aiagents4pharma 1.19.1__py3-none-any.whl → 1.20.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,5 @@
1
+ defaults:
2
+ - _self_
3
+ - agents/t2b_agent: default
4
+ - tools/ask_question: default
5
+ - tools/get_annotation: default
@@ -1,151 +1,207 @@
1
1
  #!/usr/bin/env python3
2
2
 
3
3
  """
4
- Main agent for the talk2scholars app.
4
+ Main agent for the talk2scholars app using ReAct pattern.
5
+
6
+ This module implements a hierarchical agent system where a supervisor agent
7
+ routes queries to specialized sub-agents. It follows the LangGraph patterns
8
+ for multi-agent systems and implements proper state management.
9
+
10
+ The main components are:
11
+ 1. Supervisor node with ReAct pattern for intelligent routing.
12
+ 2. S2 agent node for handling academic paper queries.
13
+ 3. Shared state management via Talk2Scholars.
14
+ 4. Hydra-based configuration system.
15
+
16
+ Example:
17
+ app = get_app("thread_123", "gpt-4o-mini")
18
+ result = app.invoke({
19
+ "messages": [("human", "Find papers about AI agents")]
20
+ })
5
21
  """
6
22
 
7
23
  import logging
8
- from typing import Literal, Any
24
+ from typing import Literal, Callable
9
25
  import hydra
10
26
  from langchain_core.language_models.chat_models import BaseChatModel
11
- from langchain_core.messages import AIMessage
12
27
  from langchain_openai import ChatOpenAI
13
28
  from langgraph.checkpoint.memory import MemorySaver
14
29
  from langgraph.graph import END, START, StateGraph
30
+ from langgraph.prebuilt import create_react_agent
15
31
  from langgraph.types import Command
16
32
  from ..agents import s2_agent
17
33
  from ..state.state_talk2scholars import Talk2Scholars
18
34
 
35
+ # Configure logging
19
36
  logging.basicConfig(level=logging.INFO)
20
37
  logger = logging.getLogger(__name__)
21
38
 
22
39
 
23
- def make_supervisor_node(llm: BaseChatModel, cfg: Any) -> str:
40
+ def get_hydra_config():
24
41
  """
25
- Creates a supervisor node following LangGraph patterns.
42
+ Loads and returns the Hydra configuration for the main agent.
43
+
44
+ This function fetches the configuration settings for the Talk2Scholars
45
+ agent, ensuring that all required parameters are properly initialized.
46
+
47
+ Returns:
48
+ Any: The configuration object for the main agent.
49
+ """
50
+ with hydra.initialize(version_base=None, config_path="../configs"):
51
+ cfg = hydra.compose(
52
+ config_name="config", overrides=["agents/talk2scholars/main_agent=default"]
53
+ )
54
+ return cfg.agents.talk2scholars.main_agent
55
+
56
+
57
+ def make_supervisor_node(llm: BaseChatModel, thread_id: str) -> Callable:
58
+ """
59
+ Creates and returns a supervisor node for intelligent routing using the ReAct pattern.
60
+
61
+ This function initializes a supervisor agent that processes user queries and
62
+ determines the appropriate sub-agent for further processing. It applies structured
63
+ reasoning to manage conversations and direct queries based on context.
26
64
 
27
65
  Args:
28
- llm (BaseChatModel): The language model to use for generating responses.
29
- cfg (Any): The configuration object.
66
+ llm (BaseChatModel): The language model used by the supervisor agent.
67
+ thread_id (str): Unique identifier for the conversation session.
30
68
 
