ai-edge-torch-nightly 0.1.dev202405131930__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ai-edge-torch-nightly might be problematic. Click here for more details.
- ai_edge_torch/__init__.py +30 -0
- ai_edge_torch/convert/__init__.py +14 -0
- ai_edge_torch/convert/conversion.py +117 -0
- ai_edge_torch/convert/conversion_utils.py +330 -0
- ai_edge_torch/convert/converter.py +171 -0
- ai_edge_torch/convert/fx_passes/__init__.py +59 -0
- ai_edge_torch/convert/fx_passes/_pass_base.py +49 -0
- ai_edge_torch/convert/fx_passes/build_aten_composite_pass.py +192 -0
- ai_edge_torch/convert/fx_passes/build_upsample_bilinear2d_composite_pass.py +84 -0
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +37 -0
- ai_edge_torch/convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +215 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +48 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +17 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +59 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +196 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +400 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +286 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/utils.py +62 -0
- ai_edge_torch/convert/test/__init__.py +14 -0
- ai_edge_torch/convert/test/test_convert.py +273 -0
- ai_edge_torch/convert/test/test_convert_composites.py +171 -0
- ai_edge_torch/convert/test/test_convert_multisig.py +139 -0
- ai_edge_torch/debug/__init__.py +16 -0
- ai_edge_torch/debug/culprit.py +423 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +133 -0
- ai_edge_torch/debug/utils.py +48 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +66 -0
- ai_edge_torch/generative/examples/gemma/gemma.py +174 -0
- ai_edge_torch/generative/examples/phi2/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +64 -0
- ai_edge_torch/generative/examples/phi2/phi2.py +164 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +135 -0
- ai_edge_torch/generative/examples/t5/t5.py +608 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +255 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +119 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +143 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +0 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +66 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +164 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +288 -0
- ai_edge_torch/generative/layers/attention_utils.py +169 -0
- ai_edge_torch/generative/layers/builder.py +103 -0
- ai_edge_torch/generative/layers/feed_forward.py +95 -0
- ai_edge_torch/generative/layers/kv_cache.py +83 -0
- ai_edge_torch/generative/layers/model_config.py +135 -0
- ai_edge_torch/generative/layers/normalization.py +62 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +36 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +45 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +66 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +106 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +51 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +48 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +31 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_model_conversion.py +201 -0
- ai_edge_torch/generative/test/test_quantize.py +109 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/loader.py +290 -0
- ai_edge_torch/generative/utilities/t5_loader.py +467 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +139 -0
- ai_edge_torch/hlfb/mark_pattern/passes.py +42 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +260 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +133 -0
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +270 -0
- ai_edge_torch/model.py +134 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +438 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1041 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +126 -0
- ai_edge_torch_nightly-0.1.dev202405131930.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.1.dev202405131930.dist-info/METADATA +38 -0
- ai_edge_torch_nightly-0.1.dev202405131930.dist-info/RECORD +91 -0
- ai_edge_torch_nightly-0.1.dev202405131930.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.1.dev202405131930.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,85 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
from dataclasses import dataclass
|
|
17
|
+
import enum
|
|
18
|
+
from typing import Optional
|
|
19
|
+
|
|
20
|
+
from ai_edge_torch.generative.quantize import quant_attrs
|
|
21
|
+
from ai_edge_torch.generative.quantize import quant_recipe
|
|
22
|
+
from ai_edge_torch.quantize import pt2e_quantizer as pt2eq
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
@dataclass(frozen=True)
|
|
26
|
+
class QuantConfig:
|
|
27
|
+
"""
|
|
28
|
+
Encapsulates all different quantization methods and schemes available for
|
|
29
|
+
models converted with ai_edge_torch.
|
|
30
|
+
|
|
31
|
+
Args:
|
|
32
|
+
pt2e_quantizer: The instance of PT2EQuantizer used to quantize the model
|
|
33
|
+
with PT2E quantization. This method of quantization is not applicable to
|
|
34
|
+
models created with the Edge Generative API.
|
|
35
|
+
transformer_recipe: Quantization recipe to be applied on a model created
|
|
36
|
+
with the Edge Generative API.
|
|
37
|
+
"""
|
|
38
|
+
|
|
39
|
+
pt2e_quantizer: pt2eq.PT2EQuantizer = None
|
|
40
|
+
transformer_recipe: quant_recipe.TransformerQuantRecipe = None
|
|
41
|
+
|
|
42
|
+
@enum.unique
|
|
43
|
+
class _QuantizerMode(enum.Enum):
|
|
44
|
+
NONE = enum.auto()
|
|
45
|
+
PT2E_DYNAMIC = enum.auto()
|
|
46
|
+
PT2E_STATIC = enum.auto()
|
|
47
|
+
TFLITE_DYNAMIC = enum.auto()
|
|
48
|
+
TFLITE_FP16 = enum.auto()
|
|
49
|
+
|
|
50
|
+
_quantizer_mode: _QuantizerMode = _QuantizerMode.NONE
|
|
51
|
+
|
|
52
|
+
def __init__(
|
|
53
|
+
self,
|
|
54
|
+
pt2e_quantizer: Optional[pt2eq.PT2EQuantizer] = None,
|
|
55
|
+
transformer_recipe: Optional[quant_recipe.TransformerQuantRecipe] = None,
|
|
56
|
+
):
|
|
57
|
+
"""Initializes some internal states based on selected quantization method.
