akshare 1.14.49__py3-none-any.whl → 1.17.99__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- akshare/__init__.py +595 -129
- akshare/air/air_hebei.py +77 -54
- akshare/air/air_zhenqi.py +0 -4
- akshare/air/cons.py +1 -0
- akshare/air/crypto.js +1 -1
- akshare/air/outcrypto.js +1 -1
- akshare/article/cons.py +1 -0
- akshare/article/epu_index.py +4 -3
- akshare/article/ff_factor.py +19 -8
- akshare/article/fred_md.py +4 -1
- akshare/article/risk_rv.py +3 -8
- akshare/bank/bank_cbirc_2020.py +11 -11
- akshare/bank/cons.py +7 -6
- akshare/bond/bond_buy_back_em.py +228 -0
- akshare/bond/bond_cb_sina.py +1 -0
- akshare/bond/bond_cb_ths.py +17 -9
- akshare/bond/bond_cbond.py +19 -14
- akshare/bond/bond_china.py +38 -39
- akshare/bond/bond_china_money.py +1 -1
- akshare/bond/bond_convert.py +10 -9
- akshare/bond/bond_em.py +37 -17
- akshare/bond/bond_summary.py +38 -37
- akshare/bond/bond_zh_cov.py +31 -40
- akshare/bond/bond_zh_sina.py +4 -0
- akshare/bond/cons.py +14 -11
- akshare/cal/__init__.py +0 -0
- akshare/cal/rv.py +170 -0
- akshare/cost/cost_living.py +7 -5
- akshare/crypto/__init__.py +1 -1
- akshare/crypto/crypto_bitcoin_cme.py +9 -7
- akshare/crypto/crypto_hold.py +4 -2
- akshare/currency/currency.py +1 -0
- akshare/currency/currency_china_bank_sina.py +11 -6
- akshare/data/__init__.py +1 -1
- akshare/data/cninfo.js +1 -1
- akshare/datasets.py +10 -21
- akshare/economic/cons.py +10 -3
- akshare/economic/macro_australia.py +74 -69
- akshare/economic/macro_bank.py +95 -653
- akshare/economic/macro_canada.py +92 -81
- akshare/economic/macro_china.py +97 -105
- akshare/economic/macro_china_hk.py +0 -1
- akshare/economic/macro_euro.py +103 -56
- akshare/economic/macro_finance_ths.py +7 -5
- akshare/economic/macro_germany.py +1 -1
- akshare/economic/macro_japan.py +0 -1
- akshare/economic/macro_other.py +1 -6
- akshare/economic/macro_swiss.py +2 -3
- akshare/economic/macro_uk.py +1 -1
- akshare/economic/macro_usa.py +7 -9
- akshare/economic/marco_cnbs.py +11 -6
- akshare/energy/energy_carbon.py +0 -1
- akshare/energy/energy_oil_em.py +1 -2
- akshare/event/cons.py +1 -0
- akshare/exceptions.py +43 -0
- akshare/file_fold/calendar.json +245 -2
- akshare/forex/__init__.py +0 -0
- akshare/forex/cons.py +192 -0
- akshare/forex/forex_em.py +149 -0
- akshare/fortune/fortune_500.py +1 -37
- akshare/fortune/fortune_bloomberg.py +6 -3
- akshare/fortune/fortune_forbes_500.py +3 -6
- akshare/fortune/fortune_hurun.py +2 -1
- akshare/fortune/fortune_xincaifu_500.py +17 -14
- akshare/fund/fund_announcement_em.py +145 -0
- akshare/fund/fund_aum_em.py +49 -35
- akshare/fund/fund_em.py +251 -220
- akshare/fund/fund_etf_em.py +44 -35
- akshare/fund/fund_etf_sina.py +75 -27
- akshare/fund/fund_etf_ths.py +2 -0
- akshare/fund/fund_fee_em.py +172 -0
- akshare/fund/fund_fhsp_em.py +42 -32
- akshare/fund/fund_init_em.py +8 -5
- akshare/fund/fund_lof_em.py +12 -19
- akshare/fund/fund_manager.py +25 -11
- akshare/fund/fund_overview_em.py +42 -0
- akshare/fund/fund_portfolio_em.py +23 -21
- akshare/fund/fund_position_lg.py +19 -8
- akshare/fund/fund_rank_em.py +2 -5
- akshare/fund/fund_rating.py +33 -12
- akshare/fund/fund_scale_em.py +24 -13
- akshare/fund/fund_scale_sina.py +20 -10
- akshare/fund/fund_xq.py +3 -2
- akshare/futures/cons.py +135 -39
- akshare/futures/cot.py +55 -56
- akshare/futures/futures_basis.py +49 -11
- akshare/futures/futures_comex_em.py +1 -0
- akshare/futures/futures_comm_ctp.py +1 -1
- akshare/futures/futures_contract_detail.py +59 -9
- akshare/futures/futures_daily_bar.py +66 -59
- akshare/futures/futures_foreign.py +14 -8
- akshare/futures/futures_hf_em.py +215 -61
- akshare/futures/futures_hist_em.py +191 -0
- akshare/futures/futures_hq_sina.py +5 -3
- akshare/futures/futures_index_ccidx.py +24 -82
- akshare/futures/futures_inventory_99.py +70 -272
- akshare/futures/futures_inventory_em.py +14 -11
- akshare/futures/futures_news_shmet.py +2 -2
- akshare/futures/futures_roll_yield.py +11 -24
- akshare/futures/futures_rule.py +7 -3
- akshare/futures/futures_rule_em.py +38 -0
- akshare/futures/futures_settlement_price_sgx.py +21 -6
- akshare/futures/futures_stock_js.py +0 -1
- akshare/futures/futures_to_spot.py +5 -6
- akshare/futures/futures_warehouse_receipt.py +48 -47
- akshare/futures/futures_zh_sina.py +3 -3
- akshare/futures/receipt.py +298 -165
- akshare/futures/requests_fun.py +16 -3
- akshare/futures/symbol_var.py +32 -13
- akshare/futures_derivative/cons.py +100 -103
- akshare/futures_derivative/futures_contract_info_cffex.py +55 -39
- akshare/futures_derivative/futures_contract_info_czce.py +2 -0
- akshare/futures_derivative/futures_contract_info_dce.py +43 -17
- akshare/futures_derivative/futures_contract_info_gfex.py +43 -31
- akshare/futures_derivative/futures_contract_info_ine.py +43 -34
- akshare/futures_derivative/futures_contract_info_shfe.py +3 -4
- akshare/futures_derivative/futures_cot_sina.py +8 -6
- akshare/futures_derivative/futures_index_sina.py +25 -13
- akshare/fx/cons.py +12 -7
- akshare/fx/fx_c_swap_cm.py +62 -0
- akshare/fx/fx_quote.py +3 -2
- akshare/fx/fx_quote_baidu.py +2 -1
- akshare/hf/__init__.py +1 -1
- akshare/hf/hf_sp500.py +8 -7
- akshare/index/cons.py +132 -28
- akshare/index/index_cni.py +7 -7
- akshare/index/index_cons.py +2 -2
- akshare/index/index_csindex.py +68 -0
- akshare/index/index_cx.py +20 -20
- akshare/index/index_drewry.py +17 -16
- akshare/index/index_eri.py +1 -0
- akshare/index/index_global_em.py +167 -0
- akshare/index/index_global_sina.py +82 -0
