ai-edge-torch-nightly 0.1.dev202405131930__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ai-edge-torch-nightly might be problematic. Click here for more details.
- ai_edge_torch/__init__.py +30 -0
- ai_edge_torch/convert/__init__.py +14 -0
- ai_edge_torch/convert/conversion.py +117 -0
- ai_edge_torch/convert/conversion_utils.py +330 -0
- ai_edge_torch/convert/converter.py +171 -0
- ai_edge_torch/convert/fx_passes/__init__.py +59 -0
- ai_edge_torch/convert/fx_passes/_pass_base.py +49 -0
- ai_edge_torch/convert/fx_passes/build_aten_composite_pass.py +192 -0
- ai_edge_torch/convert/fx_passes/build_upsample_bilinear2d_composite_pass.py +84 -0
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +37 -0
- ai_edge_torch/convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +215 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +48 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +17 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +59 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +196 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +400 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +286 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/utils.py +62 -0
- ai_edge_torch/convert/test/__init__.py +14 -0
- ai_edge_torch/convert/test/test_convert.py +273 -0
- ai_edge_torch/convert/test/test_convert_composites.py +171 -0
- ai_edge_torch/convert/test/test_convert_multisig.py +139 -0
- ai_edge_torch/debug/__init__.py +16 -0
- ai_edge_torch/debug/culprit.py +423 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +133 -0
- ai_edge_torch/debug/utils.py +48 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +66 -0
- ai_edge_torch/generative/examples/gemma/gemma.py +174 -0
- ai_edge_torch/generative/examples/phi2/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +64 -0
- ai_edge_torch/generative/examples/phi2/phi2.py +164 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +135 -0
- ai_edge_torch/generative/examples/t5/t5.py +608 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +255 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +119 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +143 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +0 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +66 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +164 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +288 -0
- ai_edge_torch/generative/layers/attention_utils.py +169 -0
- ai_edge_torch/generative/layers/builder.py +103 -0
- ai_edge_torch/generative/layers/feed_forward.py +95 -0
- ai_edge_torch/generative/layers/kv_cache.py +83 -0
- ai_edge_torch/generative/layers/model_config.py +135 -0
- ai_edge_torch/generative/layers/normalization.py +62 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +36 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +45 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +66 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +106 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +51 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +48 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +31 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_model_conversion.py +201 -0
- ai_edge_torch/generative/test/test_quantize.py +109 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/loader.py +290 -0
- ai_edge_torch/generative/utilities/t5_loader.py +467 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +139 -0
- ai_edge_torch/hlfb/mark_pattern/passes.py +42 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +260 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +133 -0
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +270 -0
- ai_edge_torch/model.py +134 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +438 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1041 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +126 -0
- ai_edge_torch_nightly-0.1.dev202405131930.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.1.dev202405131930.dist-info/METADATA +38 -0
- ai_edge_torch_nightly-0.1.dev202405131930.dist-info/RECORD +91 -0
- ai_edge_torch_nightly-0.1.dev202405131930.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.1.dev202405131930.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,103 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
# Builder class for individual components.
|
|
16
|
+
from torch import nn
|
|
17
|
+
import torch.nn.functional as F
|
|
18
|
+
|
|
19
|
+
import ai_edge_torch.generative.layers.feed_forward as feed_forward
|
|
20
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
|
21
|
+
import ai_edge_torch.generative.layers.normalization as normalization
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def build_norm(dim: int, config: cfg.NormalizationConfig):
|
|
25
|
+
"""Builder function for normalizers.
|
|
26
|
+
|
|
27
|
+
Args:
|
|
28
|
+
dim (int): dimension of the input tensor.
|
|
29
|
+
config (`NormalizationConfig` object): the normalization configuration.
|
|
30
|
+
|
|
31
|
+
Returns:
|
|
32
|
+
The constructed `nn.Module` normalization layer.
|
|
33
|
+
|
|
34
|
+
Raises:
|
|
35
|
+
ValueError: If config's `layer_norm_type` is not supported.