|
|
58
|
+
|
|
59
|
+
Performs internal sanity checks to ensure that the user is inputting valid
|
|
60
|
+
quantization requests. Verifies that the received quantization config
|
|
61
|
+
is properly setup. Additionally sets up an utility enum _quantizer_mode to
|
|
62
|
+
guide certain conversion processes.
|
|
63
|
+
"""
|
|
64
|
+
if pt2e_quantizer is not None and transformer_recipe is not None:
|
|
65
|
+
raise ValueError('Cannot set both pt2e_quantizer and transformer_recipe.')
|
|
66
|
+
elif pt2e_quantizer is not None:
|
|
67
|
+
object.__setattr__(self, 'pt2e_quantizer', pt2e_quantizer)
|
|
68
|
+
object.__setattr__(
|
|
69
|
+
self,
|
|
70
|
+
'_quantizer_mode',
|
|
71
|
+
(
|
|
72
|
+
self._QuantizerMode.PT2E_DYNAMIC
|
|
73
|
+
if pt2e_quantizer.global_config.is_dynamic
|
|
74
|
+
else self._QuantizerMode.PT2E_STATIC
|
|
75
|
+
),
|
|
76
|
+
)
|
|
77
|
+
elif transformer_recipe is not None:
|
|
78
|
+
transformer_recipe.verify()
|
|
79
|
+
object.__setattr__(self, 'transformer_recipe', transformer_recipe)
|
|
80
|
+
if self.transformer_recipe.default.mode == quant_attrs.Mode.DYNAMIC_RANGE:
|
|
81
|
+
object.__setattr__(self, '_quantizer_mode', self._QuantizerMode.TFLITE_DYNAMIC)
|
|
82
|
+
elif self.transformer_recipe.default.weight_dtype == quant_attrs.Dtype.FP16:
|
|
83
|
+
object.__setattr__(self, '_quantizer_mode', self._QuantizerMode.TFLITE_FP16)
|
|
84
|
+
else:
|
|
85
|
+
raise ValueError('Either pt2e_quantizer or transformer_recipe must be set.')
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
from ai_edge_torch.testing.model_coverage.model_coverage import compare_tflite_torch # NOQA
|
|
@@ -0,0 +1,126 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
"""Utility Functions to test TFLite models exported from PyTorch"""
|
|
17
|
+
|
|
18
|
+
from collections.abc import Callable
|
|
19
|
+
|
|
20
|
+
import numpy as np
|
|
21
|
+
import torch
|
|
22
|
+
from torch.utils import _pytree as pytree
|
|
23
|
+
|
|
24
|
+
from ai_edge_torch.model import Model
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
# Utility to flatten the order to make it deterministic.
|
|
28
|
+
# Ordering is done in left-to-right depth-first tree traversal.
|
|
29
|
+
def _flatten(data):
|
|
30
|
+
out, spec = pytree.tree_flatten(data)
|
|
31
|
+
return out
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
# Convert a Torch Tensor to a numpy array
|
|
35
|
+
def _torch_tensors_to_np(*argv):
|
|
36
|
+
if len(argv) > 1:
|
|
37
|
+
data = list(argv)
|
|
38
|
+
else:
|
|
39
|
+
data = argv[0]
|
|
40
|
+
|
|
41
|
+
if isinstance(data, torch.Tensor):
|
|
42
|
+
return data.to("cpu").detach().numpy()
|
|
43
|
+
|
|
44
|
+
elif isinstance(data, (list, tuple)):
|
|
45
|
+
out = []
|
|
46
|
+
for di in data:
|
|
47
|
+
out.append(_torch_tensors_to_np(di))
|
|
48
|
+
return out
|
|
49
|
+
|
|
50
|
+
elif isinstance(data, dict):
|
|
51
|
+
out = {}
|
|
52
|
+
for ni, di in data.items():
|
|
53
|
+
out[ni] = _torch_tensors_to_np(di)
|
|
54
|
+
return out
|
|
55
|
+
|
|
56
|
+
else:
|
|
57
|
+
raise ValueError("Unsupported torch.tensor type.")
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
def compare_tflite_torch(
|
|
61
|
+
edge_model: Model,
|
|
62
|
+
torch_eval_func: Callable,
|
|
63
|
+
input_data=None,
|
|
64
|
+
*,
|
|
65
|
+
num_valid_inputs: int = 1,
|
|
66
|
+
signature_name: str = None,
|
|
67
|
+
atol: float = 1e-5,
|
|
68
|
+
rtol: float = 1e-5
|
|
69
|
+
):
|
|
70
|
+
"""Compares torch models and TFLite models.
|
|
71
|
+
Args:
|
|
72
|
+
edge_model: Serialized ai_edge_torch.model.Model object.
|
|
73
|
+
torch_eval_func: Callable function to evaluate torch model.
|
|
74
|
+
input_data: torch.tensor array or a callable to generate a torch.tensor array
|
|
75
|
+
with random data, to pass into models during inference. (default None).
|
|
76
|
+
num_valid_inputs: Defines the number of times the random inputs will be generated (if a callable is provided for input_data).
|
|
77
|
+
signature_name: If provided, specifies the name for the signature of the edge_model to run.
