akshare 1.14.49__py3-none-any.whl → 1.17.99__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- akshare/__init__.py +595 -129
- akshare/air/air_hebei.py +77 -54
- akshare/air/air_zhenqi.py +0 -4
- akshare/air/cons.py +1 -0
- akshare/air/crypto.js +1 -1
- akshare/air/outcrypto.js +1 -1
- akshare/article/cons.py +1 -0
- akshare/article/epu_index.py +4 -3
- akshare/article/ff_factor.py +19 -8
- akshare/article/fred_md.py +4 -1
- akshare/article/risk_rv.py +3 -8
- akshare/bank/bank_cbirc_2020.py +11 -11
- akshare/bank/cons.py +7 -6
- akshare/bond/bond_buy_back_em.py +228 -0
- akshare/bond/bond_cb_sina.py +1 -0
- akshare/bond/bond_cb_ths.py +17 -9
- akshare/bond/bond_cbond.py +19 -14
- akshare/bond/bond_china.py +38 -39
- akshare/bond/bond_china_money.py +1 -1
- akshare/bond/bond_convert.py +10 -9
- akshare/bond/bond_em.py +37 -17
- akshare/bond/bond_summary.py +38 -37
- akshare/bond/bond_zh_cov.py +31 -40
- akshare/bond/bond_zh_sina.py +4 -0
- akshare/bond/cons.py +14 -11
- akshare/cal/__init__.py +0 -0
- akshare/cal/rv.py +170 -0
- akshare/cost/cost_living.py +7 -5
- akshare/crypto/__init__.py +1 -1
- akshare/crypto/crypto_bitcoin_cme.py +9 -7
- akshare/crypto/crypto_hold.py +4 -2
- akshare/currency/currency.py +1 -0
- akshare/currency/currency_china_bank_sina.py +11 -6
- akshare/data/__init__.py +1 -1
- akshare/data/cninfo.js +1 -1
- akshare/datasets.py +10 -21
- akshare/economic/cons.py +10 -3
- akshare/economic/macro_australia.py +74 -69
- akshare/economic/macro_bank.py +95 -653
- akshare/economic/macro_canada.py +92 -81
- akshare/economic/macro_china.py +97 -105
- akshare/economic/macro_china_hk.py +0 -1
- akshare/economic/macro_euro.py +103 -56
- akshare/economic/macro_finance_ths.py +7 -5
- akshare/economic/macro_germany.py +1 -1
- akshare/economic/macro_japan.py +0 -1
- akshare/economic/macro_other.py +1 -6
- akshare/economic/macro_swiss.py +2 -3
- akshare/economic/macro_uk.py +1 -1
- akshare/economic/macro_usa.py +7 -9
- akshare/economic/marco_cnbs.py +11 -6
- akshare/energy/energy_carbon.py +0 -1
- akshare/energy/energy_oil_em.py +1 -2
- akshare/event/cons.py +1 -0
- akshare/exceptions.py +43 -0
- akshare/file_fold/calendar.json +245 -2
- akshare/forex/__init__.py +0 -0
- akshare/forex/cons.py +192 -0
- akshare/forex/forex_em.py +149 -0
- akshare/fortune/fortune_500.py +1 -37
- akshare/fortune/fortune_bloomberg.py +6 -3
- akshare/fortune/fortune_forbes_500.py +3 -6
- akshare/fortune/fortune_hurun.py +2 -1
- akshare/fortune/fortune_xincaifu_500.py +17 -14
- akshare/fund/fund_announcement_em.py +145 -0
- akshare/fund/fund_aum_em.py +49 -35
- akshare/fund/fund_em.py +251 -220
- akshare/fund/fund_etf_em.py +44 -35
- akshare/fund/fund_etf_sina.py +75 -27
- akshare/fund/fund_etf_ths.py +2 -0
- akshare/fund/fund_fee_em.py +172 -0
- akshare/fund/fund_fhsp_em.py +42 -32
- akshare/fund/fund_init_em.py +8 -5
- akshare/fund/fund_lof_em.py +12 -19
- akshare/fund/fund_manager.py +25 -11
- akshare/fund/fund_overview_em.py +42 -0
- akshare/fund/fund_portfolio_em.py +23 -21
- akshare/fund/fund_position_lg.py +19 -8
- akshare/fund/fund_rank_em.py +2 -5
- akshare/fund/fund_rating.py +33 -12
- akshare/fund/fund_scale_em.py +24 -13
- akshare/fund/fund_scale_sina.py +20 -10
- akshare/fund/fund_xq.py +3 -2
- akshare/futures/cons.py +135 -39
- akshare/futures/cot.py +55 -56
- akshare/futures/futures_basis.py +49 -11
- akshare/futures/futures_comex_em.py +1 -0
- akshare/futures/futures_comm_ctp.py +1 -1
- akshare/futures/futures_contract_detail.py +59 -9
- akshare/futures/futures_daily_bar.py +66 -59
- akshare/futures/futures_foreign.py +14 -8
- akshare/futures/futures_hf_em.py +215 -61
- akshare/futures/futures_hist_em.py +191 -0
- akshare/futures/futures_hq_sina.py +5 -3
- akshare/futures/futures_index_ccidx.py +24 -82
- akshare/futures/futures_inventory_99.py +70 -272
- akshare/futures/futures_inventory_em.py +14 -11
- akshare/futures/futures_news_shmet.py +2 -2
- akshare/futures/futures_roll_yield.py +11 -24
- akshare/futures/futures_rule.py +7 -3
- akshare/futures/futures_rule_em.py +38 -0
- akshare/futures/futures_settlement_price_sgx.py +21 -6
- akshare/futures/futures_stock_js.py +0 -1
- akshare/futures/futures_to_spot.py +5 -6
- akshare/futures/futures_warehouse_receipt.py +48 -47
- akshare/futures/futures_zh_sina.py +3 -3
- akshare/futures/receipt.py +298 -165
- akshare/futures/requests_fun.py +16 -3
- akshare/futures/symbol_var.py +32 -13
- akshare/futures_derivative/cons.py +100 -103
- akshare/futures_derivative/futures_contract_info_cffex.py +55 -39
- akshare/futures_derivative/futures_contract_info_czce.py +2 -0
- akshare/futures_derivative/futures_contract_info_dce.py +43 -17
- akshare/futures_derivative/futures_contract_info_gfex.py +43 -31
- akshare/futures_derivative/futures_contract_info_ine.py +43 -34
- akshare/futures_derivative/futures_contract_info_shfe.py +3 -4
- akshare/futures_derivative/futures_cot_sina.py +8 -6
- akshare/futures_derivative/futures_index_sina.py +25 -13
- akshare/fx/cons.py +12 -7
- akshare/fx/fx_c_swap_cm.py +62 -0
- akshare/fx/fx_quote.py +3 -2
- akshare/fx/fx_quote_baidu.py +2 -1
