aigroup-econ-mcp 1.4.3__py3-none-any.whl → 2.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- PKG-INFO +344 -322
- README.md +335 -320
- __init__.py +1 -1
- aigroup_econ_mcp-2.0.1.dist-info/METADATA +732 -0
- aigroup_econ_mcp-2.0.1.dist-info/RECORD +170 -0
- cli.py +4 -0
- econometrics/advanced_methods/modern_computing_machine_learning/__init__.py +30 -0
- econometrics/advanced_methods/modern_computing_machine_learning/causal_forest.py +253 -0
- econometrics/advanced_methods/modern_computing_machine_learning/double_ml.py +268 -0
- econometrics/advanced_methods/modern_computing_machine_learning/gradient_boosting.py +249 -0
- econometrics/advanced_methods/modern_computing_machine_learning/hierarchical_clustering.py +243 -0
- econometrics/advanced_methods/modern_computing_machine_learning/kmeans_clustering.py +293 -0
- econometrics/advanced_methods/modern_computing_machine_learning/neural_network.py +264 -0
- econometrics/advanced_methods/modern_computing_machine_learning/random_forest.py +195 -0
- econometrics/advanced_methods/modern_computing_machine_learning/support_vector_machine.py +226 -0
- econometrics/advanced_methods/modern_computing_machine_learning/test_all_modules.py +329 -0
- econometrics/advanced_methods/modern_computing_machine_learning/test_report.md +107 -0
- econometrics/causal_inference/__init__.py +66 -0
- econometrics/causal_inference/causal_identification_strategy/__init__.py +104 -0
- econometrics/causal_inference/causal_identification_strategy/control_function.py +112 -0
- econometrics/causal_inference/causal_identification_strategy/difference_in_differences.py +107 -0
- econometrics/causal_inference/causal_identification_strategy/event_study.py +119 -0
- econometrics/causal_inference/causal_identification_strategy/first_difference.py +89 -0
- econometrics/causal_inference/causal_identification_strategy/fixed_effects.py +103 -0
- econometrics/causal_inference/causal_identification_strategy/hausman_test.py +69 -0
- econometrics/causal_inference/causal_identification_strategy/instrumental_variables.py +145 -0
- econometrics/causal_inference/causal_identification_strategy/mediation_analysis.py +121 -0
- econometrics/causal_inference/causal_identification_strategy/moderation_analysis.py +109 -0
- econometrics/causal_inference/causal_identification_strategy/propensity_score_matching.py +140 -0
- econometrics/causal_inference/causal_identification_strategy/random_effects.py +100 -0
- econometrics/causal_inference/causal_identification_strategy/regression_discontinuity.py +98 -0
- econometrics/causal_inference/causal_identification_strategy/synthetic_control.py +111 -0
- econometrics/causal_inference/causal_identification_strategy/triple_difference.py +86 -0
- econometrics/distribution_analysis/__init__.py +28 -0
- econometrics/distribution_analysis/oaxaca_blinder.py +184 -0
- econometrics/distribution_analysis/time_series_decomposition.py +152 -0
- econometrics/distribution_analysis/variance_decomposition.py +179 -0
- econometrics/missing_data/__init__.py +18 -0
- econometrics/missing_data/imputation_methods.py +219 -0
- econometrics/nonparametric/__init__.py +35 -0
- econometrics/nonparametric/gam_model.py +117 -0
- econometrics/nonparametric/kernel_regression.py +161 -0
- econometrics/nonparametric/quantile_regression.py +249 -0
- econometrics/nonparametric/spline_regression.py +100 -0
- econometrics/spatial_econometrics/__init__.py +68 -0
- econometrics/spatial_econometrics/geographically_weighted_regression.py +211 -0
- econometrics/spatial_econometrics/gwr_simple.py +154 -0
- econometrics/spatial_econometrics/spatial_autocorrelation.py +356 -0
- econometrics/spatial_econometrics/spatial_durbin_model.py +177 -0
- econometrics/spatial_econometrics/spatial_regression.py +315 -0
- econometrics/spatial_econometrics/spatial_weights.py +226 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/README.md +164 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/__init__.py +40 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/count_data_models.py +311 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/discrete_choice_models.py +294 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/limited_dependent_variable_models.py +282 -0
- econometrics/statistical_inference/__init__.py +21 -0
- econometrics/statistical_inference/bootstrap_methods.py +162 -0
- econometrics/statistical_inference/permutation_test.py +177 -0
- econometrics/survival_analysis/__init__.py +18 -0
- econometrics/survival_analysis/survival_models.py +259 -0
- econometrics/tests/causal_inference_tests/__init__.py +3 -0
- econometrics/tests/causal_inference_tests/detailed_test.py +441 -0
- econometrics/tests/causal_inference_tests/test_all_methods.py +418 -0
- econometrics/tests/causal_inference_tests/test_causal_identification_strategy.py +202 -0
- econometrics/tests/causal_inference_tests/test_difference_in_differences.py +53 -0
- econometrics/tests/causal_inference_tests/test_instrumental_variables.py +44 -0
- econometrics/tests/specific_data_modeling_tests/test_micro_discrete_limited_data.py +189 -0
