ai-edge-quantizer-nightly 0.0.1.dev20250115__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. ai_edge_quantizer/__init__.py +19 -0
  2. ai_edge_quantizer/algorithm_manager.py +167 -0
  3. ai_edge_quantizer/algorithm_manager_api.py +271 -0
  4. ai_edge_quantizer/algorithm_manager_api_test.py +210 -0
  5. ai_edge_quantizer/algorithms/__init__.py +15 -0
  6. ai_edge_quantizer/algorithms/nonlinear_quantize/__init__.py +15 -0
  7. ai_edge_quantizer/algorithms/nonlinear_quantize/float_casting.py +273 -0
  8. ai_edge_quantizer/algorithms/nonlinear_quantize/float_casting_test.py +664 -0
  9. ai_edge_quantizer/algorithms/uniform_quantize/__init__.py +15 -0
  10. ai_edge_quantizer/algorithms/uniform_quantize/naive_min_max_quantize.py +666 -0
  11. ai_edge_quantizer/algorithms/uniform_quantize/naive_min_max_quantize_test.py +184 -0
  12. ai_edge_quantizer/algorithms/uniform_quantize/uniform_quantize_tensor.py +371 -0
  13. ai_edge_quantizer/algorithms/uniform_quantize/uniform_quantize_tensor_test.py +357 -0
  14. ai_edge_quantizer/algorithms/utils/__init__.py +15 -0
  15. ai_edge_quantizer/algorithms/utils/min_max_quantize_utils.py +1067 -0
  16. ai_edge_quantizer/algorithms/utils/min_max_quantize_utils_test.py +512 -0
  17. ai_edge_quantizer/calibrator.py +288 -0
  18. ai_edge_quantizer/calibrator_test.py +297 -0
  19. ai_edge_quantizer/conftest.py +22 -0
  20. ai_edge_quantizer/default_policy.py +310 -0
  21. ai_edge_quantizer/model_modifier.py +176 -0
  22. ai_edge_quantizer/model_modifier_test.py +130 -0
  23. ai_edge_quantizer/model_validator.py +357 -0
  24. ai_edge_quantizer/model_validator_test.py +354 -0
  25. ai_edge_quantizer/params_generator.py +361 -0
  26. ai_edge_quantizer/params_generator_test.py +1041 -0
  27. ai_edge_quantizer/qtyping.py +483 -0
  28. ai_edge_quantizer/quantizer.py +372 -0
  29. ai_edge_quantizer/quantizer_test.py +532 -0
  30. ai_edge_quantizer/recipe.py +67 -0
  31. ai_edge_quantizer/recipe_manager.py +245 -0
  32. ai_edge_quantizer/recipe_manager_test.py +815 -0
  33. ai_edge_quantizer/recipe_test.py +97 -0
  34. ai_edge_quantizer/transformation_instruction_generator.py +584 -0
  35. ai_edge_quantizer/transformation_instruction_generator_test.py +1082 -0
  36. ai_edge_quantizer/transformation_performer.py +278 -0
  37. ai_edge_quantizer/transformation_performer_test.py +344 -0
  38. ai_edge_quantizer/transformations/__init__.py +15 -0
  39. ai_edge_quantizer/transformations/dequant_insert.py +87 -0
  40. ai_edge_quantizer/transformations/dequant_insert_test.py +304 -0
  41. ai_edge_quantizer/transformations/emulated_subchannel.py +363 -0
  42. ai_edge_quantizer/transformations/emulated_subchannel_test.py +212 -0
  43. ai_edge_quantizer/transformations/quant_insert.py +100 -0
  44. ai_edge_quantizer/transformations/quant_insert_test.py +284 -0
  45. ai_edge_quantizer/transformations/quantize_tensor.py +156 -0