|
|
36
|
+
"""
|
|
37
|
+
if config.type == cfg.NormalizationType.NONE:
|
|
38
|
+
return lambda x: x
|
|
39
|
+
elif config.type == cfg.NormalizationType.RMS_NORM:
|
|
40
|
+
return normalization.RMSNorm(
|
|
41
|
+
dim,
|
|
42
|
+
eps=config.epsilon,
|
|
43
|
+
zero_centered_gamma=config.zero_centered,
|
|
44
|
+
)
|
|
45
|
+
elif config.type == cfg.NormalizationType.LAYER_NORM:
|
|
46
|
+
return nn.LayerNorm(dim, eps=config.epsilon)
|
|
47
|
+
else:
|
|
48
|
+
raise ValueError("Unsupported norm type.")
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
def build_ff(dim: int, config: cfg.FeedForwardConfig):
|
|
52
|
+
"""Builder function for Feed Forward. Supports `Sequential` and `Gated`.
|
|
53
|
+
|
|
54
|
+
Args:
|
|
55
|
+
dim (int): dimension of the input tensor.
|
|
56
|
+
config (`ModelConfig` object): the model configuration.
|
|
57
|
+
|
|
58
|
+
Returns:
|
|
59
|
+
The constructed `nn.Module` feedforward layer.
|
|
60
|
+
|
|
61
|
+
Raises:
|
|
62
|
+
ValueError: If config's `ff_type` is not supported.
|
|
63
|
+
"""
|
|
64
|
+
ff_type = config.type
|
|
65
|
+
if ff_type == cfg.FeedForwardType.SEQUENTIAL:
|
|
66
|
+
ff_module = feed_forward.SequentialFeedForward
|
|
67
|
+
elif ff_type == cfg.FeedForwardType.GATED:
|
|
68
|
+
ff_module = feed_forward.GatedFeedForward
|
|
69
|
+
else:
|
|
70
|
+
raise ValueError("Unsupported feedforward type.")
|
|
71
|
+
|
|
72
|
+
activation = _get_activation(config.activation)
|
|
73
|
+
|
|
74
|
+
return ff_module(
|
|
75
|
+
dim=dim,
|
|
76
|
+
hidden_dim=config.intermediate_size,
|
|
77
|
+
activation=activation,
|
|
78
|
+
use_bias=config.use_bias,
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
def _get_activation(type_: cfg.ActivationType):
|
|
83
|
+
"""Get pytorch callable activation from the name.
|
|
84
|
+
|
|
85
|
+
Args:
|
|
86
|
+
name (string): activation's name.
|
|
87
|
+
|
|
88
|
+
Returns:
|
|
89
|
+
Activation function.
|
|
90
|
+
|
|
91
|
+
Raises:
|
|
92
|
+
ValueError: If activation name is not supported.
|
|
93
|
+
"""
|
|
94
|
+
if type_ == cfg.ActivationType.SILU:
|
|
95
|
+
return F.silu
|
|
96
|
+
elif type_ == cfg.ActivationType.GELU:
|
|
97
|
+
return F.gelu
|
|
98
|
+
elif type_ == cfg.ActivationType.GELU_TANH:
|
|
99
|
+
return lambda x: F.gelu(x, approximate="tanh")
|
|
100
|
+
elif type_ == cfg.ActivationType.RELU:
|
|
101
|
+
return F.relu
|
|
102
|
+
else:
|
|
103
|
+
raise ValueError("Unsupported activation type.")
|
|
@@ -0,0 +1,95 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
# Common building blocks for FeedForward layers.
|
|
16
|
+
|
|
17
|
+
from typing import Callable
|
|
18
|
+
|
|
19
|
+
import torch
|
|
20
|
+
from torch import nn
|
|
21
|
+
import torch.nn.functional as F
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class SequentialFeedForward(nn.Module):
|
|
25
|
+
"""Vanilla sequential Feedforward with customizable activation."""
|
|
26
|
+
|
|
27
|
+
def __init__(
|
|
28
|
+
self,
|
|
29
|
+
dim: int,
|
|
30
|
+
hidden_dim: int,
|
|
31
|
+
activation: Callable[[torch.Tensor], torch.Tensor],
|
|
32
|
+
use_bias=False,
|
|
33
|
+
):
|
|
34
|
+
"""Init function for feedforward layer.