31
69
  Returns:
32
- str: The supervisor node function.
70
+ Callable: A function that acts as the supervisor node in the LangGraph workflow.
71
+
72
+ Example:
73
+ supervisor = make_supervisor_node(llm, "thread_123")
74
+ workflow.add_node("supervisor", supervisor)
33
75
  """
76
+ logger.info("Loading Hydra configuration for Talk2Scholars main agent.")
77
+ cfg = get_hydra_config()
78
+ logger.info("Hydra configuration loaded with values: %s", cfg)
79
+
80
+ # Create the supervisor agent using the main agent's configuration
81
+ supervisor_agent = create_react_agent(
82
+ llm,
83
+ tools=[], # Will add sub-agents later
84
+ state_modifier=cfg.main_agent,
85
+ state_schema=Talk2Scholars,
86
+ checkpointer=MemorySaver(),
87
+ )
88
+
34
89
  def supervisor_node(
35
90
  state: Talk2Scholars,
36
91
  ) -> Command[Literal["s2_agent", "__end__"]]:
37
92
  """
38
- Supervisor node that routes to appropriate sub-agents.
93
+ Processes user queries and determines the next step in the conversation flow.
94
+
95
+ This function examines the conversation state and decides whether to forward
96
+ the query to a specialized sub-agent (e.g., S2 agent) or conclude the interaction.
39
97
 
40
98
  Args:
41
- state (Talk2Scholars): The current state of the conversation.
99
+ state (Talk2Scholars): The current state of the conversation, containing
100
+ messages, papers, and metadata.
42
101
 
43
102
  Returns:
44
- Command[Literal["s2_agent", "__end__"]]: The command to execute next.
103
+ Command: The next action to be executed, along with updated state data.
104
+
105
+ Example:
106
+ result = supervisor_node(current_state)
107
+ next_step = result.goto
45
108
  """
46
109
  logger.info(
47
- "Supervisor node called - Messages count: %d, Current Agent: %s",
110
+ "Supervisor node called - Messages count: %d",
48
111
  len(state["messages"]),
49
- state.get("current_agent", "None"),
50
112
  )
51
113
 
52
- messages = [{"role": "system", "content": cfg.state_modifier}] + state[
53
- "messages"
54
- ]
55
- response = llm.invoke(messages)
56
- goto = (
57
- "FINISH"
58
- if not any(
59
- kw in state["messages"][-1].content.lower()
60
- for kw in ["search", "paper", "find"]
61
- )
62
- else "s2_agent"
114
+ # Invoke the supervisor agent with configurable thread_id
115
+ result = supervisor_agent.invoke(
116
+ state, {"configurable": {"thread_id": thread_id}}
63
117
  )
118
+ goto = "s2_agent"
119
+ logger.info("Supervisor agent completed with result: %s", result)
64
120
 
65
- if goto == "FINISH":
66
- return Command(
67
- goto=END,
68
- update={
69
- "messages": state["messages"]
70
- + [AIMessage(content=response.content)],
71
- "is_last_step": True,
72
- "current_agent": None,
73
- },
74
- )
75
-
76
- return Command(
77
- goto="s2_agent",
78
- update={
79
- "messages": state["messages"],
80
- "is_last_step": False,
81
- "current_agent": "s2_agent",
82
- },
83
- )
121
+ return Command(goto=goto)
84
122
 
85
123
  return supervisor_node
86
124
 
87
125
 
88
- def get_app(thread_id: str, llm_model="gpt-4o-mini") -> StateGraph:
126
+ def get_app(thread_id: str, llm_model: str = "gpt-4o-mini") -> StateGraph:
89
127
  """
90
- Returns the langraph app with hierarchical structure.
128
+ Initializes and returns the LangGraph application with a hierarchical agent system.
129
+
130
+ This function sets up the full agent architecture, including the supervisor
131
+ and sub-agents, and compiles the LangGraph workflow for handling user queries.
91
132
 
92
133
  Args:
93
- thread_id (str): The thread ID for the conversation.
134
+ thread_id (str): Unique identifier for the conversation session.
135
+ llm_model (str, optional): The language model to be used. Defaults to "gpt-4o-mini".
94
136
 
95
137
  Returns:
96
- The compiled langraph app.
97
- """
138
+ StateGraph: A compiled LangGraph application ready for query invocation.
98
139
 
99
- # Load hydra configuration
100
- logger.log(logging.INFO, "Load Hydra configuration for Talk2Scholars main agent.")
101
- with hydra.initialize(version_base=None, config_path="../../configs"):
102
- cfg = hydra.compose(
103
- config_name="config", overrides=["agents/talk2scholars/main_agent=default"]
104
- )
105
- cfg = cfg.agents.talk2scholars.main_agent
106
- logger.info("Hydra configuration loaded with values: %s", cfg)
140
+ Example:
141
+ app = get_app("thread_123")
142
+ result = app.invoke(initial_state)
143
+ """
144
+ cfg = get_hydra_config()
107
145
 
