ai-edge-quantizer-nightly 0.0.1.dev20250115__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_edge_quantizer/__init__.py +19 -0
- ai_edge_quantizer/algorithm_manager.py +167 -0
- ai_edge_quantizer/algorithm_manager_api.py +271 -0
- ai_edge_quantizer/algorithm_manager_api_test.py +210 -0
- ai_edge_quantizer/algorithms/__init__.py +15 -0
- ai_edge_quantizer/algorithms/nonlinear_quantize/__init__.py +15 -0
- ai_edge_quantizer/algorithms/nonlinear_quantize/float_casting.py +273 -0
- ai_edge_quantizer/algorithms/nonlinear_quantize/float_casting_test.py +664 -0
- ai_edge_quantizer/algorithms/uniform_quantize/__init__.py +15 -0
- ai_edge_quantizer/algorithms/uniform_quantize/naive_min_max_quantize.py +666 -0
- ai_edge_quantizer/algorithms/uniform_quantize/naive_min_max_quantize_test.py +184 -0
- ai_edge_quantizer/algorithms/uniform_quantize/uniform_quantize_tensor.py +371 -0
- ai_edge_quantizer/algorithms/uniform_quantize/uniform_quantize_tensor_test.py +357 -0
- ai_edge_quantizer/algorithms/utils/__init__.py +15 -0
- ai_edge_quantizer/algorithms/utils/min_max_quantize_utils.py +1067 -0
- ai_edge_quantizer/algorithms/utils/min_max_quantize_utils_test.py +512 -0
- ai_edge_quantizer/calibrator.py +288 -0
- ai_edge_quantizer/calibrator_test.py +297 -0
- ai_edge_quantizer/conftest.py +22 -0
- ai_edge_quantizer/default_policy.py +310 -0
- ai_edge_quantizer/model_modifier.py +176 -0
- ai_edge_quantizer/model_modifier_test.py +130 -0
- ai_edge_quantizer/model_validator.py +357 -0
- ai_edge_quantizer/model_validator_test.py +354 -0
- ai_edge_quantizer/params_generator.py +361 -0
- ai_edge_quantizer/params_generator_test.py +1041 -0
- ai_edge_quantizer/qtyping.py +483 -0
- ai_edge_quantizer/quantizer.py +372 -0
- ai_edge_quantizer/quantizer_test.py +532 -0
- ai_edge_quantizer/recipe.py +67 -0
- ai_edge_quantizer/recipe_manager.py +245 -0
- ai_edge_quantizer/recipe_manager_test.py +815 -0
- ai_edge_quantizer/recipe_test.py +97 -0
- ai_edge_quantizer/transformation_instruction_generator.py +584 -0
- ai_edge_quantizer/transformation_instruction_generator_test.py +1082 -0
- ai_edge_quantizer/transformation_performer.py +278 -0
- ai_edge_quantizer/transformation_performer_test.py +344 -0
- ai_edge_quantizer/transformations/__init__.py +15 -0
- ai_edge_quantizer/transformations/dequant_insert.py +87 -0
- ai_edge_quantizer/transformations/dequant_insert_test.py +304 -0
- ai_edge_quantizer/transformations/emulated_subchannel.py +363 -0
- ai_edge_quantizer/transformations/emulated_subchannel_test.py +212 -0
- ai_edge_quantizer/transformations/quant_insert.py +100 -0
- ai_edge_quantizer/transformations/quant_insert_test.py +284 -0
- ai_edge_quantizer/transformations/quantize_tensor.py +156 -0
- ai_edge_quantizer/transformations/quantize_tensor_test.py +227 -0
- ai_edge_quantizer/transformations/transformation_utils.py +132 -0
- ai_edge_quantizer/transformations/transformation_utils_test.py +162 -0
- ai_edge_quantizer/utils/__init__.py +15 -0
- ai_edge_quantizer/utils/calibration_utils.py +86 -0
- ai_edge_quantizer/utils/calibration_utils_test.py +77 -0
- ai_edge_quantizer/utils/test_utils.py +107 -0
- ai_edge_quantizer/utils/tfl_flatbuffer_utils.py +317 -0
- ai_edge_quantizer/utils/tfl_flatbuffer_utils_test.py +200 -0
- ai_edge_quantizer/utils/tfl_interpreter_utils.py +312 -0
- ai_edge_quantizer/utils/tfl_interpreter_utils_test.py +332 -0
- ai_edge_quantizer/utils/validation_utils.py +125 -0
- ai_edge_quantizer/utils/validation_utils_test.py +87 -0
- ai_edge_quantizer_nightly-0.0.1.dev20250115.dist-info/LICENSE +201 -0
- ai_edge_quantizer_nightly-0.0.1.dev20250115.dist-info/METADATA +32 -0
- ai_edge_quantizer_nightly-0.0.1.dev20250115.dist-info/RECORD +63 -0
