ai-edge-torch-nightly 0.1.dev202405131930__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ai-edge-torch-nightly might be problematic. Click here for more details.
- ai_edge_torch/__init__.py +30 -0
- ai_edge_torch/convert/__init__.py +14 -0
- ai_edge_torch/convert/conversion.py +117 -0
- ai_edge_torch/convert/conversion_utils.py +330 -0
- ai_edge_torch/convert/converter.py +171 -0
- ai_edge_torch/convert/fx_passes/__init__.py +59 -0
- ai_edge_torch/convert/fx_passes/_pass_base.py +49 -0
- ai_edge_torch/convert/fx_passes/build_aten_composite_pass.py +192 -0
- ai_edge_torch/convert/fx_passes/build_upsample_bilinear2d_composite_pass.py +84 -0
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +37 -0
- ai_edge_torch/convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +215 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +48 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +17 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +59 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +196 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +400 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +286 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/utils.py +62 -0
- ai_edge_torch/convert/test/__init__.py +14 -0
- ai_edge_torch/convert/test/test_convert.py +273 -0
- ai_edge_torch/convert/test/test_convert_composites.py +171 -0
- ai_edge_torch/convert/test/test_convert_multisig.py +139 -0
- ai_edge_torch/debug/__init__.py +16 -0
- ai_edge_torch/debug/culprit.py +423 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +133 -0
- ai_edge_torch/debug/utils.py +48 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +66 -0
- ai_edge_torch/generative/examples/gemma/gemma.py +174 -0
- ai_edge_torch/generative/examples/phi2/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +64 -0
- ai_edge_torch/generative/examples/phi2/phi2.py +164 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +135 -0
- ai_edge_torch/generative/examples/t5/t5.py +608 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +255 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +119 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +143 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +0 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +66 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +164 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +288 -0
- ai_edge_torch/generative/layers/attention_utils.py +169 -0
- ai_edge_torch/generative/layers/builder.py +103 -0
- ai_edge_torch/generative/layers/feed_forward.py +95 -0
- ai_edge_torch/generative/layers/kv_cache.py +83 -0
- ai_edge_torch/generative/layers/model_config.py +135 -0
- ai_edge_torch/generative/layers/normalization.py +62 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +36 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +45 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +66 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +106 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +51 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +48 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +31 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_model_conversion.py +201 -0
- ai_edge_torch/generative/test/test_quantize.py +109 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/loader.py +290 -0
- ai_edge_torch/generative/utilities/t5_loader.py +467 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +139 -0
- ai_edge_torch/hlfb/mark_pattern/passes.py +42 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +260 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +133 -0
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +270 -0
- ai_edge_torch/model.py +134 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +438 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1041 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +126 -0
- ai_edge_torch_nightly-0.1.dev202405131930.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.1.dev202405131930.dist-info/METADATA +38 -0