- akshare/hf/__init__.py +1 -1
- akshare/hf/hf_sp500.py +8 -7
- akshare/index/cons.py +132 -28
- akshare/index/index_cni.py +7 -7
- akshare/index/index_cons.py +2 -2
- akshare/index/index_csindex.py +68 -0
- akshare/index/index_cx.py +20 -20
- akshare/index/index_drewry.py +17 -16
- akshare/index/index_eri.py +1 -0
- akshare/index/index_global_em.py +167 -0
- akshare/index/index_global_sina.py +82 -0
- akshare/index/index_kq_fz.py +17 -14
- akshare/index/index_kq_ss.py +1 -0
- akshare/index/index_option_qvix.py +351 -16
- akshare/index/index_research_sw.py +21 -21
- akshare/index/index_spot.py +9 -5
- akshare/index/index_stock_hk.py +5 -9
- akshare/index/index_stock_zh.py +111 -24
- akshare/index/index_stock_zh_csindex.py +3 -367
- akshare/index/index_sugar.py +18 -4
- akshare/index/index_sw.py +10 -2
- akshare/index/index_yw.py +53 -75
- akshare/index/index_zh_em.py +15 -82
- akshare/interest_rate/interbank_rate_em.py +0 -1
- akshare/movie/jm.js +0 -1
- akshare/news/__init__.py +1 -1
- akshare/news/news_baidu.py +395 -222
- akshare/news/news_stock.py +49 -16
- akshare/option/cons.py +2 -2
- akshare/option/option_commodity.py +341 -220
- akshare/option/option_commodity_sina.py +22 -26
- akshare/option/option_contract_info_ctp.py +63 -0
- akshare/option/option_current_sse.py +61 -0
- akshare/option/option_current_szse.py +84 -0
- akshare/option/option_czce.py +37 -9
- akshare/option/option_daily_stats_sse_szse.py +0 -1
- akshare/option/option_em.py +4 -8
- akshare/option/option_finance.py +60 -12
- akshare/option/option_finance_sina.py +7 -7
- akshare/option/option_lhb_em.py +0 -1
- akshare/option/option_margin.py +62 -0
- akshare/option/option_premium_analysis_em.py +58 -53
- akshare/option/option_risk_analysis_em.py +11 -8
- akshare/option/option_risk_indicator_sse.py +3 -4
- akshare/option/option_value_analysis_em.py +62 -55
- akshare/other/__init__.py +1 -1
- akshare/pro/__init__.py +0 -1
- akshare/pro/client.py +6 -4
- akshare/pro/cons.py +3 -2
- akshare/pro/data_pro.py +6 -5
- akshare/qdii/__init__.py +0 -0
- akshare/qdii/qdii_jsl.py +233 -0
- akshare/qhkc/__init__.py +1 -6
- akshare/qhkc/qhkc_api.py +64 -22
- akshare/qhkc_web/__init__.py +1 -6
- akshare/qhkc_web/qhkc_fund.py +10 -6
- akshare/qhkc_web/qhkc_index.py +28 -14
- akshare/qhkc_web/qhkc_tool.py +62 -59
- akshare/rate/__init__.py +1 -1
- akshare/rate/repo_rate.py +36 -32
- akshare/reits/__init__.py +1 -1
- akshare/reits/reits_basic.py +149 -13
- akshare/request.py +117 -0
- akshare/spot/__init__.py +1 -1
- akshare/spot/spot_hog_soozhu.py +165 -3
- akshare/spot/spot_sge.py +70 -9
- akshare/stock/cons.py +60 -23
- akshare/stock/stock_allotment_cninfo.py +8 -8
- akshare/stock/stock_ask_bid_em.py +3 -78
- akshare/stock/stock_board_concept_em.py +160 -35
- akshare/stock/stock_board_industry_em.py +163 -70
- akshare/stock/stock_dividend_cninfo.py +31 -17
- akshare/stock/stock_dzjy_em.py +347 -260
- akshare/stock/stock_fund_em.py +72 -64
- akshare/stock/stock_fund_hold.py +1 -2
- akshare/stock/stock_gsrl_em.py +1 -0
- akshare/stock/stock_hk_comparison_em.py +175 -0
- akshare/stock/stock_hk_famous.py +4 -5
- akshare/stock/stock_hk_fhpx_ths.py +2 -1
- akshare/stock/stock_hk_hot_rank_em.py +1 -0
- akshare/stock/stock_hk_sina.py +84 -36
- akshare/stock/stock_hold_control_cninfo.py +82 -0
- akshare/stock/stock_hold_control_em.py +0 -2
- akshare/stock/stock_hot_rank_em.py +4 -1
- akshare/stock/stock_hot_search_baidu.py +32 -19
- akshare/stock/stock_hot_up_em.py +4 -1
- akshare/stock/stock_hsgt_em.py +155 -0
- akshare/stock/stock_industry.py +1 -0
- akshare/stock/stock_industry_cninfo.py +1 -2
- akshare/stock/stock_info.py +6 -4
- akshare/stock/stock_info_em.py +17 -11
- akshare/stock/stock_intraday_em.py +4 -78
- akshare/stock/stock_intraday_sina.py +2 -2
- akshare/stock/stock_news_cx.py +39 -0
- akshare/stock/stock_profile_cninfo.py +7 -7
- akshare/stock/stock_profile_em.py +302 -0
- akshare/stock/stock_rank_forecast.py +6 -5
- akshare/stock/stock_repurchase_em.py +7 -2
- akshare/stock/stock_share_changes_cninfo.py +7 -5
- akshare/stock/stock_share_hold.py +24 -20
- akshare/stock/stock_stop.py +6 -6
- akshare/stock/stock_summary.py +153 -417
- akshare/stock/stock_us_famous.py +5 -6
- akshare/stock/stock_us_js.py +3 -2
- akshare/stock/stock_us_pink.py +38 -27
- akshare/stock/stock_us_sina.py +7 -3
- akshare/stock/stock_weibo_nlp.py +18 -20
- akshare/stock/stock_xq.py +24 -22
- akshare/stock/stock_zh_a_sina.py +8 -5
- akshare/stock/stock_zh_a_special.py +240 -243
- akshare/stock/stock_zh_a_tick_tx.py +11 -3
- akshare/stock/stock_zh_ah_tx.py +23 -26
- akshare/stock/stock_zh_b_sina.py +2 -2
- akshare/stock/stock_zh_comparison_em.py +250 -0
- akshare/stock/stock_zh_kcb_sina.py +67 -64
- akshare/stock_a/__init__.py +0 -0
- akshare/stock_a/stock_board_concept_name_em.py +170 -0
- akshare/stock_a/stock_individual_fund_flow_rank.py +258 -0
- akshare/stock_a/stock_zh_a_spot.py +212 -0
- akshare/stock_feature/cons.py +1 -0
- akshare/stock_feature/stock_a_indicator.py +9 -54
- akshare/stock_feature/stock_a_pe_and_pb.py +23 -5
- akshare/stock_feature/stock_account_em.py +0 -1
