
|
1324
1694
|
----------
|
|
1325
|
-
data :
|
|
1695
|
+
data : TimeSeriesDataFrame | pd.DataFrame | Path | str
|
|
1326
1696
|
Historical time series data.
|
|
1327
1697
|
|
|
1328
1698
|
Returns
|
|
@@ -1370,6 +1740,7 @@ class TimeSeriesPredictor:
|
|
|
1370
1740
|
Dict containing various detailed information. We do not recommend directly printing this dict as it may
|
|
1371
1741
|
be very large.
|
|
1372
1742
|
"""
|
|
1743
|
+
self._assert_is_fit("fit_summary")
|
|
1373
1744
|
# TODO: HPO-specific information currently not reported in fit_summary
|
|
1374
1745
|
# TODO: Revisit after ray tune integration
|
|
1375
1746
|
|
|
@@ -1430,6 +1801,7 @@ class TimeSeriesPredictor:
|
|
|
1430
1801
|
``predictor.predict(data)`` is called will be the refit_full version instead of the original version of the
|
|
1431
1802
|
model. Has no effect if ``model`` is not the best model.
|
|
1432
1803
|
"""
|
|
1804
|
+
self._assert_is_fit("refit_full")
|
|
1433
1805
|
logger.warning(
|
|
1434
1806
|
"\tWARNING: refit_full functionality for TimeSeriesPredictor is experimental "
|
|
1435
1807
|
"and is not yet supported by all models."
|
|
@@ -1482,7 +1854,7 @@ class TimeSeriesPredictor:
|
|
|
1482
1854
|
trainer = self._trainer
|
|
1483
1855
|
train_data = trainer.load_train_data()
|
|
1484
1856
|
val_data = trainer.load_val_data()
|
|
1485
|
-
base_model_names = trainer.get_model_names(
|
|
1857
|
+
base_model_names = trainer.get_model_names(layer=0)
|
|
1486
1858
|
pred_proba_dict_val: dict[str, list[TimeSeriesDataFrame]] = {
|
|
1487
1859
|
model_name: trainer._get_model_oof_predictions(model_name)
|
|
1488
1860
|
for model_name in base_model_names
|
|
@@ -1498,7 +1870,7 @@ class TimeSeriesPredictor:
|
|
|
1498
1870
|
)
|
|
1499
1871
|
|
|
1500
1872
|
y_val: list[TimeSeriesDataFrame] = [
|
|
1501
|
-
select_target(df) for df in trainer.
|
|
1873
|
+
select_target(df) for df in trainer._get_validation_windows(train_data=train_data, val_data=val_data)
|
|
1502
1874
|
]
|
|
1503
1875
|
y_test: TimeSeriesDataFrame = select_target(test_data)
|
|
1504
1876
|
|
|
@@ -1518,27 +1890,27 @@ class TimeSeriesPredictor:
|
|
|
1518
1890
|
|
|
1519
1891
|
def plot(
|
|
1520
1892
|
self,
|
|
1521
|
-
data:
|
|
1522
|
-
predictions:
|
|
1523
|
-
quantile_levels:
|
|
1524
|
-
item_ids:
|
|
1893
|
+
data: TimeSeriesDataFrame | pd.DataFrame | Path | str,
|
|
1894
|
+
predictions: TimeSeriesDataFrame | None = None,
|
|
1895
|
+
quantile_levels: list[float] | None = None,
|
|
1896
|
+
item_ids: list[str | int] | None = None,
|
|
1525
1897
|
max_num_item_ids: int = 8,
|
|
1526
|
-
max_history_length:
|
|
1527
|
-
point_forecast_column:
|
|
1528
|
-
matplotlib_rc_params:
|
|
1898
|
+
max_history_length: int | None = None,
|
|
1899
|
+
point_forecast_column: str | None = None,
|
|
1900
|
+
matplotlib_rc_params: dict | None = None,
|
|
1529
1901
|
):
|
|
1530
1902
|
"""Plot historical time series values and the forecasts.
|
|
1531
1903
|
|
|
1532
1904
|
Parameters
|
|
1533
1905
|
----------
|
|
1534
|
-
data :
|
|
1906
|
+
data : TimeSeriesDataFrame | pd.DataFrame | Path | str
|
|
1535
1907
|
Observed time series data.
|
|
1536
1908
|
predictions : TimeSeriesDataFrame, optional
|
|
1537
1909
|
Predictions generated by calling :meth:`~autogluon.timeseries.TimeSeriesPredictor.predict`.
|
|
1538
1910
|
quantile_levels : list[float], optional
|
|
1539
1911
|
Quantile levels for which to plot the prediction intervals. Defaults to lowest & highest quantile levels
|
|
1540
1912
|
available in ``predictions``.
|
|
1541
|
-
item_ids : list[
|
|
1913
|
+
item_ids : list[str | int], optional
|
|
1542
1914
|
If provided, plots will only be generated for time series with these item IDs. By default (if set to
|
|
1543
1915
|
``None``), item IDs are selected randomly. In either case, plots are generated for at most
|
|
1544
1916
|
``max_num_item_ids`` time series.
|
|
@@ -1621,7 +1993,7 @@ class TimeSeriesPredictor:
|
|
|
1621
1993
|
for q in quantile_levels:
|
|
1622
1994
|
ax.fill_between(forecast.index, point_forecast, forecast[str(q)], color="C1", alpha=0.2)
|
|
1623
1995
|
if len(axes) > len(item_ids):
|
|
1624
|
-
axes[len(item_ids)].set_axis_off()
|
|
1625
|
-
handles, labels = axes[0].get_legend_handles_labels()
|
|
1996
|
+
axes[len(item_ids)].set_axis_off() # type: ignore
|
|
1997
|
+
handles, labels = axes[0].get_legend_handles_labels() # type: ignore
|
|
1626
1998
|
fig.legend(handles, labels, bbox_to_anchor=(0.5, 0.0), ncols=len(handles))
|
|
1627
1999
|
return fig
|