|
|
35
|
+
|
|
36
|
+
Args:
|
|
37
|
+
dim(int): embedding size.
|
|
38
|
+
hidden_dim(int): hidden dim size of the feedforward layer.
|
|
39
|
+
activation(Callable): activation function used in this block.
|
|
40
|
+
use_bias(Boolean): whether to use bias. Default is false.
|
|
41
|
+
"""
|
|
42
|
+
super().__init__()
|
|
43
|
+
self.act = activation
|
|
44
|
+
self.w1 = nn.Linear(dim, hidden_dim, bias=use_bias)
|
|
45
|
+
self.w2 = nn.Linear(hidden_dim, dim, bias=use_bias)
|
|
46
|
+
|
|
47
|
+
def forward(self, x):
|
|
48
|
+
"""Forward pass for Feedforward layer.
|
|
49
|
+
|
|
50
|
+
Args:
|
|
51
|
+
x (torch.Tensor): the input tensor.
|
|
52
|
+
|
|
53
|
+
Returns:
|
|
54
|
+
torch.Tensor: output tensor after feedforward.
|
|
55
|
+
"""
|
|
56
|
+
return self.w2(self.act(self.w1(x)))
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
class GatedFeedForward(nn.Module):
|
|
60
|
+
"""Gated Feedforward with customizable activation.
|
|
61
|
+
|
|
62
|
+
https://arxiv.org/pdf/2002.05202v1.pdf
|
|
63
|
+
"""
|
|
64
|
+
|
|
65
|
+
def __init__(
|
|
66
|
+
self,
|
|
67
|
+
dim: int,
|
|
68
|
+
hidden_dim: int,
|
|
69
|
+
activation: Callable[[torch.Tensor], torch.Tensor],
|
|
70
|
+
use_bias=False,
|
|
71
|
+
):
|
|
72
|
+
"""Init function for feedforward layer.
|
|
73
|
+
|
|
74
|
+
Args:
|
|
75
|
+
dim(int): embedding size.
|
|
76
|
+
hidden_dim(int): hidden dim size of the feedforward layer.
|
|
77
|
+
activation(Callable): activation function used in this block.
|
|
78
|
+
use_bias(Boolean): whether to use bias. Default is false.
|
|
79
|
+
"""
|
|
80
|
+
super().__init__()
|
|
81
|
+
self.act = activation
|
|
82
|
+
self.w1 = nn.Linear(dim, hidden_dim, bias=use_bias)
|
|
83
|
+
self.w2 = nn.Linear(hidden_dim, dim, bias=use_bias)
|
|
84
|
+
self.w3 = nn.Linear(dim, hidden_dim, bias=use_bias)
|
|
85
|
+
|
|
86
|
+
def forward(self, x):
|
|
87
|
+
"""Forward pass for Feedforward layer.
|
|
88
|
+
|
|
89
|
+
Args:
|
|
90
|
+
x (torch.Tensor): the input tensor.
|
|
91
|
+
|
|
92
|
+
Returns:
|
|
93
|
+
torch.Tensor: output tensor after feedforward.
|
|
94
|
+
"""
|
|
95
|
+
return self.w2(self.act(self.w1(x)) * self.w3(x))
|
|
@@ -0,0 +1,83 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
# `nn.Module` which implements a KV cache.
|
|
16
|
+
|
|
17
|
+
import torch
|
|
18
|
+
from torch import nn
|
|
19
|
+
import torch_xla
|
|
20
|
+
|
|
21
|
+
from ai_edge_torch.hlfb import StableHLOCompositeBuilder
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class KVCache(nn.Module):
|
|
25
|
+
|
|
26
|
+
def __init__(self, batch_size, kv_cache_max, n_heads, head_dim, enable_hlfb=False):
|
|
27
|
+
"""Initializes the KVCache layer.
|
|
28
|
+
|
|
29
|
+
Args:
|
|
30
|
+
batch_size (int): batch size. Currently only batch size 1 is supported.
|
|
31
|
+
kv_cache_max (int): the max length of KV cache.