  46. ai_edge_quantizer/transformations/quantize_tensor_test.py +227 -0
  47. ai_edge_quantizer/transformations/transformation_utils.py +132 -0
  48. ai_edge_quantizer/transformations/transformation_utils_test.py +162 -0
  49. ai_edge_quantizer/utils/__init__.py +15 -0
  50. ai_edge_quantizer/utils/calibration_utils.py +86 -0
  51. ai_edge_quantizer/utils/calibration_utils_test.py +77 -0
  52. ai_edge_quantizer/utils/test_utils.py +107 -0
  53. ai_edge_quantizer/utils/tfl_flatbuffer_utils.py +317 -0
  54. ai_edge_quantizer/utils/tfl_flatbuffer_utils_test.py +200 -0
  55. ai_edge_quantizer/utils/tfl_interpreter_utils.py +312 -0
  56. ai_edge_quantizer/utils/tfl_interpreter_utils_test.py +332 -0
  57. ai_edge_quantizer/utils/validation_utils.py +125 -0
  58. ai_edge_quantizer/utils/validation_utils_test.py +87 -0
  59. ai_edge_quantizer_nightly-0.0.1.dev20250115.dist-info/LICENSE +201 -0
  60. ai_edge_quantizer_nightly-0.0.1.dev20250115.dist-info/METADATA +32 -0
  61. ai_edge_quantizer_nightly-0.0.1.dev20250115.dist-info/RECORD +63 -0
  62. ai_edge_quantizer_nightly-0.0.1.dev20250115.dist-info/WHEEL +5 -0
  63. ai_edge_quantizer_nightly-0.0.1.dev20250115.dist-info/top_level.txt +1 -0
@@ -0,0 +1,357 @@
1
+ # Copyright 2024 The AI Edge Quantizer Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Tests for tensor_utils."""
17
+
18
+ from absl.testing import parameterized
19
+ import numpy as np
20
+ from tensorflow.python.platform import googletest
21
+ from ai_edge_quantizer import qtyping
22
+ from ai_edge_quantizer.algorithms.uniform_quantize import uniform_quantize_tensor
23
+
24
+ _IntType = uniform_quantize_tensor.IntType
25
+
26
+
27
+ class TensorUtilsTest(parameterized.TestCase):
28
+
29
+ def setUp(self):
30
+ super().setUp()
31
+ self._test_data = np.array([[1, 2], [4, 5]])
32
+ self._expected_quantized_result = np.array(
33
+ [[9, 19], [22, 27]], dtype=np.int8
34
+ )
35
+
36
+ @parameterized.parameters(
37
+ (_IntType(8, True), (-128, 127)),
38
+ (_IntType(8, False), (0, 255)),
39
+ (_IntType(4, True), (-8, 7)),
40
+ (_IntType(4, False), (0, 15)),
41
+ (_IntType(2, True), (-2, 1)),
42
+ (_IntType(2, False), (0, 3)),
43
+ )
44
+ def test_get_quantized_range(self, qtype, expected_range):
45
+ self.assertEqual(
46
+ expected_range, uniform_quantize_tensor.get_quantized_range(qtype)
47
+ )
48
+
49
+ @parameterized.parameters(
50
+ (_IntType(8, True), np.int8),
51
+ (_IntType(16, False), np.uint16),
52
+ (_IntType(32, True), np.int32),
53
+ (_IntType(64, True), np.int64),
54
+ )
55
+ def test_assign_quantized_type(self, qtype, expected_type):
56
+ sample_input = np.array([2.0, 2.0])
57
+ result = uniform_quantize_tensor.assign_quantized_type(sample_input, qtype)
58
+ self.assertEqual(expected_type, result.dtype)
59
+
60
+ @parameterized.named_parameters(
61
+ dict(
62
+ testcase_name="scalar_tensor_1d_params",
63