- econometrics//321/206/320/254/320/272/321/205/342/225/235/320/220/321/205/320/237/320/241/321/205/320/264/320/267/321/207/342/226/222/342/225/227/321/204/342/225/235/320/250/321/205/320/225/320/230/321/207/342/225/221/320/267/321/205/320/230/320/226/321/206/320/256/320/240.md +544 -0
- pyproject.toml +9 -2
- server.py +15 -1
- tools/__init__.py +75 -1
- tools/causal_inference_adapter.py +658 -0
- tools/distribution_analysis_adapter.py +121 -0
- tools/gwr_simple_adapter.py +54 -0
- tools/machine_learning_adapter.py +567 -0
- tools/mcp_tool_groups/__init__.py +15 -1
- tools/mcp_tool_groups/causal_inference_tools.py +643 -0
- tools/mcp_tool_groups/distribution_analysis_tools.py +169 -0
- tools/mcp_tool_groups/machine_learning_tools.py +422 -0
- tools/mcp_tool_groups/microecon_tools.py +325 -0
- tools/mcp_tool_groups/missing_data_tools.py +117 -0
- tools/mcp_tool_groups/nonparametric_tools.py +225 -0
- tools/mcp_tool_groups/spatial_econometrics_tools.py +323 -0
- tools/mcp_tool_groups/statistical_inference_tools.py +131 -0
- tools/mcp_tools_registry.py +13 -3
- tools/microecon_adapter.py +412 -0
- tools/missing_data_adapter.py +73 -0
- tools/nonparametric_adapter.py +190 -0
- tools/spatial_econometrics_adapter.py +318 -0
- tools/statistical_inference_adapter.py +90 -0
- tools/survival_analysis_adapter.py +46 -0
- aigroup_econ_mcp-1.4.3.dist-info/METADATA +0 -710
- aigroup_econ_mcp-1.4.3.dist-info/RECORD +0 -92
- {aigroup_econ_mcp-1.4.3.dist-info → aigroup_econ_mcp-2.0.1.dist-info}/WHEEL +0 -0
- {aigroup_econ_mcp-1.4.3.dist-info → aigroup_econ_mcp-2.0.1.dist-info}/entry_points.txt +0 -0
- {aigroup_econ_mcp-1.4.3.dist-info → aigroup_econ_mcp-2.0.1.dist-info}/licenses/LICENSE +0 -0
PKG-INFO
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: aigroup_econ_mcp
|
|
3
|
-
Version:
|
|
4
|
-
Summary: 专业计量经济学MCP工具 -
|
|
3
|
+
Version: 2.0.1
|
|
4
|
+
Summary: 专业计量经济学MCP工具 - 支持CSV/JSON/TXT/Excel格式,让大模型更智能地进行数据分析
|
|
5
5
|
Project-URL: Homepage, https://github.com/jackdark425/aigroup-econ-mcp
|
|
6
6
|
Project-URL: Repository, https://github.com/jackdark425/aigroup-econ-mcp.git
|
|
7
7
|
Project-URL: Issues, https://github.com/ajackdark425/aigroup-econ-mcp/issues
|
|
@@ -22,7 +22,12 @@ Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
|
22
22
|
Requires-Python: >=3.10
|
|
23
23
|
Requires-Dist: arch>=6.0.0
|
|
24
24
|
Requires-Dist: click>=8.0.0
|
|
25
|
+
Requires-Dist: esda>=2.4.0
|
|
26
|
+
Requires-Dist: joblib>=1.2.0
|
|
27
|
+
Requires-Dist: libpysal>=4.7.0
|
|
28
|
+
Requires-Dist: lifelines>=0.27.0
|
|
25
29
|
Requires-Dist: linearmodels>=7.0
|
|
30
|
+
Requires-Dist: matplotlib>=3.5.0
|
|
26
31
|
Requires-Dist: mcp>=1.0.0
|
|
27
32
|
Requires-Dist: numpy>=1.21.0
|
|
28
33
|
Requires-Dist: openpyxl>=3.0.0
|
|
@@ -32,19 +37,21 @@ Requires-Dist: pydantic>=2.0.0
|
|
|
32
37
|
Requires-Dist: pyyaml>=6.0
|
|
33
38
|
Requires-Dist: scikit-learn>=1.0.0
|
|
34
39
|
Requires-Dist: scipy>=1.7.0
|
|
40
|
+
Requires-Dist: spreg>=1.4.0
|
|
35
41
|
Requires-Dist: statsmodels>=0.13.0
|
|
36
42
|
Requires-Dist: uvicorn>=0.20.0
|
|
43
|
+
Requires-Dist: xgboost>=1.7.0
|
|
37
44
|
Description-Content-Type: text/markdown
|
|
38
45
|
|
|
39
46
|
# aigroup-econ-mcp - 专业计量经济学MCP工具
|
|
40
47
|
|
|
41
|
-
🎯 **
|
|
48
|
+
🎯 **66项专业计量经济学分析工具** - 提供完整计量功能覆盖,支持CSV/JSON/TXT/Excel多种数据格式
|
|
42
49
|
|
|
43
50
|

|
|
44
51
|

|
|
45
52
|

|
|
46
|
-

|
|
54
|
+

|
|
48
55
|
|
|
49
56
|
## 📋 目录
|
|
50
57
|
|
|
@@ -79,255 +86,234 @@ MCP设置中添加:
|
|
|
79
86
|
"command": "uvx",
|
|
80
87
|
"args": ["aigroup-econ-mcp"],
|
|
81
88
|
"alwaysAllow": [
|
|
82
|
-
"
|
|
83
|
-
"
|
|
84
|
-
"
|
|
85
|
-
"
|
|
86
|
-
"
|
|
87
|
-
"
|
|
88
|
-
"
|
|
89
|
-
"
|
|
90
|
-
"
|
|
91
|
-
"
|
|
92
|
-
"
|
|
93
|
-
"
|
|
94
|
-
"
|
|
89
|
+
"basic_parametric_estimation_ols", "basic_parametric_estimation_mle", "basic_parametric_estimation_gmm",
|
|
90
|
+
"causal_difference_in_differences", "causal_instrumental_variables", "causal_propensity_score_matching",
|
|
91
|
+
"causal_fixed_effects", "causal_random_effects", "causal_regression_discontinuity",
|
|
92
|
+
"causal_synthetic_control", "causal_event_study", "causal_triple_difference",
|
|
93
|
+
"causal_mediation_analysis", "causal_moderation_analysis", "causal_control_function",
|
|
94
|
+
"causal_first_difference", "ml_random_forest", "ml_gradient_boosting",
|
|
95
|
+
"ml_support_vector_machine", "ml_neural_network", "ml_kmeans_clustering",
|
|
96
|
+
"ml_hierarchical_clustering", "ml_double_machine_learning", "ml_causal_forest",
|
|
97
|
+
"micro_logit", "micro_probit", "micro_multinomial_logit",
|
|
98
|
+
"micro_poisson", "micro_negative_binomial", "micro_tobit",
|
|
99
|
+
"micro_heckman", "model_diagnostic_tests", "generalized_least_squares",
|
|
100
|
+
"weighted_least_squares", "robust_errors_regression", "model_selection_criteria",
|
|
101
|
+
"regularized_regression", "simultaneous_equations_model", "time_series_arima_model",
|
|
102
|
+
"time_series_exponential_smoothing", "time_series_garch_model", "time_series_unit_root_tests",
|
|
103
|
+
"time_series_var_svar_model", "time_series_cointegration_analysis", "panel_data_dynamic_model",
|
|
104
|
+
"panel_data_diagnostics", "panel_var_model", "structural_break_tests",
|
|
105
|
+
"time_varying_parameter_models"
|
|
95
106
|
]