|
|
78
|
+
Calls the default signature if not provided.
|
|
79
|
+
atol: Absolute tolerance (see `numpy.allclose`)
|
|
80
|
+
rtol: Relative tolerance (see `numpy.allclose`)
|
|
81
|
+
"""
|
|
82
|
+
# Convert the input data and the output data into an array.
|
|
83
|
+
# output data here is generated by running the `torch_eval_func` and
|
|
84
|
+
# is considered to act as golden data for verification purposes
|
|
85
|
+
|
|
86
|
+
# The supplied model_def.forward_args() will be executed num_valid_inputs
|
|
87
|
+
# times to generate num_valid_inputs random inputs.
|
|
88
|
+
torch_inputs = [
|
|
89
|
+
input_data() if callable(input_data) else input_data
|
|
90
|
+
for _ in range(num_valid_inputs)
|
|
91
|
+
]
|
|
92
|
+
torch_outputs = [torch_eval_func(*xs) for xs in torch_inputs]
|
|
93
|
+
np_inputs = [_torch_tensors_to_np(xs) for xs in torch_inputs]
|
|
94
|
+
np_outputs = [_torch_tensors_to_np(_flatten(ys)) for ys in torch_outputs]
|
|
95
|
+
|
|
96
|
+
# Define inline utility function used throughout the function.
|
|
97
|
+
def equal_fn(actual, expected):
|
|
98
|
+
return np.allclose(actual, expected, atol=atol, rtol=rtol)
|
|
99
|
+
|
|
100
|
+
def get_actual_fn(input):
|
|
101
|
+
if signature_name is None:
|
|
102
|
+
return _flatten(edge_model(*input))
|
|
103
|
+
else:
|
|
104
|
+
return _flatten(edge_model(*input, signature_name=signature_name))
|
|
105
|
+
|
|
106
|
+
def get_expected_fn(input=None, idx=0):
|
|
107
|
+
return np_outputs[idx]
|
|
108
|
+
|
|
109
|
+
for idx, np_input in enumerate(np_inputs):
|
|
110
|
+
output = get_actual_fn(np_input)
|
|
111
|
+
golden_output = get_expected_fn(np_input, idx)
|
|
112
|
+
|
|
113
|
+
is_output_len_eq = len(golden_output) == len(output)
|
|
114
|
+
|
|
115
|
+
output = [v.astype(np.float32) for v in output]
|
|
116
|
+
golden_output = [v.astype(np.float32) for v in golden_output]
|
|
117
|
+
|
|
118
|
+
# Append the results of each invoke to a function-global variable
|
|
119
|
+
# used to store the comparison final results
|
|
120
|
+
is_equal = is_output_len_eq and all(
|
|
121
|
+
[equal_fn(out, golden_out) for out, golden_out in zip(output, golden_output)]
|
|
122
|
+
)
|
|
123
|
+
if not is_equal:
|
|
124
|
+
return False
|
|
125
|
+
|
|
126
|
+
return True
|
|
@@ -0,0 +1,202 @@
|
|
|
1
|
+
|
|
2
|
+
Apache License
|
|
3
|
+
Version 2.0, January 2004
|
|
4
|
+
http://www.apache.org/licenses/
|
|
5
|
+
|
|
6
|
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
|
7
|
+
|
|
8
|
+
1. Definitions.
|
|
9
|
+
|
|
10
|
+
"License" shall mean the terms and conditions for use, reproduction,
|
|
11
|
+
and distribution as defined by Sections 1 through 9 of this document.
|
|
12
|
+
|
|
13
|
+
"Licensor" shall mean the copyright owner or entity authorized by
|
|
14
|
+
the copyright owner that is granting the License.
|
|
15
|
+
|
|
16
|
+
"Legal Entity" shall mean the union of the acting entity and all
|
|
17
|
+
other entities that control, are controlled by, or are under common
|
|
18
|
+
control with that entity. For the purposes of this definition,
|
|
19
|
+
"control" means (i) the power, direct or indirect, to cause the
|
|
20
|
+
direction or management of such entity, whether by contract or
|
|
21
|
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
|
22
|
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
|
23
|
+
|
|
24
|
+
"You" (or "Your") shall mean an individual or Legal Entity
|
|
25
|
+
exercising permissions granted by this License.
|
|
26
|
+
|
|
27
|
+
"Source" form shall mean the preferred form for making modifications,
|
|
28
|
+
including but not limited to software source code, documentation
|
|
29
|
+
source, and configuration files.
|
|
30
|
+
|
|
31
|
+
"Object" form shall mean any form resulting from mechanical
|
|
32
|
+
transformation or translation of a Source form, including but
|
|
33
|
+
not limited to compiled object code, generated documentation,
|
|
34
|
+
and conversions to other media types.
|
|
35
|
+
|
|
36
|
+
"Work" shall mean the work of authorship, whether in Source or
|
|
37
|
+
Object form, made available under the License, as indicated by a
|
|
38
|
+
copyright notice that is included in or attached to the work
|
|
39
|
+
(an example is provided in the Appendix below).
