aiagents4pharma 1.19.1__py3-none-any.whl → 1.20.1__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- aiagents4pharma/talk2biomodels/configs/config.yaml +5 -0
- aiagents4pharma/talk2scholars/agents/main_agent.py +129 -73
- aiagents4pharma/talk2scholars/agents/s2_agent.py +2 -1
- aiagents4pharma/talk2scholars/configs/agents/talk2scholars/main_agent/default.yaml +10 -31
- aiagents4pharma/talk2scholars/configs/agents/talk2scholars/s2_agent/default.yaml +16 -60
- aiagents4pharma/talk2scholars/state/state_talk2scholars.py +9 -8
- aiagents4pharma/talk2scholars/tests/test_integration.py +237 -0
- aiagents4pharma/talk2scholars/tests/test_main_agent.py +180 -0
- aiagents4pharma/talk2scholars/tests/test_s2_agent.py +138 -0
- aiagents4pharma/talk2scholars/tests/{test_langgraph.py → test_s2_tools.py} +79 -151
- aiagents4pharma/talk2scholars/tests/test_state.py +14 -0
- aiagents4pharma/talk2scholars/tools/s2/display_results.py +33 -8
- aiagents4pharma/talk2scholars/tools/s2/multi_paper_rec.py +10 -23
- aiagents4pharma/talk2scholars/tools/s2/search.py +10 -29
- aiagents4pharma/talk2scholars/tools/s2/single_paper_rec.py +4 -29
- {aiagents4pharma-1.19.1.dist-info → aiagents4pharma-1.20.1.dist-info}/METADATA +19 -3
- {aiagents4pharma-1.19.1.dist-info → aiagents4pharma-1.20.1.dist-info}/RECORD +20 -15
- {aiagents4pharma-1.19.1.dist-info → aiagents4pharma-1.20.1.dist-info}/LICENSE +0 -0
- {aiagents4pharma-1.19.1.dist-info → aiagents4pharma-1.20.1.dist-info}/WHEEL +0 -0
- {aiagents4pharma-1.19.1.dist-info → aiagents4pharma-1.20.1.dist-info}/top_level.txt +0 -0
@@ -1,59 +1,21 @@
|
|
1
1
|
"""
|
2
|
-
Unit
|
3
|
-
Each test focuses on a single, specific functionality.
|
4
|
-
Tests are deterministic and independent of each other.
|
2
|
+
Unit tests for S2 tools functionality.
|
5
3
|
"""
|
6
4
|
|
7
|
-
|
5
|
+
# pylint: disable=redefined-outer-name
|
6
|
+
from unittest.mock import patch
|
7
|
+
from langchain_core.messages import ToolMessage
|
8
8
|
import pytest
|
9
|
-
from
|
10
|
-
import hydra
|
11
|
-
from hydra.core.global_hydra import GlobalHydra
|
12
|
-
from omegaconf import DictConfig, OmegaConf
|
13
|
-
|
14
|
-
from ..agents.main_agent import get_app, make_supervisor_node
|
15
|
-
from ..state.state_talk2scholars import replace_dict, Talk2Scholars
|
16
|
-
from ..tools.s2.display_results import display_results
|
9
|
+
from ..tools.s2.display_results import display_results, NoPapersFoundError
|
17
10
|
from ..tools.s2.multi_paper_rec import get_multi_paper_recommendations
|
18
11
|
from ..tools.s2.search import search_tool
|
19
12
|
from ..tools.s2.single_paper_rec import get_single_paper_recommendations
|
20
13
|
|
21
|
-
# pylint: disable=redefined-outer-name
|
22
|
-
|
23
|
-
|
24
|
-
@pytest.fixture(autouse=True)
|
25
|
-
def hydra_setup():
|
26
|
-
"""Setup and cleanup Hydra for tests."""