- akshare/index/index_kq_fz.py +17 -14
- akshare/index/index_kq_ss.py +1 -0
- akshare/index/index_option_qvix.py +351 -16
- akshare/index/index_research_sw.py +21 -21
- akshare/index/index_spot.py +9 -5
- akshare/index/index_stock_hk.py +5 -9
- akshare/index/index_stock_zh.py +111 -24
- akshare/index/index_stock_zh_csindex.py +3 -367
- akshare/index/index_sugar.py +18 -4
- akshare/index/index_sw.py +10 -2
- akshare/index/index_yw.py +53 -75
- akshare/index/index_zh_em.py +15 -82
- akshare/interest_rate/interbank_rate_em.py +0 -1
- akshare/movie/jm.js +0 -1
- akshare/news/__init__.py +1 -1
- akshare/news/news_baidu.py +395 -222
- akshare/news/news_stock.py +49 -16
- akshare/option/cons.py +2 -2
- akshare/option/option_commodity.py +341 -220
- akshare/option/option_commodity_sina.py +22 -26
- akshare/option/option_contract_info_ctp.py +63 -0
- akshare/option/option_current_sse.py +61 -0
- akshare/option/option_current_szse.py +84 -0
- akshare/option/option_czce.py +37 -9
- akshare/option/option_daily_stats_sse_szse.py +0 -1
- akshare/option/option_em.py +4 -8
- akshare/option/option_finance.py +60 -12
- akshare/option/option_finance_sina.py +7 -7
- akshare/option/option_lhb_em.py +0 -1
- akshare/option/option_margin.py +62 -0
- akshare/option/option_premium_analysis_em.py +58 -53
- akshare/option/option_risk_analysis_em.py +11 -8
- akshare/option/option_risk_indicator_sse.py +3 -4
- akshare/option/option_value_analysis_em.py +62 -55
- akshare/other/__init__.py +1 -1
- akshare/pro/__init__.py +0 -1
- akshare/pro/client.py +6 -4
- akshare/pro/cons.py +3 -2
- akshare/pro/data_pro.py +6 -5
- akshare/qdii/__init__.py +0 -0
- akshare/qdii/qdii_jsl.py +233 -0
- akshare/qhkc/__init__.py +1 -6
- akshare/qhkc/qhkc_api.py +64 -22
- akshare/qhkc_web/__init__.py +1 -6
- akshare/qhkc_web/qhkc_fund.py +10 -6
- akshare/qhkc_web/qhkc_index.py +28 -14
- akshare/qhkc_web/qhkc_tool.py +62 -59
- akshare/rate/__init__.py +1 -1
- akshare/rate/repo_rate.py +36 -32
- akshare/reits/__init__.py +1 -1
- akshare/reits/reits_basic.py +149 -13
- akshare/request.py +117 -0
- akshare/spot/__init__.py +1 -1
- akshare/spot/spot_hog_soozhu.py +165 -3
- akshare/spot/spot_sge.py +70 -9
- akshare/stock/cons.py +60 -23
- akshare/stock/stock_allotment_cninfo.py +8 -8
- akshare/stock/stock_ask_bid_em.py +3 -78
- akshare/stock/stock_board_concept_em.py +160 -35
- akshare/stock/stock_board_industry_em.py +163 -70
- akshare/stock/stock_dividend_cninfo.py +31 -17
- akshare/stock/stock_dzjy_em.py +347 -260
- akshare/stock/stock_fund_em.py +72 -64
- akshare/stock/stock_fund_hold.py +1 -2
- akshare/stock/stock_gsrl_em.py +1 -0
- akshare/stock/stock_hk_comparison_em.py +175 -0
- akshare/stock/stock_hk_famous.py +4 -5
- akshare/stock/stock_hk_fhpx_ths.py +2 -1
- akshare/stock/stock_hk_hot_rank_em.py +1 -0
- akshare/stock/stock_hk_sina.py +84 -36
- akshare/stock/stock_hold_control_cninfo.py +82 -0
- akshare/stock/stock_hold_control_em.py +0 -2
- akshare/stock/stock_hot_rank_em.py +4 -1
- akshare/stock/stock_hot_search_baidu.py +32 -19
- akshare/stock/stock_hot_up_em.py +4 -1
- akshare/stock/stock_hsgt_em.py +155 -0
- akshare/stock/stock_industry.py +1 -0
- akshare/stock/stock_industry_cninfo.py +1 -2
- akshare/stock/stock_info.py +6 -4
- akshare/stock/stock_info_em.py +17 -11
- akshare/stock/stock_intraday_em.py +4 -78
- akshare/stock/stock_intraday_sina.py +2 -2
- akshare/stock/stock_news_cx.py +39 -0
- akshare/stock/stock_profile_cninfo.py +7 -7
- akshare/stock/stock_profile_em.py +302 -0
- akshare/stock/stock_rank_forecast.py +6 -5
- akshare/stock/stock_repurchase_em.py +7 -2
- akshare/stock/stock_share_changes_cninfo.py +7 -5
- akshare/stock/stock_share_hold.py +24 -20
- akshare/stock/stock_stop.py +6 -6
- akshare/stock/stock_summary.py +153 -417
- akshare/stock/stock_us_famous.py +5 -6
- akshare/stock/stock_us_js.py +3 -2
- akshare/stock/stock_us_pink.py +38 -27
- akshare/stock/stock_us_sina.py +7 -3
- akshare/stock/stock_weibo_nlp.py +18 -20
- akshare/stock/stock_xq.py +24 -22
- akshare/stock/stock_zh_a_sina.py +8 -5
- akshare/stock/stock_zh_a_special.py +240 -243
- akshare/stock/stock_zh_a_tick_tx.py +11 -3
- akshare/stock/stock_zh_ah_tx.py +23 -26
- akshare/stock/stock_zh_b_sina.py +2 -2
- akshare/stock/stock_zh_comparison_em.py +250 -0
- akshare/stock/stock_zh_kcb_sina.py +67 -64
- akshare/stock_a/__init__.py +0 -0
- akshare/stock_a/stock_board_concept_name_em.py +170 -0
- akshare/stock_a/stock_individual_fund_flow_rank.py +258 -0
- akshare/stock_a/stock_zh_a_spot.py +212 -0
- akshare/stock_feature/cons.py +1 -0
- akshare/stock_feature/stock_a_indicator.py +9 -54
- akshare/stock_feature/stock_a_pe_and_pb.py +23 -5
- akshare/stock_feature/stock_account_em.py +0 -1
- akshare/stock_feature/stock_all_pb.py +2 -1
- akshare/stock_feature/stock_analyst_em.py +36 -30
- akshare/stock_feature/stock_board_concept_ths.py +328 -0
- akshare/stock_feature/stock_board_industry_ths.py +57 -2
- akshare/stock_feature/stock_buffett_index_lg.py +10 -8
- akshare/stock_feature/stock_classify_sina.py +3 -6
- akshare/stock_feature/stock_comment_em.py +81 -144
- akshare/stock_feature/stock_congestion_lg.py +2 -1
- akshare/stock_feature/stock_cyq_em.py +5 -11
- akshare/stock_feature/stock_disclosure_cninfo.py +6 -6
- akshare/stock_feature/stock_dxsyl_em.py +121 -74
- akshare/stock_feature/stock_ebs_lg.py +5 -4
- akshare/stock_feature/stock_esg_sina.py +29 -7
- akshare/stock_feature/stock_fhps_em.py +2 -1
- akshare/stock_feature/stock_fhps_ths.py +15 -7