- ai_edge_torch_nightly-0.1.dev202405131930.dist-info/RECORD +91 -0
- ai_edge_torch_nightly-0.1.dev202405131930.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.1.dev202405131930.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,400 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
import operator
|
|
16
|
+
|
|
17
|
+
import torch
|
|
18
|
+
from torch.fx import Node
|
|
19
|
+
import torch.utils._pytree as pytree
|
|
20
|
+
|
|
21
|
+
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import layout_mark # NOQA
|
|
22
|
+
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import utils # NOQA
|
|
23
|
+
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass.op_func_registry import OpFuncRegistry # NOQA
|
|
24
|
+
|
|
25
|
+
aten = torch.ops.aten
|
|
26
|
+
|
|
27
|
+
__all__ = ["rewrite_nhwc_node", "has_nhwc_rewriter"]
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
class NHWCNodeRewritersRegistry(OpFuncRegistry):
|
|
31
|
+
|
|
32
|
+
def __missing__(self, op):
|
|
33
|
+
def _rewriter(node):
|
|
34
|
+
raise RuntimeError(f"NHWC node rewriter not found: {str(node)}")
|
|
35
|
+
|
|
36
|
+
return _rewriter
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
rewriters = NHWCNodeRewritersRegistry()
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def rewrite_nhwc_node(node: Node):
|
|
43
|
+
if not layout_mark.is_nhwc_node(node):
|
|
44
|
+
return
|
|
45
|
+
|
|
46
|
+
rewriters[node.target](node)
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def has_nhwc_rewriter(node: Node):
|
|
50
|
+
return node.target in rewriters
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
# ======= Quantize ops
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
@rewriters.register(torch.ops.quantized_decomposed.dequantize_per_tensor)
|
|
57
|
+
@rewriters.register(torch.ops.quantized_decomposed.quantize_per_tensor)
|
|
58
|
+
def noop(node: Node):
|
|
59
|
+
pass
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
@rewriters.register(torch.ops.quantized_decomposed.dequantize_per_channel)
|
|
63
|
+
@rewriters.register(torch.ops.quantized_decomposed.quantize_per_channel)
|
|
64
|
+
def _qdq_per_channel_rewriter(node: Node):
|
|
65
|
+
new_args = []
|
|
66
|
+
new_kwargs = {}
|
|
67
|
+
|
|
68
|
+
def axis_nchw_to_nhwc(axis: int):
|
|
69
|
+
axis = axis if axis >= 0 else 4 + axis
|
|
70
|
+
return {3: 2, 2: 1, 1: 3}.get(axis, axis)
|
|
71
|
+
|
|
72
|
+
for arg, spec in zip(node.args, op._schema.arguments):
|
|
73
|
+
if spec.name == "axis":
|
|
74
|
+
new_args.append(axis_nchw_to_nhwc(arg))
|
|
75
|
+
else:
|
|
76
|
+
new_args.append(arg)
|
|
77
|
+
|
|
78
|
+
for spec in op._schema.arguments[len(node.args) :]:
|
|
79
|
+
if spec.name not in node.kwargs:
|
|
80
|
+
continue
|
|
81
|
+
|
|
82
|
+
if spec.name == "axis":
|
|
83
|
+
new_kwargs[spec.name] = axis_nchw_to_nhwc(node.kwargs[spec.name])
|
|
84
|
+
else:
|
|
85
|
+
new_kwargs[spec.name] = node.kwargs[spec.name]
|
|
86
|
+
|
|
87
|
+
node.args = tuple(new_args)
|
|
88
|
+
node.kwargs = new_kwargs
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
# ======= Noop ops (layout insensitive ops)
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
@rewriters.register(utils.tensor_to_nhwc)
|
|
95
|
+
@rewriters.register(utils.tensor_to_nchw)
|
|
96
|
+
@rewriters.register(operator.getitem)
|
|
97
|
+
@rewriters.register("output")
|
|
98
|
+
@rewriters.register(aten.add.Tensor)
|
|
99
|
+
@rewriters.register(aten.add.Scalar)
|
|
100
|
+
@rewriters.register(aten.atan2.default)
|
|
101
|
+
@rewriters.register(aten.atan2.out)
|
|
102
|
+
@rewriters.register(aten.bitwise_and.Tensor)
|
|
103
|
+
@rewriters.register(aten.bitwise_and.Scalar)
|
|
104
|
+
@rewriters.register(aten.bitwise_or.Tensor)
|
|
105
|
+
@rewriters.register(aten.bitwise_or.Scalar)
|
|
106
|
+
@rewriters.register(aten.bitwise_xor.Tensor)
|
|
107
|
+
@rewriters.register(aten.bitwise_xor.Scalar)
|
|
108
|
+
@rewriters.register(aten.div.Tensor)
|
|
109
|
+
@rewriters.register(aten.div.Scalar)
|
|
110
|
+
@rewriters.register(aten.div.Tensor_mode)