|
27
|
-
GlobalHydra.instance().clear()
|
28
|
-
with hydra.initialize(version_base=None, config_path="../configs"):
|
29
|
-
yield
|
30
|
-
|
31
14
|
|
32
15
|
@pytest.fixture
|
33
|
-
def
|
34
|
-
"""
|
35
|
-
|
36
|
-
"agents": {
|
37
|
-
"talk2scholars": {
|
38
|
-
"main_agent": {
|
39
|
-
"state_modifier": "Test prompt for main agent",
|
40
|
-
"temperature": 0,
|
41
|
-
},
|
42
|
-
"s2_agent": {
|
43
|
-
"temperature": 0,
|
44
|
-
"s2_agent": "Test prompt for s2 agent",
|
45
|
-
},
|
46
|
-
}
|
47
|
-
},
|
48
|
-
"tools": {
|
49
|
-
"search": {
|
50
|
-
"api_endpoint": "https://api.semanticscholar.org/graph/v1/paper/search",
|
51
|
-
"default_limit": 2,
|
52
|
-
"api_fields": ["paperId", "title", "abstract", "year", "authors"],
|
53
|
-
}
|
54
|
-
},
|
55
|
-
}
|
56
|
-
return OmegaConf.create(config)
|
16
|
+
def initial_state():
|
17
|
+
"""Provides an empty initial state for tests."""
|
18
|
+
return {"papers": {}, "multi_papers": {}}
|
57
19
|
|
58
20
|
|
59
21
|
# Fixed test data for deterministic results
|
@@ -82,70 +44,26 @@ MOCK_STATE_PAPER = {
|
|
82
44
|
}
|
83
45
|
|
84
46
|
|
85
|
-
@pytest.fixture
|
86
|
-
def initial_state() -> Talk2Scholars:
|
87
|
-
"""Create a base state for tests"""
|
88
|
-
return Talk2Scholars(
|
89
|
-
messages=[],
|
90
|
-
papers={},
|
91
|
-
is_last_step=False,
|
92
|
-
current_agent=None,
|
93
|
-
llm_model="gpt-4o-mini",
|
94
|
-
next="",
|
95
|
-
)
|
96
|
-
|
97
|
-
|
98
|
-
class TestMainAgent:
|
99
|
-
"""Unit tests for main agent functionality"""
|
100
|
-
|
101
|
-
def test_supervisor_routes_search_to_s2(
|
102
|
-
self, initial_state: Talk2Scholars, mock_cfg
|
103
|
-
):
|
104
|
-
"""Verifies that search-related queries are routed to S2 agent"""
|
105
|
-
llm_mock = Mock()
|
106
|
-
llm_mock.invoke.return_value = AIMessage(content="Search initiated")
|
107
|
-
|
108
|
-
# Extract the main_agent config
|
109
|
-
supervisor = make_supervisor_node(
|
110
|
-
llm_mock, mock_cfg.agents.talk2scholars.main_agent
|
111
|
-
)
|
112
|
-
state = initial_state
|
113
|
-
state["messages"] = [HumanMessage(content="search for papers")]
|
114
|
-
|
115
|
-
result = supervisor(state)
|
116
|
-
assert result.goto == "s2_agent"
|
117
|
-
assert not result.update["is_last_step"]
|
118
|
-
assert result.update["current_agent"] == "s2_agent"
|
119
|
-
|
120
|
-
def test_supervisor_routes_general_to_end(
|
121
|
-
self, initial_state: Talk2Scholars, mock_cfg
|
122
|
-
):
|
123
|
-
"""Verifies that non-search queries end the conversation"""
|
124
|
-
llm_mock = Mock()
|
125
|
-
llm_mock.invoke.return_value = AIMessage(content="General response")
|
126
|
-
|
127
|
-
# Extract the main_agent config
|
128
|
-
supervisor = make_supervisor_node(
|
129
|
-
llm_mock, mock_cfg.agents.talk2scholars.main_agent
|
130
|
-
)
|
131
|
-
state = initial_state
|
132
|
-
state["messages"] = [HumanMessage(content="What is ML?")]