+ scale=np.array([0.1]),
64
+ zero_point=np.array([-1], dtype=np.int8),
65
+ tensor_data=np.array(6.66),
66
+ quantized_dimension=None,
67
+ ),
68
+ dict(
69
+ testcase_name="1d_tensor_scalar_params",
70
+ scale=np.array(0.1),
71
+ zero_point=np.array(-1, dtype=np.int8),
72
+ tensor_data=np.array([6.66, 8.88]),
73
+ quantized_dimension=None,
74
+ ),
75
+ dict(
76
+ testcase_name="2d_tensor_1d_params",
77
+ scale=np.array([0.1, 0.2]),
78
+ zero_point=np.array([-1, 2], dtype=np.int8),
79
+ tensor_data=np.array([[1, 2], [4, 5]]),
80
+ quantized_dimension=0,
81
+ ),
82
+ )
83
+ def test_fix_quantization_params_rank_succeed(
84
+ self, scale, zero_point, tensor_data, quantized_dimension
85
+ ):
86
+ quant_params = qtyping.UniformQuantParams(
87
+ num_bits=8,
88
+ quantized_dimension=quantized_dimension,
89
+ scale=scale,
90
+ zero_point=zero_point,
91
+ symmetric=False,
92
+ )
93
+ fixed_quant_params = uniform_quantize_tensor.fix_quantization_params_rank(
94
+ tensor_data, quant_params
95
+ )
96
+ self.assertEqual(fixed_quant_params.scale.ndim, tensor_data.ndim)
97
+ self.assertEqual(fixed_quant_params.zero_point.ndim, tensor_data.ndim)
98
+
99
+ def test_fix_quantization_params_rank_scalar_tensor_1d_params_raise(self):
100
+ quant_params = qtyping.UniformQuantParams(
101
+ num_bits=8,
102
+ quantized_dimension=None,
103
+ scale=np.array([0.1, 0.5]),
104
+ zero_point=np.array([-1, -2], dtype=np.int8),
105
+ symmetric=False,
106
+ )
107
+ error_message = (
108
+ "Scale and zero_point must contain single element for scalar tensor."
109
+ )
110
+ with self.assertRaisesWithPredicateMatch(
111
+ ValueError, lambda err: error_message in str(err)
112
+ ):
113
+ uniform_quantize_tensor.fix_quantization_params_rank(
114
+ np.array(6.66), quant_params
115
+ )
116
+
117
+ @parameterized.parameters(
118
+ (
119
+ [-3.0, 1.3, 2.4, 16.0],
120
+ [0.12598425],
121
+ [0],
122
+ 8,
123
+ False,
124
+ [-24, 10, 19, 127],
125
+ ),
126
+ (
127
+ [-3.0, 1.3, 2.4, 16.0],
128
+ [1.2666667],
129
+ [-6],
130
+ 4,
131
+ False,
132
+ [-8, -5, -4, 7],
133
+ ),
134
+ (
135
+ [-3.0, 1.3, 2.4, 16.0],
136
+ [1.2666667],
137
+ [-6],
138
+ 4,
139
+ True,
140
+ [-7, -5, -4, 7],
141
+ ),
142
+ )
143
+ def test_uniform_quantize(
144
+ self, tensor, scale, zero_points, num_bits, symmetric, expected_tensor
145
+ ):
146
+ quant_params = qtyping.UniformQuantParams(
147
+ quantized_dimension=0,
148
+ num_bits=num_bits,
149
+ scale=np.array(scale),
150
+ zero_point=np.array(zero_points),
151
+ symmetric=symmetric,
152
+ )
153
+
154
+ quantized_tensor = uniform_quantize_tensor.uniform_quantize(
155
+ np.array(tensor), quant_params
156
+ )
157
+
158
+ self.assertSequenceAlmostEqual(expected_tensor, quantized_tensor)
159
+
160
+ def test_uniform_quantize_wrong_shape(self):
161
+ tensor = [-3.0, 1.3, 2.4, 16.0]
162
+
163
+ error_message = "scale and zero_point must have the same shape."
