ai-data-science-team 0.0.0.9008__py3-none-any.whl → 0.0.0.9010__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_data_science_team/_version.py +1 -1
- ai_data_science_team/agents/__init__.py +0 -1
- ai_data_science_team/agents/data_cleaning_agent.py +50 -39
- ai_data_science_team/agents/data_loader_tools_agent.py +69 -0
- ai_data_science_team/agents/data_visualization_agent.py +45 -50
- ai_data_science_team/agents/data_wrangling_agent.py +50 -49
- ai_data_science_team/agents/feature_engineering_agent.py +48 -67
- ai_data_science_team/agents/sql_database_agent.py +130 -76
- ai_data_science_team/ml_agents/__init__.py +2 -0
- ai_data_science_team/ml_agents/h2o_ml_agent.py +852 -0
- ai_data_science_team/ml_agents/mlflow_tools_agent.py +327 -0
- ai_data_science_team/multiagents/sql_data_analyst.py +120 -9
- ai_data_science_team/parsers/__init__.py +0 -0
- ai_data_science_team/{tools → parsers}/parsers.py +0 -1
- ai_data_science_team/templates/__init__.py +1 -0
- ai_data_science_team/templates/agent_templates.py +78 -7
- ai_data_science_team/tools/data_loader.py +378 -0
- ai_data_science_team/tools/{metadata.py → dataframe.py} +0 -91
- ai_data_science_team/tools/h2o.py +643 -0
- ai_data_science_team/tools/mlflow.py +961 -0
- ai_data_science_team/tools/sql.py +126 -0
- ai_data_science_team/{tools → utils}/regex.py +59 -1
- {ai_data_science_team-0.0.0.9008.dist-info → ai_data_science_team-0.0.0.9010.dist-info}/METADATA +56 -24
- ai_data_science_team-0.0.0.9010.dist-info/RECORD +35 -0
- ai_data_science_team-0.0.0.9008.dist-info/RECORD +0 -26
- /ai_data_science_team/{tools → utils}/logging.py +0 -0
- {ai_data_science_team-0.0.0.9008.dist-info → ai_data_science_team-0.0.0.9010.dist-info}/LICENSE +0 -0
- {ai_data_science_team-0.0.0.9008.dist-info → ai_data_science_team-0.0.0.9010.dist-info}/WHEEL +0 -0
- {ai_data_science_team-0.0.0.9008.dist-info → ai_data_science_team-0.0.0.9010.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,327 @@
|
|
1
|
+
|
2
|
+
from typing import Any, Optional, Annotated, Sequence
|
3
|
+
import operator
|
4
|
+
|
5
|
+
import pandas as pd
|
6
|
+
|
7
|
+
from IPython.display import Markdown
|
8
|
+
|
9
|
+
from langchain_core.messages import BaseMessage, AIMessage
|
10
|
+
|
11
|
+
from langgraph.prebuilt import create_react_agent, ToolNode
|
12
|
+
from langgraph.prebuilt.chat_agent_executor import AgentState
|
13
|
+
from langgraph.graph import START, END, StateGraph
|
14
|
+
|
15
|
+
from ai_data_science_team.templates import BaseAgent
|
16
|
+
from ai_data_science_team.utils.regex import format_agent_name
|
17
|
+
from ai_data_science_team.tools.mlflow import (
|
18
|
+
mlflow_search_experiments,
|
19
|
+
mlflow_search_runs,
|
20
|
+
mlflow_create_experiment,
|
21
|
+
mlflow_predict_from_run_id,
|
22
|
+
mlflow_launch_ui,
|
23
|
+
mlflow_stop_ui,
|
24
|
+
mlflow_list_artifacts,
|
25
|
+
mlflow_download_artifacts,
|
26
|
+
mlflow_list_registered_models,
|
27
|
+
mlflow_search_registered_models,
|
28
|
+
mlflow_get_model_version_details,
|
29
|
+
)
|
30
|
+
|
31
|
+
AGENT_NAME = "mlflow_tools_agent"
|
32
|
+
|
33
|
+
# TOOL SETUP
|
34
|
+
tools = [
|
35
|
+
mlflow_search_experiments,
|
36
|
+
mlflow_search_runs,
|
37
|
+
mlflow_create_experiment,
|
38
|
+
mlflow_predict_from_run_id,
|
39
|
+
mlflow_launch_ui,
|
40
|
+
mlflow_stop_ui,
|
41
|
+
mlflow_list_artifacts,
|
42
|
+
mlflow_download_artifacts,
|
43
|
+
mlflow_list_registered_models,
|
44
|
+
mlflow_search_registered_models,
|
45
|
+
mlflow_get_model_version_details,
|
46
|
+
]
|
47
|
+
|
48
|
+
class MLflowToolsAgent(BaseAgent):
|
49
|
+
"""
|
50
|
+
An agent that can interact with MLflow by calling tools.