- akshare/stock_feature/stock_fund_flow.py +30 -22
- akshare/stock_feature/stock_gddh_em.py +19 -11
- akshare/stock_feature/stock_gdfx_em.py +226 -113
- akshare/stock_feature/stock_gdhs.py +75 -50
- akshare/stock_feature/stock_gdzjc_em.py +21 -10
- akshare/stock_feature/stock_gpzy_em.py +78 -46
- akshare/stock_feature/stock_gxl_lg.py +3 -2
- akshare/stock_feature/stock_hist_em.py +137 -234
- akshare/stock_feature/stock_hist_tx.py +13 -10
- akshare/stock_feature/stock_hk_valuation_baidu.py +20 -8
- akshare/stock_feature/stock_hot_xq.py +4 -6
- akshare/stock_feature/stock_hsgt_em.py +269 -97
- akshare/stock_feature/stock_hsgt_exchange_rate.py +115 -87
- akshare/stock_feature/stock_hsgt_min_em.py +13 -16
- akshare/stock_feature/stock_info.py +7 -80
- akshare/stock_feature/stock_inner_trade_xq.py +38 -31
- akshare/stock_feature/stock_jgdy_em.py +43 -40
- akshare/stock_feature/stock_lhb_em.py +119 -3
- akshare/stock_feature/stock_margin_em.py +0 -1
- akshare/stock_feature/stock_margin_sse.py +0 -2
- akshare/stock_feature/stock_pankou_em.py +71 -35
- akshare/stock_feature/stock_qsjy_em.py +13 -4
- akshare/stock_feature/stock_report_em.py +151 -7
- akshare/stock_feature/stock_research_report_em.py +55 -20
- akshare/stock_feature/stock_sy_em.py +20 -15
- akshare/stock_feature/stock_technology_ths.py +122 -77
- akshare/stock_feature/stock_tfp_em.py +2 -1
- akshare/stock_feature/stock_three_report_em.py +21 -5
- akshare/stock_feature/stock_ttm_lyr.py +18 -9
- akshare/stock_feature/stock_value_em.py +83 -0
- akshare/stock_feature/stock_yjbb_em.py +58 -32
- akshare/stock_feature/stock_yjyg_cninfo.py +6 -2
- akshare/stock_feature/stock_yjyg_em.py +1 -1
- akshare/stock_feature/stock_yzxdr_em.py +24 -22
- akshare/stock_feature/stock_zdhtmx_em.py +20 -6
- akshare/stock_feature/stock_zh_vote_baidu.py +4 -1
- akshare/stock_feature/stock_ztb_em.py +39 -24
- akshare/stock_fundamental/__init__.py +1 -1
- akshare/stock_fundamental/stock_basic_info_xq.py +119 -0
- akshare/stock_fundamental/{stock_finance_hk.py → stock_finance_hk_em.py} +23 -16
- akshare/stock_fundamental/{stock_finance.py → stock_finance_sina.py} +60 -7
- akshare/stock_fundamental/stock_finance_ths.py +524 -57
- akshare/stock_fundamental/stock_finance_us_em.py +268 -0
- akshare/stock_fundamental/stock_gbjg_em.py +80 -0
- akshare/stock_fundamental/stock_hold.py +26 -17
- akshare/stock_fundamental/stock_ipo_declare.py +1 -0
- akshare/stock_fundamental/stock_kcb_detail_sse.py +10 -10
- akshare/stock_fundamental/stock_kcb_sse.py +26 -25
- akshare/stock_fundamental/stock_notice.py +12 -3
- akshare/stock_fundamental/stock_profit_forecast_em.py +31 -13
- akshare/stock_fundamental/stock_profit_forecast_hk_etnet.py +64 -41
- akshare/stock_fundamental/stock_profit_forecast_ths.py +86 -35
- akshare/stock_fundamental/stock_recommend.py +20 -4
- akshare/stock_fundamental/stock_zygc.py +5 -62
- akshare/utils/context.py +43 -0
- akshare/utils/demjson.py +2009 -1338
- akshare/utils/func.py +49 -2
- akshare/utils/multi_decrypt.py +53 -0
- akshare/utils/token_process.py +6 -5
- {akshare-1.14.49.dist-info → akshare-1.17.99.dist-info}/METADATA +54 -80
- akshare-1.17.99.dist-info/RECORD +409 -0
- {akshare-1.14.49.dist-info → akshare-1.17.99.dist-info}/WHEEL +1 -1
- {akshare-1.14.49.dist-info → akshare-1.17.99.dist-info/licenses}/LICENSE +1 -1
- tests/test_func.py +3 -5
- akshare/bond/bond_futures.py +0 -50
- akshare/bond/bond_investing.py +0 -139
- akshare/crypto/crypto_hist_investing.py +0 -249
- akshare/fund/fund_announcement.py +0 -56
- akshare/futures/futures_international.py +0 -170
- akshare/futures/futures_news_baidu.py +0 -54
- akshare/futures/inventory_data.py +0 -100
- akshare/futures_derivative/futures_index_price_nh.py +0 -61
- akshare/futures_derivative/futures_index_return_nh.py +0 -47
- akshare/futures_derivative/futures_index_volatility_nh.py +0 -53
- akshare/futures_derivative/futures_other_index_nh.py +0 -145
- akshare/index/index_fear_greed_funddb.py +0 -78
- akshare/index/index_investing.py +0 -232
- akshare/sport/__init__.py +0 -6
- akshare/sport/sport_olympic.py +0 -27
- akshare/stock_feature/stock_wencai.py +0 -104
- akshare/stock_fundamental/stock_mda_ym.py +0 -40
- akshare-1.14.49.dist-info/RECORD +0 -387
- {akshare-1.14.49.dist-info → akshare-1.17.99.dist-info}/top_level.txt +0 -0
akshare/stock/stock_summary.py
CHANGED
|
@@ -1,21 +1,22 @@
|
|
|
1
1
|
#!/usr/bin/env python
|
|
2
2
|
# -*- coding:utf-8 -*-
|
|
3
3
|
"""
|
|
4
|
-
Date:
|
|
4
|
+
Date: 2025/5/5 00:00
|
|
5
5
|
Desc: 股票数据-总貌-市场总貌
|
|
6
6
|
股票数据-总貌-成交概括
|
|
7
7
|
https://www.szse.cn/market/overview/index.html
|
|
8
8
|
https://www.sse.com.cn/market/stockdata/statistic/
|
|
9
9
|
"""
|
|
10
|
+
|
|
10
11
|
import warnings
|
|
11
|
-
from io import BytesIO
|
|
12
|
+
from io import BytesIO, StringIO
|
|
12
13
|
|
|
13
14
|
import pandas as pd
|
|
14
15
|
import requests
|
|
15
16
|
from bs4 import BeautifulSoup
|
|
16
17
|
|
|
17
18
|
|
|
18
|
-
def stock_szse_summary(date: str = "
|
|
19
|
+
def stock_szse_summary(date: str = "20240830") -> pd.DataFrame:
|
|
19
20
|
"""
|
|
20
21
|
深证证券交易所-总貌-证券类别统计
|
|
21
22
|
https://www.szse.cn/market/overview/index.html
|
|
@@ -37,10 +38,10 @@ def stock_szse_summary(date: str = "20200619") -> pd.DataFrame:
|
|
|
37
38
|
warnings.simplefilter("always")
|
|
38
39
|
temp_df = pd.read_excel(BytesIO(r.content), engine="openpyxl")
|
|
39
40
|
temp_df["证券类别"] = temp_df["证券类别"].str.strip()
|
|
40
|
-
temp_df.iloc[:, 2:] = temp_df.iloc[:, 2:].