164
+ with self.assertRaisesWithPredicateMatch(
165
+ ValueError, lambda err: error_message in str(err)
166
+ ):
167
+ uniform_quantize_tensor.uniform_quantize(
168
+ np.array(tensor),
169
+ qtyping.UniformQuantParams(
170
+ quantized_dimension=0,
171
+ num_bits=4,
172
+ scale=np.array([[[1.2666667]]]),
173
+ zero_point=np.array([[-6]]),
174
+ symmetric=True,
175
+ ),
176
+ )
177
+
178
+ error_message = "Ranks of scales"
179
+ with self.assertRaisesWithPredicateMatch(
180
+ ValueError, lambda err: error_message in str(err)
181
+ ):
182
+ uniform_quantize_tensor.uniform_quantize(
183
+ np.array(tensor),
184
+ qtyping.UniformQuantParams(
185
+ quantized_dimension=0,
186
+ num_bits=4,
187
+ scale=np.array([[1.2666667]]),
188
+ zero_point=np.array([[-6]]),
189
+ symmetric=True,
190
+ ),
191
+ )
192
+
193
+ @parameterized.parameters(
194
+ (
195
+ 8,
196
+ [-24, 10, 19, 127],
197
+ [0.12598425],
198
+ [0],
199
+ [-3.023622, 1.2598425, 2.3937008, 16.0],
200
+ ),
201
+ (
202
+ 4,
203
+ [-8, -5, -4, 7],
204
+ [1.2666667],
205
+ [-6],
206
+ [-2.5333335, 1.2666668, 2.5333335, 16.466667],
207
+ ),
208
+ )
209
+ def test_uniform_dequantize(
210
+ self,
211
+ num_bits,
212
+ quantized_tensor,
213
+ scale,
214
+ zero_points,
215
+ expected_output_tensor,
216
+ ):
217
+ quant_params = qtyping.UniformQuantParams(
218
+ quantized_dimension=0,
219
+ num_bits=num_bits,
220
+ scale=np.array(scale),
221
+ zero_point=np.array(zero_points),
222
+ symmetric=False,
223
+ )
224
+
225
+ dequantized_tensor = uniform_quantize_tensor.uniform_dequantize(
226
+ np.array(quantized_tensor), quant_params
227
+ )
228
+
229
+ self.assertSequenceAlmostEqual(
230
+ expected_output_tensor, dequantized_tensor, places=4
231
+ )
232
+
233
+ def test_uniform_dequantize_wrong_shape(self):
234
+ tensor = [-3.0, 1.3, 2.4, 16.0]
235
+
236
+ error_message = "scale and zero_point must have the same shape."
237
+ with self.assertRaisesWithPredicateMatch(
238
+ ValueError, lambda err: error_message in str(err)
239
+ ):
240
+ uniform_quantize_tensor.uniform_dequantize(
241
+ np.array(tensor),
242
+ qtyping.UniformQuantParams(
243
+ quantized_dimension=0,
244
+ num_bits=4,
245
+ scale=np.array([[[1.2666667]]]),
246
+ zero_point=np.array([[-6]]),
247
+ symmetric=True,
248
+ ),
249
+ )
250
+
251
+ error_message = "Ranks of scales"
252
+ with self.assertRaisesWithPredicateMatch(
253
+ ValueError, lambda err: error_message in str(err)
254
+ ):
255
+ uniform_quantize_tensor.uniform_dequantize(
256
+ np.array(tensor),
257
+ qtyping.UniformQuantParams(
258
+ quantized_dimension=0,
259
+ num_bits=4,
260
+ scale=np.array([[1.2666667]]),
261
+ zero_point=np.array([[-6]]),
262
+ symmetric=True,
263
+ ),
264
+ )
265
+
266
+ @parameterized.parameters(
267
+ (8, 8, True, True), (8, 4, False, True), (16, 8, True, False)
268
+ )
269
+ def test_quantize_bias_tensor(
270
+ self,
271
+ activation_num_bits,
272
+ weight_num_bits,
273
+ symmetric_weights,
274
+ channelwise_weight,
275
+ ):
276
+ input_quant_config = qtyping.UniformQuantParams(
277
+ scale=np.array([0.8]),
278
+ zero_point=np.array([10]),
279
+ num_bits=activation_num_bits,
280
+ symmetric=False,
281