- ai_edge_quantizer_nightly-0.0.1.dev20250115.dist-info/WHEEL +5 -0
- ai_edge_quantizer_nightly-0.0.1.dev20250115.dist-info/top_level.txt +1 -0
@@ -0,0 +1,664 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Quantizer Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import os
|
17
|
+
from absl.testing import parameterized
|
18
|
+
import numpy as np
|
19
|
+
from tensorflow.python.platform import googletest
|
20
|
+
from ai_edge_quantizer import qtyping
|
21
|
+
from ai_edge_quantizer.algorithms.nonlinear_quantize import float_casting
|
22
|
+
from ai_edge_quantizer.utils import test_utils
|
23
|
+
from ai_edge_quantizer.utils import tfl_flatbuffer_utils
|
24
|
+
|
25
|
+
_TEST_DATA_PREFIX_PATH = test_utils.get_path_to_datafile("../../tests/models")
|
26
|
+
_TFLOpName = qtyping.TFLOperationName
|
27
|
+
_ComputePrecision = qtyping.ComputePrecision
|
28
|
+
_TensorQuantConfig = qtyping.TensorQuantizationConfig
|
29
|
+
_QuantTransformation = qtyping.QuantTransformation
|
30
|
+
|
31
|
+
|
32
|
+
class Fp16QuantizeTest(parameterized.TestCase):
|
33
|
+
|
34
|
+
def setUp(self):
|
35
|
+
super().setUp()
|
36
|
+
np.random.seed(666)
|
37
|
+
self._test_model_path = os.path.join(
|
38
|
+
_TEST_DATA_PREFIX_PATH, "conv_fc_mnist.tflite"
|
39
|
+
)
|
40
|
+
self._test_model = tfl_flatbuffer_utils.read_model(self._test_model_path)
|
41
|
+
# The test model has one subgraph for now.
|
42
|
+
self._graph_info = qtyping.GraphInfo(
|
43
|
+
subgraph_tensors=self._test_model.subgraphs[0].tensors,
|
44
|
+
buffers=self._test_model.buffers,
|
45
|
+
)
|
46
|
+
self._tensor_name_to_qsv = {}
|
47
|
+
|
48
|
+
@parameterized.named_parameters(
|
49
|
+
dict(
|
50
|
+
testcase_name="fc",
|
51
|
+
op_name=_TFLOpName.FULLY_CONNECTED,
|
52
|
+
),
|
53
|
+
dict(
|
54
|
+
testcase_name="conv2d",
|
55
|
+
op_name=_TFLOpName.CONV_2D,
|
56
|
+
),
|
57
|
+
dict(
|
58
|
+
testcase_name="embedding_lookup",
|
59
|
+
op_name=_TFLOpName.EMBEDDING_LOOKUP,
|
60
|
+
),
|
61
|
+
)
|
62
|
+
def test_check_op_quantization_config_succeeds(self, op_name):
|
63
|
+
float_casting.check_op_quantization_config(
|
64
|
+
op_name,
|
65
|
+
qtyping.OpQuantizationConfig(
|
66
|
+
weight_tensor_config=_TensorQuantConfig(
|
67
|
+
num_bits=16, dtype=qtyping.TensorDataType.FLOAT
|
68
|
+
),
|
69
|
+
compute_precision=_ComputePrecision.FLOAT, # WEIGHT_ONLY.
|
70
|
+
explicit_dequantize=True,
|
71
|
+
),
|
72
|
+
)
|
73
|
+
|
74
|
+
@parameterized.named_parameters(
|
75
|
+
dict(
|
76
|
+
testcase_name="invalid_fc",
|
77
|
+
op_name=_TFLOpName.FULLY_CONNECTED,
|
78
|
+
),
|
79
|
+
dict(
|
80
|
+
testcase_name="invalid_conv2d",
|
81
|
+
op_name=_TFLOpName.CONV_2D,
|
82
|
+
),
|
83
|
+
dict(
|
84
|
+
testcase_name="invalid_embedding_lookup",
|
85
|
+
op_name=_TFLOpName.EMBEDDING_LOOKUP,
|
86
|
+
),
|
87
|
+
)
|
88
|
+
def test_check_op_quantization_config_invalid_activation_tensor_config_raises_exception(
|
89
|
+
self, op_name
|
90
|
+
):
|
91
|
+
# With activation tensor config.
|
92
|
+
error_message = (
|
93
|
+
"Activation tensor quantization is not supported for float casting"
|
94
|
+
" quantization."
|
95
|
+
)
|
96
|
+
with self.assertRaisesWithPredicateMatch(
|
97
|
+
ValueError, lambda err: error_message in str(err)
|
98
|
+
):
|
99
|
+
float_casting.check_op_quantization_config(
|
100
|
+
op_name,
|
101
|
+
qtyping.OpQuantizationConfig(
|
102
|
+
activation_tensor_config=_TensorQuantConfig(
|
103
|
+
num_bits=16, dtype=qtyping.TensorDataType.FLOAT
|
104
|
+
),
|
105
|
+
weight_tensor_config=_TensorQuantConfig(
|
106
|
+
num_bits=16, dtype=qtyping.TensorDataType.FLOAT
|
107
|
+
),
|
108
|
+
compute_precision=_ComputePrecision.FLOAT, # WEIGHT_ONLY.