|
|
40
|
+
|
|
41
|
+
"Derivative Works" shall mean any work, whether in Source or Object
|
|
42
|
+
form, that is based on (or derived from) the Work and for which the
|
|
43
|
+
editorial revisions, annotations, elaborations, or other modifications
|
|
44
|
+
represent, as a whole, an original work of authorship. For the purposes
|
|
45
|
+
of this License, Derivative Works shall not include works that remain
|
|
46
|
+
separable from, or merely link (or bind by name) to the interfaces of,
|
|
47
|
+
the Work and Derivative Works thereof.
|
|
48
|
+
|
|
49
|
+
"Contribution" shall mean any work of authorship, including
|
|
50
|
+
the original version of the Work and any modifications or additions
|
|
51
|
+
to that Work or Derivative Works thereof, that is intentionally
|
|
52
|
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
|
53
|
+
or by an individual or Legal Entity authorized to submit on behalf of
|
|
54
|
+
the copyright owner. For the purposes of this definition, "submitted"
|
|
55
|
+
means any form of electronic, verbal, or written communication sent
|
|
56
|
+
to the Licensor or its representatives, including but not limited to
|
|
57
|
+
communication on electronic mailing lists, source code control systems,
|
|
58
|
+
and issue tracking systems that are managed by, or on behalf of, the
|
|
59
|
+
Licensor for the purpose of discussing and improving the Work, but
|
|
60
|
+
excluding communication that is conspicuously marked or otherwise
|
|
61
|
+
designated in writing by the copyright owner as "Not a Contribution."
|
|
62
|
+
|
|
63
|
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
|
64
|
+
on behalf of whom a Contribution has been received by Licensor and
|
|
65
|
+
subsequently incorporated within the Work.
|
|
66
|
+
|
|
67
|
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
|
68
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
69
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
70
|
+
copyright license to reproduce, prepare Derivative Works of,
|
|
71
|
+
publicly display, publicly perform, sublicense, and distribute the
|
|
72
|
+
Work and such Derivative Works in Source or Object form.
|
|
73
|
+
|
|
74
|
+
3. Grant of Patent License. Subject to the terms and conditions of
|
|
75
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
76
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
77
|
+
(except as stated in this section) patent license to make, have made,
|
|
78
|
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
|
79
|
+
where such license applies only to those patent claims licensable
|
|
80
|
+
by such Contributor that are necessarily infringed by their
|
|
81
|
+
Contribution(s) alone or by combination of their Contribution(s)
|
|
82
|
+
with the Work to which such Contribution(s) was submitted. If You
|
|
83
|
+
institute patent litigation against any entity (including a
|
|
84
|
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
|
85
|
+
or a Contribution incorporated within the Work constitutes direct
|
|
86
|
+
or contributory patent infringement, then any patent licenses
|
|
87
|
+
granted to You under this License for that Work shall terminate
|
|
88
|
+
as of the date such litigation is filed.
|
|
89
|
+
|
|
90
|
+
4. Redistribution. You may reproduce and distribute copies of the
|
|
91
|
+
Work or Derivative Works thereof in any medium, with or without
|
|
92
|
+
modifications, and in Source or Object form, provided that You
|
|
93
|
+
meet the following conditions:
|
|
94
|
+
|
|
95
|
+
(a) You must give any other recipients of the Work or
|
|
96
|
+
Derivative Works a copy of this License; and
|
|
97
|
+
|
|
98
|
+
(b) You must cause any modified files to carry prominent notices
|
|
99
|
+
stating that You changed the files; and
|
|
100
|
+
|
|
101
|
+
(c) You must retain, in the Source form of any Derivative Works
|
|
102
|
+
that You distribute, all copyright, patent, trademark, and
|
|
103
|
+
attribution notices from the Source form of the Work,
|
|
104
|
+
excluding those notices that do not pertain to any part of
|
|
105
|
+
the Derivative Works; and
|
|
106
|
+
|
|
107
|
+
(d) If the Work includes a "NOTICE" text file as part of its
|
|
108
|
+
distribution, then any Derivative Works that You distribute must
|
|
109
|
+
include a readable copy of the attribution notices contained
|
|
110
|
+
within such NOTICE file, excluding those notices that do not
|
|
111
|
+
pertain to any part of the Derivative Works, in at least one
|
|
112
|
+
of the following places: within a NOTICE text file distributed
|
|
113
|
+
as part of the Derivative Works; within the Source form or
|
|
114
|
+
documentation, if provided along with the Derivative Works; or,
|
|
115
|
+
within a display generated by the Derivative Works, if and
|
|
116
|
+
wherever such third-party notices normally appear. The contents
|
|
117
|
+
of the NOTICE file are for informational purposes only and
|
|
118
|
+
do not modify the License. You may add Your own attribution
|
|
119
|
+
notices within Derivative Works that You distribute, alongside
|
|
120
|
+
or as an addendum to the NOTICE text from the Work, provided
|
|
121
|
+
that such additional attribution notices cannot be construed
|
|
122
|
+
as modifying the License.
|
|
123
|
+
|
|
124
|
+
You may add Your own copyright statement to Your modifications and
|
|
125
|
+
may provide additional or different license terms and conditions
|
|
126
|
+
for use, reproduction, or distribution of Your modifications, or
|
|
127
|
+
for any such Derivative Works as a whole, provided Your use,
|
|
128
|
+
reproduction, and distribution of the Work otherwise complies with
|
|
129
|
+
the conditions stated in this License.