|
|
41
|
+
temp_df.iloc[:, 2:] = temp_df.iloc[:, 2:].map(lambda x: x.replace(",", ""))
|
|
41
42
|
temp_df.columns = ["证券类别", "数量", "成交金额", "总市值", "流通市值"]
|
|
42
|
-
temp_df["数量"] = pd.to_numeric(temp_df["数量"])
|
|
43
|
-
temp_df["成交金额"] = pd.to_numeric(temp_df["成交金额"])
|
|
43
|
+
temp_df["数量"] = pd.to_numeric(temp_df["数量"], errors="coerce")
|
|
44
|
+
temp_df["成交金额"] = pd.to_numeric(temp_df["成交金额"], errors="coerce")
|
|
44
45
|
temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce")
|
|
45
46
|
temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"], errors="coerce")
|
|
46
47
|
return temp_df
|
|
@@ -55,32 +56,55 @@ def stock_szse_area_summary(date: str = "202203") -> pd.DataFrame:
|
|
|
55
56
|
:return: 地区交易排序
|
|
56
57
|
:rtype: pandas.DataFrame
|
|
57
58
|
"""
|
|
58
|
-
url = "
|
|
59
|
+
url = "https://www.szse.cn/api/report/ShowReport"
|
|
59
60
|
params = {
|
|
60
61
|
"SHOWTYPE": "xlsx",
|
|
61
62
|
"CATALOGID": "1803_sczm",
|
|
62
63
|
"TABKEY": "tab2",
|
|
63
64
|
"DATETIME": "-".join([date[:4], date[4:6]]),
|
|
64
|
-
"random": "0.
|
|
65
|
+
"random": "0.39349437497296137",
|
|
65
66
|
}
|
|
66
67
|
r = requests.get(url, params=params)
|
|
67
68
|
with warnings.catch_warnings(record=True):
|
|
68
69
|
warnings.simplefilter("always")
|
|
69
70
|
temp_df = pd.read_excel(BytesIO(r.content), engine="openpyxl")
|
|
70
|
-
|
|
71
|
+
column_map = {
|
|
72
|
+
"序号": "序号",
|
|
73
|
+
"地区": "地区",
|
|
74
|
+
"总交易额(元)": "总交易额",
|
|
75
|
+
"占市场%": "占市场",
|
|
76
|
+
"股票交易额(元)": "股票交易额",
|
|
77
|
+
"基金交易额(元)": "基金交易额",
|
|
78
|
+
"债券交易额(元)": "债券交易额",
|
|
79
|
+
"优先股交易额(元)": "优先股交易额",
|
|
80
|
+
"期权交易额(元)": "期权交易额",
|
|
81
|
+
}
|
|
82
|
+
temp_df.rename(columns=column_map, inplace=True)
|
|
71
83
|
temp_df["总交易额"] = temp_df["总交易额"].str.replace(",", "")
|
|
72
|
-
temp_df["总交易额"] = pd.to_numeric(temp_df["总交易额"])
|
|
73
|
-
temp_df["占市场"] = pd.to_numeric(temp_df["占市场"])
|
|
84
|
+
temp_df["总交易额"] = pd.to_numeric(temp_df["总交易额"], errors="coerce")
|
|
85
|
+
temp_df["占市场"] = pd.to_numeric(temp_df["占市场"], errors="coerce")
|
|
74
86
|
temp_df["股票交易额"] = temp_df["股票交易额"].str.replace(",", "")
|
|
75
87
|
temp_df["股票交易额"] = pd.to_numeric(temp_df["股票交易额"], errors="coerce")
|
|
76
88
|
temp_df["基金交易额"] = temp_df["基金交易额"].str.replace(",", "")
|
|
77
89
|
temp_df["基金交易额"] = pd.to_numeric(temp_df["基金交易额"], errors="coerce")
|
|
78
90
|
temp_df["债券交易额"] = temp_df["债券交易额"].str.replace(",", "")
|
|
79
91
|
temp_df["债券交易额"] = pd.to_numeric(temp_df["债券交易额"], errors="coerce")
|
|
92
|
+
if "优先股交易额" in temp_df.columns:
|
|
93
|
+
temp_df['优先股交易额'] = temp_df['优先股交易额'].astype('str') # 2025年2月为float
|
|
94
|
+
temp_df["优先股交易额"] = temp_df["优先股交易额"].str.replace(",", "")
|
|
95
|
+
temp_df["优先股交易额"] = pd.to_numeric(
|
|
96
|
+
temp_df["优先股交易额"], errors="coerce"
|
|
97
|
+
)
|
|
98
|
+
if "期权交易额" in temp_df.columns:
|
|
99
|
+
temp_df['期权交易额'] = temp_df['期权交易额'].astype('str')
|
|
100
|
+
temp_df["期权交易额"] = temp_df["期权交易额"].str.replace(",", "")
|
|
101
|
+
temp_df["期权交易额"] = pd.to_numeric(temp_df["期权交易额"], errors="coerce")
|
|
80
102
|
return temp_df
|
|
81
103
|
|
|
82
104
|
|
|
83
|
-
def stock_szse_sector_summary(
|
|
105
|
+
def stock_szse_sector_summary(
|
|
106
|
+
symbol: str = "当月", date: str = "202501"
|
|
107
|
+
) -> pd.DataFrame:
|
|
84
108
|
"""
|
|
85
109
|
深圳证券交易所-统计资料-股票行业成交数据
|
|
86
110
|
https://docs.static.szse.cn/www/market/periodical/month/W020220511355248518608.html
|
|
@@ -94,13 +118,13 @@ def stock_szse_sector_summary(symbol: str = "当月", date: str = "202303") -> p
|
|
|
94
118
|
url = "https://www.szse.cn/market/periodical/month/index.html"
|
|
95
119
|
r = requests.get(url)
|
|
96
120
|
r.encoding = "utf8"
|
|
97
|
-
soup = BeautifulSoup(r.text, "lxml")
|
|
98
|
-
tags_list = soup.find_all("div", attrs={"class": "g-container"})[1].find_all(
|
|
121
|
+
soup = BeautifulSoup(r.text, features="lxml")
|
|
122
|
+
tags_list = soup.find_all(name="div", attrs={"class": "g-container"})[1].find_all(
|
|
99
123
|
"script"
|
|
100
124
|
)
|
|
101
125
|
tags_dict = [
|
|
102
126
|
eval(
|
|
103
|
-
item.string[item.string.find("{")
|
|
127
|
+
item.string[item.string.find("{"): item.string.find("}") + 1]
|
|
104
128
|
.replace("\n", "")
|
|
105
129
|
.replace(" ", "")
|
|
106
130
|
.replace("value", "'value'")
|
|