|
133
|
-
|
134
|
-
result = supervisor(state)
|
135
|
-
assert result.goto == "__end__"
|
136
|
-
assert result.update["is_last_step"]
|
137
|
-
|
138
|
-
|
139
47
|
class TestS2Tools:
|
140
48
|
"""Unit tests for individual S2 tools"""
|
141
49
|
|
142
|
-
def
|
50
|
+
def test_display_results_empty_state(self, initial_state):
|
51
|
+
"""Verifies display_results tool behavior when state is empty and raises an exception"""
|
52
|
+
with pytest.raises(
|
53
|
+
NoPapersFoundError,
|
54
|
+
match="No papers found. A search needs to be performed first.",
|
55
|
+
):
|
56
|
+
display_results.invoke({"state": initial_state})
|
57
|
+
|
58
|
+
def test_display_results_shows_papers(self, initial_state):
|
143
59
|
"""Verifies display_results tool correctly returns papers from state"""
|
144
|
-
state = initial_state
|
60
|
+
state = initial_state.copy()
|
145
61
|
state["papers"] = MOCK_STATE_PAPER
|
62
|
+
state["multi_papers"] = {}
|
146
63
|
result = display_results.invoke(input={"state": state})
|
147
|
-
assert result == MOCK_STATE_PAPER
|
148
64
|
assert isinstance(result, dict)
|
65
|
+
assert result["papers"] == MOCK_STATE_PAPER
|
66
|
+
assert result["multi_papers"] == {}
|
149
67
|
|
150
68
|
@patch("requests.get")
|
151
69
|
def test_search_finds_papers(self, mock_get):
|
@@ -171,6 +89,60 @@ class TestS2Tools:
|
|
171
89
|
assert paper["Title"] == "Machine Learning Basics"
|
172
90
|
assert paper["Year"] == 2023
|
173
91
|
|
92
|
+
@patch("requests.get")
|
93
|
+
def test_search_finds_papers_with_year(self, mock_get):
|
94
|
+
"""Verifies search tool works with year parameter"""
|
95
|
+
mock_get.return_value.json.return_value = MOCK_SEARCH_RESPONSE
|
96
|
+
mock_get.return_value.status_code = 200
|
97
|
+
|
98
|
+
result = search_tool.invoke(
|
99
|
+
input={
|
100
|
+
"query": "machine learning",
|
101
|
+
"limit": 1,
|
102
|
+
"year": "2023-",
|
103
|
+
"tool_call_id": "test123",
|
104
|
+
"id": "test123",
|
105
|
+
}
|
106
|
+
)
|
107
|
+
|
108
|
+
assert "papers" in result.update
|
109
|
+
assert "messages" in result.update
|
110
|
+
papers = result.update["papers"]
|
111
|
+
assert isinstance(papers, dict)
|
112
|
+
assert len(papers) > 0
|
113
|
+
|
114
|
+
@patch("requests.get")
|
115
|
+
def test_search_filters_invalid_papers(self, mock_get):
|
116
|
+
"""Verifies search tool properly filters papers without title or authors"""
|
117
|
+
mock_response = {
|
118
|
+
"data": [
|
119
|
+
{
|
120
|
+
"paperId": "123",
|
121
|
+
"abstract": "An introduction to ML",
|
122
|
+
"year": 2023,
|
123
|
+
"citationCount": 100,
|
124
|
+
"url": "https://example.com/paper1",
|
125
|
+
# Missing title and authors
|
126
|
+
},
|
127
|
+
MOCK_SEARCH_RESPONSE["data"][0], # This one is valid
|
128
|
+
]
|
129
|
+
}
|
130
|
+
mock_get.return_value.json.return_value = mock_response
|
131
|
+
mock_get.return_value.status_code = 200
|
132
|
+
|
133
|
+
result = search_tool.invoke(
|
134
|
+
input={
|
135
|
+
"query": "machine learning",
|
136
|
+
"limit": 2,
|
137
|
+
"tool_call_id": "test123",
|
138
|
+
"id": "test123",
|
139
|
+
}
|
140
|
+
)
|
141
|
+
|
142
|
+
assert "papers" in result.update