- akshare/stock_feature/stock_all_pb.py +2 -1
- akshare/stock_feature/stock_analyst_em.py +36 -30
- akshare/stock_feature/stock_board_concept_ths.py +328 -0
- akshare/stock_feature/stock_board_industry_ths.py +57 -2
- akshare/stock_feature/stock_buffett_index_lg.py +10 -8
- akshare/stock_feature/stock_classify_sina.py +3 -6
- akshare/stock_feature/stock_comment_em.py +81 -144
- akshare/stock_feature/stock_congestion_lg.py +2 -1
- akshare/stock_feature/stock_cyq_em.py +5 -11
- akshare/stock_feature/stock_disclosure_cninfo.py +6 -6
- akshare/stock_feature/stock_dxsyl_em.py +121 -74
- akshare/stock_feature/stock_ebs_lg.py +5 -4
- akshare/stock_feature/stock_esg_sina.py +29 -7
- akshare/stock_feature/stock_fhps_em.py +2 -1
- akshare/stock_feature/stock_fhps_ths.py +15 -7
- akshare/stock_feature/stock_fund_flow.py +30 -22
- akshare/stock_feature/stock_gddh_em.py +19 -11
- akshare/stock_feature/stock_gdfx_em.py +226 -113
- akshare/stock_feature/stock_gdhs.py +75 -50
- akshare/stock_feature/stock_gdzjc_em.py +21 -10
- akshare/stock_feature/stock_gpzy_em.py +78 -46
- akshare/stock_feature/stock_gxl_lg.py +3 -2
- akshare/stock_feature/stock_hist_em.py +137 -234
- akshare/stock_feature/stock_hist_tx.py +13 -10
- akshare/stock_feature/stock_hk_valuation_baidu.py +20 -8
- akshare/stock_feature/stock_hot_xq.py +4 -6
- akshare/stock_feature/stock_hsgt_em.py +269 -97
- akshare/stock_feature/stock_hsgt_exchange_rate.py +115 -87
- akshare/stock_feature/stock_hsgt_min_em.py +13 -16
- akshare/stock_feature/stock_info.py +7 -80
- akshare/stock_feature/stock_inner_trade_xq.py +38 -31
- akshare/stock_feature/stock_jgdy_em.py +43 -40
- akshare/stock_feature/stock_lhb_em.py +119 -3
- akshare/stock_feature/stock_margin_em.py +0 -1
- akshare/stock_feature/stock_margin_sse.py +0 -2
- akshare/stock_feature/stock_pankou_em.py +71 -35
- akshare/stock_feature/stock_qsjy_em.py +13 -4
- akshare/stock_feature/stock_report_em.py +151 -7
- akshare/stock_feature/stock_research_report_em.py +55 -20
- akshare/stock_feature/stock_sy_em.py +20 -15
- akshare/stock_feature/stock_technology_ths.py +122 -77
- akshare/stock_feature/stock_tfp_em.py +2 -1
- akshare/stock_feature/stock_three_report_em.py +21 -5
- akshare/stock_feature/stock_ttm_lyr.py +18 -9
- akshare/stock_feature/stock_value_em.py +83 -0
- akshare/stock_feature/stock_yjbb_em.py +58 -32
- akshare/stock_feature/stock_yjyg_cninfo.py +6 -2
- akshare/stock_feature/stock_yjyg_em.py +1 -1
- akshare/stock_feature/stock_yzxdr_em.py +24 -22
- akshare/stock_feature/stock_zdhtmx_em.py +20 -6
- akshare/stock_feature/stock_zh_vote_baidu.py +4 -1
- akshare/stock_feature/stock_ztb_em.py +39 -24
- akshare/stock_fundamental/__init__.py +1 -1
- akshare/stock_fundamental/stock_basic_info_xq.py +119 -0
- akshare/stock_fundamental/{stock_finance_hk.py → stock_finance_hk_em.py} +23 -16
- akshare/stock_fundamental/{stock_finance.py → stock_finance_sina.py} +60 -7
- akshare/stock_fundamental/stock_finance_ths.py +524 -57
- akshare/stock_fundamental/stock_finance_us_em.py +268 -0
- akshare/stock_fundamental/stock_gbjg_em.py +80 -0
- akshare/stock_fundamental/stock_hold.py +26 -17
- akshare/stock_fundamental/stock_ipo_declare.py +1 -0
- akshare/stock_fundamental/stock_kcb_detail_sse.py +10 -10
- akshare/stock_fundamental/stock_kcb_sse.py +26 -25
- akshare/stock_fundamental/stock_notice.py +12 -3
- akshare/stock_fundamental/stock_profit_forecast_em.py +31 -13
- akshare/stock_fundamental/stock_profit_forecast_hk_etnet.py +64 -41
- akshare/stock_fundamental/stock_profit_forecast_ths.py +86 -35
- akshare/stock_fundamental/stock_recommend.py +20 -4
- akshare/stock_fundamental/stock_zygc.py +5 -62
- akshare/utils/context.py +43 -0
- akshare/utils/demjson.py +2009 -1338
- akshare/utils/func.py +49 -2
- akshare/utils/multi_decrypt.py +53 -0
- akshare/utils/token_process.py +6 -5
- {akshare-1.14.49.dist-info → akshare-1.17.99.dist-info}/METADATA +54 -80
- akshare-1.17.99.dist-info/RECORD +409 -0
- {akshare-1.14.49.dist-info → akshare-1.17.99.dist-info}/WHEEL +1 -1
- {akshare-1.14.49.dist-info → akshare-1.17.99.dist-info/licenses}/LICENSE +1 -1
- tests/test_func.py +3 -5
- akshare/bond/bond_futures.py +0 -50
- akshare/bond/bond_investing.py +0 -139
- akshare/crypto/crypto_hist_investing.py +0 -249
- akshare/fund/fund_announcement.py +0 -56
- akshare/futures/futures_international.py +0 -170
- akshare/futures/futures_news_baidu.py +0 -54
- akshare/futures/inventory_data.py +0 -100
- akshare/futures_derivative/futures_index_price_nh.py +0 -61
- akshare/futures_derivative/futures_index_return_nh.py +0 -47
- akshare/futures_derivative/futures_index_volatility_nh.py +0 -53
- akshare/futures_derivative/futures_other_index_nh.py +0 -145
- akshare/index/index_fear_greed_funddb.py +0 -78
- akshare/index/index_investing.py +0 -232
- akshare/sport/__init__.py +0 -6
- akshare/sport/sport_olympic.py +0 -27
- akshare/stock_feature/stock_wencai.py +0 -104
- akshare/stock_fundamental/stock_mda_ym.py +0 -40
- akshare-1.14.49.dist-info/RECORD +0 -387
- {akshare-1.14.49.dist-info → akshare-1.17.99.dist-info}/top_level.txt +0 -0
akshare/stock/stock_dzjy_em.py