@@ -115,14 +139,17 @@ def stock_szse_sector_summary(symbol: str = "当月", date: str = "202303") -> p
|
|
|
115
139
|
)
|
|
116
140
|
)
|
|
117
141
|
date_format = "-".join([date[:4], date[4:]])
|
|
118
|
-
url = f"
|
|
142
|
+
url = f"https://www.szse.cn/market/periodical/month/{date_url_dict[date_format]}"
|
|
119
143
|
r = requests.get(url)
|
|
120
144
|
r.encoding = "utf8"
|
|
121
|
-
soup = BeautifulSoup(r.text, "lxml")
|
|
122
|
-
url = [
|
|
145
|
+
soup = BeautifulSoup(r.text, features="lxml")
|
|
146
|
+
url = [
|
|
147
|
+
item for item in soup.find_all("a") if item.get_text() == "股票行业成交数据"
|
|
148
|
+
][0]["href"]
|
|
123
149
|
|
|
124
150
|
if symbol == "当月":
|
|
125
|
-
|
|
151
|
+
r = requests.get(url)
|
|
152
|
+
temp_df = pd.read_html(StringIO(r.text), encoding="gbk")[0]
|
|
126
153
|
temp_df.columns = [
|
|
127
154
|
"项目名称",
|
|
128
155
|
"项目名称-英文",
|
|
@@ -149,12 +176,20 @@ def stock_szse_sector_summary(symbol: str = "当月", date: str = "202303") -> p
|
|
|
149
176
|
]
|
|
150
177
|
|
|
151
178
|
temp_df["交易天数"] = pd.to_numeric(temp_df["交易天数"], errors="coerce")
|
|
152
|
-
temp_df["成交金额-人民币元"] = pd.to_numeric(
|
|
153
|
-
|
|
179
|
+
temp_df["成交金额-人民币元"] = pd.to_numeric(
|
|
180
|
+
temp_df["成交金额-人民币元"], errors="coerce"
|
|
181
|
+
)
|
|
182
|
+
temp_df["成交金额-占总计"] = pd.to_numeric(
|
|
183
|
+
temp_df["成交金额-占总计"], errors="coerce"
|
|
184
|
+
)
|
|
154
185
|
temp_df["成交股数-股数"] = pd.to_numeric(temp_df["成交股数-股数"], errors="coerce")
|
|
155
|
-
temp_df["成交股数-占总计"] = pd.to_numeric(
|
|
186
|
+
temp_df["成交股数-占总计"] = pd.to_numeric(
|
|
187
|
+
temp_df["成交股数-占总计"], errors="coerce"
|
|
188
|
+
)
|
|
156
189
|
temp_df["成交笔数-笔"] = pd.to_numeric(temp_df["成交笔数-笔"], errors="coerce")
|
|
157
|
-
temp_df["成交笔数-占总计"] = pd.to_numeric(
|
|
190
|
+
temp_df["成交笔数-占总计"] = pd.to_numeric(
|
|
191
|
+
temp_df["成交笔数-占总计"], errors="coerce"
|
|
192
|
+
)
|
|
158
193
|
return temp_df
|
|
159
194
|
|
|
160
195
|
|
|
@@ -170,11 +205,11 @@ def stock_sse_summary() -> pd.DataFrame:
|
|
|
170
205
|
"sqlId": "COMMON_SSE_SJ_GPSJ_GPSJZM_TJSJ_L",
|
|
171
206
|
"PRODUCT_NAME": "股票,主板,科创板",
|
|
172
207
|
"type": "inParams",
|
|
173
|
-
"_": "1640855495128",
|
|
174
208
|
}
|
|
175
209
|
headers = {
|
|
176
210
|
"Referer": "http://www.sse.com.cn/",
|
|
177
|
-
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
|
|
211
|
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "
|
|
212
|
+
"Chrome/89.0.4389.90 Safari/537.36",
|
|
178
213
|
}
|
|
179
214
|
r = requests.get(url, params=params, headers=headers)
|
|
180
215
|
data_json = r.json()
|
|
@@ -202,427 +237,128 @@ def stock_sse_summary() -> pd.DataFrame:
|
|
|
202
237
|
return temp_df
|
|
203
238
|
|
|
204
239
|
|
|
205
|
-
def stock_sse_deal_daily(date: str = "
|
|
240
|
+
def stock_sse_deal_daily(date: str = "20241216") -> pd.DataFrame:
|
|
206
241
|
"""
|
|
207
242
|
上海证券交易所-数据-股票数据-成交概况-股票成交概况-每日股票情况
|
|
208
|
-
|
|
243
|
+
https://www.sse.com.cn/market/stockdata/overview/day/
|
|
244
|
+
:param date: 交易日
|
|
245
|
+
:type date: str
|
|
209
246
|
:return: 每日股票情况
|
|
210
247
|
:rtype: pandas.DataFrame
|
|
211
248
|
"""
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
249
|
+
url = "https://query.sse.com.cn/commonQuery.do"
|
|
250
|
+
params = {
|
|
251
|
+
"sqlId": "COMMON_SSE_SJ_GPSJ_CJGK_MRGK_C",
|
|
252
|
+
"PRODUCT_CODE": "01,02,03,11,17",
|
|
253
|
+
"type": "inParams",
|
|
254
|
+
"SEARCH_DATE": "-".join([date[:4], date[4:6], date[6:]]),
|
|
255
|
+
}
|
|
256
|
+
headers = {
|
|
257
|
+
"Referer": "https://www.sse.com.cn/",
|
|
258
|
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "
|
|
259
|
+
"Chrome/89.0.4389.90 Safari/537.36",
|
|
260
|
+
}
|
|
261
|
+
r = requests.get(url, params=params, headers=headers)
|
|
262
|
+
data_json = r.json()
|
|
263
|
+
temp_df = pd.DataFrame(data_json["result"])
|
|
264
|
+
temp_df = temp_df.T
|
|
265
|
+
temp_df.reset_index(inplace=True)
|
|
266
|
+
if len(temp_df.columns) == 5:
|
|
267
|
+
# 20250228
|
|
229
268
|
temp_df.columns = [
|
|
230
269
|
"单日情况",
|
|
231
270
|
"主板A",
|
|
232
|
-
"-",
|
|
233
271
|
"主板B",
|
|
272
|
+
"科创板",
|
|
273
|
+
"股票",
|
|
234
274
|
]
|
|
235
|
-
temp_df =
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
"主板A",
|
|
239
|
-
"主板B",
|
|
240
|
-
]
|
|
241
|
-
]
|
|
242
|
-
temp_df["单日情况"] = [
|
|
243
|
-
"流通市值",
|
|
244
|
-
"流通换手率",
|
|
245
|
-
"平均市盈率",
|
|
246
|