108
- def call_s2_agent(state: Talk2Scholars) -> Command[Literal["__end__"]]:
146
+ def call_s2_agent(
147
+ state: Talk2Scholars,
148
+ ) -> Command[Literal["supervisor", "__end__"]]:
109
149
  """
110
- Node for calling the S2 agent.
150
+ Calls the Semantic Scholar (S2) agent to process academic paper queries.
151
+
152
+ This function invokes the S2 agent, retrieves relevant research papers,
153
+ and updates the conversation state accordingly.
111
154
 
112
155
  Args:
113
- state (Talk2Scholars): The current state of the conversation.
156
+ state (Talk2Scholars): The current conversation state, including user queries
157
+ and any previously retrieved papers.
114
158
 
115
159
  Returns:
116
- Command[Literal["__end__"]]: The command to execute next.
160
+ Command: The next action to execute, along with updated messages and papers.
161
+
162
+ Example:
163
+ result = call_s2_agent(current_state)
164
+ next_step = result.goto
117
165
  """
118
166
  logger.info("Calling S2 agent with state: %s", state)
119
167
  app = s2_agent.get_app(thread_id, llm_model)
120
- response = app.invoke(state)
168
+
169
+ # Invoke the S2 agent, passing state,
170
+ # Pass both config_id and thread_id
171
+ response = app.invoke(
172
+ state,
173
+ {
174
+ "configurable": {
175
+ "config_id": thread_id,
176
+ "thread_id": thread_id,
177
+ }
178
+ },
179
+ )
121
180
  logger.info("S2 agent completed with response: %s", response)
181
+
122
182
  return Command(
123
183
  goto=END,
124
184
  update={
125
185
  "messages": response["messages"],
126
- "papers": response.get("papers", []),
127
- "is_last_step": True,
128
- "current_agent": "s2_agent",
186
+ "papers": response.get("papers", {}),
187
+ "multi_papers": response.get("multi_papers", {}),
129
188
  },
130
189
  )
131
190
 
132
- logger.log(
133
- logging.INFO,
134
- "Using OpenAI model %s with temperature %s",
135
- llm_model,
136
- cfg.temperature
137
- )
191
+ # Initialize LLM
192
+ logger.info("Using OpenAI model %s with temperature %s", llm_model, cfg.temperature)
138
193
  llm = ChatOpenAI(model=llm_model, temperature=cfg.temperature)
194
+
195
+ # Build the graph
139
196
  workflow = StateGraph(Talk2Scholars)
197
+ supervisor = make_supervisor_node(llm, thread_id)
140
198
 
141
- supervisor = make_supervisor_node(llm, cfg)
142
199
  workflow.add_node("supervisor", supervisor)
143
200
  workflow.add_node("s2_agent", call_s2_agent)
144
-
145
- # Define edges
146
201
  workflow.add_edge(START, "supervisor")
147
202
  workflow.add_edge("s2_agent", END)
148
203
 
204
+ # Compile the graph without initial state
149
205
  app = workflow.compile(checkpointer=MemorySaver())
150
206
  logger.info("Main agent workflow compiled")
151
207
  return app
@@ -39,7 +39,7 @@ def get_app(uniq_id, llm_model="gpt-4o-mini"):
39
39
 
