aigroup-econ-mcp 1.4.3__py3-none-any.whl → 2.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- PKG-INFO +344 -322
- README.md +335 -320
- __init__.py +1 -1
- aigroup_econ_mcp-2.0.1.dist-info/METADATA +732 -0
- aigroup_econ_mcp-2.0.1.dist-info/RECORD +170 -0
- cli.py +4 -0
- econometrics/advanced_methods/modern_computing_machine_learning/__init__.py +30 -0
- econometrics/advanced_methods/modern_computing_machine_learning/causal_forest.py +253 -0
- econometrics/advanced_methods/modern_computing_machine_learning/double_ml.py +268 -0
- econometrics/advanced_methods/modern_computing_machine_learning/gradient_boosting.py +249 -0
- econometrics/advanced_methods/modern_computing_machine_learning/hierarchical_clustering.py +243 -0
- econometrics/advanced_methods/modern_computing_machine_learning/kmeans_clustering.py +293 -0
- econometrics/advanced_methods/modern_computing_machine_learning/neural_network.py +264 -0
- econometrics/advanced_methods/modern_computing_machine_learning/random_forest.py +195 -0
- econometrics/advanced_methods/modern_computing_machine_learning/support_vector_machine.py +226 -0
- econometrics/advanced_methods/modern_computing_machine_learning/test_all_modules.py +329 -0
- econometrics/advanced_methods/modern_computing_machine_learning/test_report.md +107 -0
- econometrics/causal_inference/__init__.py +66 -0
- econometrics/causal_inference/causal_identification_strategy/__init__.py +104 -0
- econometrics/causal_inference/causal_identification_strategy/control_function.py +112 -0
- econometrics/causal_inference/causal_identification_strategy/difference_in_differences.py +107 -0
- econometrics/causal_inference/causal_identification_strategy/event_study.py +119 -0
- econometrics/causal_inference/causal_identification_strategy/first_difference.py +89 -0
- econometrics/causal_inference/causal_identification_strategy/fixed_effects.py +103 -0
- econometrics/causal_inference/causal_identification_strategy/hausman_test.py +69 -0
- econometrics/causal_inference/causal_identification_strategy/instrumental_variables.py +145 -0
- econometrics/causal_inference/causal_identification_strategy/mediation_analysis.py +121 -0
- econometrics/causal_inference/causal_identification_strategy/moderation_analysis.py +109 -0
- econometrics/causal_inference/causal_identification_strategy/propensity_score_matching.py +140 -0
- econometrics/causal_inference/causal_identification_strategy/random_effects.py +100 -0
- econometrics/causal_inference/causal_identification_strategy/regression_discontinuity.py +98 -0
- econometrics/causal_inference/causal_identification_strategy/synthetic_control.py +111 -0
- econometrics/causal_inference/causal_identification_strategy/triple_difference.py +86 -0
- econometrics/distribution_analysis/__init__.py +28 -0
- econometrics/distribution_analysis/oaxaca_blinder.py +184 -0
- econometrics/distribution_analysis/time_series_decomposition.py +152 -0
- econometrics/distribution_analysis/variance_decomposition.py +179 -0
- econometrics/missing_data/__init__.py +18 -0
- econometrics/missing_data/imputation_methods.py +219 -0
- econometrics/nonparametric/__init__.py +35 -0
- econometrics/nonparametric/gam_model.py +117 -0
- econometrics/nonparametric/kernel_regression.py +161 -0
- econometrics/nonparametric/quantile_regression.py +249 -0
- econometrics/nonparametric/spline_regression.py +100 -0
- econometrics/spatial_econometrics/__init__.py +68 -0
- econometrics/spatial_econometrics/geographically_weighted_regression.py +211 -0
- econometrics/spatial_econometrics/gwr_simple.py +154 -0
- econometrics/spatial_econometrics/spatial_autocorrelation.py +356 -0
- econometrics/spatial_econometrics/spatial_durbin_model.py +177 -0
- econometrics/spatial_econometrics/spatial_regression.py +315 -0
- econometrics/spatial_econometrics/spatial_weights.py +226 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/README.md +164 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/__init__.py +40 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/count_data_models.py +311 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/discrete_choice_models.py +294 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/limited_dependent_variable_models.py +282 -0
- econometrics/statistical_inference/__init__.py +21 -0
- econometrics/statistical_inference/bootstrap_methods.py +162 -0
- econometrics/statistical_inference/permutation_test.py +177 -0
- econometrics/survival_analysis/__init__.py +18 -0
- econometrics/survival_analysis/survival_models.py +259 -0