CHANGED
|
@@ -1,10 +1,11 @@
|
|
|
1
1
|
#!/usr/bin/env python
|
|
2
2
|
# -*- coding:utf-8 -*-
|
|
3
3
|
"""
|
|
4
|
-
Date:
|
|
4
|
+
Date: 2025/1/13 22:30
|
|
5
5
|
Desc: 东方财富网-数据中心-大宗交易-市场统计
|
|
6
|
-
|
|
6
|
+
https://data.eastmoney.com/dzjy/
|
|
7
7
|
"""
|
|
8
|
+
|
|
8
9
|
import pandas as pd
|
|
9
10
|
import requests
|
|
10
11
|
|
|
@@ -12,33 +13,34 @@ import requests
|
|
|
12
13
|
def stock_dzjy_sctj() -> pd.DataFrame:
|
|
13
14
|
"""
|
|
14
15
|
东方财富网-数据中心-大宗交易-市场统计
|
|
15
|
-
|
|
16
|
+
https://data.eastmoney.com/dzjy/dzjy_sctj.html
|
|
16
17
|
:return: 市场统计表
|
|
17
18
|
:rtype: pandas.DataFrame
|
|
18
19
|
"""
|
|
19
20
|
url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
|
|
20
21
|
params = {
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
22
|
+
"sortColumns": "TRADE_DATE",
|
|
23
|
+
"sortTypes": "-1",
|
|
24
|
+
"pageSize": "500",
|
|
25
|
+
"pageNumber": "1",
|
|
26
|
+
"reportName": "PRT_BLOCKTRADE_MARKET_STA",
|
|
27
|
+
"columns": "TRADE_DATE,SZ_INDEX,SZ_CHANGE_RATE,BLOCKTRADE_DEAL_AMT,PREMIUM_DEAL_AMT,"
|
|
28
|
+
"PREMIUM_RATIO,DISCOUNT_DEAL_AMT,DISCOUNT_RATIO",
|
|
29
|
+
"source": "WEB",
|
|
30
|
+
"client": "WEB",
|
|
29
31
|
}
|
|
30
32
|
r = requests.get(url, params=params)
|
|
31
33
|
data_json = r.json()
|
|
32
|
-
total_page = int(data_json[
|
|
34
|
+
total_page = int(data_json["result"]["pages"])
|
|
33
35
|
big_df = pd.DataFrame()
|
|
34
|
-
for page in range(1, total_page+1):
|
|
35
|
-
params.update({
|
|
36
|
+
for page in range(1, total_page + 1):
|
|
37
|
+
params.update({"pageNumber": page})
|
|
36
38
|
r = requests.get(url, params=params)
|
|
37
39
|
data_json = r.json()
|
|
38
|
-
temp_df = pd.DataFrame(data_json[
|
|
39
|
-
big_df = pd.concat([big_df, temp_df], ignore_index=True)
|
|
40
|
+
temp_df = pd.DataFrame(data_json["result"]["data"])
|
|
41
|
+
big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
|
|
40
42
|
big_df.reset_index(inplace=True)
|
|
41
|
-
big_df[
|
|
43
|
+
big_df["index"] = big_df["index"] + 1
|
|
42
44
|
big_df.columns = [
|
|
43
45
|
"序号",
|
|
44
46
|
"交易日期",
|
|
@@ -50,21 +52,29 @@ def stock_dzjy_sctj() -> pd.DataFrame:
|
|
|
50
52
|
"折价成交总额",
|
|
51
53
|
"折价成交总额占比",
|
|
52
54
|
]
|
|
53
|
-
big_df["交易日期"] = pd.to_datetime(big_df["交易日期"]).dt.date
|
|
54
|
-
big_df["上证指数"] = pd.to_numeric(big_df["上证指数"])
|
|
55
|
-
big_df["上证指数涨跌幅"] = pd.to_numeric(big_df["上证指数涨跌幅"])
|
|
56
|
-
big_df["大宗交易成交总额"] = pd.to_numeric(
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
big_df["
|
|
60
|
-
big_df["
|
|
55
|
+
big_df["交易日期"] = pd.to_datetime(big_df["交易日期"], errors="coerce").dt.date
|
|
56
|
+
big_df["上证指数"] = pd.to_numeric(big_df["上证指数"], errors="coerce")
|
|
57
|
+
big_df["上证指数涨跌幅"] = pd.to_numeric(big_df["上证指数涨跌幅"], errors="coerce")
|
|
58
|
+
big_df["大宗交易成交总额"] = pd.to_numeric(
|
|
59
|
+
big_df["大宗交易成交总额"], errors="coerce"
|
|
60
|
+
)
|
|
61
|
+
big_df["溢价成交总额"] = pd.to_numeric(big_df["溢价成交总额"], errors="coerce")
|
|
62
|
+
big_df["溢价成交总额占比"] = pd.to_numeric(
|
|
63
|
+
big_df["溢价成交总额占比"], errors="coerce"
|
|
64
|
+
)
|
|
65
|
+
big_df["折价成交总额"] = pd.to_numeric(big_df["折价成交总额"], errors="coerce")
|
|
66
|
+
big_df["折价成交总额占比"] = pd.to_numeric(
|
|
67
|
+
big_df["折价成交总额占比"], errors="coerce"
|
|
68
|
+
)
|
|
61
69
|
return big_df
|
|
62
70
|
|
|
63
71
|
|
|
64
|
-
def stock_dzjy_mrmx(
|
|
72
|
+
def stock_dzjy_mrmx(
|
|
73
|
+
symbol: str = "基金", start_date: str = "20220104", end_date: str = "20220104"
|
|
74
|
+
) -> pd.DataFrame:
|
|
65
75
|
"""
|
|
66
76
|
东方财富网-数据中心-大宗交易-每日明细
|
|
67
|
-
|
|
77
|
+
https://data.eastmoney.com/dzjy/dzjy_mrmx.html
|
|
68
78
|
:param symbol: choice of {'A股', 'B股', '基金', '债券'}
|
|
69
79
|
:type symbol: str
|
|
70
80
|
:param start_date: 开始日期
|
|
@@ -75,31 +85,35 @@ def stock_dzjy_mrmx(symbol: str = '基金', start_date: str = '20220104', end_da
|
|
|
75
85
|
:rtype: pandas.DataFrame
|
|
76
86
|
"""
|
|
77
87
|
symbol_map = {
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
88
|
+
"A股": "1",
|
|
89
|
+
"B股": "2",
|
|
90
|
+
"基金": "3",
|
|
91
|
+
"债券": "4",
|
|
82
92
|
}
|
|
83
93
|
url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
|
|
84
94
|
params = {
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
95
|
+
"sortColumns": "SECURITY_CODE",
|
|
96
|
+
"sortTypes": "1",
|
|
97
|
+
"pageSize": "5000",
|
|
98
|
+
"pageNumber": "1",
|
|
99
|
+
"reportName": "RPT_DATA_BLOCKTRADE",
|
|
100
|
+
"columns": "TRADE_DATE,SECURITY_CODE,SECUCODE,SECURITY_NAME_ABBR,CHANGE_RATE,CLOSE_PRICE,"
|
|
101
|
+
"DEAL_PRICE,PREMIUM_RATIO,DEAL_VOLUME,DEAL_AMT,TURNOVER_RATE,BUYER_NAME,SELLER_NAME,"
|
|
102
|
+
"CHANGE_RATE_1DAYS,CHANGE_RATE_5DAYS,CHANGE_RATE_10DAYS,CHANGE_RATE_20DAYS,BUYER_CODE,SELLER_CODE",
|
|
103
|
+
"source": "WEB",
|
|
104
|
+
"client": "WEB",
|
|
105
|
+
"filter": f"""(SECURITY_TYPE_WEB={symbol_map[symbol]})(TRADE_DATE>=
|
|
106
|
+
'{'-'.join([start_date[:4], start_date[4:6], start_date[6:]])}')(TRADE_DATE<=
|
|
107
|
+
'{'-'.join([end_date[:4], end_date[4:6], end_date[6:]])}')""",
|
|
94
108
|
}
|
|
95
109
|
r = requests.get(url, params=params)
|
|
96
110
|
data_json = r.json()