|
109
|
+
explicit_dequantize=True,
|
110
|
+
),
|
111
|
+
)
|
112
|
+
|
113
|
+
@parameterized.named_parameters(
|
114
|
+
dict(
|
115
|
+
testcase_name="invalid_fc",
|
116
|
+
op_name=_TFLOpName.FULLY_CONNECTED,
|
117
|
+
),
|
118
|
+
dict(
|
119
|
+
testcase_name="invalid_conv2d",
|
120
|
+
op_name=_TFLOpName.CONV_2D,
|
121
|
+
),
|
122
|
+
dict(
|
123
|
+
testcase_name="invalid_embedding_lookup",
|
124
|
+
op_name=_TFLOpName.EMBEDDING_LOOKUP,
|
125
|
+
),
|
126
|
+
)
|
127
|
+
def test_check_op_quantization_config_invalid_bit_width_raises_exception(
|
128
|
+
self, op_name
|
129
|
+
):
|
130
|
+
error_message = (
|
131
|
+
"float casting quantization config requires number of bits to be set as"
|
132
|
+
" 16, dtype as float"
|
133
|
+
)
|
134
|
+
# Wrong bit width.
|
135
|
+
with self.assertRaisesWithPredicateMatch(
|
136
|
+
ValueError, lambda err: error_message in str(err)
|
137
|
+
):
|
138
|
+
float_casting.check_op_quantization_config(
|
139
|
+
op_name,
|
140
|
+
qtyping.OpQuantizationConfig(
|
141
|
+
activation_tensor_config=None,
|
142
|
+
weight_tensor_config=_TensorQuantConfig(
|
143
|
+
num_bits=8, dtype=qtyping.TensorDataType.FLOAT
|
144
|
+
),
|
145
|
+
compute_precision=_ComputePrecision.FLOAT, # WEIGHT_ONLY.
|
146
|
+
explicit_dequantize=True,
|
147
|
+
),
|
148
|
+
)
|
149
|
+
|
150
|
+
@parameterized.named_parameters(
|
151
|
+
dict(
|
152
|
+
testcase_name="invalid_fc",
|
153
|
+
op_name=_TFLOpName.FULLY_CONNECTED,
|
154
|
+
),
|
155
|
+
dict(
|
156
|
+
testcase_name="invalid_conv2d",
|
157
|
+
op_name=_TFLOpName.CONV_2D,
|
158
|
+
),
|
159
|
+
dict(
|
160
|
+
testcase_name="invalid_embedding_lookup",
|
161
|
+
op_name=_TFLOpName.EMBEDDING_LOOKUP,
|
162
|
+
),
|
163
|
+
)
|
164
|
+
def test_check_op_quantization_config_invalid_dtype_raises_exception(
|
165
|
+
self, op_name
|
166
|
+
):
|
167
|
+
error_message = (
|
168
|
+
"float casting quantization config requires number of bits to be set as"
|
169
|
+
" 16, dtype as float"
|
170
|
+
)
|
171
|
+
# Wrong dtype.
|
172
|
+
with self.assertRaisesWithPredicateMatch(
|
173
|
+
ValueError, lambda err: error_message in str(err)
|
174
|
+
):
|
175
|
+
float_casting.check_op_quantization_config(
|
176
|
+
op_name,
|
177
|
+
qtyping.OpQuantizationConfig(
|
178
|
+
activation_tensor_config=None,
|
179
|
+
weight_tensor_config=_TensorQuantConfig(
|
180
|
+
num_bits=16, dtype=qtyping.TensorDataType.INT
|
181
|
+
),
|
182
|
+
compute_precision=_ComputePrecision.FLOAT, # WEIGHT_ONLY.
|
183
|
+
explicit_dequantize=True,
|
184
|
+
),
|
185
|
+
)
|
186
|
+
|
187
|
+
@parameterized.named_parameters(
|
188
|
+
dict(
|
189
|
+
testcase_name="invalid_fc",
|
190
|
+
op_name=_TFLOpName.FULLY_CONNECTED,
|
191
|
+
),
|
192
|
+
dict(
|
193
|
+
testcase_name="invalid_conv2d",
|
194
|
+
op_name=_TFLOpName.CONV_2D,
|
195
|
+
),
|
196
|
+
dict(
|
197
|
+
testcase_name="invalid_embedding_lookup",
|
198
|
+
op_name=_TFLOpName.EMBEDDING_LOOKUP,
|
199
|
+
),
|
200
|
+
)
|
201
|
+
def test_check_op_quantization_config_no_weight_config_raises_exception(
|
202
|
+
self, op_name
|
203
|
+
):
|
204
|
+
error_message = (
|
205
|
+
"Weight tensor quantization config is required for float casting"
|
206
|
+
" quantization."
