ai-data-science-team 0.0.0.9008__py3-none-any.whl → 0.0.0.9010__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_data_science_team/_version.py +1 -1
- ai_data_science_team/agents/__init__.py +0 -1
- ai_data_science_team/agents/data_cleaning_agent.py +50 -39
- ai_data_science_team/agents/data_loader_tools_agent.py +69 -0
- ai_data_science_team/agents/data_visualization_agent.py +45 -50
- ai_data_science_team/agents/data_wrangling_agent.py +50 -49
- ai_data_science_team/agents/feature_engineering_agent.py +48 -67
- ai_data_science_team/agents/sql_database_agent.py +130 -76
- ai_data_science_team/ml_agents/__init__.py +2 -0
- ai_data_science_team/ml_agents/h2o_ml_agent.py +852 -0
- ai_data_science_team/ml_agents/mlflow_tools_agent.py +327 -0
- ai_data_science_team/multiagents/sql_data_analyst.py +120 -9
- ai_data_science_team/parsers/__init__.py +0 -0
- ai_data_science_team/{tools → parsers}/parsers.py +0 -1
- ai_data_science_team/templates/__init__.py +1 -0
- ai_data_science_team/templates/agent_templates.py +78 -7
- ai_data_science_team/tools/data_loader.py +378 -0
- ai_data_science_team/tools/{metadata.py → dataframe.py} +0 -91
- ai_data_science_team/tools/h2o.py +643 -0
- ai_data_science_team/tools/mlflow.py +961 -0
- ai_data_science_team/tools/sql.py +126 -0
- ai_data_science_team/{tools → utils}/regex.py +59 -1
- {ai_data_science_team-0.0.0.9008.dist-info → ai_data_science_team-0.0.0.9010.dist-info}/METADATA +56 -24
- ai_data_science_team-0.0.0.9010.dist-info/RECORD +35 -0
- ai_data_science_team-0.0.0.9008.dist-info/RECORD +0 -26
- /ai_data_science_team/{tools → utils}/logging.py +0 -0
- {ai_data_science_team-0.0.0.9008.dist-info → ai_data_science_team-0.0.0.9010.dist-info}/LICENSE +0 -0
- {ai_data_science_team-0.0.0.9008.dist-info → ai_data_science_team-0.0.0.9010.dist-info}/WHEEL +0 -0
- {ai_data_science_team-0.0.0.9008.dist-info → ai_data_science_team-0.0.0.9010.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,126 @@
|
|
1
|
+
|
2
|
+
import pandas as pd
|
3
|
+
import sqlalchemy as sql
|
4
|
+
from sqlalchemy import inspect
|
5
|
+
|
6
|
+
|
7
|
+
def get_database_metadata(connection, n_samples=10) -> dict:
|
8
|
+
"""
|
9
|
+
Collects metadata and sample data from a database, with safe identifier quoting and
|
10
|
+
basic dialect-aware row limiting. Prevents issues with spaces/reserved words in identifiers.
|
11
|
+
|
12
|
+
Parameters
|
13
|
+
----------
|
14
|
+
connection : Union[sql.engine.base.Connection, sql.engine.base.Engine]
|
15
|
+
An active SQLAlchemy connection or engine.
|
16
|
+
n_samples : int
|
17
|
+
Number of sample values to retrieve for each column.
|
18
|
+
|
19
|
+
Returns
|
20
|
+
-------
|
21
|
+
dict
|
22
|
+
A dictionary with database metadata, including some sample data from each column.