+ quantized_dimension=None,
282
+ )
283
+ weight_scale, weight_zp = [0.1], [-1]
284
+ num_channels, quantized_dimension = 1, None
285
+ if channelwise_weight:
286
+ num_channels = 2
287
+ weight_scale = weight_scale * num_channels
288
+ weight_zp = weight_zp * num_channels
289
+ quantized_dimension = 0
290
+
291
+ weight_quant_config = qtyping.UniformQuantParams(
292
+ quantized_dimension=0,
293
+ num_bits=weight_num_bits,
294
+ scale=np.array(weight_scale, dtype=np.float32),
295
+ zero_point=np.array(weight_zp, dtype=np.int8),
296
+ symmetric=symmetric_weights,
297
+ )
298
+ bias_tensor_data = np.array([66.0, 88.0])
299
+
300
+ bias_quant_config = uniform_quantize_tensor.symmetric_quantize_bias_tensor(
301
+ bias_tensor_data,
302
+ input_quant_config,
303
+ weight_quant_config,
304
+ )
305
+ bias_num_bits = 32 if activation_num_bits == 8 else 64
306
+ self.assertEqual(bias_quant_config.num_bits, bias_num_bits)
307
+ # Alwasys a 1D array
308
+ self.assertLen(bias_quant_config.scale.shape, 1)
309
+ self.assertLen(bias_quant_config.zero_point.shape, 1)
310
+
311
+ self.assertLen(bias_quant_config.scale, num_channels)
312
+ effective_scale = input_quant_config.scale[0] * weight_quant_config.scale[0]
313
+ self.assertEqual(bias_quant_config.scale[0], effective_scale)
314
+ self.assertEqual(bias_quant_config.zero_point[0], 0) # Always symmetric
315
+ self.assertEqual(bias_quant_config.symmetric, True)
316
+ self.assertEqual(bias_quant_config.quantized_dimension, quantized_dimension)
317
+
318
+ # Check quantized content
319
+ dequantized_bias = uniform_quantize_tensor.uniform_dequantize(
320
+ bias_quant_config.quantized_data, bias_quant_config
321
+ )
322
+ self.assertSequenceAlmostEqual(
323
+ list(dequantized_bias.flatten()), list(bias_tensor_data), places=5
324
+ )
325
+ expected_quantized_data = uniform_quantize_tensor.uniform_quantize(
326
+ bias_tensor_data, bias_quant_config
327
+ )
328
+ self.assertSequenceEqual(
329
+ list(expected_quantized_data.flatten()),
330
+ list(bias_quant_config.quantized_data.flatten()), # pytype: disable=attribute-error
331
+ )
332
+
333
+ @parameterized.parameters((8, True), (16, False))
334
+ def test_tensor_zp_scale_from_min_max(self, num_bits, symmetric):
335
+ min_val = np.min(self._test_data, keepdims=True)
336
+ max_val = np.max(self._test_data, keepdims=True)
337
+
338
+ zp, scale = uniform_quantize_tensor.tensor_zp_scale_from_min_max(
339
+ min_val, max_val, num_bits, symmetric
340
+ )
341
+ self.assertEqual(zp.shape, scale.shape)
342
+ max_q = 2**num_bits / 2 - 1
343
+ calculated_max = scale[0] * (max_q - zp[0])
344
+ self.assertAlmostEqual(calculated_max, max_val, delta=1e-3)
345
+ min_q = -(2**num_bits) / 2
346
+ if symmetric:
347
+ min_q += 1
348
+ calculated_min = scale[0] * (min_q - zp[0])
349
+ if symmetric:
350
+ self.assertAlmostEqual(calculated_min, -max_val, delta=1e-3)
351
+ else:
352
+ # Range has to be extended to include zero.
353
+ self.assertEqual(calculated_min, 0)
354
+
355
+
356
+ if __name__ == "__main__":
357
+ googletest.main()
@@ -0,0 +1,15 @@
1
+ # Copyright 2024 The AI Edge Quantizer Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+