ai-edge-quantizer-nightly 0.0.1.dev20250115__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. ai_edge_quantizer/__init__.py +19 -0
  2. ai_edge_quantizer/algorithm_manager.py +167 -0
  3. ai_edge_quantizer/algorithm_manager_api.py +271 -0
  4. ai_edge_quantizer/algorithm_manager_api_test.py +210 -0
  5. ai_edge_quantizer/algorithms/__init__.py +15 -0
  6. ai_edge_quantizer/algorithms/nonlinear_quantize/__init__.py +15 -0
  7. ai_edge_quantizer/algorithms/nonlinear_quantize/float_casting.py +273 -0
  8. ai_edge_quantizer/algorithms/nonlinear_quantize/float_casting_test.py +664 -0
  9. ai_edge_quantizer/algorithms/uniform_quantize/__init__.py +15 -0
  10. ai_edge_quantizer/algorithms/uniform_quantize/naive_min_max_quantize.py +666 -0
  11. ai_edge_quantizer/algorithms/uniform_quantize/naive_min_max_quantize_test.py +184 -0
  12. ai_edge_quantizer/algorithms/uniform_quantize/uniform_quantize_tensor.py +371 -0
  13. ai_edge_quantizer/algorithms/uniform_quantize/uniform_quantize_tensor_test.py +357 -0
  14. ai_edge_quantizer/algorithms/utils/__init__.py +15 -0
  15. ai_edge_quantizer/algorithms/utils/min_max_quantize_utils.py +1067 -0
  16. ai_edge_quantizer/algorithms/utils/min_max_quantize_utils_test.py +512 -0
  17. ai_edge_quantizer/calibrator.py +288 -0
  18. ai_edge_quantizer/calibrator_test.py +297 -0
  19. ai_edge_quantizer/conftest.py +22 -0
  20. ai_edge_quantizer/default_policy.py +310 -0
  21. ai_edge_quantizer/model_modifier.py +176 -0
  22. ai_edge_quantizer/model_modifier_test.py +130 -0
  23. ai_edge_quantizer/model_validator.py +357 -0
  24. ai_edge_quantizer/model_validator_test.py +354 -0
  25. ai_edge_quantizer/params_generator.py +361 -0
  26. ai_edge_quantizer/params_generator_test.py +1041 -0
  27. ai_edge_quantizer/qtyping.py +483 -0
  28. ai_edge_quantizer/quantizer.py +372 -0
  29. ai_edge_quantizer/quantizer_test.py +532 -0
  30. ai_edge_quantizer/recipe.py +67 -0
  31. ai_edge_quantizer/recipe_manager.py +245 -0
  32. ai_edge_quantizer/recipe_manager_test.py +815 -0
  33. ai_edge_quantizer/recipe_test.py +97 -0
  34. ai_edge_quantizer/transformation_instruction_generator.py +584 -0
  35. ai_edge_quantizer/transformation_instruction_generator_test.py +1082 -0
  36. ai_edge_quantizer/transformation_performer.py +278 -0
  37. ai_edge_quantizer/transformation_performer_test.py +344 -0
  38. ai_edge_quantizer/transformations/__init__.py +15 -0
  39. ai_edge_quantizer/transformations/dequant_insert.py +87 -0
  40. ai_edge_quantizer/transformations/dequant_insert_test.py +304 -0
  41. ai_edge_quantizer/transformations/emulated_subchannel.py +363 -0
  42. ai_edge_quantizer/transformations/emulated_subchannel_test.py +212 -0
  43. ai_edge_quantizer/transformations/quant_insert.py +100 -0
  44. ai_edge_quantizer/transformations/quant_insert_test.py +284 -0
  45. ai_edge_quantizer/transformations/quantize_tensor.py +156 -0
  46. ai_edge_quantizer/transformations/quantize_tensor_test.py +227 -0
  47. ai_edge_quantizer/transformations/transformation_utils.py +132 -0
  48. ai_edge_quantizer/transformations/transformation_utils_test.py +162 -0
  49. ai_edge_quantizer/utils/__init__.py +15 -0