|
|
96
107
|
}
|
|
97
108
|
}
|
|
98
109
|
}
|
|
99
110
|
```
|
|
100
111
|
|
|
101
|
-
## ✨ 核心功能 -
|
|
112
|
+
## ✨ 核心功能 - 66项专业工具
|
|
102
113
|
|
|
103
|
-
### 1.
|
|
114
|
+
### 1. 基础参数估计 (3项)
|
|
104
115
|
|
|
105
116
|
解决建立变量间的基础参数化关系并进行估计的问题。
|
|
106
117
|
|
|
107
|
-
- **普通最小二乘法 (OLS)**
|
|
108
|
-
- **最大似然估计 (MLE)**
|
|
109
|
-
- **广义矩估计 (GMM)**
|
|
118
|
+
- **普通最小二乘法 (OLS)** - `basic_parametric_estimation_ols`
|
|
119
|
+
- **最大似然估计 (MLE)** - `basic_parametric_estimation_mle`
|
|
120
|
+
- **广义矩估计 (GMM)** - `basic_parametric_estimation_gmm`
|
|
110
121
|
|
|
111
|
-
### 2.
|
|
112
|
-
|
|
113
|
-
当基础模型的理想假设不成立时,修正模型或调整推断;对模型进行诊断和选择。
|
|
114
|
-
|
|
115
|
-
- **稳健标准误**(处理异方差/自相关)
|
|
116
|
-
- **广义最小二乘法 (GLS)**
|
|
117
|
-
- **加权最小二乘法 (WLS)**
|
|
118
|
-
- **岭回归/LASSO/弹性网络**(处理多重共线性/高维数据)
|
|
119
|
-
- **联立方程模型**(处理双向因果关系)
|
|
120
|
-
|
|
121
|
-
- **模型诊断**:异方差检验(White、Breusch-Pagan)、自相关检验(Durbin-Watson、Ljung-Box)、正态性检验(Jarque-Bera)、多重共线性诊断(VIF)、内生性检验(Durbin-Wu-Hausman)、残差诊断、影响点分析
|
|
122
|
-
|
|
123
|
-
- **模型选择**:信息准则(AIC/BIC/HQIC)、交叉验证(K折、留一法)、格兰杰因果检验
|
|
124
|
-
|
|
125
|
-
### 3. 因果识别策略
|
|
122
|
+
### 2. 因果识别策略 (13项)
|
|
126
123
|
|
|
127
124
|
在非实验数据中,识别变量间的因果关系(解决内生性问题)。
|
|
128
125
|
|
|
129
|
-
-
|
|
130
|
-
-
|
|
131
|
-
-
|
|
132
|
-
-
|
|
133
|
-
-
|
|
134
|
-
-
|
|
135
|
-
-
|
|
136
|
-
-
|
|
137
|
-
-
|
|
138
|
-
|
|
139
|
-
-
|
|
140
|
-
|
|
141
|
-
-
|
|
142
|
-
|
|
143
|
-
### 4. 特定数据类型建模
|
|
144
|
-
|
|
145
|
-
针对因变量或数据结构的固有特性进行建模。
|
|
146
|
-
|
|
147
|
-
#### 微观离散与受限数据
|
|
148
|
-
|
|
149
|
-
因变量为分类、计数、截断等非连续情况。
|
|
150
|
-
|
|
151
|
-
- **Logit/Probit**
|
|
152
|
-
- **多项/有序/条件Logit**
|
|
153
|
-
- **混合/嵌套Logit**
|
|
154
|
-
- **Tobit**
|
|
155
|
-
- **泊松/负二项回归**
|
|
156
|
-
- **Heckman选择模型**
|
|
157
|
-
|
|
158
|
-
#### 时间序列与面板数据
|
|
159
|
-
|
|
160
|
-
分析具有时间维度数据的动态依赖、预测和非平稳性。
|
|
161
|
-
|
|
162
|
-
- **ARIMA**
|
|
163
|
-
- **指数平滑法**
|
|
164
|
-
- **VAR/SVAR**
|
|
165
|
-
- **GARCH**
|
|
166
|
-
- **协整分析/VECM**
|
|
167
|
-
- **面板VAR**
|
|
168
|
-
|
|
169
|
-
- **平稳性与单位根检验**:ADF检验、PP检验、KPSS检验
|
|
170
|
-
|
|
171
|
-
- **动态面板模型**:Arellano-Bond估计(差分GMM)、Blundell-Bond估计(系统GMM)
|
|
172
|
-
|
|
173
|
-
- **结构突变检验**:Chow检验、Quandt-Andrews检验、Bai-Perron检验(多重断点)
|
|
174
|
-
|
|
175
|
-
- **面板数据诊断**:Hausman检验(FE vs RE)、F检验(Pooled vs FE)、LM检验(Pooled vs RE)、组内相关性检验
|
|
176
|
-
|
|
177
|
-
- **时变参数模型**:门限模型/转换回归(TAR/STAR)、马尔科夫转换模型
|
|
178
|
-
|
|
179
|
-
#### 生存/持续时间数据
|
|
180
|
-
|
|
181
|
-
分析"事件发生时间"数据并处理右删失。
|
|
182
|
-
|
|
183
|
-
- **Kaplan-Meier估计量**
|
|
184
|
-
- **Cox比例风险模型**
|
|
185
|
-
- **加速失效时间模型**
|
|
186
|
-
|
|
187
|
-
### 5. 空间计量经济学
|
|
126
|
+
- **双重差分法 (DID)** - `causal_difference_in_differences`
|
|
127
|
+
- **工具变量法 (IV/2SLS)** - `causal_instrumental_variables`
|
|
128
|
+
- **倾向得分匹配 (PSM)** - `causal_propensity_score_matching`
|
|
129
|
+
- **固定效应模型** - `causal_fixed_effects`
|
|
130
|
+
- **随机效应模型** - `causal_random_effects`
|
|
131
|
+
- **回归断点设计 (RDD)** - `causal_regression_discontinuity`
|
|
132
|
+
- **合成控制法** - `causal_synthetic_control`
|
|
133
|
+
- **事件研究法** - `causal_event_study`
|
|
134
|
+
- **三重差分法 (DDD)** - `causal_triple_difference`
|
|
135
|
+
- **中介效应分析** - `causal_mediation_analysis`
|
|
136
|
+
- **调节效应分析** - `causal_moderation_analysis`
|
|
137
|
+
- **控制函数法** - `causal_control_function`
|
|
138
|
+
- **一阶差分模型** - `causal_first_difference`
|
|
188
139
|
|
|
189
|
-
|
|
140
|
+
### 3. 分解分析 (3项)
|
|
190
141
|
|
|
191
|
-
|
|
142
|
+
分析变量差异的来源和构成。
|
|
192
143
|
|
|
193
|
-
-
|
|
144
|
+
- **Oaxaca-Blinder分解** - `decomposition_oaxaca_blinder`
|
|
145
|
+
- **方差分解 (ANOVA)** - `decomposition_variance_anova`
|
|
146
|
+
- **时间序列分解** - `decomposition_time_series`
|
|
194
147
|
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
### 6. 非参数与半参数方法
|
|
198
|
-
|
|
199
|
-
放宽函数形式的线性或参数化假设,让数据本身驱动关系形态。
|
|
200
|
-
|
|
201
|
-
- **核回归**
|
|
202
|
-
- **局部回归**
|
|
203
|
-
- **样条回归**
|
|
204
|
-
- **广义可加模型 (GAM)**
|
|
205
|
-
- **部分线性模型**
|
|
206
|
-
- **非参数工具变量估计**
|
|
207
|
-
|
|
208
|
-
### 7. 分布分析与分解方法
|
|
209
|
-
|
|
210
|
-
分析因变量整个条件分布的特征,而非仅仅条件均值;对差异或变化进行分解。
|
|
211
|
-
|
|
212
|
-
- **分位数回归**
|
|
213
|
-
|
|
214
|
-
- **分解方法**:Oaxaca-Blinder分解、DiNardo-Fortin-Lemieux反事实分解、方差分解、ANOVA分解、Shapley值分解、时间序列分解(趋势-季节-随机)
|
|
215
|
-
|
|
216
|
-
### 8. 现代计算与机器学习
|
|
148
|
+
### 4. 机器学习方法 (8项)
|
|
217
149
|
|
|
218
150
|
处理高维数据、复杂模式识别、预测以及为因果推断提供辅助工具。
|
|
219
151
|
|
|
220
|
-
-
|
|
221
|
-
|
|
222
|
-
-
|
|
223
|
-
|
|
224
|
-
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
在理论分布难以推导或模型复杂时,进行可靠的区间估计与假设检验。
|
|
229
|
-
|
|
230
|
-
- **重采样方法**:自助法 (Bootstrap)、Pairs Bootstrap、Residual Bootstrap、Wild Bootstrap(异方差)、Block Bootstrap(时间序列/面板)、刀切法 (Jackknife)
|
|
152
|
+
- **随机森林** - `ml_random_forest`
|
|
153
|
+
- **梯度提升机** - `ml_gradient_boosting`
|
|
154
|
+
- **支持向量机** - `ml_support_vector_machine`
|
|
155
|
+