|
|
130
|
+
|
|
131
|
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
|
132
|
+
any Contribution intentionally submitted for inclusion in the Work
|
|
133
|
+
by You to the Licensor shall be under the terms and conditions of
|
|
134
|
+
this License, without any additional terms or conditions.
|
|
135
|
+
Notwithstanding the above, nothing herein shall supersede or modify
|
|
136
|
+
the terms of any separate license agreement you may have executed
|
|
137
|
+
with Licensor regarding such Contributions.
|
|
138
|
+
|
|
139
|
+
6. Trademarks. This License does not grant permission to use the trade
|
|
140
|
+
names, trademarks, service marks, or product names of the Licensor,
|
|
141
|
+
except as required for reasonable and customary use in describing the
|
|
142
|
+
origin of the Work and reproducing the content of the NOTICE file.
|
|
143
|
+
|
|
144
|
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
|
145
|
+
agreed to in writing, Licensor provides the Work (and each
|
|
146
|
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
|
147
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
|
148
|
+
implied, including, without limitation, any warranties or conditions
|
|
149
|
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
|
150
|
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
|
151
|
+
appropriateness of using or redistributing the Work and assume any
|
|
152
|
+
risks associated with Your exercise of permissions under this License.
|
|
153
|
+
|
|
154
|
+
8. Limitation of Liability. In no event and under no legal theory,
|
|
155
|
+
whether in tort (including negligence), contract, or otherwise,
|
|
156
|
+
unless required by applicable law (such as deliberate and grossly
|
|
157
|
+
negligent acts) or agreed to in writing, shall any Contributor be
|
|
158
|
+
liable to You for damages, including any direct, indirect, special,
|
|
159
|
+
incidental, or consequential damages of any character arising as a
|
|
160
|
+
result of this License or out of the use or inability to use the
|
|
161
|
+
Work (including but not limited to damages for loss of goodwill,
|
|
162
|
+
work stoppage, computer failure or malfunction, or any and all
|
|
163
|
+
other commercial damages or losses), even if such Contributor
|
|
164
|
+
has been advised of the possibility of such damages.
|
|
165
|
+
|
|
166
|
+
9. Accepting Warranty or Additional Liability. While redistributing
|
|
167
|
+
the Work or Derivative Works thereof, You may choose to offer,
|
|
168
|
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
|
169
|
+
or other liability obligations and/or rights consistent with this
|
|
170
|
+
License. However, in accepting such obligations, You may act only
|
|
171
|
+
on Your own behalf and on Your sole responsibility, not on behalf
|
|
172
|
+
of any other Contributor, and only if You agree to indemnify,
|
|
173
|
+
defend, and hold each Contributor harmless for any liability
|
|
174
|
+
incurred by, or claims asserted against, such Contributor by reason
|
|
175
|
+
of your accepting any such warranty or additional liability.
|
|
176
|
+
|
|
177
|
+
END OF TERMS AND CONDITIONS
|
|
178
|
+
|
|
179
|
+
APPENDIX: How to apply the Apache License to your work.
|
|
180
|
+
|
|
181
|
+
To apply the Apache License to your work, attach the following
|
|
182
|
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
|
183
|
+
replaced with your own identifying information. (Don't include
|
|
184
|
+
the brackets!) The text should be enclosed in the appropriate
|
|
185
|
+
comment syntax for the file format. We also recommend that a
|
|
186
|
+
file or class name and description of purpose be included on the
|
|
187
|
+
same "printed page" as the copyright notice for easier
|
|
188
|
+
identification within third-party archives.
|
|
189
|
+
|
|
190
|
+
Copyright [yyyy] [name of copyright owner]
|
|
191
|
+
|
|
192
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
|
193
|
+
you may not use this file except in compliance with the License.
|
|
194
|
+
You may obtain a copy of the License at
|
|
195
|
+
|
|
196
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
|
197
|
+
|
|
198
|
+
Unless required by applicable law or agreed to in writing, software
|
|
199
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
|
200
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
201
|
+
See the License for the specific language governing permissions and
|
|
202
|
+
limitations under the License.
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: ai-edge-torch-nightly
|
|
3
|
+
Version: 0.1.dev202405131930
|
|
4
|
+
Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
|
|
5
|
+
Home-page: https://github.com/google-ai-edge/ai-edge-torch
|
|
6
|
+
Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
|
|
7
|
+
Classifier: Development Status :: 4 - Beta
|
|
8
|
+
Classifier: Intended Audience :: Developers
|
|
9
|
+
Classifier: Intended Audience :: Education
|
|
10
|
+
Classifier: Intended Audience :: Science/Research
|
|
11
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
|
12
|
+
Classifier: Programming Language :: Python :: 3
|
|
13
|
+
Classifier: Programming Language :: Python :: 3 :: Only
|
|
14
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
16
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
17
|
+
Classifier: Topic :: Scientific/Engineering
|
|
18
|
+
Classifier: Topic :: Scientific/Engineering :: Mathematics
|
|
19
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
20
|
+
Classifier: Topic :: Software Development
|
|
21
|
+
Classifier: Topic :: Software Development :: Libraries
|
|
22
|
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
23
|
+
Requires-Python: >=3.9, <3.12
|
|
24
|
+
Description-Content-Type: text/markdown
|
|
25
|
+
License-File: LICENSE
|
|
26
|
+
Requires-Dist: numpy
|
|
27
|
+
Requires-Dist: safetensors
|
|
28
|
+
Requires-Dist: scipy
|
|
29
|
+
Requires-Dist: tabulate
|
|
30
|
+
Requires-Dist: torch ==2.4.*
|
|
31
|
+
|
|
32
|
+
Library that supports converting PyTorch models into a .tflite format, which can
|
|
33
|
+
then be run with TensorFlow Lite and MediaPipe. This enables applications for
|
|
34
|
+
Android, iOS and IOT that can run models completely on-device.