  50. ai_edge_quantizer/utils/calibration_utils.py +86 -0
  51. ai_edge_quantizer/utils/calibration_utils_test.py +77 -0
  52. ai_edge_quantizer/utils/test_utils.py +107 -0
  53. ai_edge_quantizer/utils/tfl_flatbuffer_utils.py +317 -0
  54. ai_edge_quantizer/utils/tfl_flatbuffer_utils_test.py +200 -0
  55. ai_edge_quantizer/utils/tfl_interpreter_utils.py +312 -0
  56. ai_edge_quantizer/utils/tfl_interpreter_utils_test.py +332 -0
  57. ai_edge_quantizer/utils/validation_utils.py +125 -0
  58. ai_edge_quantizer/utils/validation_utils_test.py +87 -0
  59. ai_edge_quantizer_nightly-0.0.1.dev20250115.dist-info/LICENSE +201 -0
  60. ai_edge_quantizer_nightly-0.0.1.dev20250115.dist-info/METADATA +32 -0
  61. ai_edge_quantizer_nightly-0.0.1.dev20250115.dist-info/RECORD +63 -0
  62. ai_edge_quantizer_nightly-0.0.1.dev20250115.dist-info/WHEEL +5 -0
  63. ai_edge_quantizer_nightly-0.0.1.dev20250115.dist-info/top_level.txt +1 -0
@@ -0,0 +1,372 @@
1
+ # Copyright 2024 The AI Edge Quantizer Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """AI Edge Quantizer API."""
17
+
18
+ from collections.abc import Iterable
19
+ import dataclasses
20
+ import json
21
+ import os
22
+ from typing import Any, Optional, Union
23
+ from ai_edge_quantizer import algorithm_manager
24
+ from ai_edge_quantizer import calibrator
25
+ from ai_edge_quantizer import default_policy
26
+ from ai_edge_quantizer import model_modifier
27
+ from ai_edge_quantizer import model_validator
28
+ from ai_edge_quantizer import params_generator
29
+ from ai_edge_quantizer import qtyping
30
+ from ai_edge_quantizer import recipe_manager
31
+ from ai_edge_quantizer.utils import test_utils
32
+ from ai_edge_quantizer.utils import tfl_flatbuffer_utils
33
+ from ai_edge_quantizer.utils import tfl_interpreter_utils
34
+ from ai_edge_quantizer.utils import validation_utils
35
+ from tensorflow.python.platform import gfile # pylint: disable=g-direct-tensorflow-import
36
+
37
+ # Expose algorithm names to users.
38
+ AlgorithmName = algorithm_manager.AlgorithmName
39
+
40
+ _QuantRecipe = recipe_manager.ModelQuantizationRecipe
41
+ _TFLOpName = qtyping.TFLOperationName
42
+ _OpQuantizationConfig = qtyping.OpQuantizationConfig
43
+ _TensorQuantizationConfig = qtyping.TensorQuantizationConfig
44
+ _TensorTransformationParams = dict[str, qtyping.TensorTransformationParams]
45
+ _SignatureInput = dict[str, Any] # input_argument_name -> tensor_value.
46
+ _CalibrationResult = dict[str, qtyping.QSV]
47
+
48
+
49
+ @dataclasses.dataclass(frozen=True)
50
+ class QuantizationResult:
51
+ """Quantization result.
52
+
53
+ Attributes:
54
+ recipe: Quantization recipe.
55
+ quantized_model: Quantized model.
56
+ """
57
+
58
+ recipe: _QuantRecipe
59
+ quantized_model: Optional[bytearray]
60
+
61
+ def save(self, save_folder: str, model_name: str) -> None:
62
+ """Saves the quantized model and the quantization recipe.
63
+
64
+ Args:
65
+ save_folder: Path to the folder to save the quantized model and the
66
+ quantization recipe.
67
+ model_name: Name of the model.
68
+
69
+ Raises:
70
+ RuntimeError: If no quantized model is available.
71
+ FileExistsError: If the model already exists in the folder.