|
23
|
+
"""
|
24
|
+
is_engine = isinstance(connection, sql.engine.base.Engine)
|
25
|
+
conn = connection.connect() if is_engine else connection
|
26
|
+
|
27
|
+
metadata = {
|
28
|
+
"dialect": None,
|
29
|
+
"driver": None,
|
30
|
+
"connection_url": None,
|
31
|
+
"schemas": [],
|
32
|
+
}
|
33
|
+
|
34
|
+
try:
|
35
|
+
sql_engine = conn.engine
|
36
|
+
dialect_name = sql_engine.dialect.name.lower()
|
37
|
+
|
38
|
+
metadata["dialect"] = sql_engine.dialect.name
|
39
|
+
metadata["driver"] = sql_engine.driver
|
40
|
+
metadata["connection_url"] = str(sql_engine.url)
|
41
|
+
|
42
|
+
inspector = inspect(sql_engine)
|
43
|
+
preparer = inspector.bind.dialect.identifier_preparer
|
44
|
+
|
45
|
+
# For each schema
|
46
|
+
for schema_name in inspector.get_schema_names():
|
47
|
+
schema_obj = {
|
48
|
+
"schema_name": schema_name,
|
49
|
+
"tables": []
|
50
|
+
}
|
51
|
+
|
52
|
+
tables = inspector.get_table_names(schema=schema_name)
|
53
|
+
for table_name in tables:
|
54
|
+
table_info = {
|
55
|
+
"table_name": table_name,
|
56
|
+
"columns": [],
|
57
|
+
"primary_key": [],
|
58
|
+
"foreign_keys": [],
|
59
|
+
"indexes": []
|
60
|
+
}
|
61
|
+
# Get columns
|
62
|
+
columns = inspector.get_columns(table_name, schema=schema_name)
|
63
|
+
for col in columns:
|
64
|
+
col_name = col["name"]
|
65
|
+
col_type = str(col["type"])
|
66
|
+
table_name_quoted = f"{preparer.quote_identifier(schema_name)}.{preparer.quote_identifier(table_name)}"
|
67
|
+
col_name_quoted = preparer.quote_identifier(col_name)
|
68
|
+
|
69
|
+
# Build query for sample data
|
70
|
+
query = build_query(col_name_quoted, table_name_quoted, n_samples, dialect_name)
|
71
|
+
|
72
|
+
# Retrieve sample data
|
73
|
+
try:
|
74
|
+
df = pd.read_sql(query, conn)
|
75
|
+
samples = df[col_name].head(n_samples).tolist()
|
76
|
+
except Exception as e:
|
77
|
+
samples = [f"Error retrieving data: {str(e)}"]
|
78
|
+
|
79
|
+
table_info["columns"].append({
|
80
|
+
"name": col_name,
|
81
|
+
"type": col_type,
|
82
|
+
"sample_values": samples
|
83
|
+
})
|
84
|
+
|
85
|
+
# Primary keys
|
86
|
+
pk_constraint = inspector.get_pk_constraint(table_name, schema=schema_name)
|
87
|
+
table_info["primary_key"] = pk_constraint.get("constrained_columns", [])
|
88
|
+
|
89
|
+
# Foreign keys
|
90
|
+
fks = inspector.get_foreign_keys(table_name, schema=schema_name)
|
91
|
+
table_info["foreign_keys"] = [
|
92
|
+
{
|
93
|
+
"local_cols": fk["constrained_columns"],
|
94
|
+
"referred_table": fk["referred_table"],
|
95
|
+
"referred_cols": fk["referred_columns"]
|
96
|
+
}
|
97
|
+
for fk in fks
|
98
|
+
]
|
99
|
+
|
100
|
+
# Indexes
|
101
|
+
idxs = inspector.get_indexes(table_name, schema=schema_name)
|
102
|
+
table_info["indexes"] = idxs
|
103
|
+
|
104
|
+
schema_obj["tables"].append(table_info)
|
105
|
+
|
106
|
+
metadata["schemas"].append(schema_obj)
|
107
|
+
|
108
|
+
finally:
|
109
|
+
if is_engine:
|
110
|
+
conn.close()
|
111
|
+
|
112
|
+
return metadata
|
113
|
+
|
114
|
+
def build_query(col_name_quoted: str, table_name_quoted: str, n: int, dialect_name: str) -> str:
|
115
|
+
# Example: expand your build_query to handle random sampling if possible
|
116
|
+
if "postgres" in dialect_name:
|
117
|
+
return f"SELECT {col_name_quoted} FROM {table_name_quoted} ORDER BY RANDOM() LIMIT {n}"
|
118
|
+
if "mysql" in dialect_name:
|
119
|
+
return f"SELECT {col_name_quoted} FROM {table_name_quoted} ORDER BY RAND() LIMIT {n}"
|
120
|
+
if "sqlite" in dialect_name:
|
121
|
+
return f"SELECT {col_name_quoted} FROM {table_name_quoted} ORDER BY RANDOM() LIMIT {n}"
|
122
|
+
if "mssql" in dialect_name:
|
123
|
+
return f"SELECT TOP {n} {col_name_quoted} FROM {table_name_quoted} ORDER BY NEWID()"
|
124
|
+
# Oracle or fallback
|
125
|
+
return f"SELECT {col_name_quoted} FROM {table_name_quoted} WHERE ROWNUM <= {n}"
|
126
|
+
|
@@ -103,4 +103,62 @@ def format_recommended_steps(raw_text: str, heading: str = "# Recommended Steps:
|
|
103
103
|
if not seen_heading:
|
104
104
|
new_lines.insert(0, heading)
|
105
105
|
|
106
|
-
return "\n".join(new_lines)
|
106
|
+
return "\n".join(new_lines)
|
107
|
+
|
108
|
+
def get_generic_summary(report_dict: dict, code_lang = "python") -> str:
|
109
|
+
"""
|
110
|
+
Takes a dictionary of unknown structure (e.g., from json.loads(...))