-
"_",
|
|
247
|
-
"市价总值",
|
|
248
|
-
"_",
|
|
249
|
-
"换手率",
|
|
250
|
-
"_",
|
|
251
|
-
"挂牌数",
|
|
252
|
-
"_",
|
|
253
|
-
"_",
|
|
254
|
-
"_",
|
|
255
|
-
"_",
|
|
256
|
-
"_",
|
|
257
|
-
"成交笔数",
|
|
258
|
-
"成交金额",
|
|
259
|
-
"成交量",
|
|
260
|
-
"次新股换手率",
|
|
261
|
-
"_",
|
|
262
|
-
"_",
|
|
263
|
-
]
|
|
264
|
-
temp_df = temp_df[temp_df["单日情况"] != "_"]
|
|
265
|
-
temp_df["单日情况"] = temp_df["单日情况"].astype("category")
|
|
266
|
-
list_custom_new = [
|
|
267
|
-
"挂牌数",
|
|
268
|
-
"市价总值",
|
|
269
|
-
"流通市值",
|
|
270
|
-
"成交金额",
|
|
271
|
-
"成交量",
|
|
272
|
-
"成交笔数",
|
|
273
|
-
"平均市盈率",
|
|
274
|
-
"换手率",
|
|
275
|
-
"次新股换手率",
|
|
276
|
-
"流通换手率",
|
|
277
|
-
]
|
|
278
|
-
temp_df["单日情况"].cat.set_categories(list_custom_new)
|
|
279
|
-
temp_df.sort_values("单日情况", ascending=True, inplace=True)
|
|
280
|
-
temp_df.reset_index(drop=True, inplace=True)
|
|
281
|
-
# 构建空
|
|
282
|
-
temp_df['股票'] = "-"
|
|
283
|
-
temp_df['科创板'] = "-"
|
|
284
|
-
temp_df['股票回购'] = "-"
|
|
285
|
-
temp_df["股票"] = pd.to_numeric(temp_df["股票"], errors="coerce")
|
|
286
|
-
temp_df["主板A"] = pd.to_numeric(temp_df["主板A"], errors="coerce")
|
|
287
|
-
temp_df["主板B"] = pd.to_numeric(temp_df["主板B"], errors="coerce")
|
|
288
|
-
temp_df["科创板"] = pd.to_numeric("-", errors="coerce") # 默认位空
|
|
289
|
-
temp_df["股票回购"] = pd.to_numeric(temp_df["股票回购"], errors="coerce")
|
|
290
|
-
temp_df = temp_df[
|
|
291
|
-
[
|
|
292
|
-
"单日情况",
|
|
293
|
-
"股票",
|
|
294
|
-
"主板A",
|
|
295
|
-
"主板B",
|
|
296
|
-
"科创板",
|
|
297
|
-
"股票回购",
|
|
298
|
-
]
|
|
299
|
-
]
|
|
300
|
-
return temp_df
|
|
301
|
-
if int(date) <= 20211224:
|
|
302
|
-
url = "http://query.sse.com.cn/commonQuery.do"
|
|
303
|
-
params = {
|
|
304
|
-
"searchDate": "-".join([date[:4], date[4:6], date[6:]]),
|
|
305
|
-
"sqlId": "COMMON_SSE_SJ_GPSJ_CJGK_DAYCJGK_C",
|
|
306
|
-
"stockType": "90",
|
|
307
|
-
"_": "1616744620492",
|
|
308
|
-
}
|
|
309
|
-
headers = {
|
|
310
|
-
"Referer": "http://www.sse.com.cn/",
|
|
311
|
-
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36",
|
|
312
|
-
}
|
|
313
|
-
r = requests.get(url, params=params, headers=headers)
|
|
314
|
-
data_json = r.json()
|
|
315
|
-
temp_df = pd.DataFrame(data_json["result"])
|
|
316
|
-
temp_df = temp_df.T
|
|
317
|
-
temp_df.reset_index(inplace=True)
|
|
318
|
-
if len(temp_df.columns) == 6:
|
|
319
|
-
temp_df.columns = [
|
|
320
|
-
"单日情况",
|
|
321
|
-
"-",
|
|
322
|
-
"股票",
|
|
323
|
-
"主板B",
|
|
324
|
-
"主板A",
|
|
325
|
-
"股票回购",
|
|
326
|
-
]
|
|
327
|
-
temp_df = temp_df[
|
|
328
|
-
[
|
|
329
|
-
"单日情况",
|
|
330
|
-
"股票",
|
|
331
|
-
"主板A",
|
|
332
|
-
"主板B",
|
|
333
|
-
"股票回购",
|
|
334
|
-
]
|
|
335
|
-
]
|
|
336
|
-
temp_df["单日情况"] = [
|
|
337
|
-
"流通市值",
|
|
338
|
-
"流通换手率",
|
|
339
|
-
"平均市盈率",
|
|
340
|
-
"_",
|
|
341
|
-
"市价总值",
|
|
342
|
-
"_",
|
|
343
|
-
"换手率",
|
|
344
|
-
"_",
|
|
345
|
-
"挂牌数",
|
|
346
|
-
"_",
|
|
347
|
-
"_",
|
|
348
|
-
"_",
|
|
349
|
-
"_",
|
|
350
|
-
"_",
|
|
351
|
-
"成交笔数",
|
|
352
|
-
"成交金额",
|
|
353
|
-
"成交量",
|
|
354
|
-
"次新股换手率",
|
|
355
|
-
"_",
|
|
356
|
-
"_",
|
|
357
|
-
]
|
|
358
|
-
temp_df = temp_df[temp_df["单日情况"] != "_"]
|
|
359
|
-
temp_df["单日情况"] = temp_df["单日情况"].astype("category")
|
|
360
|
-
list_custom_new = [
|
|
361
|
-
"挂牌数",
|
|
362
|
-
"市价总值",
|
|
363
|
-
"流通市值",
|
|
364
|
-
"成交金额",
|
|
365
|
-
"成交量",
|
|
366
|
-
"成交笔数",
|
|
367
|
-
"平均市盈率",
|
|
368
|
-
"换手率",
|
|
369
|
-
"次新股换手率",
|
|
370
|
-
"流通换手率",
|
|
371
|
-
]
|
|
372
|
-
temp_df["单日情况"].cat.set_categories(list_custom_new)
|
|
373
|
-
temp_df.sort_values("单日情况", ascending=True, inplace=True)
|
|
374
|
-
temp_df.reset_index(drop=True, inplace=True)
|
|
375
|
-
temp_df["股票"] = pd.to_numeric(temp_df["股票"], errors="coerce")
|
|
376
|
-
temp_df["主板A"] = pd.to_numeric(temp_df["主板A"], errors="coerce")
|
|
377
|
-
temp_df["主板B"] = pd.to_numeric(temp_df["主板B"], errors="coerce")
|
|
378
|
-
temp_df["科创板"] = pd.to_numeric("-", errors="coerce") # 默认位空
|
|
379
|
-
temp_df["股票回购"] = pd.to_numeric(temp_df["股票回购"], errors="coerce")
|
|
380
|
-
temp_df = temp_df[
|
|
381
|
-
[
|
|
382
|
-
"单日情况",
|
|
383
|
-
"股票",
|
|
384
|
-
"主板A",
|
|
385
|
-
"主板B",
|
|
386
|
-
"科创板",
|
|
387
|
-
"股票回购",
|
|
388
|
-
]
|
|
389
|
-
]
|
|
390
|
-
return temp_df
|
|
391
|
-
else:
|
|
392
|
-
temp_df.columns = [
|
|
393
|
-
"单日情况",
|
|
394
|
-
"主板A",
|