|
207
|
+
)
|
208
|
+
# No weight quantization config.
|
209
|
+
with self.assertRaisesWithPredicateMatch(
|
210
|
+
ValueError, lambda err: error_message in str(err)
|
211
|
+
):
|
212
|
+
float_casting.check_op_quantization_config(
|
213
|
+
op_name,
|
214
|
+
qtyping.OpQuantizationConfig(
|
215
|
+
activation_tensor_config=None,
|
216
|
+
compute_precision=_ComputePrecision.FLOAT, # WEIGHT_ONLY.
|
217
|
+
explicit_dequantize=True,
|
218
|
+
),
|
219
|
+
)
|
220
|
+
|
221
|
+
@parameterized.named_parameters(
|
222
|
+
dict(
|
223
|
+
testcase_name="averagepool2D",
|
224
|
+
op_name=_TFLOpName.AVERAGE_POOL_2D,
|
225
|
+
),
|
226
|
+
dict(
|
227
|
+
testcase_name="reshape",
|
228
|
+
op_name=_TFLOpName.RESHAPE,
|
229
|
+
),
|
230
|
+
)
|
231
|
+
def test_check_op_quantization_config_invalid_ops_raises_exception(
|
232
|
+
self, op_name
|
233
|
+
):
|
234
|
+
error_message = "Unsupported op"
|
235
|
+
with self.assertRaisesWithPredicateMatch(
|
236
|
+
ValueError, lambda err: error_message in str(err)
|
237
|
+
):
|
238
|
+
float_casting.check_op_quantization_config(
|
239
|
+
op_name=op_name,
|
240
|
+
op_quant_config=qtyping.OpQuantizationConfig(
|
241
|
+
activation_tensor_config=None,
|
242
|
+
weight_tensor_config=_TensorQuantConfig(
|
243
|
+
num_bits=16, dtype=qtyping.TensorDataType.FLOAT
|
244
|
+
),
|
245
|
+
compute_precision=_ComputePrecision.FLOAT, # WEIGHT_ONLY.
|
246
|
+
explicit_dequantize=True,
|
247
|
+
),
|
248
|
+
)
|
249
|
+
|
250
|
+
@parameterized.named_parameters(
|
251
|
+
dict(
|
252
|
+
testcase_name="fc_with_bias",
|
253
|
+
subgraph_op_id=3,
|
254
|
+
op_tensor_names={
|
255
|
+
"weight": "arith.constant1",
|
256
|
+
"bias": "arith.constant2",
|
257
|
+
"input": "sequential/flatten/Reshape",
|
258
|
+
"output": "sequential/dense/MatMul;sequential/dense/Relu;sequential/dense/BiasAdd",
|
259
|
+
},
|
260
|
+
),
|
261
|
+
dict(
|
262
|
+
testcase_name="fc_with_no_bias",
|
263
|
+
subgraph_op_id=4,
|
264
|
+
op_tensor_names={
|
265
|
+
"weight": "arith.constant",
|
266
|
+
"input": "sequential/dense/MatMul;sequential/dense/Relu;sequential/dense/BiasAdd",
|
267
|
+
"output": "sequential/dense_1/MatMul",
|
268
|
+
},
|
269
|
+
),
|
270
|
+
)
|
271
|
+
def test_fully_connected_weight_only_succeeds(
|
272
|
+
self, subgraph_op_id, op_tensor_names
|
273
|
+
):
|
274
|
+
subgraph0 = self._test_model.subgraphs[0]
|
275
|
+
fc_op = subgraph0.operators[subgraph_op_id]
|
276
|
+
op_info = qtyping.OpInfo(
|
277
|
+
op=fc_op,
|
278
|
+
op_name=_TFLOpName.FULLY_CONNECTED,
|
279
|
+
subgraph_op_index=subgraph_op_id,
|
280
|
+
op_quant_config=qtyping.OpQuantizationConfig(
|
281
|
+
weight_tensor_config=_TensorQuantConfig(
|
282
|
+
num_bits=16, dtype=qtyping.TensorDataType.FLOAT
|
283
|
+
),
|
284
|
+
compute_precision=_ComputePrecision.FLOAT, # WEIGHT_ONLY.
|
285
|
+
explicit_dequantize=True,
|
286
|
+
),
|
287
|
+
)
|
288
|
+
|
289
|
+
self._test_fc_conv(
|
290
|
+
op_info,
|
291
|
+
self._graph_info,
|
292
|
+
op_tensor_names,
|
293
|
+
float_casting.materialize_fc_conv,
|
294
|
+
)
|
295
|
+
|
296
|
+
def test_conv2d_weight_only_succeeds(self):
|
297
|
+
# Read from Model Explorer.
|
298
|
+
subgraph0 = self._test_model.subgraphs[0]
|
299
|
+
subgraph_op_id = 0
|
300
|
+
op = subgraph0.operators[subgraph_op_id]
|
301
|
+
|
302
|
+
op_info = qtyping.OpInfo(
|
303
|
+
op=op,
|
304
|
+
op_name=_TFLOpName.CONV_2D,
|
305
|
+
subgraph_op_index=subgraph_op_id,
|
306
|
+
op_quant_config=qtyping.OpQuantizationConfig(
|
307
|
+
weight_tensor_config=_TensorQuantConfig(
|
308
|
+
num_bits=16, dtype=qtyping.TensorDataType.FLOAT
|
309
|
+
),
|
310
|
+
compute_precision=_ComputePrecision.FLOAT, # WEIGHT_ONLY.