72
+ """
73
+ if self.quantized_model is None:
74
+ raise RuntimeError(
75
+ 'No quantized model to save. Make sure .quantize() is called.'
76
+ )
77
+ model_save_path = os.path.join(save_folder, f'{model_name}.tflite')
78
+ if gfile.Exists(model_save_path):
79
+ raise FileExistsError(
80
+ f'The model {model_save_path} already exists in the folder.'
81
+ )
82
+ with gfile.GFile(model_save_path, 'wb') as output_file_handle:
83
+ output_file_handle.write(self.quantized_model)
84
+
85
+ recipe = json.dumps(self.recipe)
86
+ recipe_save_path = os.path.join(save_folder, model_name + '_recipe.json')
87
+ with gfile.GFile(recipe_save_path, 'w') as output_file_handle:
88
+ output_file_handle.write(recipe)
89
+
90
+ def export_model(self, filepath: str) -> None:
91
+ """Exports the quantized model to a .tflite flatbuffer.
92
+
93
+ Args:
94
+ filepath: Path (including file name) that the exported model should be
95
+ serialized to.
96
+
97
+ Raises:
98
+ RuntimeError: If no quantized model is available.
99
+ """
100
+ if self.quantized_model is None:
101
+ raise RuntimeError(
102
+ 'No quantized model to save. Make sure .quantize() is called.'
103
+ )
104
+ with gfile.GFile(filepath, 'wb') as output_file_handle:
105
+ output_file_handle.write(self.quantized_model)
106
+
107
+
108
+ class Quantizer:
109
+ """AI Edge Quantizer API.
110
+
111
+ Attributes:
112
+ float_model: TFLite model file path or bytearray.
113
+ quantization_recipe: Quantization recipe .json filepath or in loaded json
114
+ format.
115
+ """
116
+
117
+ def __init__(
118
+ self,
119
+ float_model: Union[str, bytearray],
120
+ quantization_recipe: Optional[Union[str, _QuantRecipe]] = None,
121
+ ):
122
+ """Initializes the quantizer.
123
+
124
+ Args:
125
+ float_model: Path to the float tflite model.
126
+ quantization_recipe: Quantization recipe in .json filepath or loaded json
127
+ format.
128
+ """
129
+ # Use `float model` as bytes for memory efficiency.
130
+ self.float_model: bytes = (
131
+ tfl_flatbuffer_utils.get_model_content(float_model)
132
+ if isinstance(float_model, str)
133
+ else float_model
134
+ )
135
+
136
+ self._recipe_manager: recipe_manager.RecipeManager = (
137
+ recipe_manager.RecipeManager()
138
+ )
139
+ if quantization_recipe is not None:
140
+ self.load_quantization_recipe(quantization_recipe)
141
+ self._result: QuantizationResult = QuantizationResult([{}], None)
142
+
143
+ def load_quantization_recipe(self, recipe: Union[str, _QuantRecipe]) -> None:
144
+ """Loads a quantization recipe.
145
+
146
+ The existing recipe will be overwritten.
147
+
148
+ Args:
149
+ recipe: Quantization recipe in json format.
150
+ """
151
+ if isinstance(recipe, str):
152
+ with gfile.Open(recipe) as json_file:
153
+ recipe = json.load(json_file)
154
+ self._recipe_manager.load_quantization_recipe(recipe)
155
+
156
+ def load_config_policy(self, filename: str) -> None:
157
+ """Loads a JSON policy.
158
+
159
+ The existing policy will be overwritten.
160
+
161
+ Args:
162
+ filename: Config policy filename.
163
+ """
164
+ with gfile.Open(filename, 'r') as f:
165
+ policy = default_policy.update_default_config_policy(f.read())
166
+
167
+ # Register the policy for MIN_MAX_UNIFORM_QUANT algorithm.
168
+ algorithm_manager.register_config_check_policy_func(
169
+ AlgorithmName.MIN_MAX_UNIFORM_QUANT, policy
170
+ )
171
+
172
+ def get_quantization_recipe(self) -> _QuantRecipe:
173
+ """Gets the quantization recipe.