|
111
|
+
and returns a textual summary. It assumes:
|
112
|
+
1) 'report_title' (if present) should be displayed first.
|
113
|
+
2) If a key includes 'code' or 'function',
|
114
|
+
the value is treated as a code block.
|
115
|
+
3) Otherwise, key-value pairs are displayed as text.
|
116
|
+
|
117
|
+
Parameters
|
118
|
+
----------
|
119
|
+
report_dict : dict
|
120
|
+
The dictionary holding the agent output or user report.
|
121
|
+
|
122
|
+
Returns
|
123
|
+
-------
|
124
|
+
str
|
125
|
+
A formatted summary string.
|
126
|
+
"""
|
127
|
+
# 1) Grab the report title (or default)
|
128
|
+
title = report_dict.get("report_title", "Untitled Report")
|
129
|
+
|
130
|
+
lines = []
|
131
|
+
lines.append(f"# {title}")
|
132
|
+
|
133
|
+
# 2) Iterate over all other keys
|
134
|
+
for key, value in report_dict.items():
|
135
|
+
# Skip the title key, since we already displayed it
|
136
|
+
if key == "report_title":
|
137
|
+
continue
|
138
|
+
|
139
|
+
# 3) Check if it's code or function
|
140
|
+
# (You can tweak this logic if you have different rules)
|
141
|
+
key_lower = key.lower()
|
142
|
+
if "code" in key_lower or "function" in key_lower:
|
143
|
+
# Treat as code
|
144
|
+
lines.append(f"\n## {format_agent_name(key).upper()}")
|
145
|
+
lines.append(f"```{code_lang}\n" + str(value) + "\n```")
|
146
|
+
else:
|
147
|
+
# 4) Otherwise, just display the key-value as text
|
148
|
+
lines.append(f"\n## {format_agent_name(key).upper()}")
|
149
|
+
lines.append(str(value))
|
150
|
+
|
151
|
+
return "\n".join(lines)
|
152
|
+
|
153
|
+
def remove_consecutive_duplicates(messages):
|
154
|
+
unique_messages = []
|
155
|
+
prev_message = None
|
156
|
+
|
157
|
+
for msg in messages:
|
158
|
+
if msg.content != prev_message:
|
159
|
+
unique_messages.append(msg)
|
160
|
+
prev_message = msg.content # Update previous message to current
|
161
|
+
|
162
|
+
return unique_messages
|
163
|
+
|
164
|
+
|
{ai_data_science_team-0.0.0.9008.dist-info → ai_data_science_team-0.0.0.9010.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: ai-data-science-team
|
3
|
-
Version: 0.0.0.
|
3
|
+
Version: 0.0.0.9010
|
4
4
|
Summary: Build and run an AI-powered data science team.