|
311
|
+
explicit_dequantize=True,
|
312
|
+
),
|
313
|
+
)
|
314
|
+
|
315
|
+
op_tensor_names = {}
|
316
|
+
op_tensor_names["weight"] = "sequential/conv2d/Conv2D"
|
317
|
+
op_tensor_names["bias"] = (
|
318
|
+
"sequential/conv2d/Relu;sequential/conv2d/BiasAdd;sequential/conv2d/Conv2D;sequential/conv2d/BiasAdd/ReadVariableOp"
|
319
|
+
)
|
320
|
+
op_tensor_names["input"] = "serving_default_conv2d_input:0"
|
321
|
+
op_tensor_names["output"] = (
|
322
|
+
"sequential/conv2d/Relu;sequential/conv2d/BiasAdd;sequential/conv2d/Conv2D;sequential/conv2d/BiasAdd/ReadVariableOp1"
|
323
|
+
)
|
324
|
+
self._test_fc_conv(
|
325
|
+
op_info,
|
326
|
+
self._graph_info,
|
327
|
+
op_tensor_names,
|
328
|
+
float_casting.materialize_fc_conv,
|
329
|
+
)
|
330
|
+
|
331
|
+
@parameterized.named_parameters(
|
332
|
+
dict(
|
333
|
+
testcase_name="invalid_fc",
|
334
|
+
op_name=_TFLOpName.FULLY_CONNECTED,
|
335
|
+
),
|
336
|
+
dict(
|
337
|
+
testcase_name="invalid_conv2d",
|
338
|
+
op_name=_TFLOpName.CONV_2D,
|
339
|
+
),
|
340
|
+
dict(
|
341
|
+
testcase_name="invalid_embedding_lookup",
|
342
|
+
op_name=_TFLOpName.EMBEDDING_LOOKUP,
|
343
|
+
),
|
344
|
+
)
|
345
|
+
def test_check_op_quantization_config_invalid_execution_mode_raises_exception(
|
346
|
+
self, op_name
|
347
|
+
):
|
348
|
+
# Use DRQ instead of WEIGHT-ONLY.
|
349
|
+
error_message = (
|
350
|
+
"Currently, only Weight-Only is supported for float casting"
|
351
|
+
" quantization."
|
352
|
+
)
|
353
|
+
with self.assertRaisesWithPredicateMatch(
|
354
|
+
ValueError, lambda err: error_message in str(err)
|
355
|
+
):
|
356
|
+
float_casting.check_op_quantization_config(
|
357
|
+
op_name,
|
358
|
+
qtyping.OpQuantizationConfig(
|
359
|
+
activation_tensor_config=None,
|
360
|
+
weight_tensor_config=_TensorQuantConfig(
|
361
|
+
num_bits=16, dtype=qtyping.TensorDataType.FLOAT
|
362
|
+
),
|
363
|
+
compute_precision=_ComputePrecision.INTEGER, # DRQ.
|
364
|
+
),
|
365
|
+
)
|
366
|
+
|
367
|
+
def test_conv2d_transpose_weight_only_succeeds(self):
|
368
|
+
# Read from Model Explorer.
|
369
|
+
test_model_path = os.path.join(
|
370
|
+
_TEST_DATA_PREFIX_PATH, "single_conv2d_transpose_bias.tflite"
|
371
|
+
)
|
372
|
+
|
373
|
+
test_model = tfl_flatbuffer_utils.read_model(test_model_path)
|
374
|
+
# The test model has one subgraph for now.
|
375
|
+
graph_info = qtyping.GraphInfo(
|
376
|
+
subgraph_tensors=test_model.subgraphs[0].tensors,
|
377
|
+
buffers=test_model.buffers,
|
378
|
+
)
|
379
|
+
|
380
|
+
subgraph0 = test_model.subgraphs[0]
|
381
|
+
subgraph_op_id = 0
|
382
|
+
op = subgraph0.operators[subgraph_op_id]
|
383
|
+
|
384
|
+
op_info = qtyping.OpInfo(
|
385
|
+
op=op,
|
386
|
+
op_name=_TFLOpName.CONV_2D_TRANSPOSE,
|
387
|
+
subgraph_op_index=subgraph_op_id,
|
388
|
+
op_quant_config=qtyping.OpQuantizationConfig(
|
389
|
+
weight_tensor_config=_TensorQuantConfig(
|
390
|
+
num_bits=16, dtype=qtyping.TensorDataType.FLOAT
|
391
|
+
),
|
392
|
+
compute_precision=_ComputePrecision.FLOAT, # WEIGHT_ONLY.