|
|
97
|
-
if not data_json[
|
|
111
|
+
if not data_json["result"]["data"]:
|
|
98
112
|
return pd.DataFrame()
|
|
99
|
-
temp_df = pd.DataFrame(data_json[
|
|
113
|
+
temp_df = pd.DataFrame(data_json["result"]["data"])
|
|
100
114
|
temp_df.reset_index(inplace=True)
|
|
101
|
-
temp_df[
|
|
102
|
-
if symbol in {
|
|
115
|
+
temp_df["index"] = temp_df.index + 1
|
|
116
|
+
if symbol in {"A股"}:
|
|
103
117
|
temp_df.columns = [
|
|
104
118
|
"序号",
|
|
105
119
|
"交易日期",
|
|
@@ -122,30 +136,36 @@ def stock_dzjy_mrmx(symbol: str = '基金', start_date: str = '20220104', end_da
|
|
|
122
136
|
"_",
|
|
123
137
|
"_",
|
|
124
138
|
]
|
|
125
|
-
temp_df["交易日期"] = pd.to_datetime(
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
temp_df[
|
|
146
|
-
temp_df[
|
|
147
|
-
temp_df[
|
|
148
|
-
|
|
139
|
+
temp_df["交易日期"] = pd.to_datetime(
|
|
140
|
+
temp_df["交易日期"], errors="coerce"
|
|
141
|
+
).dt.date
|
|
142
|
+
temp_df = temp_df[
|
|
143
|
+
[
|
|
144
|
+
"序号",
|
|
145
|
+
"交易日期",
|
|
146
|
+
"证券代码",
|
|
147
|
+
"证券简称",
|
|
148
|
+
"涨跌幅",
|
|
149
|
+
"收盘价",
|
|
150
|
+
"成交价",
|
|
151
|
+
"折溢率",
|
|
152
|
+
"成交量",
|
|
153
|
+
"成交额",
|
|
154
|
+
"成交额/流通市值",
|
|
155
|
+
"买方营业部",
|
|
156
|
+
"卖方营业部",
|
|
157
|
+
]
|
|
158
|
+
]
|
|
159
|
+
temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce")
|
|
160
|
+
temp_df["收盘价"] = pd.to_numeric(temp_df["收盘价"], errors="coerce")
|
|
161
|
+
temp_df["成交价"] = pd.to_numeric(temp_df["成交价"], errors="coerce")
|
|
162
|
+
temp_df["折溢率"] = pd.to_numeric(temp_df["折溢率"], errors="coerce")
|
|
163
|
+
temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce")
|
|
164
|
+
temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce")
|
|
165
|
+
temp_df["成交额/流通市值"] = pd.to_numeric(
|
|
166
|
+
temp_df["成交额/流通市值"], errors="coerce"
|
|
167
|
+
)
|
|
168
|
+
if symbol in {"B股", "基金", "债券"}:
|
|
149
169
|
temp_df.columns = [
|
|
150
170
|
"序号",
|
|
151
171
|
"交易日期",
|
|
@@ -168,28 +188,34 @@ def stock_dzjy_mrmx(symbol: str = '基金', start_date: str = '20220104', end_da
|
|
|
168
188
|
"_",
|
|
169
189
|
"_",
|
|
170
190
|
]
|
|
171
|
-
temp_df["交易日期"] = pd.to_datetime(
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
191
|
+
temp_df["交易日期"] = pd.to_datetime(
|
|
192
|
+
temp_df["交易日期"], errors="coerce"
|
|
193
|
+
).dt.date
|
|
194
|
+
temp_df = temp_df[
|
|
195
|
+
[
|
|
196
|
+
"序号",
|
|
197
|
+
"交易日期",
|
|
198
|
+
"证券代码",
|
|
199
|
+
"证券简称",
|
|
200
|
+
"成交价",
|
|
201
|
+
"成交量",
|
|
202
|
+
"成交额",
|
|
203
|
+
"买方营业部",
|
|
204
|
+
"卖方营业部",
|
|
205
|
+
]
|
|
206
|
+
]
|
|
207
|
+
temp_df["成交价"] = pd.to_numeric(temp_df["成交价"], errors="coerce")
|
|
208
|
+
temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce")
|
|
209
|
+
temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce")
|
|
186
210
|
return temp_df
|
|
187
211
|
|
|
188
212
|
|
|
189
|
-
def stock_dzjy_mrtj(
|
|
213
|
+
def stock_dzjy_mrtj(
|
|
214
|
+
start_date: str = "20220105", end_date: str = "20220105"
|
|
215
|
+
) -> pd.DataFrame:
|
|
190
216
|
"""
|
|
191
217
|
东方财富网-数据中心-大宗交易-每日统计
|
|
192
|
-
|
|
218
|
+
https://data.eastmoney.com/dzjy/dzjy_mrtj.html
|
|
193
219
|
:param start_date: 开始日期
|
|
194
220
|
:type start_date: str
|
|
195
221
|
:param end_date: 结束日期
|
|
@@ -199,21 +225,24 @@ def stock_dzjy_mrtj(start_date: str = '20220105', end_date: str = '20220105') ->
|
|
|
199
225
|
"""
|
|
200
226
|
url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
|
|
201
227
|
params = {
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
|
|
228
|
+
"sortColumns": "TURNOVERRATE",
|
|
229
|
+
"sortTypes": "-1",
|
|
230
|
+
"pageSize": "5000",
|
|
231
|
+
"pageNumber": "1",
|
|
232
|
+
"reportName": "RPT_BLOCKTRADE_STA",
|
|
233
|
+
"columns": "TRADE_DATE,SECURITY_CODE,SECUCODE,SECURITY_NAME_ABBR,CHANGE_RATE,"
|
|
234
|
+
"CLOSE_PRICE,AVERAGE_PRICE,PREMIUM_RATIO,DEAL_NUM,VOLUME,DEAL_AMT,"
|
|
235
|
+
"TURNOVERRATE,D1_CLOSE_ADJCHRATE,D5_CLOSE_ADJCHRATE,D10_CLOSE_ADJCHRATE,D20_CLOSE_ADJCHRATE",
|
|
236
|
+
"source": "WEB",
|
|
237
|
+
"client": "WEB",
|
|
238
|
+
"filter": f"(TRADE_DATE>='{'-'.join([start_date[:4], start_date[4:6], start_date[6:]])}')(TRADE_DATE<="
|
|
239
|
+
f"'{'-'.join([end_date[:4], end_date[4:6], end_date[6:]])}')",
|
|
211
240
|
}
|
|
212
241
|
r = requests.get(url, params=params)
|
|
213
242
|
data_json = r.json()
|
|
214
|
-
temp_df = pd.DataFrame(data_json[
|
|
243
|
+
temp_df = pd.DataFrame(data_json["result"]["data"])
|
|
215
244
|
temp_df.reset_index(inplace=True)
|
|
216
|
-
temp_df[
|
|
245
|
+
temp_df["index"] = temp_df.index + 1
|
|
217
246
|
temp_df.columns = [
|
|
218
247
|
"序号",
|
|
219
248
|
"交易日期",
|
|
@@ -233,71 +262,77 @@ def stock_dzjy_mrtj(start_date: str = '20220105', end_date: str = '20220105') ->
|
|
|
233
262
|
"_",
|
|
234
263
|
"_",
|
|
235
264
|
]
|
|
236
|
-
temp_df["交易日期"] = pd.to_datetime(temp_df["交易日期"]).dt.date
|
|
237
|
-
temp_df = temp_df[
|
|
238
|
-
|
|
239
|
-
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
245
|
-
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
|
|
250
|
-
|
|
251
|
-
|
|
252
|
-
|
|
253
|
-
temp_df[
|
|
254
|
-
temp_df[
|
|
255
|
-