|
|
111
|
+
@rewriters.register(aten.div.Scalar_mode)
|
|
112
|
+
@rewriters.register(aten.fmod.Tensor)
|
|
113
|
+
@rewriters.register(aten.fmod.Scalar)
|
|
114
|
+
@rewriters.register(aten.mul.Tensor)
|
|
115
|
+
@rewriters.register(aten.mul.Scalar)
|
|
116
|
+
@rewriters.register(aten.remainder.Tensor)
|
|
117
|
+
@rewriters.register(aten.remainder.Scalar)
|
|
118
|
+
@rewriters.register(aten.sub.Tensor)
|
|
119
|
+
@rewriters.register(aten.sub.Scalar)
|
|
120
|
+
@rewriters.register(aten.eq.Tensor)
|
|
121
|
+
@rewriters.register(aten.eq.Scalar)
|
|
122
|
+
@rewriters.register(aten.ne.Tensor)
|
|
123
|
+
@rewriters.register(aten.ne.Scalar)
|
|
124
|
+
@rewriters.register(aten.le.Tensor)
|
|
125
|
+
@rewriters.register(aten.le.Scalar)
|
|
126
|
+
@rewriters.register(aten.ge.Tensor)
|
|
127
|
+
@rewriters.register(aten.ge.Scalar)
|
|
128
|
+
@rewriters.register(aten.gt.Tensor)
|
|
129
|
+
@rewriters.register(aten.gt.Scalar)
|
|
130
|
+
@rewriters.register(aten.lt.Tensor)
|
|
131
|
+
@rewriters.register(aten.lt.Scalar)
|
|
132
|
+
@rewriters.register(aten.maximum.default)
|
|
133
|
+
@rewriters.register(aten.minimum.default)
|
|
134
|
+
@rewriters.register(aten.mean.default)
|
|
135
|
+
@rewriters.register(aten.prod.default)
|
|
136
|
+
@rewriters.register(aten.abs.default)
|
|
137
|
+
@rewriters.register(aten.acos.default)
|
|
138
|
+
@rewriters.register(aten.acosh.default)
|
|
139
|
+
@rewriters.register(aten.asin.default)
|
|
140
|
+
@rewriters.register(aten.asinh.default)
|
|
141
|
+
@rewriters.register(aten.atan.default)
|
|
142
|
+
@rewriters.register(aten.atanh.default)
|
|
143
|
+
@rewriters.register(aten.bitwise_not.default)
|
|
144
|
+
@rewriters.register(aten.ceil.default)
|
|
145
|
+
@rewriters.register(aten.clamp.default)
|
|
146
|
+
@rewriters.register(aten.clamp.Tensor)
|
|
147
|
+
@rewriters.register(aten.cos.default)
|
|
148
|
+
@rewriters.register(aten.cosh.default)
|
|
149
|
+
@rewriters.register(aten.erf.default)
|
|
150
|
+
@rewriters.register(aten.exp.default)
|
|
151
|
+
@rewriters.register(aten.expm1.default)
|
|
152
|
+
@rewriters.register(aten.floor.default)
|
|
153
|
+
@rewriters.register(aten.log.default)
|
|
154
|
+
@rewriters.register(aten.log10.default)
|
|
155
|
+
@rewriters.register(aten.log1p.default)
|
|
156
|
+
@rewriters.register(aten.log2.default)
|
|
157
|
+
@rewriters.register(aten.isnan.default)
|
|
158
|
+
@rewriters.register(aten.neg.default)
|
|
159
|
+
@rewriters.register(aten.pow.Tensor_Tensor)
|
|
160
|
+
@rewriters.register(aten.pow.Tensor_Scalar)
|
|
161
|
+
@rewriters.register(aten.pow.Scalar)
|
|
162
|
+
@rewriters.register(aten.reciprocal.default)
|
|
163
|
+
@rewriters.register(aten.round.default)
|
|
164
|
+
@rewriters.register(aten.rsqrt.default)
|
|
165
|
+
@rewriters.register(aten.sigmoid.default)
|
|
166
|
+
@rewriters.register(aten.sign.default)
|
|
167
|
+
@rewriters.register(aten.sin.default)
|
|
168
|
+
@rewriters.register(aten.sinh.default)
|
|
169
|
+
@rewriters.register(aten.sqrt.default)
|
|
170
|
+
@rewriters.register(aten.tan.default)
|
|
171
|
+
@rewriters.register(aten.tanh.default)
|
|
172
|
+
@rewriters.register(aten.trunc.default)
|
|
173
|
+
@rewriters.register(aten.nonzero.default)
|
|
174
|
+
@rewriters.register(aten.copy.default)
|
|
175
|
+
@rewriters.register(aten.mm.default)
|
|
176
|
+
@rewriters.register(aten.fill.Scalar)
|
|
177
|
+
@rewriters.register(aten.col2im.default)
|
|
178
|
+
@rewriters.register(aten.addmm.default)
|
|
179
|
+
@rewriters.register(aten.gelu.default)
|
|
180
|
+
@rewriters.register(aten.hardtanh.default)
|
|
181
|
+
@rewriters.register(aten.leaky_relu.default)
|
|
182
|
+
@rewriters.register(aten.relu.default)
|
|
183
|
+
@rewriters.register(aten.arange.start_step)
|
|
184
|
+
@rewriters.register(aten.isinf.default)
|
|
185
|
+
@rewriters.register(aten.logical_and.default)
|
|
186
|
+
@rewriters.register(aten.logical_not.default)
|
|
187
|
+
@rewriters.register(aten.logical_or.default)
|
|
188
|
+
@rewriters.register(aten.logical_xor.default)