|
393
|
+
explicit_dequantize=True,
|
394
|
+
),
|
395
|
+
)
|
396
|
+
|
397
|
+
op_tensor_names = {}
|
398
|
+
op_tensor_names["weight"] = (
|
399
|
+
"sequential_5/conv2d_transpose_3/conv2d_transpose"
|
400
|
+
)
|
401
|
+
op_tensor_names["bias"] = (
|
402
|
+
"sequential_5/conv2d_transpose_3/BiasAdd;sequential_5/conv2d_transpose_3/conv2d_transpose;sequential_5/conv2d_transpose_3/BiasAdd/ReadVariableOp"
|
403
|
+
)
|
404
|
+
op_tensor_names["input"] = "serving_default_input_6:0"
|
405
|
+
op_tensor_names["output"] = "StatefulPartitionedCall:0"
|
406
|
+
|
407
|
+
tensor_quant_params = float_casting.materialize_conv2d_transpose(
|
408
|
+
op_info, graph_info, self._tensor_name_to_qsv
|
409
|
+
)
|
410
|
+
_, weight_tensor, bias_tensor, _ = (
|
411
|
+
tfl_flatbuffer_utils.parse_fc_bmm_conv_tensors(
|
412
|
+
op_info.op, graph_info.subgraph_tensors
|
413
|
+
)
|
414
|
+
)
|
415
|
+
|
416
|
+
num_configs = 4 if bias_tensor is not None else 3
|
417
|
+
self.assertLen(tensor_quant_params, num_configs)
|
418
|
+
|
419
|
+
# Test input tensor params.
|
420
|
+
self._test_fp16_nonweight_tensor_transformation_params(
|
421
|
+
op_tensor_names["input"],
|
422
|
+
op_info.subgraph_op_index,
|
423
|
+
transformation_params=tensor_quant_params[0],
|
424
|
+
desired_transformations=[_QuantTransformation.NO_QUANTIZE],
|
425
|
+
is_inbounding_tensor=True,
|
426
|
+
)
|
427
|
+
|
428
|
+
# Test weight tensor params.
|
429
|
+
weight_tensor_data = tfl_flatbuffer_utils.get_tensor_data(
|
430
|
+
weight_tensor,
|
431
|
+
graph_info.buffers,
|
432
|
+
)
|
433
|
+
self._test_fp16_weight_tensor_transformation_params(
|
434
|
+
op_tensor_names["weight"],
|
435
|
+
op_info.subgraph_op_index,
|
436
|
+
tensor_quant_config=op_info.op_quant_config.weight_tensor_config,
|
437
|
+
transformation_params=tensor_quant_params[1],
|
438
|
+
desired_transformations=[_QuantTransformation.ADD_DEQUANTIZE],
|
439
|
+
tensor_data=weight_tensor_data,
|
440
|
+
)
|
441
|
+
# Test output tensor params.
|
442
|
+
self._test_fp16_nonweight_tensor_transformation_params(
|
443
|
+
op_tensor_names["output"],
|
444
|
+
op_info.subgraph_op_index,
|
445
|
+
transformation_params=tensor_quant_params[2],
|
446
|
+
desired_transformations=[_QuantTransformation.NO_QUANTIZE],
|
447
|
+
is_inbounding_tensor=False,
|
448
|
+
)
|
449
|
+
|
450
|
+
# Test bias tensor params.
|
451
|
+
if bias_tensor is not None:
|
452
|
+
self._test_fp16_nonweight_tensor_transformation_params(
|
453
|
+
op_tensor_names["bias"],
|
454
|
+
op_info.subgraph_op_index,
|
455
|
+
transformation_params=tensor_quant_params[3],
|
456
|
+
desired_transformations=[_QuantTransformation.NO_QUANTIZE],
|
457
|
+
is_inbounding_tensor=True,
|
458
|
+
)
|
459
|
+
|
460
|
+
def test_depthwise_conv2d_weight_only_succeeds(self):
|
461
|
+
# Read from Model Explorer.
|
462
|
+
test_model_path = os.path.join(
|
463
|
+
_TEST_DATA_PREFIX_PATH, "single_depthwise_conv2d_bias.tflite"
|
464
|
+
)
|
465
|
+
|
466
|
+
test_model = tfl_flatbuffer_utils.read_model(test_model_path)
|
467
|
+
# The test model has one subgraph for now.
|
468
|
+
graph_info = qtyping.GraphInfo(
|
469
|
+
subgraph_tensors=test_model.subgraphs[0].tensors,
|
470
|
+
buffers=test_model.buffers,
|
471
|
+
)
|
472
|
+
|
473
|
+
subgraph0 = test_model.subgraphs[0]
|
474
|
+
subgraph_op_id = 0
|
475
|
+
op = subgraph0.operators[subgraph_op_id]
|
476
|
+
|
477
|
+
op_info = qtyping.OpInfo(
|
478
|
+
op=op,
|
479
|
+
op_name=_TFLOpName.DEPTHWISE_CONV_2D,
|
480
|
+
subgraph_op_index=subgraph_op_id,
|
481
|
+
op_quant_config=qtyping.OpQuantizationConfig(
|
482
|
+
weight_tensor_config=_TensorQuantConfig(
|
483
|
+
num_bits=16, dtype=qtyping.TensorDataType.FLOAT
|
484
|
+
),
|
485
|
+
compute_precision=_ComputePrecision.FLOAT, # WEIGHT_ONLY.