temp_df[
|
|
256
|
-
temp_df[
|
|
257
|
-
temp_df[
|
|
258
|
-
temp_df[
|
|
265
|
+
temp_df["交易日期"] = pd.to_datetime(temp_df["交易日期"], errors="coerce").dt.date
|
|
266
|
+
temp_df = temp_df[
|
|
267
|
+
[
|
|
268
|
+
"序号",
|
|
269
|
+
"交易日期",
|
|
270
|
+
"证券代码",
|
|
271
|
+
"证券简称",
|
|
272
|
+
"涨跌幅",
|
|
273
|
+
"收盘价",
|
|
274
|
+
"成交价",
|
|
275
|
+
"折溢率",
|
|
276
|
+
"成交笔数",
|
|
277
|
+
"成交总量",
|
|
278
|
+
"成交总额",
|
|
279
|
+
"成交总额/流通市值",
|
|
280
|
+
]
|
|
281
|
+
]
|
|
282
|
+
temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce")
|
|
283
|
+
temp_df["收盘价"] = pd.to_numeric(temp_df["收盘价"], errors="coerce")
|
|
284
|
+
temp_df["成交价"] = pd.to_numeric(temp_df["成交价"], errors="coerce")
|
|
285
|
+
temp_df["折溢率"] = pd.to_numeric(temp_df["折溢率"], errors="coerce")
|
|
286
|
+
temp_df["成交笔数"] = pd.to_numeric(temp_df["成交笔数"], errors="coerce")
|
|
287
|
+
temp_df["成交总量"] = pd.to_numeric(temp_df["成交总量"], errors="coerce")
|
|
288
|
+
temp_df["成交总额"] = pd.to_numeric(temp_df["成交总额"], errors="coerce")
|
|
289
|
+
temp_df["成交总额/流通市值"] = pd.to_numeric(
|
|
290
|
+
temp_df["成交总额/流通市值"], errors="coerce"
|
|
291
|
+
)
|
|
259
292
|
return temp_df
|
|
260
293
|
|
|
261
294
|
|
|
262
|
-
def stock_dzjy_hygtj(symbol: str =
|
|
295
|
+
def stock_dzjy_hygtj(symbol: str = "近三月") -> pd.DataFrame:
|
|
263
296
|
"""
|
|
264
297
|
东方财富网-数据中心-大宗交易-活跃 A 股统计
|
|
265
|
-
|
|
298
|
+
https://data.eastmoney.com/dzjy/dzjy_hygtj.html
|
|
266
299
|
:param symbol: choice of {'近一月', '近三月', '近六月', '近一年'}
|
|
267
300
|
:type symbol: str
|
|
268
301
|
:return: 活跃 A 股统计
|
|
269
302
|
:rtype: pandas.DataFrame
|
|
270
303
|
"""
|
|
271
304
|
period_map = {
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
|
|
305
|
+
"近一月": "1",
|
|
306
|
+
"近三月": "3",
|
|
307
|
+
"近六月": "6",
|
|
308
|
+
"近一年": "12",
|
|
276
309
|
}
|
|
277
310
|
url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
|
|
278
311
|
params = {
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
|
|
287
|
-
|
|
312
|
+
"sortColumns": "DEAL_NUM,SECURITY_CODE",
|
|
313
|
+
"sortTypes": "-1,-1",
|
|
314
|
+
"pageSize": "5000",
|
|
315
|
+
"pageNumber": "1",
|
|
316
|
+
"reportName": "RPT_BLOCKTRADE_ACSTA",
|
|
317
|
+
"columns": "SECURITY_CODE,SECUCODE,SECURITY_NAME_ABBR,CLOSE_PRICE,CHANGE_RATE,TRADE_DATE,"
|
|
318
|
+
"DEAL_AMT,PREMIUM_RATIO,SUM_TURNOVERRATE,DEAL_NUM,PREMIUM_TIMES,DISCOUNT_TIMES,"
|
|
319
|
+
"D1_AVG_ADJCHRATE,D5_AVG_ADJCHRATE,D10_AVG_ADJCHRATE,D20_AVG_ADJCHRATE,DATE_TYPE_CODE",
|
|
320
|
+
"source": "WEB",
|
|
321
|
+
"client": "WEB",
|
|
322
|
+
"filter": f"(DATE_TYPE_CODE={period_map[symbol]})",
|
|
288
323
|
}
|
|
289
324
|
r = requests.get(url, params=params)
|
|
290
325
|
data_json = r.json()
|
|
291
|
-
total_page = data_json[
|
|
326
|
+
total_page = data_json["result"]["pages"]
|
|
292
327
|
big_df = pd.DataFrame()
|
|
293
|
-
for page in range(1, int(total_page)+1):
|
|
328
|
+
for page in range(1, int(total_page) + 1):
|
|
294
329
|
params.update({"pageNumber": page})
|
|
295
330
|
r = requests.get(url, params=params)
|
|
296
331
|
data_json = r.json()
|
|
297
|
-
temp_df = pd.DataFrame(data_json[
|
|
298
|
-
big_df = pd.concat([big_df, temp_df], ignore_index=True)
|
|
332
|
+
temp_df = pd.DataFrame(data_json["result"]["data"])
|
|
333
|
+
big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
|
|
299
334
|
big_df.reset_index(inplace=True)
|
|
300
|
-
big_df[
|
|
335
|
+
big_df["index"] = big_df.index + 1
|
|
301
336
|
big_df.columns = [
|
|
302
337
|
"序号",
|
|
303
338
|
"证券代码",
|
|
@@ -318,41 +353,53 @@ def stock_dzjy_hygtj(symbol: str = '近三月') -> pd.DataFrame:
|
|
|
318
353
|
"上榜日后平均涨跌幅-20日",
|
|
319
354
|
"_",
|
|
320
355
|
]
|
|
321
|
-
big_df = big_df[
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
|
|
326
|
-
|
|
327
|
-
|
|
328
|
-
|
|
329
|
-
|
|
330
|
-
|
|
331
|
-
|
|
332
|
-
|
|
333
|
-
|
|
334
|
-
|
|
335
|
-
|
|
336
|
-
|
|
337
|
-
|
|
338
|
-
|
|
339
|
-
|
|
340
|
-
|
|
341
|
-
big_df["
|
|
342
|
-
big_df["
|
|
343
|
-
big_df["
|
|
344
|
-
big_df["
|
|
345
|
-
big_df["
|
|
346
|
-
big_df["
|
|
347
|
-
big_df["
|
|
348
|
-
big_df["
|
|
349
|
-
big_df["
|
|
350
|
-
|
|
351
|
-
|
|
356
|
+
big_df = big_df[
|
|
357
|
+
[
|
|
358
|
+
"序号",
|
|
359
|
+
"证券代码",
|
|
360
|
+
"证券简称",
|
|
361
|
+
"最新价",
|
|
362
|
+
"涨跌幅",
|
|
363
|
+
"最近上榜日",
|
|
364
|
+
"上榜次数-总计",
|
|
365
|
+
"上榜次数-溢价",
|
|
366
|
+
"上榜次数-折价",
|
|
367
|
+
"总成交额",
|
|
368
|
+
"折溢率",
|
|
369
|
+
"成交总额/流通市值",
|
|
370
|
+
"上榜日后平均涨跌幅-1日",
|
|
371
|
+
"上榜日后平均涨跌幅-5日",
|
|
372
|
+
"上榜日后平均涨跌幅-10日",
|
|
373
|
+
"上榜日后平均涨跌幅-20日",
|
|
374
|
+
]
|
|
375
|
+
]
|
|
376
|
+
big_df["最近上榜日"] = pd.to_datetime(big_df["最近上榜日"], errors="coerce").dt.date
|
|
377
|
+
big_df["最新价"] = pd.to_numeric(big_df["最新价"], errors="coerce")
|
|
378
|
+
big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"], errors="coerce")
|
|
379
|
+
big_df["上榜次数-总计"] = pd.to_numeric(big_df["上榜次数-总计"], errors="coerce")
|
|
380
|
+
big_df["上榜次数-溢价"] = pd.to_numeric(big_df["上榜次数-溢价"], errors="coerce")
|
|
381
|
+
big_df["上榜次数-折价"] = pd.to_numeric(big_df["上榜次数-折价"], errors="coerce")
|
|
382
|
+
big_df["总成交额"] = pd.to_numeric(big_df["总成交额"], errors="coerce")