|
|
35
|
+
|
|
36
|
+
[Install steps](https://github.com/google-ai-edge/ai-edge-torch#installation)
|
|
37
|
+
and additional details are in the AI Edge Torch
|
|
38
|
+
[GitHub repository](https://github.com/google-ai-edge/ai-edge-torch).
|
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
ai_edge_torch/__init__.py,sha256=FPMmuFU3pyMREtjB_san1fy_0PFtAsgA0VZfOYvDrb4,1008
|
|
2
|
+
ai_edge_torch/model.py,sha256=kmcgELjsYl8YzF8nUF6P7q4i8MWS-pLGpfsy-yTUXmE,4243
|
|
3
|
+
ai_edge_torch/convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
4
|
+
ai_edge_torch/convert/conversion.py,sha256=OlqiB17iTXBxUWX0LX4OU8OmZzLP94STk66LR-QF_V8,4043
|
|
5
|
+
ai_edge_torch/convert/conversion_utils.py,sha256=NpVm3Ms81_cIW5IYgGsr0BVganJJgBKWVBDe5h_ZaGE,11021
|
|
6
|
+
ai_edge_torch/convert/converter.py,sha256=bjj5TV5_g4sGyuSh8ThEDydlNMqhkGSY4SzXK6vwhqI,6927
|
|
7
|
+
ai_edge_torch/convert/fx_passes/__init__.py,sha256=Ll2nNwufjcV5nSruQPXiloq7F1E7pWJ2T5clXmy1lk8,2825
|
|
8
|
+
ai_edge_torch/convert/fx_passes/_pass_base.py,sha256=ijVyDclPnd6a0DWWUJkwR4igj6f82S-cE1-83QGPvgw,1652
|
|
9
|
+
ai_edge_torch/convert/fx_passes/build_aten_composite_pass.py,sha256=quuPsyRtOeumB4SVRYoj2UmSWfrGzJ6Q2ZqjWeG3UPI,6150
|
|
10
|
+
ai_edge_torch/convert/fx_passes/build_upsample_bilinear2d_composite_pass.py,sha256=76XYoIlFDgrzp5QemoaEalPFcEbfszkEH_PLvO1ASCk,2607
|
|
11
|
+
ai_edge_torch/convert/fx_passes/canonicalize_pass.py,sha256=UX6dJsxCqSkftXXvNBV-i7Bjk6H7qTyqzUnE640Itfg,1673
|
|
12
|
+
ai_edge_torch/convert/fx_passes/inject_mlir_debuginfo_pass.py,sha256=aRT8hTS3n9ie28lgu6mygtFO6Ypwu0qjNb0c81v9HLs,2448
|
|
13
|
+
ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/__init__.py,sha256=VA9bekxPVhLk4MYlIRXnOzrSnbCtUmGj7OQ_fJcKQtc,795
|
|
14
|
+
ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_check.py,sha256=pG-zLvO5vGs3gjNXa3RxGNwvC-_Azei2anxe2VdKsnY,6870
|
|
15
|
+
ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py,sha256=uXCHC23pWN-3JmDtAErWbSUnL8jjlQgUAy4gqtfDsQU,1560
|
|
16
|
+
ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py,sha256=RAgU31B98PQmXEIM3GOjgS0q9aRe2whJhGXpW2EjoqY,12438
|
|
17
|
+
ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py,sha256=tCx7J-WIFnxFCeRBtqJ159jWLgK9_9DCJrR4mkeBuYE,982
|
|
18
|
+
ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/pass_body.py,sha256=wr59GFss8fP8Vy--BaBj34Bto0N16gXxQj6OuTXH8cE,10030
|
|
19
|
+
ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/utils.py,sha256=bItkXVaPA9THcFypAmqldpkLuD8WpOFmKlhVbBJJkPk,2076
|
|
20
|
+
ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py,sha256=B-zisphkH7aRCUOJNdwHnTA0fQXuDpN08q3Qjy5bL6E,715
|
|
21
|
+
ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py,sha256=8uHJbIwPMTgeSfYVba163pkXSQkHLxFwar_8A1AhgAM,2279
|
|
22
|
+
ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py,sha256=FlNKt2EhIKnlVEeUWTiv5sz446YKU6Yy1H0Gd6VRgkU,6432
|
|
23
|
+
ai_edge_torch/convert/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
24
|
+
ai_edge_torch/convert/test/test_convert.py,sha256=USduDO6PaO3nlA82jMihTct--mCU_ugILZDin00lcJ8,8092
|
|
25
|
+
ai_edge_torch/convert/test/test_convert_composites.py,sha256=gFUa_lKNUfeYMgtulqJvRAtWIvzy3f3eXptMBiJDbms,6403
|
|
26
|
+
ai_edge_torch/convert/test/test_convert_multisig.py,sha256=kMaGnHe9ylfyU68qCifYcaGwJqyejKz--QQt9jS2oUA,4537
|
|
27
|
+
ai_edge_torch/debug/__init__.py,sha256=TKvmnjVk3asvYcVh6C-LPr6srgAF_nppSAupWEXqwPY,707
|
|
28
|
+
ai_edge_torch/debug/culprit.py,sha256=vklaxBUfINdo44OsH7csILK70N41gEThCGchGEfbTZw,12789