|
5
5
|
Home-page: https://github.com/business-science/ai-data-science-team
|
6
6
|
Author: Matt Dancho
|
@@ -21,17 +21,26 @@ Requires-Dist: langchain_experimental
|
|
21
21
|
Requires-Dist: langgraph>=0.2.57
|
22
22
|
Requires-Dist: openai
|
23
23
|
Requires-Dist: pandas
|
24
|
+
Requires-Dist: sqlalchemy
|
24
25
|
Requires-Dist: numpy
|
25
26
|
Requires-Dist: plotly
|
26
27
|
Requires-Dist: streamlit
|
27
28
|
Requires-Dist: scikit-learn
|
28
29
|
Requires-Dist: xgboost
|
30
|
+
Requires-Dist: psutil
|
31
|
+
Provides-Extra: machine-learning
|
32
|
+
Requires-Dist: h2o; extra == "machine-learning"
|
33
|
+
Requires-Dist: mlflow; extra == "machine-learning"
|
34
|
+
Provides-Extra: all
|
35
|
+
Requires-Dist: h2o; extra == "all"
|
36
|
+
Requires-Dist: mlflow; extra == "all"
|
29
37
|
Dynamic: author
|
30
38
|
Dynamic: author-email
|
31
39
|
Dynamic: classifier
|
32
40
|
Dynamic: description
|
33
41
|
Dynamic: description-content-type
|
34
42
|
Dynamic: home-page
|
43
|
+
Dynamic: provides-extra
|
35
44
|
Dynamic: requires-dist
|
36
45
|
Dynamic: requires-python
|
37
46
|
Dynamic: summary
|
@@ -39,7 +48,7 @@ Dynamic: summary
|
|
39
48
|
<div align="center">
|
40
49
|
<a href="https://github.com/business-science/ai-data-science-team">
|
41
50
|
<picture>
|
42
|
-
<img src="/img/
|
51
|
+
<img src="/img/ai_data_science_team_logo_small.jpg" alt="AI Data Science Team" width="400">
|
43
52
|
</picture>
|
44
53
|
</a>
|
45
54
|
</div>
|
@@ -47,13 +56,13 @@ Dynamic: summary
|
|
47
56
|
<em>An AI-powered data science team of agents to help you perform common data science tasks 10X faster</em>
|
48
57
|
</div>
|
49
58
|
<div align="center">
|
50
|
-
<a href="https://pypi.python.org/pypi/ai-data-science-team"><img src="https://img.shields.io/pypi/v/ai-data-science-team.svg" alt="PyPI"></a>
|
51
|
-
<a href="https://github.com/business-science/ai-data-science-team"><img src="https://img.shields.io/pypi/pyversions/ai-data-science-team.svg" alt="versions"></a>
|
52
|
-
<a href="https://github.com/business-science/ai-data-science-team/blob/main/LICENSE"><img src="https://img.shields.io/github/license/business-science/ai-data-science-team.svg?
|
59
|
+
<a href="https://pypi.python.org/pypi/ai-data-science-team"><img src="https://img.shields.io/pypi/v/ai-data-science-team.svg?style=for-the-badge" alt="PyPI"></a>
|
60
|
+
<a href="https://github.com/business-science/ai-data-science-team"><img src="https://img.shields.io/pypi/pyversions/ai-data-science-team.svg?style=for-the-badge" alt="versions"></a>
|
61
|
+
<a href="https://github.com/business-science/ai-data-science-team/blob/main/LICENSE"><img src="https://img.shields.io/github/license/business-science/ai-data-science-team.svg?style=for-the-badge" alt="license"></a>