|
|
189
|
+
@rewriters.register(aten.where.self)
|
|
190
|
+
@rewriters.register(aten.clone.default)
|
|
191
|
+
@rewriters.register(aten.any.default)
|
|
192
|
+
@rewriters.register(aten.repeat.default)
|
|
193
|
+
@rewriters.register(aten.alias.default)
|
|
194
|
+
@rewriters.register(aten._pdist_forward.default)
|
|
195
|
+
@rewriters.register(aten._cdist_forward.default)
|
|
196
|
+
@rewriters.register(aten.bmm.default)
|
|
197
|
+
@rewriters.register(aten.hardswish)
|
|
198
|
+
@rewriters.register(aten.hardsigmoid)
|
|
199
|
+
@rewriters.register(aten._to_copy)
|
|
200
|
+
@rewriters.register(aten._prelu_kernel)
|
|
201
|
+
@rewriters.register(aten.softplus)
|
|
202
|
+
@rewriters.register(aten.silu)
|
|
203
|
+
def noop(node: Node):
|
|
204
|
+
pass
|
|
205
|
+
|
|
206
|
+
|
|
207
|
+
# ======= Add transposes before and after NCHW-only ops (T-aten-T)
|
|
208
|
+
|
|
209
|
+
|
|
210
|
+
@rewriters.register(aten.upsample_bilinear2d)
|
|
211
|
+
@rewriters.register(aten.upsample_nearest2d)
|
|
212
|
+
@rewriters.register(aten.max_pool2d)
|
|
213
|
+
@rewriters.register(aten.max_pool2d_with_indices)
|
|
214
|
+
@rewriters.register(aten.avg_pool2d)
|
|
215
|
+
@rewriters.register(aten._adaptive_avg_pool2d.default)
|
|
216
|
+
def transpose_first_arg_rewriter(node: Node):
|
|
217
|
+
op = node.target
|
|
218
|
+
|
|
219
|
+
def nhwc_op(x, *args, **kwargs):
|
|
220
|
+
nonlocal op
|
|
221
|
+
x = utils.tensor_to_nchw(x)
|
|
222
|
+
res = pytree.tree_map_only(
|
|
223
|
+
torch.Tensor, utils.tensor_to_nhwc, op(x, *args, **kwargs)
|
|
224
|
+
)
|
|
225
|
+
return res
|
|
226
|
+
|
|
227
|
+
node.target = nhwc_op
|
|
228
|
+
|
|
229
|
+
|
|
230
|
+
@rewriters.register(aten.convolution)
|
|
231
|
+
def _aten_convolution_rewriter(node: Node):
|
|
232
|
+
op = node.target
|
|
233
|
+
|
|
234
|
+
def conv_nhwc(input, weight, bias, *args, **kwargs):
|
|
235
|
+
nonlocal op
|
|
236
|
+
nhwc_bias = None
|
|
237
|
+
if bias is not None and len(bias.shape) == 1:
|
|
238
|
+
nhwc_bias = bias
|
|
239
|
+
bias = None
|
|
240
|
+
|
|
241
|
+
input = utils.tensor_to_nchw(input)
|
|
242
|
+
res = pytree.tree_map_only(
|
|
243
|
+
torch.Tensor,
|
|
244
|
+
utils.tensor_to_nhwc,
|
|
245
|
+
op(input, weight, bias, *args, **kwargs),
|
|
246
|
+
)
|
|
247
|
+
|
|
248
|
+
if nhwc_bias is not None:
|
|
249
|
+
res += nhwc_bias
|
|
250
|
+
return res
|
|
251
|
+
|
|
252
|
+
node.target = conv_nhwc
|
|
253
|
+
|
|
254
|
+
|
|
255
|
+
# ======= Rewrite dim attribute(s)
|
|
256
|
+
|
|
257
|
+
|
|
258
|
+
@rewriters.register(aten._softmax.default)
|
|
259
|
+
@rewriters.register(aten.select.int)
|
|
260
|
+
@rewriters.register(aten.slice.Tensor)
|
|
261
|
+
@rewriters.register(aten.sum.dim_IntList)
|
|
262
|
+
@rewriters.register(aten.mean.dim)
|
|
263
|
+
@rewriters.register(aten.prod.dim_int)
|
|
264
|
+
@rewriters.register(aten.var.dim)
|
|
265
|
+
@rewriters.register(aten.var.correction)
|
|
266
|
+
@rewriters.register(aten.slice_scatter.default)
|
|
267
|
+
@rewriters.register(aten.diagonal.default)
|
|
268
|
+
@rewriters.register(aten.select_scatter.default)
|
|
269
|
+
@rewriters.register(aten.sym_size.int)
|
|
270
|
+
@rewriters.register(aten.sym_stride.int)
|
|
271
|
+
@rewriters.register(aten._log_softmax.default)
|
|
272
|
+
@rewriters.register(aten.split_with_sizes.default)
|
|
273
|
+
@rewriters.register(aten.squeeze.dim)
|
|
274
|
+
@rewriters.register(aten.squeeze.dims)
|
|
275
|
+
@rewriters.register(aten.scatter.value)
|
|
276
|
+
@rewriters.register(aten.scatter.src)
|
|
277
|
+
@rewriters.register(aten.scatter_add.default)
|
|
278
|
+
@rewriters.register(aten.scatter_reduce.two)
|
|
279
|
+
@rewriters.register(aten.any.dim)
|
|
280
|
+
@rewriters.register(aten.any.dims)
|
|
281
|
+
@rewriters.register(aten.flip.default)
|
|
282
|
+
@rewriters.register(aten.index_select.default)
|
|
283
|
+
@rewriters.register(aten.cumsum.default)
|
|
284
|
+
@rewriters.register(aten.max.dim)
|
|
285
|
+
@rewriters.register(aten.min.dim)
|
|
286
|
+
@rewriters.register(aten.gather.default)
|