- **神经网络** - `ml_neural_network`
|
|
156
|
+
- **K均值聚类** - `ml_kmeans_clustering`
|
|
157
|
+
- **层次聚类** - `ml_hierarchical_clustering`
|
|
158
|
+
- **双重机器学习** - `ml_double_machine_learning`
|
|
159
|
+
- **因果森林** - `ml_causal_forest`
|
|
231
160
|
|
|
232
|
-
|
|
161
|
+
### 5. 微观计量模型 (7项)
|
|
233
162
|
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
### 10. 缺失数据与测量误差
|
|
237
|
-
|
|
238
|
-
处理数据不完整或变量测量不准确的问题。
|
|
239
|
-
|
|
240
|
-
- **缺失数据处理**:列表删除法、均值插补、回归插补、多重插补 (Multiple Imputation - MICE/Amelia)、期望最大化算法 (EM)
|
|
241
|
-
|
|
242
|
-
- **测量误差**:工具变量法、SIMEX方法
|
|
163
|
+
针对因变量或数据结构的固有特性进行建模。
|
|
243
164
|
|
|
244
|
-
|
|
165
|
+
- **Logit模型** - `micro_logit`
|
|
166
|
+
- **Probit模型** - `micro_probit`
|
|
167
|
+
- **多项Logit** - `micro_multinomial_logit`
|
|
168
|
+
- **泊松回归** - `micro_poisson`
|
|
169
|
+
- **负二项回归** - `micro_negative_binomial`
|
|
170
|
+
- **Tobit模型** - `micro_tobit`
|
|
171
|
+
- **Heckman选择模型** - `micro_heckman`
|
|
245
172
|
|
|
246
|
-
###
|
|
173
|
+
### 6. 缺失数据处理 (2项)
|
|
247
174
|
|
|
248
|
-
|
|
249
|
-
|------|------|----------|------|
|
|
250
|
-
| `data_cleaning` | 数据清洗 | data, handle_missing, handle_outliers | 清洗后数据、处理统计 |
|
|
251
|
-
| `data_merge` | 数据合并 | left_data, right_data, on, how | 合并后数据、匹配统计 |
|
|
252
|
-
| `data_append` | 数据追加 | data1, data2 | 纵向合并数据 |
|
|
253
|
-
| `reshape_to_long` | 宽转长 | data, id_vars, value_vars | 长格式数据 |
|
|
254
|
-
| `reshape_to_wide` | 长转宽 | data, id_var, variable_col, value_col | 宽格式数据 |
|
|
255
|
-
| `variable_generation` | 生成变量 | data, expression | 新变量数据 |
|
|
256
|
-
| `variable_dropping` | 删除变量 | data, drop_vars | 删除后数据 |
|
|
257
|
-
| `variable_keeping` | 保留变量 | data, keep_vars | 保留后数据 |
|
|
175
|
+
处理数据缺失问题,保证分析的完整性。
|
|
258
176
|
|
|
259
|
-
|
|
177
|
+
- **简单插补** - `missing_data_simple_imputation`
|
|
178
|
+
- **多重插补 (MICE)** - `missing_data_multiple_imputation`
|
|
260
179
|
|
|
261
|
-
|
|
262
|
-
|------|------|----------|------|
|
|
263
|
-
| `descriptive_statistics` | 描述性统计 | data | 均值、标准差、偏度、峰度、相关矩阵 |
|
|
264
|
-
| `hypothesis_testing` | 假设检验 | data1, data2, test_type | 统计量、p值、显著性判断 |
|
|
265
|
-
| `correlation_analysis` | 相关性分析 | data, method | 相关系数矩阵 |
|
|
266
|
-
| `distribution_analysis` | 分布分析 | data, test_type | 分布检验结果 |
|
|
180
|
+
### 7. 模型规范、诊断与稳健推断 (7项)
|
|
267
181
|
|
|
268
|
-
|
|
182
|
+
当基础模型的理想假设不成立时,修正模型或调整推断;对模型进行诊断和选择。
|
|
269
183
|
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
|
|
184
|
+
- **模型诊断检验** - `model_diagnostic_tests`
|
|
185
|
+
- **广义最小二乘法 (GLS)** - `generalized_least_squares`
|
|
186
|
+
- **加权最小二乘法 (WLS)** - `weighted_least_squares`
|
|
187
|
+
- **稳健标准误回归** - `robust_errors_regression`
|
|
188
|
+
- **模型选择准则** - `model_selection_criteria`
|
|
189
|
+
- **正则化回归** - `regularized_regression`
|
|
190
|
+
- **联立方程模型** - `simultaneous_equations_model`
|
|
276
191
|
|
|
277
|
-
###
|
|
192
|
+
### 8. 非参数方法 (4项)
|
|
278
193
|
|
|
279
|
-
|
|
280
|
-
|------|------|----------|------|
|
|
281
|
-
| `panel_fixed_effects` | 固定效应模型 | y_data, x_data, entity_ids, time_periods | R²、系数、F统计量 |
|
|
282
|
-
| `panel_random_effects` | 随机效应模型 | y_data, x_data, entity_ids, time_periods | R²、系数、随机效应方差 |
|
|
283
|
-
| `panel_hausman_test` | Hausman检验 | y_data, x_data, entity_ids, time_periods | 检验统计量、模型选择建议 |
|
|
284
|
-
| `panel_unit_root_test` | 面板单位根 | data, entity_ids, time_periods, test_type | 平稳性判断、临界值 |
|
|
285
|
-
| `panel_diagnostics` | 面板诊断 | data, entity_ids, time_periods | 组内相关、异方差检验 |
|
|
194
|
+
不依赖特定函数形式的灵活建模方法。
|
|
286
195
|
|
|
287
|
-
|
|
196
|
+
- **核回归** - `nonparametric_kernel_regression`
|
|
197
|
+
- **分位数回归** - `nonparametric_quantile_regression`
|
|
198
|
+
- **样条回归** - `nonparametric_spline_regression`
|
|
199
|
+
- **广义可加模型 (GAM)** - `nonparametric_gam_model`
|
|
288
200
|
|
|
289
|
-
|
|
290
|
-
|------|------|----------|------|
|
|
291
|
-
| `time_series_analysis` | 时间序列分析 | data | 平稳性检验、ACF/PACF、模型建议 |
|
|
292
|
-
| `var_model_analysis` | VAR模型 | data, max_lags, ic | 最优阶数、系数、脉冲响应 |
|
|
293
|
-
| `vecm_model_analysis` | VECM模型 | data, coint_rank, max_lags | 协整向量、误差修正项 |
|
|
294
|
-
| `garch_model_analysis` | GARCH模型 | data, order, dist | 波动率持续性、条件方差 |
|
|
295
|
-
| `state_space_model_analysis` | 状态空间模型 | data, state_dim, trend | 滤波状态、平滑状态估计 |
|
|
296
|
-
| `variance_decomposition_analysis` | 方差分解 | data, periods, max_lags | 各变量贡献度分解 |
|
|
297
|
-
| `time_series_forecasting` | 时间序列预测 | data, model_type, periods | 预测值、置信区间 |
|
|
201
|
+
### 9. 空间计量经济学 (6项)
|
|
298
202
|
|
|
299
|
-
|
|
203
|
+
分析具有空间依赖性的数据。
|
|
300
204
|
|
|
301
|
-
|
|
302
|
-
|
|
303
|
-
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
|
|
307
|
-
| `tobit_regression` | Tobit模型 | y_data, x_data, censoring_point | 系数、边际效应、p值 |
|
|
308
|
-
| `poisson_count_regression` | 泊松回归 | y_data, x_data | 伪R²、系数、发生率比 |
|
|
205
|
+
- **空间权重矩阵** - `spatial_weights_matrix`
|
|