- econometrics/tests/causal_inference_tests/__init__.py +3 -0
- econometrics/tests/causal_inference_tests/detailed_test.py +441 -0
- econometrics/tests/causal_inference_tests/test_all_methods.py +418 -0
- econometrics/tests/causal_inference_tests/test_causal_identification_strategy.py +202 -0
- econometrics/tests/causal_inference_tests/test_difference_in_differences.py +53 -0
- econometrics/tests/causal_inference_tests/test_instrumental_variables.py +44 -0
- econometrics/tests/specific_data_modeling_tests/test_micro_discrete_limited_data.py +189 -0
- econometrics//321/206/320/254/320/272/321/205/342/225/235/320/220/321/205/320/237/320/241/321/205/320/264/320/267/321/207/342/226/222/342/225/227/321/204/342/225/235/320/250/321/205/320/225/320/230/321/207/342/225/221/320/267/321/205/320/230/320/226/321/206/320/256/320/240.md +544 -0
- pyproject.toml +9 -2
- server.py +15 -1
- tools/__init__.py +75 -1
- tools/causal_inference_adapter.py +658 -0
- tools/distribution_analysis_adapter.py +121 -0
- tools/gwr_simple_adapter.py +54 -0
- tools/machine_learning_adapter.py +567 -0
- tools/mcp_tool_groups/__init__.py +15 -1
- tools/mcp_tool_groups/causal_inference_tools.py +643 -0
- tools/mcp_tool_groups/distribution_analysis_tools.py +169 -0
- tools/mcp_tool_groups/machine_learning_tools.py +422 -0
- tools/mcp_tool_groups/microecon_tools.py +325 -0
- tools/mcp_tool_groups/missing_data_tools.py +117 -0
- tools/mcp_tool_groups/nonparametric_tools.py +225 -0
- tools/mcp_tool_groups/spatial_econometrics_tools.py +323 -0
- tools/mcp_tool_groups/statistical_inference_tools.py +131 -0
- tools/mcp_tools_registry.py +13 -3
- tools/microecon_adapter.py +412 -0
- tools/missing_data_adapter.py +73 -0
- tools/nonparametric_adapter.py +190 -0
- tools/spatial_econometrics_adapter.py +318 -0
- tools/statistical_inference_adapter.py +90 -0
- tools/survival_analysis_adapter.py +46 -0
- aigroup_econ_mcp-1.4.3.dist-info/METADATA +0 -710
- aigroup_econ_mcp-1.4.3.dist-info/RECORD +0 -92
- {aigroup_econ_mcp-1.4.3.dist-info → aigroup_econ_mcp-2.0.1.dist-info}/WHEEL +0 -0
- {aigroup_econ_mcp-1.4.3.dist-info → aigroup_econ_mcp-2.0.1.dist-info}/entry_points.txt +0 -0
- {aigroup_econ_mcp-1.4.3.dist-info → aigroup_econ_mcp-2.0.1.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,44 @@
|
|
|
1
|
+
"""
|
|
2
|
+
工具变量法测试
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
import unittest
|
|
7
|
+
from econometrics.causal_inference.causal_identification_strategy import instrumental_variables_2sls
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class TestInstrumentalVariables(unittest.TestCase):
|
|
11
|
+
|
|
12
|
+
def test_instrumental_variables_2sls(self):
|
|
13
|
+
"""测试工具变量法"""
|
|
14
|
+
# 生成模拟数据
|
|
15
|
+
np.random.seed(42)
|
|
16
|
+
n = 100
|
|
17
|
+
|
|
18
|
+
# 工具变量
|
|
19
|
+
z = np.random.normal(0, 1, n)
|
|
20
|
+
|
|
21
|
+
# 内生变量(与误差项相关)
|
|
22
|
+
e1 = np.random.normal(0, 1, n)
|
|
23
|
+
x = 1 + 0.5 * z + e1
|
|
24
|
+
|
|
25
|
+
# 结果变量
|
|
26
|
+
e2 = np.random.normal(0, 1, n)
|
|
27
|
+
y = 2 + 1.5 * x + e2 + 0.3 * e1 # 包含内生性
|
|
28
|
+
|
|
29
|
+
# 执行工具变量回归
|
|
30
|
+
result = instrumental_variables_2sls(
|
|
31
|
+
y=y.tolist(),
|
|
32
|
+
x=x.reshape(-1, 1).tolist(),
|
|
33
|
+
instruments=z.reshape(-1, 1).tolist()
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
# 检查结果
|
|
37
|
+
self.assertIsNotNone(result.estimate)
|
|
38
|
+
self.assertIsNotNone(result.std_error)
|
|
39
|
+
self.assertIsNotNone(result.p_value)
|
|
40
|
+
self.assertGreater(result.n_observations, 0)
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
if __name__ == "__main__":
|
|
44
|
+
unittest.main()
|
|
@@ -0,0 +1,189 @@
|
|
|
1
|
+
"""
|
|
2
|
+
微观离散与受限数据模型测试
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
import pandas as pd
|
|
7
|
+
import sys
|
|
8
|
+
import os
|
|
9
|
+
from scipy import stats
|
|
10
|
+
|
|
11
|
+
# 添加项目根目录到路径
|
|
12
|
+
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))))
|
|
13
|
+
|
|
14
|
+
try:
|
|
15
|
+
from econometrics.specific_data_modeling.micro_discrete_limited_data import (
|
|
16
|
+
LogitModel,
|
|
17
|
+
ProbitModel,
|
|
18
|
+
TobitModel,
|
|
19
|
+
PoissonModel,
|
|
20
|
+
NegativeBinomialModel
|
|
21
|
+
)
|
|
22
|
+
HAS_MODELS = True
|
|
23
|
+
except ImportError as e:
|
|
24
|
+
print(f"导入模型时出错: {e}")
|
|
25
|
+
HAS_MODELS = False
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
def test_logit_model():
|
|
29
|
+
"""测试Logit模型"""
|
|
30
|
+
print("测试Logit模型...")