|
143
|
+
papers = result.update["papers"]
|
144
|
+
assert len(papers) == 1 # Only the valid paper should be included
|
145
|
+
|
174
146
|
@patch("requests.get")
|
175
147
|
def test_single_paper_rec_basic(self, mock_get):
|
176
148
|
"""Tests basic single paper recommendation functionality"""
|
@@ -184,11 +156,10 @@ class TestS2Tools:
|
|
184
156
|
"paper_id": "123",
|
185
157
|
"limit": 1,
|
186
158
|
"tool_call_id": "test123",
|
187
|
-
"id": "test123",
|
188
159
|
}
|
189
160
|
)
|
190
161
|
assert "papers" in result.update
|
191
|
-
assert
|
162
|
+
assert isinstance(result.update["messages"][0], ToolMessage)
|
192
163
|
|
193
164
|
@patch("requests.get")
|
194
165
|
def test_single_paper_rec_with_optional_params(self, mock_get):
|
@@ -222,11 +193,10 @@ class TestS2Tools:
|
|
222
193
|
"paper_ids": ["123", "456"],
|
223
194
|
"limit": 1,
|
224
195
|
"tool_call_id": "test123",
|
225
|
-
"id": "test123",
|
226
196
|
}
|
227
197
|
)
|
228
|
-
assert "
|
229
|
-
assert
|
198
|
+
assert "multi_papers" in result.update
|
199
|
+
assert isinstance(result.update["messages"][0], ToolMessage)
|
230
200
|
|
231
201
|
@patch("requests.post")
|
232
202
|
def test_multi_paper_rec_with_optional_params(self, mock_post):
|
@@ -245,47 +215,5 @@ class TestS2Tools:
|
|
245
215
|
"id": "test123",
|
246
216
|
}
|
247
217
|
)
|
248
|
-
assert "
|
218
|
+
assert "multi_papers" in result.update
|
249
219
|
assert len(result.update["messages"]) == 1
|
250
|
-
|
251
|
-
|
252
|
-
def test_state_replace_dict():
|
253
|
-
"""Verifies state dictionary replacement works correctly"""
|
254
|
-
existing = {"key1": "value1", "key2": "value2"}
|
255
|
-
new = {"key3": "value3"}
|
256
|
-
result = replace_dict(existing, new)
|
257
|
-
assert result == new
|
258
|
-
assert isinstance(result, dict)
|
259
|
-
|
260
|
-
|
261
|
-
@pytest.mark.integration
|
262
|
-
def test_end_to_end_search_workflow(initial_state: Talk2Scholars, mock_cfg):
|
263
|
-
"""Integration test: Complete search workflow"""
|
264
|
-
with (
|
265
|
-
patch("requests.get") as mock_get,
|
266
|
-
patch("langchain_openai.ChatOpenAI") as mock_llm,
|
267
|
-
patch("hydra.compose", return_value=mock_cfg),
|
268
|
-
patch("hydra.initialize"),
|
269
|
-
):
|
270
|
-
mock_get.return_value.json.return_value = MOCK_SEARCH_RESPONSE
|
271
|
-
mock_get.return_value.status_code = 200
|
272
|
-
|
273
|
-
llm_instance = Mock()
|
274
|
-
llm_instance.invoke.return_value = AIMessage(content="Search completed")
|
275
|
-
mock_llm.return_value = llm_instance
|
276
|
-
|
277
|
-
app = get_app("test_integration")
|
278
|
-
test_state = initial_state
|
279
|
-
test_state["messages"] = [HumanMessage(content="search for ML papers")]
|
280
|
-
|
281
|
-
config = {
|
282
|
-
"configurable": {
|
283
|
-
"thread_id": "test_integration",
|
284
|
-
"checkpoint_ns": "test",
|
285
|
-
"checkpoint_id": "test123",
|
286
|
-
}
|
287
|
-
}
|
288
|
-
|
289
|
-
response = app.invoke(test_state, config)
|
290
|
-
assert "papers" in response
|
291
|
-
assert len(response["messages"]) > 0
|
@@ -0,0 +1,14 @@
|
|
1
|
+
"""
|
2
|
+
Tests for state management functionality.