206
|
+
- **Moran's I检验** - `spatial_morans_i_test`
|
|
207
|
+
- **Geary's C检验** - `spatial_gearys_c_test`
|
|
208
|
+
- **局部Moran's I (LISA)** - `spatial_local_moran_lisa`
|
|
209
|
+
- **空间回归模型** - `spatial_regression_model`
|
|
210
|
+
- **地理加权回归 (GWR)** - `spatial_gwr_model`
|
|
309
211
|
|
|
310
|
-
###
|
|
212
|
+
### 10. 统计推断 (2项)
|
|
311
213
|
|
|
312
|
-
|
|
313
|
-
|------|------|----------|------|
|
|
314
|
-
| `propensity_score_matching` | PSM | treatment, covariates, outcome | 处理效应、匹配统计 |
|
|
315
|
-
| `difference_in_differences` | DID | treatment, time_period, outcome | 处理效应、时间效应 |
|
|
316
|
-
| `regression_discontinuity_analysis` | RDD | running_var, outcome, cutoff | 局部平均处理效应 |
|
|
317
|
-
| `quantile_regression_analysis` | 分位数回归 | y_data, x_data, quantiles | 分位数系数、置信区间 |
|
|
318
|
-
| `survival_analysis_cox` | 生存分析 | time, event, covariates | 风险比、系数、p值 |
|
|
214
|
+
基于重采样的统计推断方法。
|
|
319
215
|
|
|
216
|
+
- **Bootstrap方法** - `inference_bootstrap`
|
|
217
|
+
- **置换检验** - `inference_permutation_test`
|
|
320
218
|
|
|
321
|
-
###
|
|
219
|
+
### 11. 时间序列与面板数据 (11项)
|
|
322
220
|
|
|
323
|
-
|
|
324
|
-
|------|------|----------|------|
|
|
325
|
-
| `iv_regression_2sls` | 工具变量法 | y_data, x_data, instruments | 2SLS系数、弱工具检验 |
|
|
326
|
-
| `gmm_regression` | 广义矩估计 | y_data, x_data, instruments | GMM系数、过度识别检验 |
|
|
327
|
-
| `wls_regression` | 加权最小二乘 | y_data, x_data, weights | WLS系数、权重统计 |
|
|
328
|
-
| `bootstrap_analysis` | Bootstrap推断 | data, statistic_func, n_bootstrap | 置信区间、统计量分布 |
|
|
221
|
+
分析具有时间维度数据的动态依赖、预测和非平稳性。
|
|
329
222
|
|
|
330
|
-
|
|
223
|
+
- **ARIMA模型** - `time_series_arima_model`
|
|
224
|
+
- **指数平滑法** - `time_series_exponential_smoothing`
|
|
225
|
+
- **GARCH波动率模型** - `time_series_garch_model`
|
|
226
|
+
- **单位根检验** - `time_series_unit_root_tests`
|
|
227
|
+
- **VAR/SVAR模型** - `time_series_var_svar_model`
|
|
228
|
+
- **协整分析** - `time_series_cointegration_analysis`
|
|
229
|
+
- **动态面板模型** - `panel_data_dynamic_model`
|
|
230
|
+
- **面板数据诊断** - `panel_data_diagnostics`
|
|
231
|
+
- **面板VAR模型** - `panel_var_model`
|
|
232
|
+
- **结构突变检验** - `structural_break_tests`
|
|
233
|
+
- **时变参数模型** - `time_varying_parameter_models`
|
|
234
|
+
|
|
235
|
+
## 🔧 完整工具列表 (66项)
|
|
236
|
+
|
|
237
|
+
### 基础参数估计 (3项)
|
|
238
|
+
|
|
239
|
+
| 工具 | 功能 | 主要参数 | 输出 |
|
|
240
|
+
| ----------------------------------- | ------------ | ----------------------------- | --------------------------------- |
|
|
241
|
+
| `basic_parametric_estimation_ols` | OLS回归分析 | y_data, x_data, file_path | R²、系数、t统计量、p值、置信区间 |
|
|
242
|
+
| `basic_parametric_estimation_mle` | 最大似然估计 | data, file_path, distribution | 参数估计、标准误、置信区间 |
|
|
243
|
+
| `basic_parametric_estimation_gmm` | 广义矩估计 | y_data, x_data, instruments | GMM系数、J统计量、p值 |
|
|
244
|
+
|
|
245
|
+
### 因果推断 (13项)
|
|
246
|
+
|
|
247
|
+
| 工具 | 功能 | 主要参数 | 输出 |
|
|
248
|
+
| ------------------------------------ | ------------ | -------------------------------------- | ----------------------- |
|
|
249
|
+
| `causal_difference_in_differences` | 双重差分法 | treatment, time_period, outcome | 处理效应、时间效应 |
|
|
250
|
+
| `causal_instrumental_variables` | 工具变量法 | y_data, x_data, instruments | 2SLS系数、弱工具检验 |
|
|
251
|
+
| `causal_propensity_score_matching` | 倾向得分匹配 | treatment, outcome, covariates | 处理效应、匹配统计 |
|
|
252
|
+
| `causal_fixed_effects` | 固定效应模型 | y_data, x_data, entity_ids | R²、系数、F统计量 |
|
|
253
|
+
| `causal_random_effects` | 随机效应模型 | y_data, x_data, entity_ids | R²、系数、随机效应方差 |
|
|
254
|
+
| `causal_regression_discontinuity` | 回归断点设计 | running_variable, outcome, cutoff | 局部平均处理效应 |
|
|
255
|
+
| `causal_synthetic_control` | 合成控制法 | outcome, treatment_period, donor_units | 合成权重、处理效应 |
|
|
256
|
+
| `causal_event_study` | 事件研究法 | outcome, treatment, event_time | 动态处理效应 |
|
|
257
|
+
| `causal_triple_difference` | 三重差分法 | outcome, treatment_group, cohort_group | 三重差分效应 |
|
|
258
|
+
| `causal_mediation_analysis` | 中介效应分析 | outcome, treatment, mediator | 直接效应、间接效应 |
|
|
259
|
+
| `causal_moderation_analysis` | 调节效应分析 | outcome, predictor, moderator | 交互效应、条件效应 |
|
|
260
|
+
| `causal_control_function` | 控制函数法 | y_data, x_data, z_data | 控制函数估计 |
|
|
261
|
+
| `causal_first_difference` | 一阶差分模型 | y_data, x_data, entity_ids | 差分系数、标准误 |
|
|
262
|
+
|
|
263
|
+
### 机器学习 (8项)
|
|
264
|
+
|
|
265
|
+
| 工具 | 功能 | 主要参数 | 输出 |
|
|
266
|
+
| ------------------------------ | ------------ | ---------------------------------- | -------------------------- |
|
|
267
|
+
| `ml_random_forest` | 随机森林 | X_data, y_data, problem_type | R²、特征重要性、预测精度 |
|
|
268
|
+
| `ml_gradient_boosting` | 梯度提升机 | X_data, y_data, algorithm | R²、特征重要性、预测精度 |
|
|
269
|
+
| `ml_support_vector_machine` | 支持向量机 | X_data, y_data, kernel | R²、支持向量、预测精度 |
|
|
270
|
+
| `ml_neural_network` | 神经网络 | X_data, y_data, hidden_layer_sizes | R²、网络权重、预测精度 |
|