174
+
175
+ Returns:
176
+ A quantization recipe.
177
+ """
178
+ return self._recipe_manager.get_quantization_recipe()
179
+
180
+ def update_quantization_recipe(
181
+ self,
182
+ regex: str,
183
+ operation_name: _TFLOpName,
184
+ op_config: Optional[_OpQuantizationConfig] = None,
185
+ algorithm_key: str = algorithm_manager.AlgorithmName.MIN_MAX_UNIFORM_QUANT,
186
+ ):
187
+ """Adds a quantization configuration to the recipe.
188
+
189
+ Conflict arises when we are trying to set an operation under a certain regex
190
+ which is already existed in the config dictionary. Under such circumstance,
191
+ the new config is used to replace the previous one.
192
+
193
+ We also have special treatment for _TFLOperationKey.ALL. If the new config
194
+ is on _TFLOperationKey.ALL and there are existing op configs inside the same
195
+ scope, we clear the previous configs and use _TFLOperationKey.ALL.
196
+
197
+ Args:
198
+ regex: Regular expression for layer name matching.
199
+ operation_name: Target TFLite operation. * for all supported TFLite
200
+ operation.
201
+ op_config: Quantization configuration which will be used to update the
202
+ default configuration. None or empty dict means the default
203
+ configuration will be used.
204
+ algorithm_key: Algorithm key to be applied.
205
+ """
206
+ self._recipe_manager.add_quantization_config(
207
+ regex, operation_name, op_config, algorithm_key
208
+ )
209
+
210
+ @property
211
+ def need_calibration(self) -> bool:
212
+ """Checks if the current recipe needs calibration."""
213
+ return self._recipe_manager.need_calibration()
214
+
215
+ def calibrate(
216
+ self,
217
+ calibration_data: dict[str, Iterable[_SignatureInput]],
218
+ previous_calibration_result: Optional[_CalibrationResult] = None,
219
+ num_threads: int = 16,
220
+ ) -> _CalibrationResult:
221
+ """Calibrates the float model (required by static range quantization).
222
+
223
+ Args:
224
+ calibration_data: Calibration data for a model signature.
225
+ previous_calibration_result: Previous calibration result to be loaded. The
226
+ calibration process will be resumed from the previous result.
227
+ num_threads: Number of threads to use for calibration.
228
+
229
+ Returns:
230
+ Calibration result ({tensor_name: tensor QSVs (e.g.,min/max)}).
231
+
232
+ Raises:
233
+ ValueError: If the calibration result is insufficient.
234
+ """
235
+ if not self.need_calibration:
236
+ return {}
237
+
238
+ calib = calibrator.Calibrator(self.float_model, num_threads=num_threads)
239
+ if previous_calibration_result is not None:
240
+ calib.load_model_qsvs(previous_calibration_result)
241
+ calib.calibrate(calibration_data, self._recipe_manager)
242
+ return calib.get_model_qsvs()
243
+
244
+ def _ensure_model_qsv_sufficient(
245
+ self, calibration_result: _CalibrationResult
246
+ ):
247
+ """Checks if the calibration result has sufficient QSV."""
248
+
249
+ # Find all tensor names with empty entries.
250
+ empty_qsvs = [key for key, value in calibration_result.items() if not value]
251
+
252
+ # Go over every signature and check if empty entry tensor belongs to it.
253
+ tfl_interpreter = tfl_interpreter_utils.create_tfl_interpreter(
254
+ self.float_model
255
+ )
256
+ for signature_key in tfl_interpreter.get_signature_list():
257
+ subgraph_idx = tfl_interpreter_utils.get_signature_main_subgraph_index(
258
+ tfl_interpreter, signature_key
259
+ )
260
+
261
+ for tensor_detail in tfl_interpreter.get_tensor_details(subgraph_idx):
262
+ tensor_name = tensor_detail['name']
263
+ if tensor_name in empty_qsvs:
264
+ raise ValueError(
265
+ f'Missing QSVs (min/max) for tensor {tensor_name} in Signature'
266
+ f" '{signature_key}'. Please check if Signature"
267
+ f' {signature_key} has been calibrated.'