|
486
|
+
explicit_dequantize=True,
|
487
|
+
),
|
488
|
+
)
|
489
|
+
|
490
|
+
op_tensor_names = {}
|
491
|
+
op_tensor_names["weight"] = "sequential/depthwise_conv2d/depthwise"
|
492
|
+
op_tensor_names["bias"] = (
|
493
|
+
"sequential/depthwise_conv2d/BiasAdd;sequential/depthwise_conv2d/depthwise;sequential/depthwise_conv2d/BiasAdd/ReadVariableOp"
|
494
|
+
)
|
495
|
+
op_tensor_names["input"] = "serving_default_input_1:0"
|
496
|
+
op_tensor_names["output"] = "StatefulPartitionedCall:0"
|
497
|
+
self._test_fc_conv(
|
498
|
+
op_info,
|
499
|
+
graph_info,
|
500
|
+
op_tensor_names,
|
501
|
+
float_casting.materialize_fc_conv,
|
502
|
+
)
|
503
|
+
|
504
|
+
def test_embedding_lookup_weight_only_succeeds(self):
|
505
|
+
test_model_path = os.path.join(
|
506
|
+
_TEST_DATA_PREFIX_PATH, "embedding_lookup.tflite"
|
507
|
+
)
|
508
|
+
|
509
|
+
test_model = tfl_flatbuffer_utils.read_model(test_model_path)
|
510
|
+
graph_info = qtyping.GraphInfo(
|
511
|
+
subgraph_tensors=test_model.subgraphs[0].tensors,
|
512
|
+
buffers=test_model.buffers,
|
513
|
+
)
|
514
|
+
|
515
|
+
subgraph0 = test_model.subgraphs[0]
|
516
|
+
subgraph_op_id = 0
|
517
|
+
op = subgraph0.operators[subgraph_op_id]
|
518
|
+
|
519
|
+
op_info = qtyping.OpInfo(
|
520
|
+
op=op,
|
521
|
+
op_name=_TFLOpName.EMBEDDING_LOOKUP,
|
522
|
+
subgraph_op_index=subgraph_op_id,
|
523
|
+
op_quant_config=qtyping.OpQuantizationConfig(
|
524
|
+
weight_tensor_config=_TensorQuantConfig(
|
525
|
+
num_bits=16, dtype=qtyping.TensorDataType.FLOAT
|
526
|
+
),
|
527
|
+
compute_precision=_ComputePrecision.FLOAT, # WEIGHT_ONLY.
|
528
|
+
explicit_dequantize=True,
|
529
|
+
),
|
530
|
+
)
|
531
|
+
|
532
|
+
op_tensor_names = {}
|
533
|
+
op_tensor_names["weight"] = (
|
534
|
+
"jax2tf_export_func_/...y_yz-_...z/pjit__einsum_/MatMul;jax2tf_export_func_/pjit__one_hot_/Equal;jax2tf_export_func_/pjit__one_hot_/Cast_1"
|
535
|
+
)
|
536
|
+
op_tensor_names["input"] = "inputs"
|
537
|
+
op_tensor_names["output"] = "Identity_1"
|
538
|
+
|
539
|
+
# TODO: b/335913710 - Rename the test function.
|
540
|
+
self._test_fc_conv(
|
541
|
+
op_info,
|
542
|
+
graph_info,
|
543
|
+
op_tensor_names,
|
544
|
+
float_casting.materialize_fc_conv,
|
545
|
+
)
|
546
|
+
|
547
|
+
def _test_fc_conv(
|
548
|
+
self,
|
549
|
+
op_info,
|
550
|
+
graph_info,
|
551
|
+
op_tensor_names,
|
552
|
+
materialization_func,
|
553
|
+
):
|
554
|
+
|
555
|
+
tensor_quant_params = materialization_func(
|
556
|
+
op_info, graph_info, self._tensor_name_to_qsv
|
557
|
+
)
|
558
|
+
_, weight_tensor, bias_tensor, _ = (
|
559
|
+
tfl_flatbuffer_utils.parse_fc_bmm_conv_tensors(
|
560
|
+
op_info.op, graph_info.subgraph_tensors
|
561
|
+
)
|
562
|
+
)
|
563
|
+
|
564
|
+
num_configs = 4 if bias_tensor is not None else 3
|
565
|
+
self.assertLen(tensor_quant_params, num_configs)
|
566
|
+
|
567
|
+
# Test input tensor params.
|
568
|
+
self._test_fp16_nonweight_tensor_transformation_params(
|
569
|
+
op_tensor_names["input"],
|
570
|
+
op_info.subgraph_op_index,
|
571
|
+
transformation_params=tensor_quant_params[0],
|
572
|
+
desired_transformations=[_QuantTransformation.NO_QUANTIZE],
|
573
|
+
is_inbounding_tensor=True,
|
574
|
+
)