|
51
|
+
|
52
|
+
Current tools include:
|
53
|
+
- List Experiments
|
54
|
+
- Search Runs
|
55
|
+
- Create Experiment
|
56
|
+
- Predict (from a Run ID)
|
57
|
+
|
58
|
+
Parameters:
|
59
|
+
----------
|
60
|
+
model : langchain.llms.base.LLM
|
61
|
+
The language model used to generate the tool calling agent.
|
62
|
+
mlfow_tracking_uri : str, optional
|
63
|
+
The tracking URI for MLflow. Defaults to None.
|
64
|
+
mlflow_registry_uri : str, optional
|
65
|
+
The registry URI for MLflow. Defaults to None.
|
66
|
+
**react_agent_kwargs : dict, optional
|
67
|
+
Additional keyword arguments to pass to the agent's react agent.
|
68
|
+
|
69
|
+
Methods:
|
70
|
+
--------
|
71
|
+
update_params(**kwargs):
|
72
|
+
Updates the agent's parameters and rebuilds the compiled graph.
|
73
|
+
ainvoke_agent(user_instructions: str=None, data_raw: pd.DataFrame=None, **kwargs):
|
74
|
+
Asynchronously runs the agent with the given user instructions.
|
75
|
+
invoke_agent(user_instructions: str=None, data_raw: pd.DataFrame=None, **kwargs):
|
76
|
+
Runs the agent with the given user instructions.
|
77
|
+
get_internal_messages(markdown: bool=False):
|
78
|
+
Returns the internal messages from the agent's response.
|
79
|
+
get_mlflow_artifacts(as_dataframe: bool=False):
|
80
|
+
Returns the MLflow artifacts from the agent's response.
|
81
|
+
get_ai_message(markdown: bool=False):
|
82
|
+
Returns the AI message from the agent's response
|
83
|
+
|
84
|
+
|
85
|
+
|
86
|
+
Examples:
|
87
|
+
--------
|
88
|
+
```python
|
89
|
+
from ai_data_science_team.ml_agents import MLflowToolsAgent
|
90
|
+
|
91
|
+
mlflow_agent = MLflowToolsAgent(llm)
|
92
|
+
|
93
|
+
mlflow_agent.invoke_agent(user_instructions="List the MLflow experiments")
|
94
|
+
|
95
|
+
mlflow_agent.get_response()
|
96
|
+
|
97
|
+
mlflow_agent.get_internal_messages(markdown=True)
|
98
|
+
|
99
|
+
mlflow_agent.get_ai_message(markdown=True)
|
100
|
+
|
101
|
+
mlflow_agent.get_mlflow_artifacts(as_dataframe=True)
|
102
|
+
|
103
|
+
```
|
104
|
+
|
105
|
+
Returns
|
106
|
+
-------
|
107
|
+
MLflowToolsAgent : langchain.graphs.CompiledStateGraph
|
108
|
+
An instance of the MLflow Tools Agent.
|
109
|
+
|
110
|
+
"""
|
111
|
+
|
112
|
+
def __init__(
|
113
|
+
self,
|
114
|
+
model: Any,
|
115
|
+
mlflow_tracking_uri: Optional[str]=None,
|
116
|
+
mlflow_registry_uri: Optional[str]=None,
|
117
|
+
**react_agent_kwargs,
|
118
|
+
):
|
119
|
+
self._params = {
|
120
|
+
"model": model,
|
121
|
+
"mlflow_tracking_uri": mlflow_tracking_uri,
|
122
|
+
"mlflow_registry_uri": mlflow_registry_uri,
|
123
|
+
**react_agent_kwargs,
|
124
|
+
}
|
125
|
+
self._compiled_graph = self._make_compiled_graph()
|
126
|
+
self.response = None
|
127
|
+
|
128
|
+
def _make_compiled_graph(self):
|
129
|
+
"""
|
130
|
+
Creates the compiled graph for the agent.
|
131
|
+
"""
|
132
|
+
self.response = None
|
133
|
+
return make_mlflow_tools_agent(**self._params)
|
134
|
+
|
135
|
+
|
136
|
+
def update_params(self, **kwargs):
|
137
|
+
"""
|
138
|
+
Updates the agent's parameters and rebuilds the compiled graph.
|
139
|
+
"""
|
140
|
+
for k, v in kwargs.items():
|
141
|
+
self._params[k] = v
|
142
|
+
self._compiled_graph = self._make_compiled_graph()
|
143
|
+
|
144
|
+
async def ainvoke_agent(
|
145
|
+
self,
|
146
|
+
user_instructions: str=None,
|
147
|
+
data_raw: pd.DataFrame=None,
|
148
|
+
**kwargs
|
149
|
+
):
|
150
|
+
"""
|
151
|
+
Runs the agent with the given user instructions.