|
|
383
|
+
big_df["折溢率"] = pd.to_numeric(big_df["折溢率"], errors="coerce")
|
|
384
|
+
big_df["成交总额/流通市值"] = pd.to_numeric(
|
|
385
|
+
big_df["成交总额/流通市值"], errors="coerce"
|
|
386
|
+
)
|
|
387
|
+
big_df["上榜日后平均涨跌幅-1日"] = pd.to_numeric(
|
|
388
|
+
big_df["上榜日后平均涨跌幅-1日"], errors="coerce"
|
|
389
|
+
)
|
|
390
|
+
big_df["上榜日后平均涨跌幅-5日"] = pd.to_numeric(
|
|
391
|
+
big_df["上榜日后平均涨跌幅-5日"], errors="coerce"
|
|
392
|
+
)
|
|
393
|
+
big_df["上榜日后平均涨跌幅-10日"] = pd.to_numeric(
|
|
394
|
+
big_df["上榜日后平均涨跌幅-10日"], errors="coerce"
|
|
395
|
+
)
|
|
396
|
+
big_df["上榜日后平均涨跌幅-20日"] = pd.to_numeric(
|
|
397
|
+
big_df["上榜日后平均涨跌幅-20日"], errors="coerce"
|
|
398
|
+
)
|
|
352
399
|
return big_df
|
|
353
400
|
|
|
354
401
|
|
|
355
|
-
def stock_dzjy_hyyybtj(symbol: str =
|
|
402
|
+
def stock_dzjy_hyyybtj(symbol: str = "近3日") -> pd.DataFrame:
|
|
356
403
|
"""
|
|
357
404
|
东方财富网-数据中心-大宗交易-活跃营业部统计
|
|
358
405
|
https://data.eastmoney.com/dzjy/dzjy_hyyybtj.html
|
|
@@ -362,36 +409,37 @@ def stock_dzjy_hyyybtj(symbol: str = '近3日') -> pd.DataFrame:
|
|
|
362
409
|
:rtype: pandas.DataFrame
|
|
363
410
|
"""
|
|
364
411
|
period_map = {
|
|
365
|
-
|
|
366
|
-
|
|
367
|
-
|
|
368
|
-
|
|
369
|
-
|
|
412
|
+
"当前交易日": "1",
|
|
413
|
+
"近3日": "3",
|
|
414
|
+
"近5日": "5",
|
|
415
|
+
"近10日": "10",
|
|
416
|
+
"近30日": "30",
|
|
370
417
|
}
|
|
371
418
|
url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
|
|
372
419
|
params = {
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
420
|
+
"sortColumns": "BUYER_NUM,TOTAL_BUYAMT",
|
|
421
|
+
"sortTypes": "-1,-1",
|
|
422
|
+
"pageSize": "5000",
|
|
423
|
+
"pageNumber": "1",
|
|
424
|
+
"reportName": "RPT_BLOCKTRADE_OPERATEDEPTSTATISTICS",
|
|
425
|
+
"columns": "OPERATEDEPT_CODE,OPERATEDEPT_NAME,ONLIST_DATE,STOCK_DETAILS,"
|
|
426
|
+
"BUYER_NUM,SELLER_NUM,TOTAL_BUYAMT,TOTAL_SELLAMT,TOTAL_NETAMT,N_DATE",
|
|
427
|
+
"source": "WEB",
|
|
428
|
+
"client": "WEB",
|
|
429
|
+
"filter": f"(N_DATE=-{period_map[symbol]})",
|
|
382
430
|
}
|
|
383
431
|
r = requests.get(url, params=params)
|
|
384
432
|
data_json = r.json()
|
|
385
|
-
total_page = data_json[
|
|
433
|
+
total_page = data_json["result"]["pages"]
|
|
386
434
|
big_df = pd.DataFrame()
|
|
387
|
-
for page in range(1, int(total_page)+1):
|
|
435
|
+
for page in range(1, int(total_page) + 1):
|
|
388
436
|
params.update({"pageNumber": page})
|
|
389
437
|
r = requests.get(url, params=params)
|
|
390
438
|
data_json = r.json()
|
|
391
|
-
temp_df = pd.DataFrame(data_json[
|
|
392
|
-
big_df = pd.concat([big_df, temp_df], ignore_index=True)
|
|
439
|
+
temp_df = pd.DataFrame(data_json["result"]["data"])
|
|
440
|
+
big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
|
|
393
441
|
big_df.reset_index(inplace=True)
|
|
394
|
-
big_df[
|
|
442
|
+
big_df["index"] = big_df.index + 1
|
|
395
443
|
big_df.columns = [
|
|
396
444
|
"序号",
|
|
397
445
|
"_",
|
|
@@ -405,66 +453,77 @@ def stock_dzjy_hyyybtj(symbol: str = '近3日') -> pd.DataFrame:
|
|
|
405
453
|
"成交金额统计-净买入额",
|
|
406
454
|
"_",
|
|
407
455
|
]
|
|
408
|
-
big_df = big_df[
|
|
409
|
-
|
|
410
|
-
|
|
411
|
-
|
|
412
|
-
|
|
413
|
-
|
|
414
|
-
|
|
415
|
-
|
|
416
|
-
|
|
417
|
-
|
|
418
|
-
|
|
419
|
-
|
|
420
|
-
|
|
421
|
-
big_df["
|
|
422
|
-
big_df["
|
|
423
|
-
big_df["
|
|
424
|
-
big_df["
|
|
456
|
+
big_df = big_df[
|
|
457
|
+
[
|
|
458
|
+
"序号",
|
|
459
|
+
"最近上榜日",
|
|
460
|
+
"营业部名称",
|
|
461
|
+
"次数总计-买入",
|
|
462
|
+
"次数总计-卖出",
|
|
463
|
+
"成交金额统计-买入",
|
|
464
|
+
"成交金额统计-卖出",
|
|
465
|
+
"成交金额统计-净买入额",
|
|
466
|
+
"买入的股票",
|
|
467
|
+
]
|
|
468
|
+
]
|
|
469
|
+
big_df["最近上榜日"] = pd.to_datetime(big_df["最近上榜日"], errors="coerce").dt.date
|
|
470
|
+
big_df["次数总计-买入"] = pd.to_numeric(big_df["次数总计-买入"], errors="coerce")
|
|
471
|
+
big_df["次数总计-卖出"] = pd.to_numeric(big_df["次数总计-卖出"], errors="coerce")
|
|
472
|
+
big_df["成交金额统计-买入"] = pd.to_numeric(
|
|
473
|
+
big_df["成交金额统计-买入"], errors="coerce"
|
|
474
|
+
)
|
|
475
|
+
big_df["成交金额统计-卖出"] = pd.to_numeric(
|
|
476
|
+
big_df["成交金额统计-卖出"], errors="coerce"
|
|
477
|
+
)
|
|
478
|
+
big_df["成交金额统计-净买入额"] = pd.to_numeric(
|
|
479
|
+
big_df["成交金额统计-净买入额"], errors="coerce"
|
|
480
|
+
)
|
|
425
481
|
return big_df
|
|
426
482
|
|
|
427
483
|
|
|
428
|
-
def stock_dzjy_yybph(symbol: str =
|
|
484
|
+
def stock_dzjy_yybph(symbol: str = "近三月") -> pd.DataFrame:
|
|
429
485
|
"""
|
|
430
486
|
东方财富网-数据中心-大宗交易-营业部排行
|
|
431
|
-
|
|
487
|
+
https://data.eastmoney.com/dzjy/dzjy_yybph.html
|
|
432
488
|
:param symbol: choice of {'近一月', '近三月', '近六月', '近一年'}
|
|
433
489
|
:type symbol: str
|
|
434
490
|
:return: 营业部排行
|
|
435
491
|
:rtype: pandas.DataFrame
|
|
436
492
|
"""
|
|
437
493
|
period_map = {
|
|
438
|
-
|
|
439
|
-
|
|
440
|
-
|
|
441
|
-
|
|
494
|
+
"近一月": "30",
|
|
495
|
+
"近三月": "90",
|
|
496
|
+
"近六月": "180",
|
|
497
|
+
"近一年": "360",
|
|
442
498
|
}
|
|
443
499
|
url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
|
|
444
500
|
params = {
|
|
445
|
-
|
|
446
|
-
|
|
447
|
-
|
|
448
|
-
|
|
449
|
-
|
|
450
|
-
|
|
451
|
-
|
|
452
|
-
|
|
453
|
-
|
|
501
|
+