|
271
|
+
| `ml_kmeans_clustering` | K均值聚类 | X_data, n_clusters | 聚类中心、簇标签、轮廓系数 |
|
|
272
|
+
| `ml_hierarchical_clustering` | 层次聚类 | X_data, n_clusters, linkage | 聚类树、簇标签 |
|
|
273
|
+
| `ml_double_machine_learning` | 双重机器学习 | X_data, y_data, d_data | 处理效应、置信区间 |
|
|
274
|
+
| `ml_causal_forest` | 因果森林 | X_data, y_data, w_data | 异质性处理效应、特征重要性 |
|
|
275
|
+
|
|
276
|
+
### 微观计量 (7项)
|
|
277
|
+
|
|
278
|
+
| 工具 | 功能 | 主要参数 | 输出 |
|
|
279
|
+
| --------------------------- | --------------- | ----------------------------- | -------------------------- |
|
|
280
|
+
| `micro_logit` | Logit回归 | X_data, y_data | 伪R²、系数、OR值、p值 |
|
|
281
|
+
| `micro_probit` | Probit回归 | X_data, y_data | 伪R²、系数、边际效应、p值 |
|
|
282
|
+
| `micro_multinomial_logit` | 多项Logit | X_data, y_data | 伪R²、系数、相对风险比 |
|
|
283
|
+
| `micro_poisson` | 泊松回归 | X_data, y_data | 伪R²、系数、发生率比 |
|
|
284
|
+
| `micro_negative_binomial` | 负二项回归 | X_data, y_data, distr | 伪R²、系数、过度离散参数 |
|
|
285
|
+
| `micro_tobit` | Tobit模型 | X_data, y_data, bounds | 系数、边际效应、p值 |
|
|
286
|
+
| `micro_heckman` | Heckman选择模型 | X_select_data, Z_data, s_data | 选择方程、结果方程系数 |
|
|
287
|
+
|
|
288
|
+
### 模型规范与诊断 (7项)
|
|
289
|
+
|
|
290
|
+
| 工具 | 功能 | 主要参数 | 输出 |
|
|
291
|
+
| -------------------------------- | ------------ | --------------------------- | ------------------------------- |
|
|
292
|
+
| `model_diagnostic_tests` | 模型诊断检验 | y_data, x_data | 异方差、自相关、正态性、VIF检验 |
|
|
293
|
+
| `generalized_least_squares` | GLS回归 | y_data, x_data, sigma | GLS系数、标准误、置信区间 |
|
|
294
|
+
| `weighted_least_squares` | WLS回归 | y_data, x_data, weights | WLS系数、权重统计 |
|
|
295
|
+
| `robust_errors_regression` | 稳健标准误 | y_data, x_data, cov_type | 稳健标准误、检验统计量 |
|
|
296
|
+
| `model_selection_criteria` | 模型选择 | y_data, x_data, cv_folds | AIC、BIC、HQIC、交叉验证 |
|
|
297
|
+
| `regularized_regression` | 正则化回归 | y_data, x_data, method | 正则化系数、特征选择 |
|
|
298
|
+
| `simultaneous_equations_model` | 联立方程模型 | y_data, x_data, instruments | 2SLS系数、方程系统 |
|
|
299
|
+
|
|
300
|
+
### 时间序列与面板数据 (11项)
|
|
301
|
+
|
|
302
|
+
| 工具 | 功能 | 主要参数 | 输出 |
|
|
303
|
+
| -------------------------------------- | ------------ | -------------------------- | -------------------------- |
|
|
304
|
+
| `time_series_arima_model` | ARIMA模型 | data, order | 模型系数、预测值、置信区间 |
|
|
305
|
+
| `time_series_exponential_smoothing` | 指数平滑 | data, trend, seasonal | 平滑参数、预测值 |
|
|
306
|
+
| `time_series_garch_model` | GARCH模型 | data, order | 波动率参数、条件方差 |
|
|
307
|
+
| `time_series_unit_root_tests` | 单位根检验 | data, test_type | 检验统计量、平稳性判断 |
|
|
308
|
+
| `time_series_var_svar_model` | VAR/SVAR模型 | data, model_type, lags | 系数矩阵、脉冲响应 |
|
|
309
|
+
| `time_series_cointegration_analysis` | 协整分析 | data, analysis_type | 协整向量、秩检验 |
|
|
310
|
+
| `panel_data_dynamic_model` | 动态面板模型 | y_data, x_data, entity_ids | GMM系数、标准误 |
|
|
311
|
+
| `panel_data_diagnostics` | 面板诊断 | test_type, residuals | Hausman检验、F检验、LM检验 |
|
|
312
|
+
| `panel_var_model` | 面板VAR模型 | data, entity_ids, lags | 面板VAR系数、脉冲响应 |
|
|
313
|
+
| `structural_break_tests` | 结构突变检验 | data, test_type | 断点检测、检验统计量 |
|
|
314
|
+
| `time_varying_parameter_models` | 时变参数模型 | y_data, x_data, model_type | 参数轨迹、机制转换 |
|
|
315
|
+
|
|
316
|
+
> **注意**: 所有工具均支持CSV/JSON/TXT/Excel格式输入,可通过 `file_path`、`file_content`或直接数据参数调用。**输出支持JSON/Markdown/TXT多种格式**。
|
|
331
317
|
|
|
332
318
|
## 📁 文件输入支持
|
|
333
319
|
|
|
@@ -339,7 +325,7 @@ MCP设置中添加:
|
|
|
339
325
|
- **表头**: 自动识别(第一行非数值为表头)
|
|
340
326
|
- **特点**: 最通用,易于编辑和查看
|
|
341
327
|
|
|
342
|
-
```
|
|
328
|
+
```
|
|
343
329
|
GDP,CPI,失业率
|
|
344
330
|
3.2,2.1,4.5
|
|
345
331
|
2.8,2.3,4.2
|
|
@@ -360,7 +346,23 @@ GDP,CPI,失业率
|
|
|
360
346
|
}
|
|
361
347
|
```
|
|
362
348
|
|
|
363
|
-
#### 3.
|
|
349
|
+
#### 3. Excel文件
|
|
350
|
+
|
|
351
|
+
- **格式**: .xlsx 或 .xls
|
|
352
|
+
- **表头**: 第一行作为变量名
|
|
353
|
+
- **工作表**: 自动读取第一个工作表,或指定sheet名称
|
|
354
|
+
- **特点**: 支持复杂数据结构,保留格式
|
|
355
|
+
|
|
356
|
+
```
|
|
357
|
+
# Excel文件示例结构
|
|
358
|
+
# Sheet1:
|
|
359
|
+
# A列: GDP, B列: CPI, C列: 失业率
|
|
360
|
+
# 第1行: 3.2, 2.1, 4.5
|
|
361
|
+
# 第2行: 2.8, 2.3, 4.2
|
|
362
|
+
# 第3行: 3.5, 1.9, 4.0
|
|
363
|
+
```
|
|
364
|
+
|
|
365
|
+
#### 4. TXT文件
|
|
364
366
|
|
|
365
367
|
- **单列数值**: 每行一个数值
|
|
366
368
|
|
|
@@ -392,7 +394,7 @@ CPI: 2.1 2.3 1.9 2.4
|
|
|
392
394
|
|
|
393
395
|
#### 方式1:直接数据输入(程序化调用)
|
|
394
396
|
|
|
395
|
-
```
|
|
397
|
+
```
|
|
396
398
|
{
|
|
397
399
|
"data": {
|
|
398
400
|
"GDP增长率": [3.2, 2.8, 3.5, 2.9],
|
|
@@ -401,9 +403,9 @@ CPI: 2.1 2.3 1.9 2.4
|
|
|
401
403
|
}
|
|
402
404
|
```
|
|
403
405
|
|
|
404
|
-
|
|
406
|
+
方式2:文件内容输入(字符串)
|
|
405
407
|
|
|
406
|
-
```
|
|
408
|
+
```
|
|
407
409
|
{
|
|
408
410
|
"file_content": "GDP,CPI\n3.2,2.1\n2.8,2.3\n3.5,1.9",
|
|
409
411
|
"file_format": "csv"
|
|
@@ -412,18 +414,34 @@ CPI: 2.1 2.3 1.9 2.4
|
|
|
412
414
|
|
|
413
415
|
#### 方式3:文件路径输入(推荐✨)
|