|
3
|
+
"""
|
4
|
+
|
5
|
+
from ..state.state_talk2scholars import replace_dict
|
6
|
+
|
7
|
+
|
8
|
+
def test_state_replace_dict():
|
9
|
+
"""Verifies state dictionary replacement works correctly"""
|
10
|
+
existing = {"key1": "value1", "key2": "value2"}
|
11
|
+
new = {"key3": "value3"}
|
12
|
+
result = replace_dict(existing, new)
|
13
|
+
assert result == new
|
14
|
+
assert isinstance(result, dict)
|
@@ -1,11 +1,11 @@
|
|
1
1
|
#!/usr/bin/env python3
|
2
2
|
|
3
|
-
|
3
|
+
"""
|
4
4
|
This tool is used to display the table of studies.
|
5
|
-
|
5
|
+
"""
|
6
6
|
|
7
7
|
import logging
|
8
|
-
from typing import Annotated
|
8
|
+
from typing import Annotated, Dict, Any
|
9
9
|
from langchain_core.tools import tool
|
10
10
|
from langgraph.prebuilt import InjectedState
|
11
11
|
|
@@ -13,13 +13,38 @@ from langgraph.prebuilt import InjectedState
|
|
13
13
|
logging.basicConfig(level=logging.INFO)
|
14
14
|
logger = logging.getLogger(__name__)
|
15
15
|
|
16
|
-
|
17
|
-
|
16
|
+
|
17
|
+
class NoPapersFoundError(Exception):
|
18
|
+
"""Exception raised when no papers are found in the state."""
|
19
|
+
|
20
|
+
|
21
|
+
@tool("display_results")
|
22
|
+
def display_results(state: Annotated[dict, InjectedState]) -> Dict[str, Any]:
|
18
23
|
"""
|
19
|
-
Display the papers in the state.
|
24
|
+
Display the papers in the state. If no papers are found, raises an exception
|
25
|
+
indicating that a search is needed.
|
20
26
|
|
21
27
|
Args:
|
22
|
-
state (dict): The state of the agent.
|
28
|
+
state (dict): The state of the agent containing the papers.
|
29
|
+
|
30
|
+
Returns:
|
31
|
+
dict: A dictionary containing the papers and multi_papers from the state.
|
32
|
+
|
33
|
+
Raises:
|
34
|
+
NoPapersFoundError: If no papers are found in the state.
|
35
|
+
|
36
|
+
Note:
|
37
|
+
The exception allows the LLM to make a more informed decision about initiating a search.
|
23
38
|
"""
|
24
39
|
logger.info("Displaying papers from the state")
|
25
|
-
|
40
|
+
|
41
|
+
if not state.get("papers") and not state.get("multi_papers"):
|
42
|
+
logger.info("No papers found in state, raising NoPapersFoundError")
|
43
|
+
raise NoPapersFoundError(
|
44
|
+
"No papers found. A search needs to be performed first."
|
45
|
+
)
|
46
|
+
|
47
|
+
return {
|
48
|
+
"papers": state.get("papers"),
|
49
|
+
"multi_papers": state.get("multi_papers"),
|
50
|
+
}
|
@@ -9,7 +9,6 @@ import json
|
|
9
9
|
import logging
|
10
10
|
from typing import Annotated, Any, Dict, List, Optional
|
11
11
|
import hydra
|
12
|
-
import pandas as pd
|
13
12
|
import requests
|
14
13
|
from langchain_core.messages import ToolMessage
|
15
14
|
from langchain_core.tools import tool
|
@@ -18,6 +17,11 @@ from langgraph.types import Command
|
|
18
17
|
from pydantic import BaseModel, Field
|
19
18
|
|
20
19
|
|
20
|
+
# Configure logging
|
21
|
+
logging.basicConfig(level=logging.INFO)
|
22
|
+
logger = logging.getLogger(__name__)
|
23
|
+
|
24
|
+
|
21
25
|
class MultiPaperRecInput(BaseModel):
|
22
26
|
"""Input schema for multiple paper recommendations tool."""