|
395
|
-
"股票",
|
|
396
|
-
"主板B",
|
|
397
|
-
"_",
|
|
398
|
-
"股票回购",
|
|
399
|
-
"科创板",
|
|
400
|
-
]
|
|
401
|
-
temp_df = temp_df[
|
|
402
|
-
[
|
|
403
|
-
"单日情况",
|
|
404
|
-
"股票",
|
|
405
|
-
"主板A",
|
|
406
|
-
"主板B",
|
|
407
|
-
"科创板",
|
|
408
|
-
"股票回购",
|
|
409
|
-
]
|
|
410
|
-
]
|
|
411
|
-
temp_df["单日情况"] = [
|
|
412
|
-
"流通市值",
|
|
413
|
-
"流通换手率",
|
|
414
|
-
"平均市盈率",
|
|
415
|
-
"_",
|
|
416
|
-
"市价总值",
|
|
417
|
-
"_",
|
|
418
|
-
"换手率",
|
|
419
|
-
"_",
|
|
420
|
-
"挂牌数",
|
|
421
|
-
"_",
|
|
422
|
-
"_",
|
|
423
|
-
"_",
|
|
424
|
-
"_",
|
|
425
|
-
"_",
|
|
426
|
-
"成交笔数",
|
|
427
|
-
"成交金额",
|
|
428
|
-
"成交量",
|
|
429
|
-
"次新股换手率",
|
|
430
|
-
"_",
|
|
431
|
-
"_",
|
|
432
|
-
]
|
|
433
|
-
temp_df = temp_df[temp_df["单日情况"] != "_"]
|
|
434
|
-
temp_df["单日情况"] = temp_df["单日情况"].astype("category")
|
|
435
|
-
list_custom_new = [
|
|
436
|
-
"挂牌数",
|
|
437
|
-
"市价总值",
|
|
438
|
-
"流通市值",
|
|
439
|
-
"成交金额",
|
|
440
|
-
"成交量",
|
|
441
|
-
"成交笔数",
|
|
442
|
-
"平均市盈率",
|
|
443
|
-
"换手率",
|
|
444
|
-
"次新股换手率",
|
|
445
|
-
"流通换手率",
|
|
446
|
-
]
|
|
447
|
-
temp_df["单日情况"].cat.set_categories(list_custom_new)
|
|
448
|
-
temp_df.sort_values("单日情况", ascending=True, inplace=True)
|
|
449
|
-
temp_df.reset_index(drop=True, inplace=True)
|
|
450
|
-
temp_df["股票"] = pd.to_numeric(temp_df["股票"], errors="coerce")
|
|
451
|
-
temp_df["主板A"] = pd.to_numeric(temp_df["主板A"], errors="coerce")
|
|
452
|
-
temp_df["主板B"] = pd.to_numeric(temp_df["主板B"], errors="coerce")
|
|
453
|
-
temp_df["科创板"] = pd.to_numeric(temp_df["科创板"], errors="coerce")
|
|
454
|
-
temp_df["股票回购"] = pd.to_numeric(temp_df["股票回购"], errors="coerce")
|
|
455
|
-
return temp_df
|
|
456
|
-
elif int(date) <= 20220224:
|
|
457
|
-
url = "http://query.sse.com.cn/commonQuery.do"
|
|
458
|
-
params = {
|
|
459
|
-
"sqlId": "COMMON_SSE_SJ_GPSJ_CJGK_MRGK_C",
|
|
460
|
-
"SEARCH_DATE": "-".join([date[:4], date[4:6], date[6:]]),
|
|
461
|
-
"_": "1640836561673",
|
|
462
|
-
}
|
|
463
|
-
headers = {
|
|
464
|
-
"Referer": "http://www.sse.com.cn/",
|
|
465
|
-
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36",
|
|
466
|
-
}
|
|
467
|
-
r = requests.get(url, params=params, headers=headers)
|
|
468
|
-
data_json = r.json()
|
|
469
|
-
temp_df = pd.DataFrame(data_json["result"])
|
|
470
|
-
temp_df = temp_df.T
|
|
471
|
-
temp_df.reset_index(inplace=True)
|
|
275
|
+
temp_df["股票回购"] = "-"
|
|
276
|
+
elif len(temp_df.columns) == 4:
|
|
277
|
+
# 20220104
|
|
472
278
|
temp_df.columns = [
|
|
473
279
|
"单日情况",
|
|
474
280
|
"主板A",
|
|
475
281
|
"主板B",
|
|
476
282
|
"科创板",
|
|
477
|
-
"-",
|
|
478
|
-
"-",
|
|
479
|
-
"-",
|
|
480
|
-
"-",
|
|
481
|
-
"-",
|
|
482
|
-
]
|
|
483
|
-
temp_df = temp_df[
|
|
484
|
-
[
|
|
485
|
-
"单日情况",
|
|
486
|
-
"主板A",
|
|
487
|
-
"主板B",
|
|
488
|
-
"科创板",
|
|
489
|
-
]
|
|
490
|
-
]
|
|
491
|
-
temp_df["单日情况"] = [
|
|
492
|
-
"市价总值",
|
|
493
|
-
"成交量",
|
|
494
|
-
"平均市盈率",
|
|
495
|
-
"换手率",
|
|
496
|
-
"成交金额",
|
|
497
|
-
"-",
|
|
498
|
-
"流通市值",
|
|
499
|
-
"流通换手率",
|
|
500
|
-
"报告日期",
|
|
501
|
-
"挂牌数",
|
|
502
|
-
"-",
|
|
503
283
|
]
|
|
504
|
-
temp_df
|
|
505
|
-
temp_df["
|
|
506
|
-
list_custom_new = [
|
|
507
|
-
"挂牌数",
|
|
508
|
-
"市价总值",
|
|
509
|
-
"流通市值",
|
|
510
|
-
"成交金额",
|
|
511
|
-
"成交量",
|
|
512
|
-
"平均市盈率",
|
|
513
|
-
"换手率",
|
|
514
|
-
"流通换手率",
|
|
515
|
-
]
|
|
516
|
-
temp_df["单日情况"].cat.set_categories(list_custom_new)
|
|
517
|
-
temp_df.sort_values("单日情况", ascending=True, inplace=True)
|
|
518
|
-
temp_df.reset_index(inplace=True, drop=True)
|
|
519
|
-
temp_df["主板A"] = pd.to_numeric(temp_df["主板A"], errors="coerce")
|
|
520
|
-
temp_df["主板B"] = pd.to_numeric(temp_df["主板B"], errors="coerce")
|
|
521
|
-
temp_df["科创板"] = pd.to_numeric(temp_df["科创板"], errors="coerce")
|
|
522
|
-
return temp_df
|
|
284
|
+
temp_df["股票"] = "-"
|
|
285
|
+
temp_df["股票回购"] = "-"
|
|
523
286
|
else:
|
|
524
|
-
|
|
525
|
-
|
|
526
|
-
"
|
|
527
|
-
"
|
|
528
|
-
"
|
|
529
|
-
"
|
|
530
|
-
"
|
|
531
|
-
}
|
|
532
|
-
headers = {
|
|
533
|
-
"Referer": "http://www.sse.com.cn/",
|
|
534
|
-
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36",
|
|
535
|
-
}
|
|
536
|
-
r = requests.get(url, params=params, headers=headers)
|
|
537
|
-
data_json = r.json()
|
|
538
|
-
temp_df = pd.DataFrame(data_json["result"])
|
|
539
|
-
temp_df = temp_df.T
|