|
575
|
+
|
576
|
+
# Test weight tensor params.
|
577
|
+
weight_tensor_data = tfl_flatbuffer_utils.get_tensor_data(
|
578
|
+
weight_tensor,
|
579
|
+
graph_info.buffers,
|
580
|
+
)
|
581
|
+
|
582
|
+
self._test_fp16_weight_tensor_transformation_params(
|
583
|
+
op_tensor_names["weight"],
|
584
|
+
op_info.subgraph_op_index,
|
585
|
+
tensor_quant_config=op_info.op_quant_config.weight_tensor_config,
|
586
|
+
transformation_params=tensor_quant_params[1],
|
587
|
+
desired_transformations=[_QuantTransformation.ADD_DEQUANTIZE],
|
588
|
+
tensor_data=weight_tensor_data,
|
589
|
+
)
|
590
|
+
# Test output tensor params.
|
591
|
+
self._test_fp16_nonweight_tensor_transformation_params(
|
592
|
+
op_tensor_names["output"],
|
593
|
+
op_info.subgraph_op_index,
|
594
|
+
transformation_params=tensor_quant_params[2],
|
595
|
+
desired_transformations=[_QuantTransformation.NO_QUANTIZE],
|
596
|
+
is_inbounding_tensor=False,
|
597
|
+
)
|
598
|
+
|
599
|
+
# Test bias tensor params.
|
600
|
+
if bias_tensor is not None:
|
601
|
+
self._test_fp16_nonweight_tensor_transformation_params(
|
602
|
+
op_tensor_names["bias"],
|
603
|
+
op_info.subgraph_op_index,
|
604
|
+
transformation_params=tensor_quant_params[3],
|
605
|
+
desired_transformations=[_QuantTransformation.NO_QUANTIZE],
|
606
|
+
is_inbounding_tensor=True,
|
607
|
+
)
|
608
|
+
|
609
|
+
def _test_fp16_weight_tensor_transformation_params(
|
610
|
+
self,
|
611
|
+
tensor_name,
|
612
|
+
subgraph_op_id,
|
613
|
+
tensor_quant_config,
|
614
|
+
transformation_params,
|
615
|
+
desired_transformations,
|
616
|
+
tensor_data,
|
617
|
+
):
|
618
|
+
self.assertEqual(transformation_params.tensor_name, tensor_name)
|
619
|
+
# Weight-only means the transformation is added from the consumer.
|
620
|
+
self.assertIsNone(transformation_params.producer)
|
621
|
+
self.assertLen(transformation_params.consumers, 1)
|
622
|
+
# Check op params.
|
623
|
+
op_params = transformation_params.consumers[0]
|
624
|
+
self.assertEqual(op_params.subgraph_op_id, subgraph_op_id)
|
625
|
+
self.assertSequenceEqual(op_params.transformations, desired_transformations)
|
626
|
+
# Check quantization params.
|
627
|
+
quantization_params = op_params.parameters
|
628
|
+
self.assertIsNotNone(quantization_params)
|
629
|
+
self.assertIsNotNone(tensor_quant_config)
|
630
|
+
self.assertEqual(quantization_params.num_bits, tensor_quant_config.num_bits)
|
631
|
+
quantized_data = quantization_params.quantized_data
|
632
|
+
self.assertIsNotNone(quantized_data)
|
633
|
+
self.assertEqual(quantized_data.dtype, "float16")
|
634
|
+
# fp16 quantization implies very small error.
|
635
|
+
self.assertSequenceAlmostEqual(
|
636
|
+
list(tensor_data.flatten()), # pytype: disable=attribute-error
|
637
|
+
list(quantization_params.quantized_data.flatten()), # pytype: disable=attribute-error
|
638
|
+
delta=5,
|
639
|
+
)
|
640
|
+
|
641
|
+
def _test_fp16_nonweight_tensor_transformation_params(
|
642
|
+
self,
|
643
|
+
tensor_name,
|
644
|
+
subgraph_op_id,
|
645
|
+
transformation_params,
|
646
|
+
desired_transformations,
|
647
|
+
is_inbounding_tensor,
|
648
|
+
):
|
649
|
+
self.assertEqual(transformation_params.tensor_name, tensor_name)
|
650
|
+
if is_inbounding_tensor:
|
651
|
+
self.assertIsNone(transformation_params.producer)
|
652
|
+
self.assertLen(transformation_params.consumers, 1)
|
653
|
+
op_params = transformation_params.consumers[0]
|
654
|
+
else:
|
655
|
+
self.assertIsNone(transformation_params.consumers)
|
656
|
+
op_params = transformation_params.producer
|
657
|
+
self.assertIsNotNone(op_params)
|
658
|
+
self.assertEqual(op_params.subgraph_op_id, subgraph_op_id)
|
659
|
+
self.assertSequenceEqual(op_params.transformations, desired_transformations)
|
660
|
+
self.assertIsNone(op_params.parameters)
|
661
|
+
|
662
|
+
|
663
|
+
if __name__ == "__main__":
|
664
|
+
googletest.main()
|
@@ -0,0 +1,15 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Quantizer Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|