|
152
|
+
|
153
|
+
Parameters:
|
154
|
+
----------
|
155
|
+
user_instructions : str, optional
|
156
|
+
The user instructions to pass to the agent.
|
157
|
+
data_raw : pd.DataFrame, optional
|
158
|
+
The data to pass to the agent. Used for prediction and tool calls where data is required.
|
159
|
+
kwargs : dict, optional
|
160
|
+
Additional keyword arguments to pass to the agents ainvoke method.
|
161
|
+
|
162
|
+
"""
|
163
|
+
response = await self._compiled_graph.ainvoke(
|
164
|
+
{
|
165
|
+
"user_instructions": user_instructions,
|
166
|
+
"data_raw": data_raw.to_dict() if data_raw is not None else None,
|
167
|
+
},
|
168
|
+
**kwargs
|
169
|
+
)
|
170
|
+
self.response = response
|
171
|
+
return None
|
172
|
+
|
173
|
+
def invoke_agent(
|
174
|
+
self,
|
175
|
+
user_instructions: str=None,
|
176
|
+
data_raw: pd.DataFrame=None,
|
177
|
+
**kwargs
|
178
|
+
):
|
179
|
+
"""
|
180
|
+
Runs the agent with the given user instructions.
|
181
|
+
|
182
|
+
Parameters:
|
183
|
+
----------
|
184
|
+
user_instructions : str, optional
|
185
|
+
The user instructions to pass to the agent.
|
186
|
+
data_raw : pd.DataFrame, optional
|
187
|
+
The raw data to pass to the agent. Used for prediction and tool calls where data is required.
|
188
|
+
kwargs : dict, optional
|
189
|
+
Additional keyword arguments to pass to the agents invoke method.
|
190
|
+
|
191
|
+
"""
|
192
|
+
response = self._compiled_graph.invoke(
|
193
|
+
{
|
194
|
+
"user_instructions": user_instructions,
|
195
|
+
"data_raw": data_raw.to_dict() if data_raw is not None else None,
|
196
|
+
},
|
197
|
+
**kwargs
|
198
|
+
)
|
199
|
+
self.response = response
|
200
|
+
return None
|
201
|
+
|
202
|
+
def get_internal_messages(self, markdown: bool=False):
|
203
|
+
"""
|
204
|
+
Returns the internal messages from the agent's response.
|
205
|
+
"""
|
206
|
+
pretty_print = "\n\n".join([f"### {msg.type.upper()}\n\nID: {msg.id}\n\nContent:\n\n{msg.content}" for msg in self.response["internal_messages"]])
|
207
|
+
if markdown:
|
208
|
+
return Markdown(pretty_print)
|
209
|
+
else:
|
210
|
+
return self.response["internal_messages"]
|
211
|
+
|
212
|
+
def get_mlflow_artifacts(self, as_dataframe: bool=False):
|
213
|
+
"""
|
214
|
+
Returns the MLflow artifacts from the agent's response.
|
215
|
+
"""
|
216
|
+
if as_dataframe:
|
217
|
+
return pd.DataFrame(self.response["mlflow_artifacts"])
|
218
|
+
else:
|
219
|
+
return self.response["mlflow_artifacts"]
|
220
|
+
|
221
|
+
def get_ai_message(self, markdown: bool=False):
|
222
|
+
"""
|
223
|
+
Returns the AI message from the agent's response.
|
224
|
+
"""
|
225
|
+
if markdown:
|
226
|
+
return Markdown(self.response["messages"][0].content)
|
227
|
+
else:
|
228
|
+
return self.response["messages"][0].content
|
229
|
+
|
230
|
+
|
231
|
+
|
232
|
+
|
233
|
+
def make_mlflow_tools_agent(
|
234
|
+
model: Any,
|
235
|
+
mlflow_tracking_uri: str=None,
|
236
|
+
mlflow_registry_uri: str=None,
|
237
|
+
**react_agent_kwargs,
|
238
|
+
):
|
239
|
+
"""
|
240
|
+
MLflow Tool Calling Agent
|
241
|
+
"""
|
242
|
+
|
243
|
+
try:
|
244
|
+
import mlflow
|
245
|
+
except ImportError:
|
246
|
+
return "MLflow is not installed. Please install it by running: !pip install mlflow"
|
247
|
+
|
248
|
+
if mlflow_tracking_uri is not None:
|
249
|
+
mlflow.set_tracking_uri(mlflow_tracking_uri)
|
250
|
+
|
251
|
+
if mlflow_registry_uri is not None:
|
252
|
+
mlflow.set_registry_uri(mlflow_registry_uri)
|
253
|
+
|
254
|
+
class GraphState(AgentState):
|
255
|
+
internal_messages: Annotated[Sequence[BaseMessage], operator.add]
|
256
|
+
user_instructions: str
|
257
|
+
data_raw: dict
|
258
|
+
mlflow_artifacts: dict
|
259
|
+
|
260
|
+
|
261
|
+
def mflfow_tools_agent(state):
|
262
|
+
"""
|
263
|
+
Postprocesses the MLflow state, keeping only the last message
|
264
|
+
and extracting the last tool artifact.