|
287
|
+
@rewriters.register(aten.sort.default)
|
|
288
|
+
@rewriters.register(aten.topk.default)
|
|
289
|
+
@rewriters.register(aten.cat.default)
|
|
290
|
+
def dim_attr_rewriter(node: Node):
|
|
291
|
+
op = node.target
|
|
292
|
+
|
|
293
|
+
new_args = []
|
|
294
|
+
new_kwargs = {}
|
|
295
|
+
|
|
296
|
+
def dims_nchw_to_nhwc(dims: list[int]):
|
|
297
|
+
def convert(dim: int):
|
|
298
|
+
dim = dim if dim >= 0 else 4 + dim
|
|
299
|
+
return {3: 2, 2: 1, 1: 3}.get(dim, dim)
|
|
300
|
+
|
|
301
|
+
dims = pytree.tree_map_only(int, convert, dims)
|
|
302
|
+
dims = pytree.tree_map_only(torch.SymInt, convert, dims)
|
|
303
|
+
return dims
|
|
304
|
+
|
|
305
|
+
for arg, spec in zip(node.args, op._schema.arguments):
|
|
306
|
+
if spec.name.startswith("dim"):
|
|
307
|
+
new_args.append(dims_nchw_to_nhwc(arg))
|
|
308
|
+
else:
|
|
309
|
+
new_args.append(arg)
|
|
310
|
+
|
|
311
|
+
for spec in op._schema.arguments[len(node.args) :]:
|
|
312
|
+
if spec.name not in node.kwargs:
|
|
313
|
+
continue
|
|
314
|
+
|
|
315
|
+
if spec.name.startswith("dim"):
|
|
316
|
+
new_kwargs[spec.name] = dims_nchw_to_nhwc(node.kwargs[spec.name])
|
|
317
|
+
else:
|
|
318
|
+
new_kwargs[spec.name] = node.kwargs[spec.name]
|
|
319
|
+
|
|
320
|
+
node.args = tuple(new_args)
|
|
321
|
+
node.kwargs = new_kwargs
|
|
322
|
+
|
|
323
|
+
|
|
324
|
+
# ======= Others
|
|
325
|
+
|
|
326
|
+
|
|
327
|
+
@rewriters.register(aten._native_batch_norm_legit_no_training.default)
|
|
328
|
+
def _aten__native_batch_norm_legit_no_training(node):
|
|
329
|
+
def batch_norm(input, weight, bias, running_mean, running_var, momentum, eps):
|
|
330
|
+
a = input - running_mean
|
|
331
|
+
b = torch.sqrt(running_var + eps)
|
|
332
|
+
return a / b * weight + bias, None, None
|
|
333
|
+
|
|
334
|
+
node.target = batch_norm
|
|
335
|
+
|
|
336
|
+
|
|
337
|
+
@rewriters.register(aten.native_group_norm.default)
|
|
338
|
+
def _aten_native_group_norm(node):
|
|
339
|
+
|
|
340
|
+
def native_group_norm(
|
|
341
|
+
input,
|
|
342
|
+
weight,
|
|
343
|
+
bias,
|
|
344
|
+
batch_size: int,
|
|
345
|
+
num_channels: int,
|
|
346
|
+
flattened_inner_size: int,
|
|
347
|
+
num_groups: int,
|
|
348
|
+
eps: float,
|
|
349
|
+
):
|
|
350
|
+
input_reshaped = torch.reshape(
|
|
351
|
+
input,
|
|
352
|
+
[batch_size, flattened_inner_size, num_groups, num_channels // num_groups],
|
|
353
|
+
)
|
|
354
|
+
reduction_dims = [1, 3]
|
|
355
|
+
|
|
356
|
+
biased_var, mean = torch.var_mean(
|
|
357
|
+
input_reshaped, dim=reduction_dims, unbiased=False, keepdim=True
|
|
358
|
+
)
|
|
359
|
+
rstd = torch.rsqrt(biased_var + eps)
|
|
360
|
+
|
|
361
|
+
out = (input_reshaped - mean) * rstd
|
|
362
|
+
out = torch.reshape(out, input.shape)
|
|
363
|
+
|
|
364
|
+
if weight is not None:
|
|
365
|
+
out = out * weight
|
|
366
|
+
if bias is not None:
|
|
367
|
+
out = out + bias
|
|
368
|
+
|
|
369
|
+
mean = torch.squeeze(mean, reduction_dims)
|
|
370
|
+
rstd = torch.squeeze(rstd, reduction_dims)
|
|
371
|
+
|
|
372
|
+
return out, mean, rstd
|
|
373
|
+
|
|
374
|
+
node.target = native_group_norm
|
|
375
|
+
|
|
376
|
+
|
|
377
|
+
@rewriters.register(aten.index)
|
|
378
|
+
@rewriters.register(aten._unsafe_index)
|
|
379
|
+
def _aten_index(node):
|
|
380
|
+
op = node.target
|
|
381
|
+
|
|
382
|
+
def index_nhwc(x, indices=[], *args, **kwargs):
|
|
383
|
+
nonlocal op
|
|
384
|
+
indices = list(indices)
|
|
385
|
+
if len(indices) < 4:
|
|
386
|
+
indices += [None] * (4 - len(indices))
|
|
387
|
+
|
|
388
|
+
indices[1:4] = indices[2], indices[3], indices[1]
|
|
389
|
+
return op(x, indices, *args, **kwargs)
|
|
390
|
+
|
|
391
|
+
node.target = index_nhwc
|
|
392
|
+
|
|
393
|
+
|
|
394
|
+
@rewriters.register(aten.reflection_pad2d.default)
|
|
395
|
+
def _aten_reflection_pad2d(node):
|
|
396
|
+
def reflection_pad2d_nhwc(x, padding):
|
|
397
|
+
padding = [0, 0] + padding
|
|
398
|
+
return torch.nn.functional.pad(x, padding, mode="reflect")
|
|
399
|
+
|
|
400
|
+
node.target = reflection_pad2d_nhwc