268
+ )
269
+
270
+ def quantize(
271
+ self, calibration_result: Optional[_CalibrationResult] = None
272
+ ) -> QuantizationResult:
273
+ """Quantizes the float model.
274
+
275
+ Args:
276
+ calibration_result: Calibration result to be used for quantization (if
277
+ needed, check with self.need_calibration).
278
+
279
+ Returns:
280
+ Quantization result.
281
+
282
+ Raises:
283
+ RuntimeError: If quantization recipe is empty.
284
+ """
285
+
286
+ if calibration_result is not None:
287
+ self._ensure_model_qsv_sufficient(calibration_result)
288
+
289
+ if not self.get_quantization_recipe():
290
+ raise RuntimeError('Can not quantize without a quantization recipe.')
291
+ quant_params = self._get_quantization_params(calibration_result)
292
+ quantized_model = self._get_quantized_model(quant_params)
293
+ self._result = QuantizationResult(
294
+ self.get_quantization_recipe(), quantized_model
295
+ )
296
+ return self._result
297
+
298
+ def validate(
299
+ self,
300
+ test_data: Optional[dict[str, Iterable[_SignatureInput]]] = None,
301
+ error_metrics: str = 'mse',
302
+ use_xnnpack: bool = True,
303
+ num_threads: int = 16,
304
+ ) -> model_validator.ComparisonResult:
305
+ """Numerical validation of the quantized model for a model signature.
306
+
307
+ Side by side numerical comparison will be performed on all tensors in the
308
+ quantized model against ones from the float model. If no test data is
309
+ provided, random normal distributed data will be used. This test is intended
310
+ to be SANITY check for the quality of the quantized model. End to end task
311
+ specific test should be performed as the golden standard of the quantized
312
+ model quality. The comparison result will be saved in json format if
313
+ json_save_path is provided.
314
+
315
+ Args:
316
+ test_data: A dictionary of signature key and its correspending test input
317
+ data that will be used for validation. If set to None, random normal
318
+ distributed data will be used for all signatures in the model.
319
+ error_metrics: Error metrics to be used for comparison.
320
+ use_xnnpack: Whether to use the xnnpack library for validation.
321
+ num_threads: Number of threads to use for validation.
322
+
323
+ Returns:
324
+ The comparison result.
325
+ """
326
+ if test_data is None:
327
+ # Create test data for all signatures in the model.
328
+ test_data = test_utils.create_random_normal_input_data(
329
+ self.float_model, num_samples=1
330
+ )
331
+ return model_validator.compare_model(
332
+ self.float_model,
333
+ self._result.quantized_model,
334
+ test_data,
335
+ error_metrics,
336
+ validation_utils.get_validation_func(error_metrics),
337
+ use_xnnpack=use_xnnpack,
338
+ num_threads=num_threads,
339
+ )
340
+
341
+ def _get_quantization_params(
342
+ self, calibration_result: Optional[_CalibrationResult] = None
343
+ ) -> _TensorTransformationParams:
344
+ """Gets the quantization parameters.
345
+
346
+ Args:
347
+ calibration_result: Calibration result to be used for quantization (if
348
+ needed, check with self.need_calibration).
349
+
350
+ Returns:
351
+ A dictionary containing the quantization parameters.
352
+ """
353
+ params_generator_instance = params_generator.ParamsGenerator(
354
+ self.float_model
355
+ )
356
+ return params_generator_instance.generate_quantization_parameters(
357
+ self._recipe_manager, calibration_result
358
+ )
359
+
360
+ def _get_quantized_model(
361
+ self, quant_params: _TensorTransformationParams
362
+ ) -> bytearray:
363
+ """Gets the quantized model.
364
+
365
+ Args:
366
+ quant_params: A dictionary containing the quantization parameters.
367
+
368
+ Returns:
369
+ The quantized model.
370
+ """
371
+ model_modifier_instance = model_modifier.ModelModifier(self.float_model)
372
+ return model_modifier_instance.modify_model(quant_params)