40
40
  # Load hydra configuration
41
41
  logger.log(logging.INFO, "Load Hydra configuration for Talk2Scholars S2 agent.")
42
- with hydra.initialize(version_base=None, config_path="../../configs"):
42
+ with hydra.initialize(version_base=None, config_path="../configs"):
43
43
  cfg = hydra.compose(
44
44
  config_name="config", overrides=["agents/talk2scholars/s2_agent=default"]
45
45
  )
@@ -57,6 +57,7 @@ def get_app(uniq_id, llm_model="gpt-4o-mini"):
57
57
  llm,
58
58
  tools=tools,
59
59
  state_schema=Talk2Scholars,
60
+ # prompt=cfg.s2_agent,
60
61
  state_modifier=cfg.s2_agent,
61
62
  checkpointer=MemorySaver(),
62
63
  )
@@ -6,34 +6,13 @@ openai_llms:
6
6
  - "gpt-3.5-turbo"
7
7
  temperature: 0
8
8
  main_agent: >
9
- "You are a supervisory AI agent that routes user queries to specialized tools.\n"
10
- "Your task is to select the most appropriate tool based on the user's request.\n\n"
11
- "Available tools and their capabilities:\n\n"
12
- "1. semantic_scholar_agent:\n"
13
- " - Search for academic papers and research\n"
14
- " - Get paper recommendations\n"
15
- " - Find similar papers\n"
16
- " USE FOR: Any queries about finding papers, academic research, "
17
- "or getting paper recommendations\n\n"
18
- "ROUTING GUIDELINES:\n\n"
19
- "ALWAYS route to semantic_scholar_agent for:\n"
20
- "- Finding academic papers\n"
21
- "- Searching research topics\n"
22
- "- Getting paper recommendations\n"
23
- "- Finding similar papers\n"
24
- "- Any query about academic literature\n\n"
25
- "Approach:\n"
26
- "1. Identify the core need in the user's query\n"
27
- "2. Select the most appropriate tool based on the guidelines above\n"
28
- "3. If unclear, ask for clarification\n"
29
- "4. For multi-step tasks, focus on the immediate next step\n\n"
30
- "Remember:\n"
31
- "- Be decisive in your tool selection\n"
32
- "- Focus on the immediate task\n"
33
- "- Default to semantic_scholar_agent for any paper-finding tasks\n"
34
- "- Ask for clarification if the request is ambiguous\n\n"
35
- "When presenting paper search results, always use this exact format:\n\n"
36
- "Remember to:\n"
37
- "- To always add the url\n"
38
- "- Put URLs on the title line itself as markdown\n"
39
- "- Maintain consistent spacing and formatting"
9
+ You are an intelligent research assistant coordinating academic paper discovery and analysis.
10
+
11
+ AVAILABLE TOOLS AND ROUTING:
12
+ 1. semantic_scholar_agent:
13
+ Access to tools:
14
+ - search_tool: For paper discovery
15
+ - display_results: For showing paper results
16
+ - get_single_paper_recommendations: For single paper recommendations
17
+ - get_multi_paper_recommendations: For multi-paper recommendations
18
+ ROUTE TO THIS AGENT FOR: Any query about academic papers, research, or articles
@@ -6,63 +6,19 @@ openai_llms:
6
6
  - "gpt-3.5-turbo"
7
7
  temperature: 0
8
8
  s2_agent: >
9
- "You are a specialized academic research assistant with access to the following tools:\n\n"
10
- "1. search_papers:\n"
11
- " USE FOR: General paper searches\n"
12
- " - Enhances search terms automatically\n"
13
- " - Adds relevant academic keywords\n"
14
- " - Focuses on recent research when appropriate\n\n"
15
- "2. get_single_paper_recommendations:\n"
16
- " USE FOR: Finding papers similar to a specific paper\n"
17
- " - Takes a single paper ID\n"
18
- " - Returns related papers\n\n"
19
- "3. get_multi_paper_recommendations:\n"
20
- " USE FOR: Finding papers similar to multiple papers\n"
21
- " - Takes multiple paper IDs\n"
22
- " - Finds papers related to all inputs\n\n"
23
- "GUIDELINES:\n\n"
24
- "For paper searches:\n"
25
- "- Enhance search terms with academic language\n"
26
- "- Include field-specific terminology\n"
27
- '- Add "recent" or "latest" when appropriate\n'
28
- "- Keep queries focused and relevant\n\n"
29
- "For paper recommendations:\n"
30
- "- Identify paper IDs (40-character hexadecimal strings)\n"
31
- "- Use single_paper_recommendations for one ID\n"
32
- "- Use multi_paper_recommendations for multiple IDs\n\n"
33
- "Best practices:\n"
34
- "1. Start with a broad search if no paper IDs are provided\n"
35
- "2. Look for paper IDs in user input\n"
36
- "3. Enhance search terms for better results\n"
37
- "4. Consider the academic context\n"
38
- "5. Be prepared to refine searches based on feedback\n\n"
39
- "Remember:\n"
40
- "- Always select the most appropriate tool\n"
41
- "- Enhance search queries naturally\n"
42
- "- Consider academic context\n"
43
- "- Focus on delivering relevant results\n\n"
44
- "IMPORTANT GUIDELINES FOR PAPER RECOMMENDATIONS:\n\n"
45
- "For Multiple Papers:\n"
46
- "- When getting recommendations for multiple papers, always use "
47
- "get_multi_paper_recommendations tool\n"
48
- "- DO NOT call get_single_paper_recommendations multiple times\n"
49
- "- Always pass all paper IDs in a single call to get_multi_paper_recommendations\n"
50
- '- Use for queries like "find papers related to both/all papers" or '
51
- '"find similar papers to these papers"\n\n'
52
- "For Single Paper:\n"
53
- "- Use get_single_paper_recommendations when focusing on one specific paper\n"
54
- "- Pass only one paper ID at a time\n"
55
- '- Use for queries like "find papers similar to this paper" or '
56
- '"get recommendations for paper X"\n'
57
- "- Do not use for multiple papers\n\n"
58
- "Examples:\n"
59
- '- For "find related papers for both papers":\n'
60
- " ✓ Use get_multi_paper_recommendations with both paper IDs\n"
61
- " × Don't make multiple calls to get_single_paper_recommendations\n\n"
62
- '- For "find papers related to the first paper":\n'
63
- " ✓ Use get_single_paper_recommendations with just that paper's ID\n"
64
- " × Don't use get_multi_paper_recommendations\n\n"
65
- "Remember:\n"
66
- "- Be precise in identifying which paper ID to use for single recommendations\n"
67
- "- Don't reuse previous paper IDs unless specifically requested\n"
68
- "- For fresh paper recommendations, always use the original paper ID"
9
+ You are a specialized academic research agent with access to tools for paper discovery and analysis.
10
+
11
+ YOUR TOOLS:
12
+ 1. search_tool:
13
+ - Finds research papers based on user queries.
14
+ - If no papers are found, it performs a new search.
15
+
16
+ 2. display_results:
17
+ - Shows the current research papers.
18
+ - If no papers are found, it will instruct you to perform a search.
19
+
20
+ 3. get_single_paper_recommendations:
21
+ - Provides recommendations based on a single selected paper.
22
+
23
+ 4. get_multi_paper_recommendations:
24
+ - Provides recommendations based on multiple selected papers.
@@ -3,10 +3,8 @@ This is the state file for the talk2scholars agent.
3
3
  """
4
4
 