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
import torch
|
|
16
|
+
|
|
17
|
+
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import utils # NOQA
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class OpFuncRegistry(dict):
|
|
21
|
+
|
|
22
|
+
def register(self, op):
|
|
23
|
+
ops = utils.flatten_torch_op_overloads(op)
|
|
24
|
+
|
|
25
|
+
def inner(func):
|
|
26
|
+
for op in ops:
|
|
27
|
+
self[op] = func
|
|
28
|
+
return func
|
|
29
|
+
|
|
30
|
+
return inner
|
|
@@ -0,0 +1,286 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
import os
|
|
16
|
+
from typing import Optional, Tuple, Union
|
|
17
|
+
|
|
18
|
+
import torch
|
|
19
|
+
import torch.ao.quantization.quantize_pt2e
|
|
20
|
+
from torch.export import ExportedProgram
|
|
21
|
+
from torch.fx import GraphModule
|
|
22
|
+
from torch.fx import Node
|
|
23
|
+
import torch.utils._pytree as pytree
|
|
24
|
+
|
|
25
|
+
from ai_edge_torch.convert.fx_passes import ExportedProgramPassBase
|
|
26
|
+
from ai_edge_torch.convert.fx_passes import ExportedProgramPassResult
|
|
27
|
+
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import layout_check # NOQA
|
|
28
|
+
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import layout_mark # NOQA
|
|
29
|
+
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import layout_partitioners # NOQA
|
|
30
|
+
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import layout_rewrite # NOQA
|
|
31
|
+
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import utils # NOQA
|
|
32
|
+
|
|
33
|
+
TransposeFunc = Union[utils.tensor_to_nchw, utils.tensor_to_nhwc]
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
|
|
37
|
+
|
|
38
|
+
def get_source_meta(self, node: torch.fx.Node):
|
|
39
|
+
keys = ["stack_trace", "nn_module_stack", "source_fn_stack", "from_node"]
|
|
40
|
+
meta = {}
|
|
41
|
+
for key in keys:
|
|
42
|
+
if key in node.meta:
|
|
43
|
+
meta[key] = node.meta[key]
|
|
44
|
+
return meta
|
|
45
|
+
|
|
46
|
+
def insert_t_q_dq(
|
|
47
|
+
self,
|
|
48
|
+
graph: torch.fx.Graph,
|
|
49
|
+
input_dq: torch.fx.Node,
|
|
50
|
+
target: torch.fx.Node,
|
|
51
|
+
transpose_func: TransposeFunc,
|
|
52
|
+
transpose_node_meta: dict,
|
|
53
|
+
) -> list[torch.fx.Node]:
|
|
54
|
+
"""
|
|
55
|
+
original:
|
|
56
|
+
input_dq -> target
|
|
57
|
+
insert the node as:
|
|
58
|
+
input_dq -> (T q dq) -> target
|
|
59
|
+
"""
|
|
60
|
+
assert utils.is_dq_node(input_dq)
|
|
61
|
+
|
|
62
|
+
q_args = input_dq.args[1:]
|
|
63
|
+
q_kwargs = input_dq.kwargs
|
|
64
|
+
q_op, dq_op = utils.get_paired_q_dq_ops(input_dq.target)
|
|
65
|
+
with graph.inserting_before(target):
|
|
66
|
+
t = graph.call_function(transpose_func, (input_dq,))
|
|
67
|
+
# Q and DQ inserted here may required updating the `axis` arg when they
|
|
68
|
+
# are per_channel ops. However, instead of updating here, the nodes would
|
|
69
|
+
# be marked as NHWC/NCHW and applied rewriters after partitioning.
|
|
70
|
+
q = graph.call_function(q_op, (t,) + q_args, q_kwargs)
|
|
71
|
+
dq = graph.call_function(dq_op, (q,) + q_args, q_kwargs)
|
|
72
|
+
|
|
73
|
+
input_dq.meta = transpose_node_meta
|
|
74
|
+
t.meta = transpose_node_meta
|
|
75
|
+
q.meta = transpose_node_meta
|
|
76
|
+
dq.meta = self.get_source_meta(target)
|
|
77
|
+
|
|
78
|
+
target.replace_input_with(input_dq, dq)
|
|
79
|
+
return [t, q, dq]
|
|
80
|
+
|
|
81
|
+
def insert_dq_t_q(
|
|
82
|
+
self,
|
|
83
|
+
graph: torch.fx.Graph,
|
|
84
|
+
input_q: torch.fx.Node,
|
|
85
|
+
target: torch.fx.Node,
|
|
86
|
+
transpose_func: TransposeFunc,
|
|
87
|
+
transpose_node_meta: dict,
|
|
88
|
+
) -> list[torch.fx.Node]:
|
|
89
|
+
"""
|
|
90
|
+
original:
|
|
91
|
+
input_q -> target
|
|
92
|
+
insert the node as:
|
|
93
|
+
input_q -> (dq T q) -> target
|
|
94
|
+
"""
|
|
95
|
+
assert utils.is_q_node(input_q)
|
|
96
|
+
|
|
97
|
+
q_args = input_q.args[1:]
|
|
98
|
+
q_kwargs = input_q.kwargs
|
|
99
|
+
q_op, dq_op = self.get_paired_q_dq_ops(input_q.target)
|
|
100
|
+
with graph.inserting_before(target):