|
|
32
|
+
n_heads (int): number of kv heads.
|
|
33
|
+
head_dim (int): the head dimension size.
|
|
34
|
+
enable_hlfb (bool): whether hlfb is enabled or not.
|
|
35
|
+
"""
|
|
36
|
+
super().__init__()
|
|
37
|
+
cache_shape = (batch_size, kv_cache_max, n_heads, head_dim)
|
|
38
|
+
self.register_buffer("k_cache", torch.zeros(cache_shape), persistent=False)
|
|
39
|
+
self.register_buffer("v_cache", torch.zeros(cache_shape), persistent=False)
|
|
40
|
+
self.enable_hlfb = enable_hlfb
|
|
41
|
+
self.kv_cache_max = kv_cache_max
|
|
42
|
+
|
|
43
|
+
def update_cache(self, input_pos, k_val, v_val):
|
|
44
|
+
"""Update an entry in the KV cache.
|
|
45
|
+
|
|
46
|
+
Args:
|
|
47
|
+
input_pos (torch.Tensor): the input position.
|
|
48
|
+
k_val (torch.Tensor): the new `key` value.
|
|
49
|
+
v_val (torch.Tensor): the new `value` value.
|
|
50
|
+
|
|
51
|
+
Returns:
|
|
52
|
+
The updated key and value tensor.
|
|
53
|
+
"""
|
|
54
|
+
if self.enable_hlfb:
|
|
55
|
+
return self.update_cache_with_hlfb(input_pos, k_val, v_val)
|
|
56
|
+
|
|
57
|
+
updated_k = self.k_cache.index_copy_(1, input_pos, k_val)
|
|
58
|
+
updated_v = self.v_cache.index_copy_(1, input_pos, v_val)
|
|
59
|
+
# Here we need a clone otherwise dynamo export will fail.
|
|
60
|
+
return torch.clone(updated_k), torch.clone(updated_v)
|
|
61
|
+
|
|
62
|
+
def update_cache_with_hlfb(self, input_pos, k_val, v_val):
|
|
63
|
+
"""Update an entry in the KV cache and enable high-level function boundary.
|
|
64
|
+
|
|
65
|
+
Args:
|
|
66
|
+
input_pos (torch.Tensor): the input position.
|
|
67
|
+
k_val (torch.Tensor): the new `key` value.
|
|
68
|
+
v_val (torch.Tensor): the new `value` value.
|
|
69
|
+
|
|
70
|
+
Returns:
|
|
71
|
+
The updated key and value tensor.
|
|
72
|
+
"""
|
|
73
|
+
|
|
74
|
+
builder = StableHLOCompositeBuilder(
|
|
75
|
+
name="odml.update_kv_cache", attr={"kv_cache_max": self.kv_cache_max}
|
|
76
|
+
)
|
|
77
|
+
k_cache, v_cache, input_pos, k_val, v_val = builder.mark_inputs(
|
|
78
|
+
self.k_cache, self.v_cache, input_pos, k_val, v_val
|
|
79
|
+
)
|
|
80
|
+
updated_k = k_cache.index_copy_(1, input_pos, k_val)
|
|
81
|
+
updated_v = v_cache.index_copy_(1, input_pos, v_val)
|
|
82
|
+
updated_k, updated_v = builder.mark_outputs(updated_k, updated_v)
|
|
83
|
+
return updated_k, updated_v
|
|
@@ -0,0 +1,135 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
# Model configuration class.
|
|
16
|
+
from dataclasses import dataclass
|
|
17
|
+
from dataclasses import field
|
|
18
|
+
import enum
|
|
19
|
+
from typing import Optional
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
@enum.unique
|
|
23
|
+
class ActivationType(enum.Enum):
|
|
24
|
+
"""Different activation functions supported by the default builder."""