"sortColumns": "D5_BUYER_NUM,D1_AVERAGE_INCREASE",
|
|
502
|
+
"sortTypes": "-1,-1",
|
|
503
|
+
"pageSize": "5000",
|
|
504
|
+
"pageNumber": "1",
|
|
505
|
+
"reportName": "RPT_BLOCKTRADE_OPERATEDEPT_RANK",
|
|
506
|
+
"columns": "OPERATEDEPT_CODE,OPERATEDEPT_NAME,D1_BUYER_NUM,D1_AVERAGE_INCREASE,"
|
|
507
|
+
"D1_RISE_PROBABILITY,D5_BUYER_NUM,D5_AVERAGE_INCREASE,D5_RISE_PROBABILITY,"
|
|
508
|
+
"D10_BUYER_NUM,D10_AVERAGE_INCREASE,D10_RISE_PROBABILITY,D20_BUYER_NUM,"
|
|
509
|
+
"D20_AVERAGE_INCREASE,D20_RISE_PROBABILITY,N_DATE,RELATED_ORG_CODE",
|
|
510
|
+
"source": "WEB",
|
|
511
|
+
"client": "WEB",
|
|
512
|
+
"filter": f"(N_DATE=-{period_map[symbol]})",
|
|
454
513
|
}
|
|
455
514
|
r = requests.get(url, params=params)
|
|
456
515
|
data_json = r.json()
|
|
457
|
-
total_page = data_json[
|
|
516
|
+
total_page = data_json["result"]["pages"]
|
|
458
517
|
big_df = pd.DataFrame()
|
|
459
|
-
for page in range(1, int(total_page)+1):
|
|
518
|
+
for page in range(1, int(total_page) + 1):
|
|
460
519
|
params.update({"pageNumber": page})
|
|
461
520
|
r = requests.get(url, params=params)
|
|
462
521
|
data_json = r.json()
|
|
463
|
-
temp_df = pd.DataFrame(data_json[
|
|
464
|
-
big_df = pd.concat([big_df, temp_df], ignore_index=True)
|
|
522
|
+
temp_df = pd.DataFrame(data_json["result"]["data"])
|
|
523
|
+
big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
|
|
465
524
|
|
|
466
525
|
big_df.reset_index(inplace=True)
|
|
467
|
-
big_df[
|
|
526
|
+
big_df["index"] = big_df.index + 1
|
|
468
527
|
big_df.columns = [
|
|
469
528
|
"序号",
|
|
470
529
|
"_",
|
|
@@ -484,34 +543,60 @@ def stock_dzjy_yybph(symbol: str = '近三月') -> pd.DataFrame:
|
|
|
484
543
|
"_",
|
|
485
544
|
"_",
|
|
486
545
|
]
|
|
487
|
-
big_df = big_df[
|
|
488
|
-
|
|
489
|
-
|
|
490
|
-
|
|
491
|
-
|
|
492
|
-
|
|
493
|
-
|
|
494
|
-
|
|
495
|
-
|
|
496
|
-
|
|
497
|
-
|
|
498
|
-
|
|
499
|
-
|
|
500
|
-
|
|
501
|
-
|
|
502
|
-
|
|
503
|
-
|
|
504
|
-
|
|
505
|
-
big_df[
|
|
506
|
-
|
|
507
|
-
|
|
508
|
-
big_df[
|
|
509
|
-
|
|
510
|
-
|
|
511
|
-
big_df[
|
|
512
|
-
|
|
513
|
-
|
|
514
|
-
big_df[
|
|
546
|
+
big_df = big_df[
|
|
547
|
+
[
|
|
548
|
+
"序号",
|
|
549
|
+
"营业部名称",
|
|
550
|
+
"上榜后1天-买入次数",
|
|
551
|
+
"上榜后1天-平均涨幅",
|
|
552
|
+
"上榜后1天-上涨概率",
|
|
553
|
+
"上榜后5天-买入次数",
|
|
554
|
+
"上榜后5天-平均涨幅",
|
|
555
|
+
"上榜后5天-上涨概率",
|
|
556
|
+
"上榜后10天-买入次数",
|
|
557
|
+
"上榜后10天-平均涨幅",
|
|
558
|
+
"上榜后10天-上涨概率",
|
|
559
|
+
"上榜后20天-买入次数",
|
|
560
|
+
"上榜后20天-平均涨幅",
|
|
561
|
+
"上榜后20天-上涨概率",
|
|
562
|
+
]
|
|
563
|
+
]
|
|
564
|
+
big_df["上榜后1天-买入次数"] = pd.to_numeric(
|
|
565
|
+
big_df["上榜后1天-买入次数"], errors="coerce"
|
|
566
|
+
)
|
|
567
|
+
big_df["上榜后1天-平均涨幅"] = pd.to_numeric(
|
|
568
|
+
big_df["上榜后1天-平均涨幅"], errors="coerce"
|
|
569
|
+
)
|
|
570
|
+
big_df["上榜后1天-上涨概率"] = pd.to_numeric(
|
|
571
|
+
big_df["上榜后1天-上涨概率"], errors="coerce"
|
|
572
|
+
)
|
|
573
|
+
big_df["上榜后5天-买入次数"] = pd.to_numeric(
|
|
574
|
+
big_df["上榜后5天-买入次数"], errors="coerce"
|
|
575
|
+
)
|
|
576
|
+
big_df["上榜后5天-平均涨幅"] = pd.to_numeric(
|
|
577
|
+
big_df["上榜后5天-平均涨幅"], errors="coerce"
|
|
578
|
+
)
|
|
579
|
+
big_df["上榜后5天-上涨概率"] = pd.to_numeric(
|
|
580
|
+
big_df["上榜后5天-上涨概率"], errors="coerce"
|
|
581
|
+
)
|
|
582
|
+
big_df["上榜后10天-买入次数"] = pd.to_numeric(
|
|
583
|
+
big_df["上榜后10天-买入次数"], errors="coerce"
|
|
584
|
+
)
|
|
585
|
+
big_df["上榜后10天-平均涨幅"] = pd.to_numeric(
|
|
586
|
+
big_df["上榜后10天-平均涨幅"], errors="coerce"
|
|
587
|
+
)
|
|
588
|
+
big_df["上榜后10天-上涨概率"] = pd.to_numeric(
|
|
589
|
+
big_df["上榜后10天-上涨概率"], errors="coerce"
|
|
590
|
+
)
|
|
591
|
+
big_df["上榜后20天-买入次数"] = pd.to_numeric(
|
|
592
|
+
big_df["上榜后20天-买入次数"], errors="coerce"
|
|
593
|
+
)
|
|
594
|
+
big_df["上榜后20天-平均涨幅"] = pd.to_numeric(
|
|
595
|
+
big_df["上榜后20天-平均涨幅"], errors="coerce"
|
|
596
|
+
)
|
|
597
|
+
big_df["上榜后20天-上涨概率"] = pd.to_numeric(
|
|
598
|
+
big_df["上榜后20天-上涨概率"], errors="coerce"
|
|
599
|
+
)
|
|
515
600
|
return big_df
|
|
516
601
|
|
|
517
602
|
|
|
@@ -519,17 +604,19 @@ if __name__ == "__main__":
|
|
|
519
604
|
stock_dzjy_sctj_df = stock_dzjy_sctj()
|
|
520
605
|
print(stock_dzjy_sctj_df)
|
|
521
606
|
|
|
522
|
-
stock_dzjy_mrmx_df = stock_dzjy_mrmx(
|
|
607
|
+
stock_dzjy_mrmx_df = stock_dzjy_mrmx(
|
|
608
|
+
symbol="债券", start_date="20220104", end_date="20220104"
|
|
609
|
+
)
|
|
523
610
|
print(stock_dzjy_mrmx_df)
|
|
524
611
|
|
|
525
|
-
stock_dzjy_mrtj_df = stock_dzjy_mrtj(start_date=
|
|
612
|
+
stock_dzjy_mrtj_df = stock_dzjy_mrtj(start_date="20220105", end_date="20220105")
|
|
526
613
|
print(stock_dzjy_mrtj_df)
|
|
527
614
|
|
|
528
|
-
stock_dzjy_hygtj_df = stock_dzjy_hygtj(symbol=
|
|
615
|
+
stock_dzjy_hygtj_df = stock_dzjy_hygtj(symbol="近三月")
|
|
529
616
|
print(stock_dzjy_hygtj_df)
|
|
530
617
|
|
|
531
|
-
stock_dzjy_hyyybtj_df = stock_dzjy_hyyybtj(symbol=
|
|
618
|
+
stock_dzjy_hyyybtj_df = stock_dzjy_hyyybtj(symbol="近3日")
|
|
532
619
|
print(stock_dzjy_hyyybtj_df)
|
|
533
620
|
|
|
534
|
-
stock_dzjy_yybph_df = stock_dzjy_yybph(symbol=
|
|
621
|
+
stock_dzjy_yybph_df = stock_dzjy_yybph(symbol="近三月")
|
|
535
622
|
print(stock_dzjy_yybph_df)
|