|
53
62
|
</div>
|
54
63
|
|
55
64
|
|
56
|
-
# Your AI Data Science Team (An Army Of Agents)
|
65
|
+
# Your AI Data Science Team (🪖 An Army Of Agents)
|
57
66
|
|
58
67
|
**An AI-powered data science team of agents to help you perform common data science tasks 10X faster**.
|
59
68
|
|
@@ -74,14 +83,19 @@ The AI Data Science Team of Copilots includes Agents that specialize data cleani
|
|
74
83
|
|
75
84
|
## Table of Contents
|
76
85
|
|
77
|
-
- [Your AI Data Science Team (An Army Of Agents)](#your-ai-data-science-team
|
86
|
+
- [Your AI Data Science Team (🪖 An Army Of Agents)](#your-ai-data-science-team--an-army-of-agents)
|
78
87
|
- [Table of Contents](#table-of-contents)
|
79
88
|
- [Companies That Want A Custom AI Data Science Team (And AI Apps)](#companies-that-want-a-custom-ai-data-science-team-and-ai-apps)
|
80
|
-
- [
|
89
|
+
- [Generative AI for Data Scientists Workshop](#generative-ai-for-data-scientists-workshop)
|
81
90
|
- [Data Science Agents](#data-science-agents)
|
82
|
-
- [
|
83
|
-
- [
|
91
|
+
- [NEW: Multi-Agents](#new-multi-agents)
|
92
|
+
- [Data Science Apps](#data-science-apps)
|
93
|
+
- [Apps Available Now](#apps-available-now)
|
94
|
+
- [🔥 Agentic Applications](#-agentic-applications)
|
84
95
|
- [Agents Available Now](#agents-available-now)
|
96
|
+
- [🔥🔥 NEW! Machine Learning Agents](#-new-machine-learning-agents)
|
97
|
+
- [Data Science Agents](#data-science-agents-1)
|
98
|
+
- [Multi-Agents](#multi-agents)
|
85
99
|
- [Agents Coming Soon](#agents-coming-soon)
|
86
100
|
- [Disclaimer](#disclaimer)
|
87
101
|
- [Installation](#installation)
|
@@ -94,11 +108,11 @@ The AI Data Science Team of Copilots includes Agents that specialize data cleani
|
|
94
108
|
|
95
109
|
## Companies That Want A Custom AI Data Science Team (And AI Apps)
|
96
110
|
|
97
|
-
Want to have your own _customized_ enterprise-grade AI Data Science Team and domain-
|
111
|
+
Want to have your own _customized_ enterprise-grade AI Data Science Team and *domain-specific* AI-powered Apps?
|
98
112
|
|
99
113
|
**Send inquiries here:** [https://www.business-science.io/contact.html](https://www.business-science.io/contact.html)
|
100
114
|
|
101
|
-
##
|
115
|
+
## Generative AI for Data Scientists Workshop
|
102
116
|
|
103
117
|
If you're an aspiring data scientist who wants to learn how to build AI Agents and AI Apps for your company that performs Data Science, Business Intelligence, Churn Modeling, Time Series Forecasting, and more, then I'd love to help you.
|
104
118
|
|
@@ -110,32 +124,50 @@ This project is a work in progress. New data science agents will be released soo
|
|
110
124
|
|
111
125
|

|
112
126
|
|
113
|
-
###
|
127
|
+
### NEW: Multi-Agents
|
114
128
|
|
115
|
-
This is the internals of the
|
129
|
+
This is the internals of the SQL Data Analyst Agent that connects to SQL databases to pull data into the data science environment. It creates pipelines to automate data extraction, performs Joins, Aggregations, and other SQL Query operations. And it includes a Data Visualization Agent that creates visualizations to help you understand your data.:
|
116
130
|
|
117
131
|

|
118
132
|
|
119
|
-
###
|
133
|
+
### Data Science Apps
|
120
134
|
|
121
135
|
This is a top secret project I'm working on. It's a multi-agent data science app that performs time series forecasting.