|
|
25
|
+
|
|
26
|
+
LINEAR = enum.auto()
|
|
27
|
+
SILU = enum.auto()
|
|
28
|
+
GELU = enum.auto()
|
|
29
|
+
GELU_TANH = enum.auto()
|
|
30
|
+
RELU = enum.auto()
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
@enum.unique
|
|
34
|
+
class NormalizationType(enum.Enum):
|
|
35
|
+
"""Different normalization functions"""
|
|
36
|
+
|
|
37
|
+
# No normalization is applied.
|
|
38
|
+
NONE = enum.auto()
|
|
39
|
+
RMS_NORM = enum.auto()
|
|
40
|
+
LAYER_NORM = enum.auto()
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
@enum.unique
|
|
44
|
+
class FeedForwardType(enum.Enum):
|
|
45
|
+
"""Different variations of the Feed Forward module."""
|
|
46
|
+
|
|
47
|
+
# `output = linear(act(linear(x)))`.
|
|
48
|
+
SEQUENTIAL = enum.auto()
|
|
49
|
+
# `output = linear(act(linear(x)) * lienar(x))`.
|
|
50
|
+
GATED = enum.auto()
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
@dataclass
|
|
54
|
+
class AttentionConfig:
|
|
55
|
+
"""Attention moduel's parameters."""
|
|
56
|
+
|
|
57
|
+
num_heads: int
|
|
58
|
+
# Used to determine number of groups in grouped query attention (GQA)
|
|
59
|
+
# https://arxiv.org/pdf/2305.13245.pdf
|
|
60
|
+
num_query_groups: Optional[int]
|
|
61
|
+
# Percentage of Rotary Positional Embedding added Q and K projections.
|
|
62
|
+
rotary_percentage: Optional[float] = None
|
|
63
|
+
# Whether to use bias with Query, Key, and Value projection.
|
|
64
|
+
qkv_use_bias: bool = False
|
|
65
|
+
# Whether to use bias with attention output projection.
|
|
66
|
+
output_proj_use_bias: bool = False
|
|
67
|
+
enable_kv_cache: bool = True
|
|
68
|
+
relative_attention_num_buckets: int = 0
|
|
69
|
+
relative_attention_max_distance: int = 0
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
@dataclass
|
|
73
|
+
class FeedForwardConfig:
|
|
74
|
+
"""FeedForward module's parameters."""
|
|
75
|
+
|
|
76
|
+
type: FeedForwardType
|
|
77
|
+
activation: ActivationType
|
|
78
|
+
intermediate_size: int
|
|
79
|
+
use_bias: bool = False
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
@dataclass
|
|
83
|
+
class NormalizationConfig:
|
|
84
|
+
"""Normalizater parameters."""
|
|
85
|
+
|
|
86
|
+
type: NormalizationType = NormalizationType.NONE
|
|
87
|
+
epsilon: float = 1e-5
|
|
88
|
+
zero_centered: bool = False
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
@dataclass
|
|
92
|
+
class ModelConfig:
|
|
93
|
+
"""Base configurations for building a transformer architecture."""
|
|
94
|
+
|
|
95
|
+
vocab_size: int
|
|
96
|
+
num_layers: int
|
|
97
|
+
max_seq_len: int
|
|
98
|
+
embedding_dim: int
|
|
99
|
+
|
|
100
|
+
attn_config: AttentionConfig
|
|
101
|
+
ff_config: FeedForwardConfig
|
|
102
|
+
# The normalization applied to attention's input.
|
|
103
|
+
pre_attention_norm_config: NormalizationConfig = field(
|
|
104
|
+
default_factory=NormalizationConfig
|
|
105
|
+
)
|
|
106
|
+
# The normalization applied to feed forward's input.
|
|
107
|
+
pre_ff_norm_config: NormalizationConfig = field(default_factory=NormalizationConfig)
|
|
108
|
+
# The normalization applied before LM head.
|
|
109
|
+
final_norm_config: NormalizationConfig = field(default_factory=NormalizationConfig)