|
540
|
-
temp_df.reset_index(inplace=True)
|
|
541
|
-
if len(temp_df.T) == 5:
|
|
542
|
-
temp_df.columns = [
|
|
543
|
-
"单日情况",
|
|
544
|
-
"主板A",
|
|
545
|
-
"主板B",
|
|
546
|
-
"科创板",
|
|
547
|
-
"股票",
|
|
548
|
-
]
|
|
549
|
-
temp_df["股票回购"] = "-"
|
|
550
|
-
else:
|
|
551
|
-
temp_df.columns = [
|
|
552
|
-
"单日情况",
|
|
553
|
-
"主板A",
|
|
554
|
-
"主板B",
|
|
555
|
-
"科创板",
|
|
556
|
-
"股票回购",
|
|
557
|
-
"股票",
|
|
558
|
-
]
|
|
559
|
-
temp_df = temp_df[
|
|
560
|
-
[
|
|
561
|
-
"单日情况",
|
|
562
|
-
"股票",
|
|
563
|
-
"主板A",
|
|
564
|
-
"主板B",
|
|
565
|
-
"科创板",
|
|
566
|
-
"股票回购",
|
|
567
|
-
]
|
|
568
|
-
]
|
|
569
|
-
temp_df["单日情况"] = [
|
|
570
|
-
"市价总值",
|
|
571
|
-
"成交量",
|
|
572
|
-
"平均市盈率",
|
|
573
|
-
"换手率",
|
|
574
|
-
"成交金额",
|
|
575
|
-
"-",
|
|
576
|
-
"流通市值",
|
|
577
|
-
"流通换手率",
|
|
578
|
-
"报告日期",
|
|
579
|
-
"挂牌数",
|
|
580
|
-
"-",
|
|
287
|
+
temp_df.columns = [
|
|
288
|
+
"单日情况",
|
|
289
|
+
"主板A",
|
|
290
|
+
"主板B",
|
|
291
|
+
"科创板",
|
|
292
|
+
"股票回购",
|
|
293
|
+
"股票",
|
|
581
294
|
]
|
|
582
|
-
|
|
583
|
-
|
|
584
|
-
|
|
585
|
-
"
|
|
586
|
-
"
|
|
587
|
-
"
|
|
588
|
-
"
|
|
589
|
-
"
|
|
590
|
-
"平均市盈率",
|
|
591
|
-
"换手率",
|
|
592
|
-
"流通换手率",
|
|
295
|
+
temp_df = temp_df[
|
|
296
|
+
[
|
|
297
|
+
"单日情况",
|
|
298
|
+
"股票",
|
|
299
|
+
"主板A",
|
|
300
|
+
"主板B",
|
|
301
|
+
"科创板",
|
|
302
|
+
"股票回购",
|
|
593
303
|
]
|
|
594
|
-
|
|
595
|
-
|
|
596
|
-
|
|
597
|
-
|
|
598
|
-
|
|
599
|
-
|
|
600
|
-
|
|
601
|
-
|
|
602
|
-
|
|
304
|
+
]
|
|
305
|
+
temp_df["单日情况"] = [
|
|
306
|
+
"市价总值",
|
|
307
|
+
"成交量",
|
|
308
|
+
"平均市盈率",
|
|
309
|
+
"换手率",
|
|
310
|
+
"成交金额",
|
|
311
|
+
"-",
|
|
312
|
+
"流通市值",
|
|
313
|
+
"流通换手率",
|
|
314
|
+
"报告日期",
|
|
315
|
+
"挂牌数",
|
|
316
|
+
"-",
|
|
317
|
+
]
|
|
318
|
+
temp_df = temp_df[temp_df["单日情况"] != "-"]
|
|
319
|
+
temp_df = temp_df[temp_df["单日情况"] != "报告日期"]
|
|
320
|
+
# 定义期望的指标顺序
|
|
321
|
+
desired_order = [
|
|
322
|
+
"挂牌数",
|
|
323
|
+
"市价总值",
|
|
324
|
+
"流通市值",
|
|
325
|
+
"成交金额",
|
|
326
|
+
"成交量",
|
|
327
|
+
"平均市盈率",
|
|
328
|
+
"换手率",
|
|
329
|
+
"流通换手率",
|
|
330
|
+
]
|
|
331
|
+
# 使用 categorical 类型重新排序
|
|
332
|
+
temp_df["单日情况"] = pd.Categorical(
|
|
333
|
+
temp_df["单日情况"], categories=desired_order, ordered=True
|
|
334
|
+
)
|
|
335
|
+
# 按照指标排序
|
|
336
|
+
temp_df.sort_values("单日情况", ignore_index=True, inplace=True)
|
|
337
|
+
temp_df["股票"] = pd.to_numeric(temp_df["股票"], errors="coerce")
|
|
338
|
+
temp_df["主板A"] = pd.to_numeric(temp_df["主板A"], errors="coerce")
|
|
339
|
+
temp_df["主板B"] = pd.to_numeric(temp_df["主板B"], errors="coerce")
|
|
340
|
+
temp_df["科创板"] = pd.to_numeric(temp_df["科创板"], errors="coerce")
|
|
341
|
+
temp_df["股票回购"] = pd.to_numeric(temp_df["股票回购"], errors="coerce")
|
|
342
|
+
return temp_df
|
|
603
343
|
|
|
604
344
|
|
|
605
345
|
if __name__ == "__main__":
|
|
606
|
-
stock_szse_summary_df = stock_szse_summary(date="
|
|
346
|
+
stock_szse_summary_df = stock_szse_summary(date="20200619")
|
|
607
347
|
print(stock_szse_summary_df)
|
|
608
348
|
|
|
609
|
-
stock_szse_area_summary_df = stock_szse_area_summary(date="
|
|
349
|
+
stock_szse_area_summary_df = stock_szse_area_summary(date="202412")
|
|
350
|
+
print(stock_szse_area_summary_df)
|
|
351
|
+
|
|
352
|
+
stock_szse_area_summary_df = stock_szse_area_summary(date="202502")
|
|
610
353
|
print(stock_szse_area_summary_df)
|
|
611
354
|
|
|
612
|
-
stock_szse_sector_summary_df = stock_szse_sector_summary(
|
|
355
|
+
stock_szse_sector_summary_df = stock_szse_sector_summary(
|
|
356
|
+
symbol="当月", date="202501"
|
|
357
|
+
)
|
|
613
358
|
print(stock_szse_sector_summary_df)
|
|
614
359
|
|
|
615
360
|
stock_sse_summary_df = stock_sse_summary()
|
|
616
361
|
print(stock_sse_summary_df)
|
|
617
362
|
|
|
618
|
-
stock_sse_deal_daily_df = stock_sse_deal_daily(date="
|
|
619
|
-
print(stock_sse_deal_daily_df)
|
|
620
|
-
|
|
621
|
-
stock_sse_deal_daily_df = stock_sse_deal_daily(date="20211227")
|
|
622
|
-
print(stock_sse_deal_daily_df)
|
|
623
|
-
|
|
624
|
-
stock_sse_deal_daily_df = stock_sse_deal_daily(date="20190613")
|
|
625
|
-
print(stock_sse_deal_daily_df)
|
|
626
|
-
|
|
627
|
-
stock_sse_deal_daily_df = stock_sse_deal_daily(date="20080131")
|
|
363
|
+
stock_sse_deal_daily_df = stock_sse_deal_daily(date="20250228")
|
|
628
364
|
print(stock_sse_deal_daily_df)
|