|
122
136
|
|
123
|
-

|
137
|
+

|
138
|
+
|
139
|
+
### Apps Available Now
|
140
|
+
|
141
|
+
[See all available apps here](/apps)
|
142
|
+
|
143
|
+
#### 🔥 Agentic Applications
|
144
|
+
|
145
|
+
1. **SQL Database Agent App:** Connects any SQL Database, generates SQL queries from natural language, and returns data as a downloadable table. [See Application](/apps/sql-database-agent-app/)
|
124
146
|
|
125
147
|
### Agents Available Now
|
126
148
|
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
149
|
+
#### 🔥🔥 NEW! Machine Learning Agents
|
150
|
+
|
151
|
+
1. **🔥 H2O Machine Learning Agent:** Builds and logs 100's of high-performance machine learning models. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/ml_agents/h2o_machine_learning_agent.ipynb)
|
152
|
+
2. **🔥 MLflow Tools Agent (MLOps):** This agent has 11+ tools for managing models, ML projects, and making production ML predictions with MLflow. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/ml_agents/mlflow_tools_agent.ipynb)
|
153
|
+
|
154
|
+
#### Data Science Agents
|
155
|
+
|
156
|
+
1. **Data Wrangling Agent:** Merges, Joins, Preps and Wrangles data into a format that is ready for data analysis. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_wrangling_agent.ipynb)
|
157
|
+
2. **Data Visualization Agent:** Creates visualizations to help you understand your data. Returns JSON serializable plotly visualizations. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_visualization_agent.ipynb)
|
158
|
+
3. **Data Cleaning Agent:** Performs Data Preparation steps including handling missing values, outliers, and data type conversions. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_cleaning_agent.ipynb)
|
159
|
+
4. **Feature Engineering Agent:** Converts the prepared data into ML-ready data. Adds features to increase predictive accuracy of ML models. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/feature_engineering_agent.ipynb)
|
160
|
+
5. **SQL Database Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/sql_database_agent.ipynb)
|
161
|
+
|
162
|
+
#### Multi-Agents
|
163
|
+
|
164
|
+
1. **SQL Data Analyst Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations. Includes a Data Visualization Agent that creates visualizations to help you understand your data. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/multiagents/sql_data_analyst.ipynb)
|
132
165
|
|
133
166
|
### Agents Coming Soon
|
134
167
|
|
135
168
|
1. **Data Analyst:** Analyzes data structure, creates exploratory visualizations, and performs correlation analysis to identify relationships.
|
136
|
-
2. **
|
137
|
-
3. **
|
138
|
-
4. **Supervisor:** Forms task list. Moderates sub-agents. Returns completed assignment.
|
169
|
+
2. **Interpretability Agent:** Performs Interpretable ML to explain why the model returned predictions including which features were the most important to the model.
|
170
|
+
3. **Supervisor:** Forms task list. Moderates sub-agents. Returns completed assignment.
|
139
171
|
|
140
172
|
## Disclaimer
|
141
173
|
|
@@ -0,0 +1,35 @@
|
|
1
|
+
ai_data_science_team/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2
|
+
ai_data_science_team/_version.py,sha256=Jp-j7mSYzOstBlPFLGcnMvasT0m3q0YN3vk4cJAm2XM,26
|
3
|