|
|
110
|
+
|
|
111
|
+
# If set to True, only pre_attention_norm is applied to the input and the
|
|
112
|
+
# decode's output is computed as `output = input + attn_out + ff_out` where
|
|
113
|
+
# attention and feed forward are called with pre_attention_norm's output.
|
|
114
|
+
parallel_residual: bool = False
|
|
115
|
+
# Use bias term within LLM's HEAD.
|
|
116
|
+
lm_head_use_bias: bool = False
|
|
117
|
+
# Whether to turn on high-level function boundary.
|
|
118
|
+
enable_hlfb: bool = False
|
|
119
|
+
|
|
120
|
+
# The maximum sequence length of the KV cache. Should not exceed max_seq_len.
|
|
121
|
+
kv_cache_max_len: int = 0
|
|
122
|
+
|
|
123
|
+
# The Attention computation will include relative positional bias.
|
|
124
|
+
relative_attention: bool = False
|
|
125
|
+
|
|
126
|
+
@property
|
|
127
|
+
def kv_cache_max(self) -> int:
|
|
128
|
+
if self.kv_cache_max_len > 0:
|
|
129
|
+
return self.kv_cache_max_len
|
|
130
|
+
else:
|
|
131
|
+
return self.max_seq_len
|
|
132
|
+
|
|
133
|
+
@property
|
|
134
|
+
def head_dim(self) -> int:
|
|
135
|
+
return self.embedding_dim // self.attn_config.num_heads
|
|
@@ -0,0 +1,62 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
# Common normalization layers.
|
|
16
|
+
|
|
17
|
+
import torch
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
# Implementation for RMSNorm from: https://arxiv.org/abs/1910.07467
|
|
21
|
+
class RMSNorm(torch.nn.Module):
|
|
22
|
+
|
|
23
|
+
def __init__(self, dim: int, eps: float = 1e-6, zero_centered_gamma=False):
|
|
24
|
+
"""
|
|
25
|
+
Initialize the RMSNorm layer.
|
|
26
|
+
|
|
27
|
+
Args:
|
|
28
|
+
dim (int): dimension of the input tensor.
|
|
29
|
+
eps (float): A small float value to ensure numerical stability (default: 1e-6).
|
|
30
|
+
"""
|
|
31
|
+
super().__init__()
|
|
32
|
+
self.eps = eps
|
|
33
|
+
self.weight = torch.nn.Parameter(torch.ones(dim))
|
|
34
|
+
self.zero_centered_gamma = zero_centered_gamma
|
|
35
|
+
|
|
36
|
+
def _norm(self, x):
|
|
37
|
+
"""
|
|
38
|
+
Apply RMSNorm normalization.
|
|
39
|
+
|
|
40
|
+
Args:
|
|
41
|
+
x (torch.Tensor): input tensor.
|
|
42
|
+
|
|
43
|
+
Returns:
|
|
44
|
+
torch.Tensor: The normalized output tensor.
|
|
45
|
+
"""
|
|
46
|
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
|
47
|
+
|
|
48
|
+
def forward(self, x):
|
|
49
|
+
"""
|
|
50
|
+
Running the forward pass of RMSNorm layer.
|
|
51
|
+
|
|
52
|
+
Args:
|
|
53
|
+
x (torch.Tensor): input tensor.
|
|
54
|
+
|
|
55
|
+
Returns:
|
|
56
|
+
torch.Tensor: output tensor after applying RMSNorm.
|
|
57
|
+
"""
|
|
58
|
+
output = self._norm(x.float()).type_as(x)
|
|
59
|
+
if self.zero_centered_gamma:
|
|
60
|
+
return output * (1 + self.weight)
|
|
61
|
+
else:
|
|
62
|
+
return output * self.weight
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
# Implementation for Rotary Position embedding. https://arxiv.org/pdf/2104.09864.pdf
|
|
16
|
+
import torch
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def apply_rope(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
|
|
20
|
+
"""Computes rotary positional embedding.
|
|
21
|
+
|
|
22
|
+
Args:
|
|
23
|
+
x(torch.Tensor): the input tensor.
|
|
24
|
+
cos(torch.Tensor): cosine value for the rope.
|
|
25
|
+
sin(torch.Tensor): sin value for the rope.
|
|
26
|
+
|
|
27
|
+
Returns:
|
|
28
|
+
output tensor of RoPE.