|
23
27
|
|
@@ -110,31 +114,14 @@ def get_multi_paper_recommendations(
|
|
110
114
|
if paper.get("title") and paper.get("paperId")
|
111
115
|
}
|
112
116
|
|
113
|
-
# Create a DataFrame from the dictionary
|
114
|
-
df = pd.DataFrame.from_dict(filtered_papers, orient="index")
|
115
|
-
# print("Created DataFrame with results:")
|
116
|
-
logging.info("Created DataFrame with results: %s", df)
|
117
|
-
|
118
|
-
# Format papers for state update
|
119
|
-
papers = [
|
120
|
-
f"Paper ID: {paper_id}\n"
|
121
|
-
f"Title: {paper_data['Title']}\n"
|
122
|
-
f"Abstract: {paper_data['Abstract']}\n"
|
123
|
-
f"Year: {paper_data['Year']}\n"
|
124
|
-
f"Citations: {paper_data['Citation Count']}\n"
|
125
|
-
f"URL: {paper_data['URL']}\n"
|
126
|
-
for paper_id, paper_data in filtered_papers.items()
|
127
|
-
]
|
128
|
-
|
129
|
-
# Convert DataFrame to markdown table
|
130
|
-
markdown_table = df.to_markdown(tablefmt="grid")
|
131
|
-
logging.info("Search results: %s", papers)
|
132
|
-
|
133
117
|
return Command(
|
134
118
|
update={
|
135
|
-
"
|
119
|
+
"multi_papers": filtered_papers, # Now sending the dictionary directly
|
136
120
|
"messages": [
|
137
|
-
ToolMessage(
|
121
|
+
ToolMessage(
|
122
|
+
content=f"Search Successful: {filtered_papers}",
|
123
|
+
tool_call_id=tool_call_id
|
124
|
+
)
|
138
125
|
],
|
139
126
|
}
|
140
127
|
)
|
@@ -7,7 +7,6 @@ This tool is used to search for academic papers on Semantic Scholar.
|
|
7
7
|
import logging
|
8
8
|
from typing import Annotated, Any, Dict, Optional
|
9
9
|
import hydra
|
10
|
-
import pandas as pd
|
11
10
|
import requests
|
12
11
|
from langchain_core.messages import ToolMessage
|
13
12
|
from langchain_core.tools import tool
|
@@ -16,6 +15,11 @@ from langgraph.types import Command
|
|
16
15
|
from pydantic import BaseModel, Field
|
17
16
|
|
18
17
|
|
18
|
+
# Configure logging
|
19
|
+
logging.basicConfig(level=logging.INFO)
|
20
|
+
logger = logging.getLogger(__name__)
|
21
|
+
|
22
|
+
|
19
23
|
class SearchInput(BaseModel):
|
20
24
|
"""Input schema for the search papers tool."""