|
|
101
|
+
# Q and DQ inserted here may required updating the `axis` arg when they
|
|
102
|
+
# are per_channel ops. However, instead of updating here, the nodes would
|
|
103
|
+
# be marked as NHWC/NCHW and applied rewriters after partitioning.
|
|
104
|
+
dq = graph.call_function(dq_op, (input_q,) + q_args, q_kwargs)
|
|
105
|
+
t = graph.call_function(transpose_func, (dq,))
|
|
106
|
+
q = graph.call_function(q_op, (t,) + q_args, q_kwargs)
|
|
107
|
+
|
|
108
|
+
dq.meta = transpose_node_meta
|
|
109
|
+
t.meta = transpose_node_meta
|
|
110
|
+
q.meta = transpose_node_meta
|
|
111
|
+
|
|
112
|
+
target.replace_input_with(input_q, q)
|
|
113
|
+
return [dq, t, q]
|
|
114
|
+
|
|
115
|
+
def insert_layout_transpose(
|
|
116
|
+
self,
|
|
117
|
+
graph: torch.fx.Graph,
|
|
118
|
+
input_node: torch.fx.Node,
|
|
119
|
+
target_node: torch.fx.Node,
|
|
120
|
+
transpose_func: TransposeFunc,
|
|
121
|
+
transpose_node_meta: dict,
|
|
122
|
+
) -> None:
|
|
123
|
+
assert transpose_func in (utils.tensor_to_nchw, utils.tensor_to_nhwc)
|
|
124
|
+
|
|
125
|
+
# new_nodes only contains Q/DQ/Transpose nodes, which are all SISO.
|
|
126
|
+
# Insertion order input nodes -> output nodes
|
|
127
|
+
new_nodes = []
|
|
128
|
+
|
|
129
|
+
# Constraint Q2: the NHWC partition's entry and exit must not be output
|
|
130
|
+
# edges of Q/DQ ops that are connected to a constant/weight tensor.
|
|
131
|
+
while layout_mark.is_const_node(input_node) and (
|
|
132
|
+
utils.is_dq_node(input_node) or utils.is_q_node(input_node)
|
|
133
|
+
):
|
|
134
|
+
with graph.inserting_before(target_node):
|
|
135
|
+
new_input_node = graph.node_copy(input_node)
|
|
136
|
+
|
|
137
|
+
target_node.replace_input_with(input_node, new_input_node)
|
|
138
|
+
|
|
139
|
+
new_nodes = [new_input_node] + new_nodes
|
|
140
|
+
input_node, target_node = new_input_node.args[0], new_input_node
|
|
141
|
+
|
|
142
|
+
if utils.is_q_node(input_node):
|
|
143
|
+
# Constraint Q3: when the entry and exit is right after a q op (occur after a (dq-op-q)
|
|
144
|
+
# triplet), the transpose must be added as a quantized transpose in (dq-T-q)
|
|
145
|
+
# input_q -> (dq T q) -> target
|
|
146
|
+
new_nodes = (
|
|
147
|
+
self.insert_dq_t_q(
|
|
148
|
+
graph,
|
|
149
|
+
input_node,
|
|
150
|
+
target_node,
|
|
151
|
+
transpose_func,
|
|
152
|
+
transpose_node_meta,
|
|
153
|
+
)
|
|
154
|
+
+ new_nodes
|
|
155
|
+
)
|
|
156
|
+
elif utils.is_dq_node(input_node):
|
|
157
|
+
# Constraint Q1: the NHWC partition's entry and exit cannot be edges
|
|
158
|
+
# within (dq-op-q) triplet.
|
|
159
|
+
# input_dq -> (T q dq) -> target
|
|
160
|
+
new_nodes = (
|
|
161
|
+
self.insert_t_q_dq(
|
|
162
|
+
graph,
|
|
163
|
+
input_node,
|
|
164
|
+
target_node,
|
|
165
|
+
transpose_func,
|
|
166
|
+
transpose_node_meta,
|
|
167
|
+
)
|
|
168
|
+
+ new_nodes
|
|
169
|
+
)
|
|
170
|
+
else:
|
|
171
|
+
# input -> target
|
|
172
|
+
with graph.inserting_before(target_node):
|
|
173
|
+
t = graph.call_function(transpose_func, (input_node,))
|
|
174
|
+
t.meta = transpose_node_meta
|
|
175
|
+
target_node.replace_input_with(input_node, t)
|
|
176
|
+
new_nodes = [t] + new_nodes
|
|
177
|
+
|
|
178
|
+
# Mark new nodes as NCHW or NHWC
|
|
179
|
+
# For all nodes before the transpose, mark it as input_marker
|
|
180
|
+
# For all nodes after the transpose (incl. transpose), mark it as output_marker
|
|
181
|
+
if transpose_func == utils.tensor_to_nchw:
|
|
182
|
+
input_marker, target_marker = (
|
|
183
|
+
layout_mark.mark_as_nhwc_node,
|
|
184
|
+
layout_mark.mark_as_nchw_node,
|
|
185
|
+
)
|
|
186
|
+
else:
|
|
187
|
+
input_marker, target_marker = (
|
|
188
|
+
layout_mark.mark_as_nchw_node,
|
|
189
|
+
layout_mark.mark_as_nhwc_node,
|
|
190
|
+
)
|
|
191
|
+
|
|
192
|
+
marker = input_marker
|
|
193
|
+
for node in new_nodes:
|
|
194
|
+
if node.target == transpose_func:
|
|
195
|
+
marker = target_marker
|
|
196
|
+
marker(node)
|
|
197
|
+
assert marker == target_marker
|
|
198
|
+
|
|
199
|
+
def input_to_nhwc(
|
|
200
|
+
self,
|
|
201
|
+
graph: torch.fx.Graph,
|
|
202
|
+
input_node: torch.fx.Node,
|
|
203
|
+
target_node: torch.fx.Node,
|
|
204
|
+
) -> None:
|
|
205
|
+
if layout_mark.is_nhwc_node(input_node):
|
|
206
|
+
return
|
|
207
|
+
|
|
208
|
+
if not layout_check.is_4d(input_node):
|
|
209
|
+
raise AssertionError(
|
|
210
|
+
f"Attempting to convert non-NHWC compatible node to NHWC: {input_node}"
|
|
211
|
+
)