|
|
29
|
+
"""
|
|
30
|
+
x = x.transpose(1, 2)
|
|
31
|
+
head_size = x.size(-1)
|
|
32
|
+
x1 = x[..., : head_size // 2] # (B, nh, T, hs/2)
|
|
33
|
+
x2 = x[..., head_size // 2 :] # (B, nh, T, hs/2)
|
|
34
|
+
rotated = torch.cat((-x2, x1), dim=-1) # (B, nh, T, hs)
|
|
35
|
+
roped = (x * cos) + (rotated * sin)
|
|
36
|
+
return roped.transpose(1, 2).type_as(x)
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
import numpy as np
|
|
17
|
+
import torch
|
|
18
|
+
|
|
19
|
+
import ai_edge_torch
|
|
20
|
+
from ai_edge_torch.generative.examples.gemma import gemma
|
|
21
|
+
from ai_edge_torch.generative.quantize import quant_recipes
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def main():
|
|
25
|
+
# Build a PyTorch model as usual
|
|
26
|
+
config = gemma.get_fake_model_config_2b_for_test()
|
|
27
|
+
model = gemma.Gemma(config)
|
|
28
|
+
idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
|
|
29
|
+
tokens = torch.full((1, 10), 0, dtype=torch.long, device="cpu")
|
|
30
|
+
tokens[0, :4] = idx
|
|
31
|
+
input_pos = torch.arange(0, 10)
|
|
32
|
+
|
|
33
|
+
# Create a quantization recipe to be applied to the model
|
|
34
|
+
quant_config = quant_recipes.full_linear_int8_dynamic_recipe()
|
|
35
|
+
print(quant_config)
|
|
36
|
+
|
|
37
|
+
# Convert with quantization
|
|
38
|
+
edge_model = ai_edge_torch.convert(
|
|
39
|
+
model, (tokens, input_pos), quant_config=quant_config
|
|
40
|
+
)
|
|
41
|
+
edge_model.export("/tmp/gemma_2b_quantized.tflite")
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
if __name__ == "__main__":
|
|
45
|
+
main()
|
|
@@ -0,0 +1,66 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
import enum
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
@enum.unique
|
|
20
|
+
class Dtype(enum.Enum):
|
|
21
|
+
"""Data types and precision of tensors."""
|
|
22
|
+
|
|
23
|
+
FP32 = enum.auto()
|
|
24
|
+
FP16 = enum.auto()
|
|
25
|
+
INT8 = enum.auto()
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
@enum.unique
|
|
29
|
+
class Algorithm(enum.Enum):
|
|
30
|
+
"""Algorithm used to calculate quantization parameters.
|
|
31
|
+
|
|
32
|
+
Attributes:
|
|
33
|
+
MIN_MAX: Maps the min/max of floating point space to the min/max of
|
|
34
|
+
quantized space and quantize uniformly.
|
|
35
|
+
"""
|
|
36
|
+
|
|
37
|
+
MIN_MAX = enum.auto()
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
@enum.unique
|
|
41
|
+
class Mode(enum.Enum):
|
|
42
|
+
"""Mode of quantization.
|
|
43
|
+
|
|
44
|
+
Attributes:
|
|
45
|
+
DYNAMIC_RANGE: Quantize activations during runtime and weights statically to
|
|
46
|
+
perform computation in integers.
|
|
47
|
+
WEIGHT_ONLY: Quantize weights statically and dequantize during runtime to
|
|
48
|
+
perform computation in floating points.
|
|
49
|
+
"""
|
|
50
|
+
|
|
51
|
+
DYNAMIC_RANGE = enum.auto()
|
|
52
|
+
WEIGHT_ONLY = enum.auto()
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
@enum.unique
|
|
56
|
+
class Granularity(enum.Enum):
|
|
57
|
+
"""Granularity of quantization parameters.
|
|
58
|
+
|
|
59
|
+
Attributes:
|
|
60
|
+
NONE: Granularity not applicable to this quantization scheme.
|
|
61
|
+
CHANNELWISE: Or per-channel quantization. Each channel of relevant tensors
|
|
62
|
+
is quantized independently of one another.
|
|
63
|
+
"""
|
|
64
|
+
|
|
65
|
+
NONE = enum.auto()
|
|
66
|
+
CHANNELWISE = enum.auto()
|