|
21
25
|
|
@@ -65,8 +69,6 @@ def search_tool(
|
|
65
69
|
params = {
|
66
70
|
"query": query,
|
67
71
|
"limit": min(limit, 100),
|
68
|
-
# "fields": "paperId,title,abstract,year,authors,
|
69
|
-
# citationCount,url,publicationTypes,openAccessPdf",
|
70
72
|
"fields": ",".join(cfg.api_fields),
|
71
73
|
}
|
72
74
|
|
@@ -77,7 +79,7 @@ def search_tool(
|
|
77
79
|
response = requests.get(endpoint, params=params, timeout=10)
|
78
80
|
data = response.json()
|
79
81
|
papers = data.get("data", [])
|
80
|
-
|
82
|
+
logger.info("Received %d papers", len(papers))
|
81
83
|
# Create a dictionary to store the papers
|
82
84
|
filtered_papers = {
|
83
85
|
paper["paperId"]: {
|
@@ -86,40 +88,19 @@ def search_tool(
|
|
86
88
|
"Year": paper.get("year", "N/A"),
|
87
89
|
"Citation Count": paper.get("citationCount", "N/A"),
|
88
90
|
"URL": paper.get("url", "N/A"),
|
89
|
-
# "Publication Type": paper.get("publicationTypes", ["N/A"])[0]
|
90
|
-
# if paper.get("publicationTypes")
|
91
|
-
# else "N/A",
|
92
|
-
# "Open Access PDF": paper.get("openAccessPdf", {}).get("url", "N/A")
|
93
|
-
# if paper.get("openAccessPdf") is not None
|
94
|
-
# else "N/A",
|
95
91
|
}
|
96
92
|
for paper in papers
|
97
93
|
if paper.get("title") and paper.get("authors")
|
98
94
|
}
|
99
95
|
|
100
|
-
df = pd.DataFrame(filtered_papers)
|
101
|
-
|
102
|
-
# Format papers for state update
|
103
|
-
papers = [
|
104
|
-
f"Paper ID: {paper_id}\n"
|
105
|
-
f"Title: {paper_data['Title']}\n"
|
106
|
-
f"Abstract: {paper_data['Abstract']}\n"
|
107
|
-
f"Year: {paper_data['Year']}\n"
|
108
|
-
f"Citations: {paper_data['Citation Count']}\n"
|
109
|
-
f"URL: {paper_data['URL']}\n"
|
110
|
-
# f"Publication Type: {paper_data['Publication Type']}\n"
|
111
|
-
# f"Open Access PDF: {paper_data['Open Access PDF']}"
|
112
|
-
for paper_id, paper_data in filtered_papers.items()
|
113
|
-
]
|
114
|
-
|
115
|
-
markdown_table = df.to_markdown(tablefmt="grid")
|
116
|
-
logging.info("Search results: %s", papers)
|
117
|
-
|
118
96
|
return Command(
|
119
97
|
update={
|
120
98
|
"papers": filtered_papers, # Now sending the dictionary directly
|
121
99
|
"messages": [
|
122
|
-
ToolMessage(
|
100
|
+
ToolMessage(
|
101
|
+
content=f"Search Successful: {filtered_papers}",
|
102
|
+
tool_call_id=tool_call_id
|
103
|
+
)
|
123
104
|
],
|
124
105
|
}
|
125
106
|
)
|
@@ -7,7 +7,6 @@ This tool is used to return recommendations for a single paper.
|
|
7
7
|
import logging
|
8
8
|
from typing import Annotated, Any, Dict, Optional
|
9
9
|
import hydra
|
10
|
-
import pandas as pd
|
11
10
|
import requests
|
12
11
|
from langchain_core.messages import ToolMessage
|
13
12
|
from langchain_core.tools import tool
|
@@ -84,7 +83,6 @@ def get_single_paper_recommendations(
|
|
84
83
|
|
85
84
|
response = requests.get(endpoint, params=params, timeout=cfg.request_timeout)
|
86
85
|
data = response.json()
|
87
|
-
papers = data.get("data", [])
|
88
86
|
response = requests.get(endpoint, params=params, timeout=10)
|
89
87
|
# print(f"API Response Status: {response.status_code}")
|
90
88
|
logging.info(
|
@@ -106,42 +104,19 @@ def get_single_paper_recommendations(
|
|
106
104
|
"Year": paper.get("year", "N/A"),
|
107
105
|
"Citation Count": paper.get("citationCount", "N/A"),
|
108
106
|
"URL": paper.get("url", "N/A"),