|
|
29
|
+
ai_edge_torch/debug/utils.py,sha256=hjVmQVVl1dKxEF0D6KB4a3ouQ3wBkTsebOX2YsUObZM,1430
|
|
30
|
+
ai_edge_torch/debug/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
31
|
+
ai_edge_torch/debug/test/test_culprit.py,sha256=9An_n9p_RWTAYdHYTCO-__EJlbnjclCDo8tDhOzMlwk,3731
|
|
32
|
+
ai_edge_torch/experimental/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
33
|
+
ai_edge_torch/generative/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
34
|
+
ai_edge_torch/generative/examples/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
35
|
+
ai_edge_torch/generative/examples/gemma/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
36
|
+
ai_edge_torch/generative/examples/gemma/convert_to_tflite.py,sha256=dZv3r24uHsTMokEdnl3nf7LpmV0q7FLnVtCuHn5AuUs,2538
|
|
37
|
+
ai_edge_torch/generative/examples/gemma/gemma.py,sha256=YF4Ua-1lnL3qhQnh1sY5-HlYw2Dq6ZRm227XyDe7WAw,5913
|
|
38
|
+
ai_edge_torch/generative/examples/phi2/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
39
|
+
ai_edge_torch/generative/examples/phi2/convert_to_tflite.py,sha256=6nOuwx9q3AUlYcjXRRXSr_3M2JKqdJ-vUf-uE3VFYHE,2512
|
|
40
|
+
ai_edge_torch/generative/examples/phi2/phi2.py,sha256=VvigzPQ_LJHeADTsMliwFwPe2BcnOhFgKDqr_WZ2JQ8,5540
|
|
41
|
+
ai_edge_torch/generative/examples/t5/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
42
|
+
ai_edge_torch/generative/examples/t5/convert_to_tflite.py,sha256=bWtwtUacvJOEDUpuYvLTgkP7oTkXKJA-Tf4FPxlD1Cw,4536
|
|
43
|
+
ai_edge_torch/generative/examples/t5/t5.py,sha256=q2gG5RRo7RgNzvHXYC0Juh6Tgt5d_RTMSWFaYvOKiZU,21065
|
|
44
|
+
ai_edge_torch/generative/examples/t5/t5_attention.py,sha256=anR99IrzR21x6yswFHYG5QQtPDZ7rVicf6STfMp54fU,8998
|
|
45
|
+
ai_edge_torch/generative/examples/test_models/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
46
|
+
ai_edge_torch/generative/examples/test_models/toy_model.py,sha256=EV07_MEG3fv9g0ZGu9gbBd5BjjrGkxCT1pv7dvhz4TI,3791
|
|
47
|
+
ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py,sha256=MUr6fSj2hBuYSlNbZtrBBpzqB_0WY-l_xYcd_TFFUjY,4831
|
|
48
|
+
ai_edge_torch/generative/examples/tiny_llama/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
49
|
+
ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py,sha256=E4I5OlC4zyl5cxiiu7uTED-zcwYRu210lP1zuT3xLBE,2566
|
|
50
|
+
ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py,sha256=hVGpuI8gpj4Rn9k4otsRE22MSLFHBDlUOgioY6Ru6VI,5629
|
|
51
|
+
ai_edge_torch/generative/layers/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
52
|
+
ai_edge_torch/generative/layers/attention.py,sha256=PxixRZb00v5BQkWbDwaJgke4Rd5LwzdWe0zH9SG4Tj0,9127
|
|
53
|
+
ai_edge_torch/generative/layers/attention_utils.py,sha256=hXhuyKblPPxKIRzlAf1YNlwHgpbj-6nReRLhRHELx5k,6350
|
|
54
|
+
ai_edge_torch/generative/layers/builder.py,sha256=ZSBVLv5EOtCkSW_Z8C2Hd7jN52nIAA2as1-qpmHGbCg,3201
|
|
55
|
+
ai_edge_torch/generative/layers/feed_forward.py,sha256=4j2QaSCw59Jkk_ixKDpKEj7FLRauzuExTiSNRzAjAhE,2820
|
|
56
|
+
ai_edge_torch/generative/layers/kv_cache.py,sha256=4uiZLO3om5G3--kT04Jt0esEYznbkJ7QLzSHfb8mjc4,3090
|
|
57
|
+
ai_edge_torch/generative/layers/model_config.py,sha256=KpJRIHV5BJH8QOa7h6LXLZyC7UDWgbCEsw0CvArz49Q,4064
|
|
58
|
+
ai_edge_torch/generative/layers/normalization.py,sha256=M27eW3TcNK20oaXClXtfnu0lLWrAGrSKSsbegRWnj3c,1867
|
|
59
|
+
ai_edge_torch/generative/layers/rotary_position_embedding.py,sha256=12SsCuoRuLNCwnFGe_pHDOZEBwBcqXs87Aj0PaWWw4E,1383
|
|
60
|
+