|
|
31
|
+
|
|
32
|
+
# 生成模拟数据
|
|
33
|
+
np.random.seed(42)
|
|
34
|
+
n = 1000
|
|
35
|
+
X = np.random.normal(0, 1, (n, 2))
|
|
36
|
+
coef_true = np.array([1.0, -0.5])
|
|
37
|
+
linear_pred = np.dot(X, coef_true)
|
|
38
|
+
prob = 1 / (1 + np.exp(-linear_pred))
|
|
39
|
+
y = np.random.binomial(1, prob)
|
|
40
|
+
|
|
41
|
+
# 拟合模型
|
|
42
|
+
model = LogitModel()
|
|
43
|
+
model.fit(X, y)
|
|
44
|
+
|
|
45
|
+
print(f"真实系数: {coef_true}")
|
|
46
|
+
print(f"估计系数: {model.results_.params[1:]}") # 排除常数项
|
|
47
|
+
print(f"常数项: {model.results_.params[0]}")
|
|
48
|
+
print(f"AIC: {model.results_.aic}")
|
|
49
|
+
print(f"BIC: {model.results_.bic}")
|
|
50
|
+
print()
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def test_probit_model():
|
|
54
|
+
"""测试Probit模型"""
|
|
55
|
+
print("测试Probit模型...")
|
|
56
|
+
|
|
57
|
+
# 生成模拟数据
|
|
58
|
+
np.random.seed(42)
|
|
59
|
+
n = 1000
|
|
60
|
+
X = np.random.normal(0, 1, (n, 2))
|
|
61
|
+
coef_true = np.array([0.5, -0.3])
|
|
62
|
+
linear_pred = np.dot(X, coef_true)
|
|
63
|
+
prob = np.clip(stats.norm.cdf(linear_pred), 1e-10, 1-1e-10)
|
|
64
|
+
y = np.random.binomial(1, prob)
|
|
65
|
+
|
|
66
|
+
# 拟合模型
|
|
67
|
+
model = ProbitModel()
|
|
68
|
+
model.fit(X, y)
|
|
69
|
+
|
|
70
|
+
print(f"真实系数: {coef_true}")
|
|
71
|
+
print(f"估计系数: {model.results_.params[1:]}") # 排除常数项
|
|
72
|
+
print(f"常数项: {model.results_.params[0]}")
|
|
73
|
+
print(f"AIC: {model.results_.aic}")
|
|
74
|
+
print(f"BIC: {model.results_.bic}")
|
|
75
|
+
print()
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
def test_tobit_model():
|
|
79
|
+
"""测试Tobit模型"""
|
|
80
|
+
print("测试Tobit模型...")
|
|
81
|
+
|
|
82
|
+
# 生成模拟数据
|
|
83
|
+
np.random.seed(42)
|
|
84
|
+
n = 1000
|
|
85
|
+
X = np.random.normal(0, 1, (n, 2))
|
|
86
|
+
coef_true = np.array([1.0, -0.5])
|
|
87
|
+
sigma_true = 0.5
|
|
88
|
+
|
|
89
|
+
# 生成潜在变量
|
|
90
|
+
y_latent = np.dot(X, coef_true) + np.random.normal(0, sigma_true, n)
|
|
91
|
+
|
|
92
|
+
# 截断:低于0的值设为0
|
|
93
|
+
y = np.where(y_latent > 0, y_latent, 0)
|
|
94
|
+
|
|
95
|
+
# 拟合模型
|
|
96
|
+
model = TobitModel(lower_bound=0)
|
|
97
|
+
model.fit(X, y)
|
|
98
|
+
|
|
99
|
+
print(f"真实系数: {coef_true}")
|
|
100
|
+
print(f"估计系数: {model.results_.params[1:]}") # 排除常数项
|
|
101
|
+
print(f"常数项: {model.results_.params[0]}")
|
|
102
|
+
print(f"对数似然: {model.results_.llf}")
|
|
103
|
+
print()
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
def test_poisson_model():
|
|
107
|
+
"""测试泊松模型"""
|
|
108
|
+
print("测试泊松模型...")