5
5
  import logging
6
- from typing import Annotated, Any, Dict, Optional
7
-
6
+ from typing import Annotated, Any, Dict
8
7
  from langgraph.prebuilt.chat_agent_executor import AgentState
9
- from typing_extensions import NotRequired, Required
10
8
 
11
9
  # Configure logging
12
10
  logging.basicConfig(level=logging.INFO)
@@ -22,11 +20,14 @@ def replace_dict(existing: Dict[str, Any], new: Dict[str, Any]) -> Dict[str, Any
22
20
  class Talk2Scholars(AgentState):
23
21
  """
24
22
  The state for the talk2scholars agent, inheriting from AgentState.
23
+
24
+ Attributes:
25
+ papers: Dictionary of papers from search results
26
+ multi_papers: Dictionary of papers from multi-paper recommendations
27
+ llm_model: Model being used
25
28
  """
26
29
 
27
- papers: Annotated[Dict[str, Any], replace_dict] # Changed from List to Dict
28
- search_table: NotRequired[str]
29
- next: str # Required for routing in LangGraph
30
- current_agent: NotRequired[Optional[str]]
31
- is_last_step: Required[bool] # Required field for LangGraph
30
+ # Agent state fields
31
+ papers: Annotated[Dict[str, Any], replace_dict]
32
+ multi_papers: Annotated[Dict[str, Any], replace_dict]
32
33
  llm_model: str