|
109
|
-
# "Publication Type": paper.get("publicationTypes", ["N/A"])[0]
|
110
|
-
# if paper.get("publicationTypes")
|
111
|
-
# else "N/A",
|
112
|
-
# "Open Access PDF": paper.get("openAccessPdf", {}).get("url", "N/A")
|
113
|
-
# if paper.get("openAccessPdf") is not None
|
114
|
-
# else "N/A",
|
115
107
|
}
|
116
108
|
for paper in recommendations
|
117
109
|
if paper.get("title") and paper.get("authors")
|
118
110
|
}
|
119
111
|
|
120
|
-
# Create a DataFrame for pretty printing
|
121
|
-
df = pd.DataFrame(filtered_papers)
|
122
|
-
|
123
|
-
# Format papers for state update
|
124
|
-
papers = [
|
125
|
-
f"Paper ID: {paper_id}\n"
|
126
|
-
f"Title: {paper_data['Title']}\n"
|
127
|
-
f"Abstract: {paper_data['Abstract']}\n"
|
128
|
-
f"Year: {paper_data['Year']}\n"
|
129
|
-
f"Citations: {paper_data['Citation Count']}\n"
|
130
|
-
f"URL: {paper_data['URL']}\n"
|
131
|
-
# f"Publication Type: {paper_data['Publication Type']}\n"
|
132
|
-
# f"Open Access PDF: {paper_data['Open Access PDF']}"
|
133
|
-
for paper_id, paper_data in filtered_papers.items()
|
134
|
-
]
|
135
|
-
|
136
|
-
# Convert DataFrame to markdown table
|
137
|
-
markdown_table = df.to_markdown(tablefmt="grid")
|
138
|
-
logging.info("Search results: %s", papers)
|
139
|
-
|
140
112
|
return Command(
|
141
113
|
update={
|
142
114
|
"papers": filtered_papers, # Now sending the dictionary directly
|
143
115
|
"messages": [
|
144
|
-
ToolMessage(
|
116
|
+
ToolMessage(
|
117
|
+
content=f"Search Successful: {filtered_papers}",
|
118
|
+
tool_call_id=tool_call_id
|
119
|
+
)
|
145
120
|
],
|
146
121
|
}
|
147
122
|
)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: aiagents4pharma
|
3
|
-
Version: 1.
|
3
|
+
Version: 1.20.1
|
4
4
|
Summary: AI Agents for drug discovery, drug development, and other pharmaceutical R&D.
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: MIT License
|
@@ -56,6 +56,7 @@ Requires-Dist: streamlit-feedback
|
|
56
56
|
[](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2scholars.yml)
|
57
57
|

|
58
58
|

|
59
|
+

|
59
60
|
|
60
61
|
|
61
62
|
## Introduction
|
@@ -85,7 +86,22 @@ pip install aiagents4pharma
|
|
85
86
|
|
86
87
|
Check out the tutorials on each agent for detailed instrcutions.
|
87
88
|
|
88
|
-
#### Option 2:
|
89
|
+
#### Option 2: docker hub
|
90
|
+
|
91
|
+
_Please note that this option is currently available only for Talk2Biomodels._
|
92
|
+
|
93
|
+
1. **Pull the image**
|
94
|
+
```
|
95
|
+
docker pull virtualpatientengine/talk2biomodels
|
96
|
+
```
|
97
|
+
2. **Run a container**
|
98
|
+
```
|
99
|
+
docker run -e OPENAI_API_KEY=<openai_api_key> -e NVIDIA_API_KEY=<nvidia_api_key> -p 8501:8501 virtualpatientengine/talk2biomodels
|
100
|
+
```
|
101
|
+
_You can create a free account at NVIDIA and apply for their
|
102
|
+
free credits [here](https://build.nvidia.com/explore/discover)._
|
103
|
+
|
104
|
+
#### Option 3: git
|
89
105
|
|
90
106
|
1. **Clone the repository:**
|
91
107
|
```bash
|
@@ -94,7 +110,7 @@ Check out the tutorials on each agent for detailed instrcutions.
|
|
94
110
|
```
|
95
111
|
2. **Install dependencies:**
|
96
112
|
```bash
|
97
|
-
pip install .
|
113
|
+
pip install -r requirements.txt
|
98
114
|
```
|
99
115
|
3. **Initialize OPENAI_API_KEY and NVIDIA_API_KEY**
|
100
116
|
```bash
|