|
|
109
|
+
|
|
110
|
+
# 生成模拟数据
|
|
111
|
+
np.random.seed(42)
|
|
112
|
+
n = 1000
|
|
113
|
+
X = np.random.normal(0, 1, (n, 2))
|
|
114
|
+
coef_true = np.array([0.5, -0.3])
|
|
115
|
+
mu = np.exp(np.dot(X, coef_true))
|
|
116
|
+
y = np.random.poisson(mu)
|
|
117
|
+
|
|
118
|
+
# 拟合模型
|
|
119
|
+
model = PoissonModel()
|
|
120
|
+
model.fit(X, y)
|
|
121
|
+
|
|
122
|
+
print(f"真实系数: {coef_true}")
|
|
123
|
+
print(f"估计系数: {model.results_.params[1:]}") # 排除常数项
|
|
124
|
+
print(f"常数项: {model.results_.params[0]}")
|
|
125
|
+
print(f"对数似然: {model.results_.llf}")
|
|
126
|
+
print(f"AIC: {model.results_.aic}")
|
|
127
|
+
print(f"BIC: {model.results_.bic}")
|
|
128
|
+
|
|
129
|
+
# 预测测试
|
|
130
|
+
y_pred = model.predict(X[:5])
|
|
131
|
+
print(f"前5个样本的预测值: {y_pred}")
|
|
132
|
+
print()
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
def test_negative_binomial_model():
|
|
136
|
+
"""测试负二项模型"""
|
|
137
|
+
print("测试负二项模型...")
|
|
138
|
+
|
|
139
|
+
# 生成模拟数据
|
|
140
|
+
np.random.seed(42)
|
|
141
|
+
n = 1000
|
|
142
|
+
X = np.random.normal(0, 1, (n, 2))
|
|
143
|
+
coef_true = np.array([0.5, -0.3])
|
|
144
|
+
|
|
145
|
+
mu = np.exp(np.dot(X, coef_true))
|
|
146
|
+
# 生成负二项分布数据
|
|
147
|
+
alpha = 0.5
|
|
148
|
+
size = 1.0 / alpha
|
|
149
|
+
prob = size / (size + mu)
|
|
150
|
+
y = np.random.negative_binomial(size, prob)
|
|
151
|
+
|
|
152
|
+
# 拟合模型
|
|
153
|
+
model = NegativeBinomialModel()
|
|
154
|
+
model.fit(X, y)
|
|
155
|
+
|
|
156
|
+
print(f"真实系数: {coef_true}")
|
|
157
|
+
print(f"估计系数: {model.results_.params[1:-1]}") # 排除常数项和alpha参数
|
|
158
|
+
print(f"常数项: {model.results_.params[0]}")
|
|
159
|
+
print(f"对数似然: {model.results_.llf}")
|
|
160
|
+
print(f"AIC: {model.results_.aic}")
|
|
161
|
+
print(f"BIC: {model.results_.bic}")
|
|
162
|
+
|
|
163
|
+
# 预测测试
|
|
164
|
+
y_pred = model.predict(X[:5])
|
|
165
|
+
print(f"前5个样本的预测值: {y_pred}")
|
|
166
|
+
print()
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
if __name__ == "__main__":
|
|
170
|
+
if not HAS_MODELS:
|
|
171
|
+
print("模型不可用,请确保已安装statsmodels库")
|
|
172
|
+
exit(1)
|
|
173
|
+
|
|
174
|
+
try:
|
|
175
|
+
import statsmodels.api as sm
|
|
176
|
+
except ImportError:
|
|
177
|
+
print("需要安装statsmodels库")
|
|
178
|
+
exit(1)
|
|
179
|
+
|
|
180
|
+
print("微观离散与受限数据模型测试")
|
|
181
|
+
print("=" * 50)
|
|
182
|
+
|
|
183
|
+
test_logit_model()
|
|
184
|
+
test_probit_model()
|
|
185
|
+
test_tobit_model()
|
|
186
|
+
test_poisson_model()
|
|
187
|
+
test_negative_binomial_model()
|
|
188
|
+
|
|
189
|
+
print("所有测试完成!")
|