|
414
416
|
|
|
415
|
-
```
|
|
417
|
+
```
|
|
416
418
|
{
|
|
417
419
|
"file_path": "./data/economic_data.csv"
|
|
418
420
|
}
|
|
419
421
|
```
|
|
420
422
|
|
|
421
|
-
或使用
|
|
423
|
+
或使用Excel文件:
|
|
422
424
|
|
|
423
|
-
```
|
|
425
|
+
```
|
|
426
|
+
{
|
|
427
|
+
"file_path": "./data/panel_data.xlsx"
|
|
428
|
+
}
|
|
429
|
+
```
|
|
430
|
+
|
|
431
|
+
### 输出格式支持
|
|
432
|
+
|
|
433
|
+
所有工具支持多种输出格式,通过 `output_format` 参数指定:
|
|
434
|
+
|
|
435
|
+
- **json** (默认) - 结构化JSON格式,便于程序处理
|
|
436
|
+
- **markdown** - Markdown表格格式,适合文档展示
|
|
437
|
+
- **html** - HTML表格格式,适合网页展示
|
|
438
|
+
- **latex** - LaTeX表格格式,适合学术论文
|
|
439
|
+
- **text** - 纯文本格式,简洁易读
|
|
440
|
+
|
|
441
|
+
```
|
|
424
442
|
{
|
|
425
|
-
"file_path": "./data/
|
|
426
|
-
"
|
|
443
|
+
"file_path": "./data/economic_data.csv",
|
|
444
|
+
"output_format": "json"
|
|
427
445
|
}
|
|
428
446
|
```
|
|
429
447
|
|
|
@@ -431,8 +449,8 @@ CPI: 2.1 2.3 1.9 2.4
|
|
|
431
449
|
|
|
432
450
|
系统会智能检测文件格式:
|
|
433
451
|
|
|
434
|
-
1. 文件扩展名(.csv/.json/.txt)
|
|
435
|
-
2. 文件内容特征(逗号、JSON
|
|
452
|
+
1. 文件扩展名(.csv/.json/.txt/.xlsx/.xls)
|
|
453
|
+
2. 文件内容特征(逗号、JSON结构、纯数值、Excel二进制)
|
|
436
454
|
3. 建议使用 `"file_format": "auto"` 让系统自动识别
|
|
437
455
|
|
|
438
456
|
## ⚙️ 安装配置
|
|
@@ -445,17 +463,17 @@ CPI: 2.1 2.3 1.9 2.4
|
|
|
445
463
|
|
|
446
464
|
### 方式1:uvx安装(推荐)
|
|
447
465
|
|
|
448
|
-
```
|
|
466
|
+
```
|
|
449
467
|
# 直接运行最新版本
|
|
450
468
|
uvx aigroup-econ-mcp
|
|
451
469
|
|
|
452
470
|
# 指定版本
|
|
453
|
-
uvx aigroup-econ-mcp@
|
|
471
|
+
uvx aigroup-econ-mcp@2.0.0
|
|
454
472
|
```
|
|
455
473
|
|
|
456
474
|
### 方式2:pip安装
|
|
457
475
|
|
|
458
|
-
```
|
|
476
|
+
```
|
|
459
477
|
# 安装包
|
|
460
478
|
pip install aigroup-econ-mcp
|
|
461
479
|
|
|
@@ -465,7 +483,7 @@ aigroup-econ-mcp
|
|
|
465
483
|
|
|
466
484
|
### macOS 特定说明
|
|
467
485
|
|
|
468
|
-
```
|
|
486
|
+
```
|
|
469
487
|
# 如果遇到权限问题,使用用户安装
|
|
470
488
|
pip install --user aigroup-econ-mcp
|
|
471
489
|
|
|
@@ -480,108 +498,71 @@ pip install aigroup-econ-mcp
|
|
|
480
498
|
- **核心依赖**: pandas >= 1.5.0, numpy >= 1.21.0, scipy >= 1.7.0
|
|
481
499
|
- **统计分析**: statsmodels >= 0.13.0
|
|
482
500
|
- **面板数据**: linearmodels >= 7.0
|
|
483
|
-
- **机器学习**: scikit-learn >= 1.0.0
|
|
501
|
+
- **机器学习**: scikit-learn >= 1.0.0, xgboost >= 1.7.0, joblib >= 1.2.0
|
|
484
502
|
- **时间序列**: arch >= 6.0.0
|
|
503
|
+
- **空间计量**: libpysal >= 4.7.0, esda >= 2.4.0, spreg >= 1.4.0
|
|
504
|
+
- **可视化**: matplotlib >= 3.5.0
|
|
485
505
|
- **轻量级**: 无需torch或其他重型框架
|
|
486
506
|
|
|
487
507
|
## 📚 使用示例
|
|
488
508
|
|
|
489
|
-
### 示例1
|
|
509
|
+
### 示例1:OLS回归分析
|
|
490
510
|
|
|
491
|
-
```
|
|
492
|
-
#
|
|
493
|
-
result = await
|
|
511
|
+
```
|
|
512
|
+
# 使用文件路径
|
|
513
|
+
result = await basic_parametric_estimation_ols(
|
|
494
514
|
file_path="./data/economic_indicators.csv"
|
|
495
515
|
)
|
|
496
516
|
|
|
497
|
-
#
|
|
498
|
-
result = await
|
|
499
|
-
|
|
500
|
-
|
|
501
|
-
|
|
502
|
-
3.5,1.9,4.0""",
|
|
503
|
-
file_format="csv"
|
|
517
|
+
# 使用直接数据输入
|
|
518
|
+
result = await basic_parametric_estimation_ols(
|
|
519
|
+
y_data=[12, 13, 15, 18, 20],
|
|
520
|
+
x_data=[[100, 50], [120, 48], [110, 52], [130, 45], [125, 47]],
|
|
521
|
+
feature_names=["广告支出", "价格"]
|
|
504
522
|
)
|
|
505
523
|
```
|
|
506
524
|
|
|
507
|
-
### 示例2
|
|
525
|
+
### 示例2:因果推断 - 双重差分法
|
|
508
526
|
|
|
509
|
-
```
|
|
510
|
-
|
|
511
|
-
|
|
512
|
-
|
|
513
|
-
|
|
514
|
-
|
|
515
|
-
110 52 1180""",
|
|
516
|
-
file_format="txt"
|
|
527
|
+
```
|
|
528
|
+
result = await causal_difference_in_differences(
|
|
529
|
+
treatment=[0, 0, 1, 1],
|
|
530
|
+
time_period=[0, 1, 0, 1],
|
|
531
|
+
outcome=[10, 12, 11, 15],
|
|
532
|
+
output_format="json"
|
|
517
533
|
)
|
|
518
|
-
|
|
519
|
-
# 系统会自动识别:
|
|
520
|
-
# - 因变量:销售额(最后一列)
|
|
521
|
-
# - 自变量:广告支出、价格(其他列)
|
|
522
534
|
```
|
|
523
535
|
|
|
524
|
-
### 示例3
|
|
536
|
+
### 示例3:机器学习 - 随机森林
|
|
525
537
|
|
|
526
|
-
```
|
|
527
|
-
|
|
528
|
-
|
|
529
|
-
|
|
530
|
-
|
|
531
|
-
|
|
532
|
-
|
|
533
|
-
104.2""",
|
|
534
|
-
file_format="txt"
|
|
538
|
+
```
|
|
539
|
+
result = await ml_random_forest(
|
|
540
|
+
X_data=[[100, 50, 3], [120, 48, 3], [110, 52, 4], [130, 45, 3]],
|
|
541
|
+
y_data=[12, 13, 15, 18],
|
|
542
|
+
feature_names=["广告支出", "价格", "竞争对手数"],
|
|
543
|
+
problem_type="regression",
|
|
544
|
+
n_estimators=100
|
|
535
545
|
)
|
|
536
|
-
|
|
537
|
-
# 输出包括:
|
|
538
|
-
# - 平稳性检验结果
|
|
539
|
-
# - ACF/PACF分析
|
|
540
|
-
# - 模型建议(ARIMA/AR/MA)
|
|
541
546
|
```
|
|
542
547
|
|
|
543
|
-
### 示例4
|
|
548
|
+
### 示例4:时间序列 - ARIMA模型
|
|
544
549
|
|
|
545
|
-
```
|
|
546
|
-
|
|
547
|
-
|
|
548
|
-
|
|
550
|
+
```
|
|
551
|
+
result = await time_series_arima_model(
|
|
552
|
+
data=[100.5, 102.3, 101.8, 103.5, 104.2],
|
|
553
|
+
order=(1, 1, 1),
|
|
554
|
+
forecast_steps=5
|
|
549
555
|
)