ai_edge_torch/generative/quantize/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
61
|
+
ai_edge_torch/generative/quantize/example.py,sha256=t-YwyKSPAG-OZC1DfH-0vfie2RHHpTSQjxUY-tmhu5g,1543
|
|
62
|
+
ai_edge_torch/generative/quantize/quant_attrs.py,sha256=ffBALrrbrfiG_mrOr-f3B1Gc6PlAma9gtvVnfP7SDzI,1862
|
|
63
|
+
ai_edge_torch/generative/quantize/quant_recipe.py,sha256=BOk4E0FW-_YD8Y-oPVmIDsgXx_bPtvzsP_V1av5DvgU,3327
|
|
64
|
+
ai_edge_torch/generative/quantize/quant_recipe_utils.py,sha256=9ktL7fT8C5j1dnY_7fkiFL4oWNLVs1dMWXkS_EuyA3Y,1913
|
|
65
|
+
ai_edge_torch/generative/quantize/quant_recipes.py,sha256=CRA2ENevS-3usHqidWDe2wrf_epILE_7Hx-XfZQ9buk,1798
|
|
66
|
+
ai_edge_torch/generative/quantize/supported_schemes.py,sha256=OQ4ghQXknA1PPjuY-xBgAmOpaIBgYFM8F2YAIot06hE,1345
|
|
67
|
+
ai_edge_torch/generative/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
68
|
+
ai_edge_torch/generative/test/test_model_conversion.py,sha256=1NfZxKo9Gx6CmVfd86K1FkmsNQnjzIV1ojBS85UGvT0,6500
|
|
69
|
+
ai_edge_torch/generative/test/test_quantize.py,sha256=f70sH1ZFzdCwYj0MG-eg54WOC4LasR0D8CTUYpjxZYM,3728
|
|
70
|
+
ai_edge_torch/generative/utilities/__init__.py,sha256=-_jxnnFnCgnTU4oTm4MnRsvL5lqhomBNdFBbqfmfHPo,720
|
|
71
|
+
ai_edge_torch/generative/utilities/loader.py,sha256=QrGZ3JlEN_tn8j6EdZOxVt_0u3yB5vBrR3KJtNaAwV8,10029
|
|
72
|
+
ai_edge_torch/generative/utilities/t5_loader.py,sha256=guDTv-12UUvJGl4eDvvZX3t4rRKewfXO8SpcYXM6gbc,16156
|
|
73
|
+
ai_edge_torch/hlfb/__init__.py,sha256=rrje8a2iuKboBoV96bVq7nlS9HsnuEMbHE5JiWmCxFA,752
|
|
74
|
+
ai_edge_torch/hlfb/mark_pattern/__init__.py,sha256=2VXnHcGf23VOuP-1GriGIpuL98leBB8twp_qaScMnmc,4799
|
|
75
|
+
ai_edge_torch/hlfb/mark_pattern/passes.py,sha256=YV2YKBkh7y7j7sd7EA81vf_1hUKUvTRiy1pfqZustXc,1539
|
|
76
|
+
ai_edge_torch/hlfb/mark_pattern/pattern.py,sha256=H4047w-xwx27rYPKNqmeOSQ9M1Adkpd7drp81YdV7Hw,9206
|
|
77
|
+
ai_edge_torch/hlfb/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
78
|
+
ai_edge_torch/hlfb/test/test_mark_pattern.py,sha256=qYR3PRGS9W3OG-qX7UFqL69VxXuUSfyDBUJtCXtXcOE,4262
|
|
79
|
+
ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py,sha256=aUAPKnH4_Jxpp3mLlD5rzdT1g_VBm7OrwwLJ9DeJlzQ,8190
|
|
80
|
+
ai_edge_torch/quantize/__init__.py,sha256=aB5dXot04bqyUhpsDFvxt9CIi15QAC4euvqOndJ0XLU,714
|
|
81
|
+
ai_edge_torch/quantize/pt2e_quantizer.py,sha256=ye1f5vAZ0Vr4RWAtfrgU1o3JLs03Sa4inHRq3YxJDGo,15602
|
|
82
|
+
ai_edge_torch/quantize/pt2e_quantizer_utils.py,sha256=yjzKoptnfEeW_sN7sODUfj3nCtUMXVzq3vHKxblsd5Y,36046
|
|
83
|
+
ai_edge_torch/quantize/quant_config.py,sha256=ExThdTXqnWmGC3-F6sdXbXr8nYzkEe_qCziCfhsoMPA,3435
|
|
84
|
+
ai_edge_torch/testing/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
85
|
+
ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
|
|
86
|
+
ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=EIyKz-HY70DguWuSrJal8LpYXQ5ZSEUf3ZrVl7jikFM,4286
|
|
87
|
+
ai_edge_torch_nightly-0.1.dev202405131930.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
|
88
|
+
ai_edge_torch_nightly-0.1.dev202405131930.dist-info/METADATA,sha256=lQcAb0esNisYUqkzDRHamW4S9luvrJ4QU75042IAqWc,1750
|
|
89
|
+
ai_edge_torch_nightly-0.1.dev202405131930.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
|
90
|
+
ai_edge_torch_nightly-0.1.dev202405131930.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
|
|
91
|
+
ai_edge_torch_nightly-0.1.dev202405131930.dist-info/RECORD,,
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
ai_edge_torch
|