+
ai_data_science_team/orchestration.py,sha256=xiIFOsrLwPdkSmtme7wNCCGv8XopnMTNElNzlZokL-4,303
|
4
|
+
ai_data_science_team/agents/__init__.py,sha256=KSwxfciazWyaDG-xM93SadiIyT6X4d3uJLTdvHvVKq0,553
|
5
|
+
ai_data_science_team/agents/data_cleaning_agent.py,sha256=V5tJMwGJK0JwrF_H-7r3S0E8UkAY6ci4BGxqjhZiGBI,27352
|
6
|
+
ai_data_science_team/agents/data_loader_tools_agent.py,sha256=N1PuepOaP0ocV3bDDJOj_DYf997c82k2dg-YCV4rG2E,1668
|
7
|
+
ai_data_science_team/agents/data_visualization_agent.py,sha256=tJy9Ehnh9mvAu6H--TXI8esSHmK1RW_L1RDAdn7Xek4,28821
|
8
|
+
ai_data_science_team/agents/data_wrangling_agent.py,sha256=LxzphH-TmrFG0GjejGOjulhPq4SsWFo5Y9tk4WEuN4M,32347
|
9
|
+
ai_data_science_team/agents/feature_engineering_agent.py,sha256=KmPBkj7WUBz6LFUlDDfQHMi7ujXwsH5P9LWRS-F4tdM,31026
|
10
|
+
ai_data_science_team/agents/sql_database_agent.py,sha256=1K2o3NiuKgGKdbMz_Tq9IeQ8xhXjpfGOxx9lArZh1yE,31173
|
11
|
+
ai_data_science_team/ml_agents/__init__.py,sha256=qq3UlDCRV_z4FHQ1jj3YR6zPbA6kuCvYCisj_bHYfO4,190
|
12
|
+
ai_data_science_team/ml_agents/h2o_ml_agent.py,sha256=1e0ozjBXHgZCSRf-k705gcmujVQFnsmVSqsm71LP1z4,33208
|
13
|
+
ai_data_science_team/ml_agents/mlflow_tools_agent.py,sha256=IFc0oP9LO1EoIOq2iR8osrua2QoqhaL0cSd8koX0S2Q,10049
|
14
|
+
ai_data_science_team/multiagents/__init__.py,sha256=aI4GztEwmkexZKT5XHcH3cAjO-xYUhncb3yfPJQDqTA,99
|
15
|
+
ai_data_science_team/multiagents/sql_data_analyst.py,sha256=kmmED3gLf5STWWY6ZVJYd7_Pt8NMl6SHyBocuQzRDGk,14193
|
16
|
+
ai_data_science_team/multiagents/supervised_data_analyst.py,sha256=uduCYpicga-UCf9nPQktQggW96-HDlqvioYmEdWejtI,158
|
17
|
+
ai_data_science_team/parsers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
18
|
+
ai_data_science_team/parsers/parsers.py,sha256=hIsMZXRHz9hqs8R1ebymKA7D6NxOf5UVMpDAr_gGhE8,2027
|
19
|
+
ai_data_science_team/templates/__init__.py,sha256=_IcyFUu_mM8dFtttz95h0csJZ-XWDP3cEFuf22-R5RM,330
|
20
|
+
ai_data_science_team/templates/agent_templates.py,sha256=Lezp0ugtIP3m5WUOmjLwghNnjjyQVQecysONeIHWwi0,29133
|
21
|
+
ai_data_science_team/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
22
|
+
ai_data_science_team/tools/data_loader.py,sha256=qrDZGzkQ2pmDHVw2Ld-W1lKvuJx3ANPRFGeYy_Fw6o4,12640
|
23
|
+
ai_data_science_team/tools/dataframe.py,sha256=qSflGDByqqCXv4TjuvOFvGPZmegzeOesb0Y4i4Y0gdQ,4551
|
24
|
+
ai_data_science_team/tools/h2o.py,sha256=gSK0f2FULfAfipFTTjDMUS6DjHwFFvvl4jxshr6QpS0,38997
|
25
|
+
ai_data_science_team/tools/mlflow.py,sha256=8NTkSOvbTk01GOmwFaMkLBRse80w9Kk7Ypi6Fv4kTII,29475
|
26
|
+
ai_data_science_team/tools/sql.py,sha256=vvz_CiOg6GqXo2_mlF4kq5IS6if79dpaizAgLR9sRyg,4784
|
27
|
+
ai_data_science_team/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
28
|
+
ai_data_science_team/utils/logging.py,sha256=7wFOv6GGhXR_RPbh-8p0GyrS608XOnZtiaGK2IbDl_s,2081
|
29
|
+
ai_data_science_team/utils/plotly.py,sha256=nST-NG0oizKVHhH6HsjHUpTUumq9bCccBdxjuaJWnVQ,504
|
30
|
+
ai_data_science_team/utils/regex.py,sha256=lwarbLqTA2VfNQSyqKCl-PBlH_0WH3zXZvYGBYGUiu4,5144
|
31
|
+
ai_data_science_team-0.0.0.9010.dist-info/LICENSE,sha256=Xif0IRLdd2HGLATxV2EVp91aSY6KOuacRr_6BorKGzA,1084
|
32
|
+
ai_data_science_team-0.0.0.9010.dist-info/METADATA,sha256=EqD39-xaFz_EA_F92aGBKwogUL42wi74reGGKJLeoYs,11642
|
33
|
+