|
|
550
|
-
|
|
551
|
-
# CSV格式要求:
|
|
552
|
-
# company_id, year, revenue, employees, investment
|
|
553
|
-
# 1, 2020, 1000, 50, 100
|
|
554
|
-
# 1, 2021, 1100, 52, 110
|
|
555
|
-
# ...
|
|
556
|
-
|
|
557
|
-
# 系统会自动识别:
|
|
558
|
-
# - entity_ids: company_id列
|
|
559
|
-
# - time_periods: year列
|
|
560
|
-
# - 数据变量:其他列
|
|
561
556
|
```
|
|
562
557
|
|
|
563
|
-
### 示例5
|
|
558
|
+
### 示例5:微观计量 - Logit回归
|
|
564
559
|
|
|
565
|
-
```
|
|
566
|
-
|
|
567
|
-
|
|
568
|
-
y_data=[
|
|
569
|
-
|
|
570
|
-
[100, 50, 3],
|
|
571
|
-
[120, 48, 3],
|
|
572
|
-
[110, 52, 4],
|
|
573
|
-
[130, 45, 3],
|
|
574
|
-
[125, 47, 4]
|
|
575
|
-
],
|
|
576
|
-
feature_names=["广告支出", "价格", "竞争对手数"],
|
|
577
|
-
n_estimators=100,
|
|
578
|
-
max_depth=5
|
|
560
|
+
```
|
|
561
|
+
result = await micro_logit(
|
|
562
|
+
X_data=[[1.5, 2.5], [1.7, 2.7], [1.9, 2.9], [2.1, 3.1]],
|
|
563
|
+
y_data=[0, 0, 1, 1],
|
|
564
|
+
feature_names=["收入", "教育年限"]
|
|
579
565
|
)
|
|
580
|
-
|
|
581
|
-
# 输出包括:
|
|
582
|
-
# - R² 得分
|
|
583
|
-
# - 特征重要性排名
|
|
584
|
-
# - 预测精度指标
|
|
585
566
|
```
|
|
586
567
|
|
|
587
568
|
## 🔍 故障排除
|
|
@@ -590,8 +571,7 @@ result = await random_forest_regression_analysis(
|
|
|
590
571
|
|
|
591
572
|
#### Q: uvx安装卡住
|
|
592
573
|
|
|
593
|
-
```
|
|
594
|
-
|
|
574
|
+
```
|
|
595
575
|
# 清除缓存重试
|
|
596
576
|
uvx --no-cache aigroup-econ-mcp
|
|
597
577
|
```
|
|
@@ -622,37 +602,65 @@ uvx --no-cache aigroup-econ-mcp
|
|
|
622
602
|
|
|
623
603
|
## 🏗️ 项目架构
|
|
624
604
|
|
|
605
|
+
### 核心模块结构
|
|
606
|
+
|
|
607
|
+
```
|
|
608
|
+
aigroup-econ-mcp/
|
|
609
|
+
├── econometrics/ # 核心计量经济学算法
|
|
610
|
+
│ ├── basic_parametric_estimation/ # 基础参数估计(3个模型)
|
|
611
|
+
│ ├── causal_inference/ # 因果推断(13个方法)
|
|
612
|
+
│ ├── advanced_methods/ # 机器学习(8个模型)
|
|
613
|
+
│ ├── specific_data_modeling/ # 微观+时序(18个模型)
|
|
614
|
+
│ └── model_specification_diagnostics_robust_inference/ # 模型规范(7个工具)
|
|
615
|
+
├── tools/ # MCP工具适配器
|
|
616
|
+
│ ├── mcp_tool_groups/ # 工具组定义
|
|
617
|
+
│ │ ├── basic_parametric_tools.py # 基础参数估计工具
|
|
618
|
+
│ │ ├── causal_inference_tools.py # 因果推断工具
|
|
619
|
+
│ │ ├── machine_learning_tools.py # 机器学习工具
|
|
620
|
+
│ │ ├── microecon_tools.py # 微观计量工具
|
|
621
|
+
│ │ ├── model_specification_tools.py # 模型规范工具
|
|
622
|
+
│ │ └── time_series_tools.py # 时间序列工具
|
|
623
|
+
│ ├── data_loader.py # 数据加载器
|
|
624
|
+
│ └── output_formatter.py # 输出格式化
|
|
625
|
+
└── server.py # MCP服务器入口
|
|
626
|
+
```
|
|
625
627
|
|
|
626
628
|
### 设计特点
|
|
627
629
|
|
|
628
|
-
- **🎯
|
|
629
|
-
- **🔄 统一接口** - 所有工具支持CSV/JSON/TXT
|
|
630
|
+
- **🎯 十一大工具组** - 基础参数估计(3) + 因果推断(13) + 分解分析(3) + 机器学习(8) + 微观计量(7) + 缺失数据处理(2) + 模型规范诊断(7) + 非参数方法(4) + 空间计量(6) + 统计推断(2) + 时序面板(11) = 66项工具
|
|
631
|
+
- **🔄 统一接口** - 所有工具支持CSV/JSON/TXT/Excel四种格式输入
|
|
632
|
+
- **📊 多格式输出** - 支持JSON/Markdown/TXT三种输出格式
|
|
630
633
|
- **⚡ 异步处理** - 基于asyncio的异步设计,支持并发请求
|
|
631
634
|
- **🛡️ 错误处理** - 统一的错误处理和详细的错误信息
|
|
632
635
|
- **📝 完整文档** - 每个工具都有详细的参数说明和使用示例
|
|
633
636
|
- **🧪 全面测试** - 单元测试和集成测试覆盖
|
|
634
637
|
|
|
635
|
-
###
|
|
638
|
+
### 新增特性
|
|
636
639
|
|
|
637
|
-
- 🎯 **
|
|
638
|
-
- ✨
|
|
639
|
-
- 🔬
|
|
640
|
-
- 📊
|
|
641
|
-
- ⚙️
|
|
642
|
-
-
|
|
643
|
-
-
|
|
644
|
-
-
|
|
645
|
-
-
|
|
640
|
+
- 🎯 **66项专业工具** - 完整覆盖计量经济学核心方法
|
|
641
|
+
- ✨ **11大工具组** - 基础参数估计(3) + 因果推断(13) + 分解分析(3) + 机器学习(8) + 微观计量(7) + 缺失数据处理(2) + 模型规范诊断(7) + 非参数方法(4) + 空间计量(6) + 统计推断(2) + 时序面板(11)
|
|
642
|
+
- 🔬 **13种因果方法** - DID、IV、PSM、RDD、合成控制等完整因果推断工具链
|
|
643
|
+
- 📊 **8种机器学习** - 随机森林、梯度提升、神经网络、聚类、因果森林等
|
|
644
|
+
- ⚙️ **7种微观模型** - Logit、Probit、Tobit、Heckman等离散选择和受限因变量模型
|
|
645
|
+
- 📈 **11种时序模型** - ARIMA、GARCH、VAR、协整、动态面板等时间序列工具
|
|
646
|
+
- ✨ **多格式输入** - 支持CSV/JSON/TXT/Excel(.xlsx/.xls)四种输入格式
|
|
647
|
+
- 📊 **多格式输出** - 支持JSON/Markdown/TXT三种输出格式
|
|
648
|
+
- 📝 **完善参数描述** - 所有66个工具的MCP参数都有详细说明
|
|
649
|
+
- 🔍 **智能格式检测** - 自动识别CSV/JSON/TXT/Excel格式
|
|
650
|
+
- 📂 **文件路径支持** - 支持直接传入文件路径(.txt/.csv/.json/.xlsx/.xls)
|
|
646
651
|
|
|
647
652
|
## 🤝 贡献指南
|
|
648
653
|
|
|
649
654
|
### 开发环境设置
|
|
650
655
|
|
|
651
|
-
```
|
|
656
|
+
```
|
|
652
657
|
# 克隆项目
|
|
653
658
|
git clone https://github.com/jackdark425/aigroup-econ-mcp
|
|
654
659
|
cd aigroup-econ-mcp
|
|
655
660
|
|
|
661
|
+
# 安装所有依赖(包括新添加的空间计量、生存分析等包)
|
|
662
|
+
uv sync
|
|
663
|
+
|
|
656
664
|
# 安装开发依赖
|
|
657
665
|
uv add --dev pytest pytest-asyncio black isort mypy ruff
|
|
658
666
|
|
|
@@ -691,7 +699,7 @@ MIT License - 查看 [LICENSE](LICENSE) 文件了解详情
|
|
|
691
699
|
- **pandas** - 高效的数据处理库
|
|
692
700
|
- **scikit-learn** - 全面的机器学习库
|
|
693
701
|
- **linearmodels** - 面板数据分析专用库
|
|
694
|
-
- **计量经济学社区** -
|
|
702
|
+
- **计量经济学社区** - 提供方法参考和实现指导
|
|
695
703
|
- **开源社区** - 所有依赖库的开发者们
|
|
696
704
|
|
|
697
705
|
## 📞 支持
|
|
@@ -701,10 +709,24 @@ MIT License - 查看 [LICENSE](LICENSE) 文件了解详情
|
|
|
701
709
|
- 📚 **文档**: 查看[详细文档](https://github.com/jackdark425/aigroup-econ-mcp/tree/main/docs)
|
|
702
710
|
- 🌟 **Star项目**: 如果觉得有用,请给个⭐️
|
|
703
711
|
|
|
704
|
-
## 📈
|
|
712
|
+
## 📈 工具统计
|
|
713
|
+
|
|
714
|
+
**总计 66 项专业工具**:
|
|
715
|
+
|
|
716
|
+
- 基础参数估计: 3项
|
|
717
|
+
- 因果推断: 13项
|
|
718
|
+
- 分解分析: 3项
|
|
719
|
+
- 机器学习: 8项
|
|
720
|
+
- 微观计量: 7项
|
|
721
|
+
- 缺失数据处理: 2项
|
|
722
|
+
- 模型规范诊断: 7项
|
|
723
|
+
- 非参数方法: 4项
|
|
724
|
+
- 空间计量: 6项
|
|
725
|
+
- 统计推断: 2项
|
|
726
|
+
- 时间序列与面板数据: 11项
|
|
705
727
|
|
|
706
728
|
---
|
|
707
729
|
|
|
708
730
|
**立即开始**: `uvx aigroup-econ-mcp` 🚀
|
|
709
731
|
|
|
710
|
-
让AI大模型成为你的专业计量经济学分析助手!
|
|
732
|
+
让AI大模型成为你的专业计量经济学分析助手!66项专业工具,一站式解决方案!
|