|
|
212
|
+
|
|
213
|
+
# Assign target node's source meta to the to_NHWC node, because the transpose
|
|
214
|
+
# is added for the existence of target node.
|
|
215
|
+
self.insert_layout_transpose(
|
|
216
|
+
graph,
|
|
217
|
+
input_node,
|
|
218
|
+
target_node,
|
|
219
|
+
utils.tensor_to_nhwc,
|
|
220
|
+
self.get_source_meta(target_node),
|
|
221
|
+
)
|
|
222
|
+
|
|
223
|
+
def input_to_nchw(
|
|
224
|
+
self,
|
|
225
|
+
graph: torch.fx.Graph,
|
|
226
|
+
input_node: torch.fx.Node,
|
|
227
|
+
target_node: torch.fx.Node,
|
|
228
|
+
) -> None:
|
|
229
|
+
if layout_mark.is_nchw_node(input_node):
|
|
230
|
+
return
|
|
231
|
+
|
|
232
|
+
self.insert_layout_transpose(
|
|
233
|
+
graph,
|
|
234
|
+
input_node,
|
|
235
|
+
target_node,
|
|
236
|
+
utils.tensor_to_nchw,
|
|
237
|
+
self.get_source_meta(input_node),
|
|
238
|
+
)
|
|
239
|
+
|
|
240
|
+
def mark_const_nodes(self, exported_program: torch.export.ExportedProgram):
|
|
241
|
+
graph_module = exported_program.graph_module
|
|
242
|
+
graph = graph_module.graph
|
|
243
|
+
|
|
244
|
+
input_specs = exported_program.graph_signature.input_specs
|
|
245
|
+
non_user_input_names = set()
|
|
246
|
+
for spec in input_specs:
|
|
247
|
+
if spec.kind != torch.export.graph_signature.InputKind.USER_INPUT:
|
|
248
|
+
non_user_input_names.add(spec.arg.name)
|
|
249
|
+
|
|
250
|
+
for node in graph.nodes:
|
|
251
|
+
has_input_nodes = len(node.all_input_nodes) > 0
|
|
252
|
+
all_inputs_are_const = all(map(layout_mark.is_const_node, node.all_input_nodes))
|
|
253
|
+
if (
|
|
254
|
+
node.name in non_user_input_names
|
|
255
|
+
or (has_input_nodes and all_inputs_are_const)
|
|
256
|
+
or (node.op != "placeholder" and not has_input_nodes)
|
|
257
|
+
):
|
|
258
|
+
layout_mark.mark_as_const_node(node)
|
|
259
|
+
|
|
260
|
+
def call(self, exported_program: torch.export.ExportedProgram):
|
|
261
|
+
self.mark_const_nodes(exported_program)
|
|
262
|
+
|
|
263
|
+
graph_module = exported_program.graph_module
|
|
264
|
+
if os.environ.get("AIEDGETORCH_LAYOUT_OPTIMIZE_USE_MINCUT_PARTITIONER"):
|
|
265
|
+
graph_module = layout_partitioners.min_cut.partition(graph_module)
|
|
266
|
+
else:
|
|
267
|
+
graph_module = layout_partitioners.greedy.partition(graph_module)
|
|
268
|
+
|
|
269
|
+
graph = graph_module.graph
|
|
270
|
+
for node in list(graph.nodes):
|
|
271
|
+
if layout_mark.is_nhwc_node(node):
|
|
272
|
+
for input_node in layout_check.get_layout_sensitive_inputs(node):
|
|
273
|
+
self.input_to_nhwc(graph, input_node, node)
|
|
274
|
+
layout_rewrite.rewrite_nhwc_node(node)
|
|
275
|
+
else:
|
|
276
|
+
for input_node in layout_check.get_layout_sensitive_inputs(node):
|
|
277
|
+
# Note: for non-4D tensors input_to_nchw is always noop.
|
|
278
|
+
self.input_to_nchw(graph, input_node, node)
|
|
279
|
+
|
|
280
|
+
graph_module.graph.eliminate_dead_code()
|
|
281
|
+
graph_module.recompile()
|
|
282
|
+
graph_module.graph.lint()
|
|
283
|
+
# Mark const node again for debugging
|
|
284
|
+
self.mark_const_nodes(exported_program)
|
|
285
|
+
|
|
286
|
+
return ExportedProgramPassResult(exported_program, True)
|