ai_data_science_team-0.0.0.9010.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
34
|
+
ai_data_science_team-0.0.0.9010.dist-info/top_level.txt,sha256=CnoMgOphCoAdGTLueWdCVByVyjwOubaGiTB1lchdy4M,21
|
35
|
+
ai_data_science_team-0.0.0.9010.dist-info/RECORD,,
|
@@ -1,26 +0,0 @@
|
|
1
|
-
ai_data_science_team/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2
|
-
ai_data_science_team/_version.py,sha256=P58HXrtvcvSlic1oJw_w9WwHrQ3kBtvlqYwnMEbOL6g,26
|
3
|
-
ai_data_science_team/orchestration.py,sha256=xiIFOsrLwPdkSmtme7wNCCGv8XopnMTNElNzlZokL-4,303
|
4
|
-
ai_data_science_team/agents/__init__.py,sha256=6qGE7p8X291aiw5CFwTNot00_LF3_1fboLbjVf_TlHo,554
|
5
|
-
ai_data_science_team/agents/data_cleaning_agent.py,sha256=sMyyWvJ3NK6bEqdkttqRZU03pN6Q2gcR7d39eA0wj-w,27225
|
6
|
-
ai_data_science_team/agents/data_visualization_agent.py,sha256=S0gvUepJBVveMyTFaU0xcNCuOgLLkuDCZbwTGpyjNNQ,29186
|
7
|
-
ai_data_science_team/agents/data_wrangling_agent.py,sha256=s2w9ub92mHFl9oj3jUxlIfEq4Yg8uwGOcwyX3rIgAxk,32477
|
8
|
-
ai_data_science_team/agents/feature_engineering_agent.py,sha256=nB5KBcPzrxtN82sWAXFVZgkezEBG2uscSxb12njLux0,31596
|
9
|
-
ai_data_science_team/agents/sql_database_agent.py,sha256=GbqMh-ImoKaoDMtvv3IZOQT82WGewCubZKyDU4iYIG4,28796
|
10
|
-
ai_data_science_team/multiagents/__init__.py,sha256=aI4GztEwmkexZKT5XHcH3cAjO-xYUhncb3yfPJQDqTA,99
|
11
|
-
ai_data_science_team/multiagents/sql_data_analyst.py,sha256=cFAqCKnLKKJ0zKxmRWSZupbRrVZLI-ugxLAgasWhjVc,9974
|
12
|
-
ai_data_science_team/multiagents/supervised_data_analyst.py,sha256=uduCYpicga-UCf9nPQktQggW96-HDlqvioYmEdWejtI,158
|
13
|
-
ai_data_science_team/templates/__init__.py,sha256=Dt3K5sdhEEQSc1hLasjXPkhmPn-JpPndSFc85ANIAyo,294
|
14
|
-
ai_data_science_team/templates/agent_templates.py,sha256=mlsWxfmLRu9ocgR0l5UQxwki0rnoCoksRyx87WGvbeI,26804
|
15
|
-
ai_data_science_team/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
16
|
-
ai_data_science_team/tools/logging.py,sha256=7wFOv6GGhXR_RPbh-8p0GyrS608XOnZtiaGK2IbDl_s,2081
|
17
|
-
ai_data_science_team/tools/metadata.py,sha256=tbnca_tDp67oBA6qD29AKVooJG10VqGr4vwzj4rPUas,8348
|
18
|
-
ai_data_science_team/tools/parsers.py,sha256=BAi-fJT7BBt9nRS3w5n9LDTsu7JAJsH8CAI9-Qf7jCs,2086
|
19
|
-
ai_data_science_team/tools/regex.py,sha256=dDHzeGkHU0fGQ5qbfuOR9SXdypjeekvSUn1nQztXuvo,3296
|
20
|
-
ai_data_science_team/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
21
|
-
ai_data_science_team/utils/plotly.py,sha256=nST-NG0oizKVHhH6HsjHUpTUumq9bCccBdxjuaJWnVQ,504
|
22
|
-
ai_data_science_team-0.0.0.9008.dist-info/LICENSE,sha256=Xif0IRLdd2HGLATxV2EVp91aSY6KOuacRr_6BorKGzA,1084
|
23
|
-
ai_data_science_team-0.0.0.9008.dist-info/METADATA,sha256=MLWo_wXkAnJP0YcddIDpE3NDhSQViALw_Dai9l3WSS0,9014
|
24
|
-
ai_data_science_team-0.0.0.9008.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
25
|
-
ai_data_science_team-0.0.0.9008.dist-info/top_level.txt,sha256=CnoMgOphCoAdGTLueWdCVByVyjwOubaGiTB1lchdy4M,21
|
26
|
-
ai_data_science_team-0.0.0.9008.dist-info/RECORD,,
|
File without changes
|
{ai_data_science_team-0.0.0.9008.dist-info → ai_data_science_team-0.0.0.9010.dist-info}/LICENSE
RENAMED
File without changes
|
{ai_data_science_team-0.0.0.9008.dist-info → ai_data_science_team-0.0.0.9010.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|