|
265
|
+
"""
|
266
|
+
print(format_agent_name(AGENT_NAME))
|
267
|
+
print(" * RUN REACT TOOL-CALLING AGENT")
|
268
|
+
|
269
|
+
tool_node = ToolNode(
|
270
|
+
tools=tools
|
271
|
+
)
|
272
|
+
|
273
|
+
mlflow_agent = create_react_agent(
|
274
|
+
model,
|
275
|
+
tools=tool_node,
|
276
|
+
state_schema=GraphState,
|
277
|
+
**react_agent_kwargs,
|
278
|
+
)
|
279
|
+
|
280
|
+
response = mlflow_agent.invoke(
|
281
|
+
{
|
282
|
+
"messages": [("user", state["user_instructions"])],
|
283
|
+
"data_raw": state["data_raw"],
|
284
|
+
},
|
285
|
+
)
|
286
|
+
|
287
|
+
print(" * POST-PROCESS RESULTS")
|
288
|
+
|
289
|
+
internal_messages = response['messages']
|
290
|
+
|
291
|
+
# Ensure there is at least one AI message
|
292
|
+
if not internal_messages:
|
293
|
+
return {
|
294
|
+
"internal_messages": [],
|
295
|
+
"mlflow_artifacts": None,
|
296
|
+
}
|
297
|
+
|
298
|
+
# Get the last AI message
|
299
|
+
last_ai_message = AIMessage(internal_messages[-1].content, role = AGENT_NAME)
|
300
|
+
|
301
|
+
# Get the last tool artifact safely
|
302
|
+
last_tool_artifact = None
|
303
|
+
if len(internal_messages) > 1:
|
304
|
+
last_message = internal_messages[-2] # Get second-to-last message
|
305
|
+
if hasattr(last_message, "artifact"): # Check if it has an "artifact"
|
306
|
+
last_tool_artifact = last_message.artifact
|
307
|
+
elif isinstance(last_message, dict) and "artifact" in last_message:
|
308
|
+
last_tool_artifact = last_message["artifact"]
|
309
|
+
|
310
|
+
return {
|
311
|
+
"messages": [last_ai_message],
|
312
|
+
"internal_messages": internal_messages,
|
313
|
+
"mlflow_artifacts": last_tool_artifact,
|
314
|
+
}
|
315
|
+
|
316
|
+
|
317
|
+
workflow = StateGraph(GraphState)
|
318
|
+
|
319
|
+
workflow.add_node("mlflow_tools_agent", mflfow_tools_agent)
|
320
|
+
|
321
|
+
workflow.add_edge(START, "mlflow_tools_agent")
|
322
|
+
workflow.add_edge("mlflow_tools_agent", END)
|
323
|
+
|
324
|
+
app = workflow.compile()
|
325
|
+
|
326
|
+
return app
|
327
|
+
|
@@ -1,24 +1,24 @@
|
|
1
1
|
|
2
2
|
from langchain_core.messages import BaseMessage
|
3
|
-
from langgraph.checkpoint.memory import MemorySaver
|
4
3
|
from langgraph.types import Checkpointer
|
5
4
|
|
6
5
|
from langgraph.graph import START, END, StateGraph
|
7
6
|
from langgraph.graph.state import CompiledStateGraph
|
8
7
|
from langgraph.types import Command
|
9
8
|
|
10
|
-
from typing import TypedDict, Annotated, Sequence
|
9
|
+
from typing import TypedDict, Annotated, Sequence, Literal
|
11
10
|
import operator
|
12
11
|
|
13
|
-
from typing_extensions import TypedDict
|
12
|
+
from typing_extensions import TypedDict
|
14
13
|
|
15
14
|
import pandas as pd
|
15
|
+
import json
|
16
16
|
from IPython.display import Markdown
|
17
17
|
|
18
18
|
from ai_data_science_team.templates import BaseAgent
|
19
19
|
from ai_data_science_team.agents import SQLDatabaseAgent, DataVisualizationAgent
|
20
20
|
from ai_data_science_team.utils.plotly import plotly_from_dict
|
21
|
-
|
21
|
+
from ai_data_science_team.utils.regex import remove_consecutive_duplicates, get_generic_summary
|
22
22
|
|
23
23
|
|
24
24
|
class SQLDataAnalyst(BaseAgent):
|
@@ -90,7 +90,7 @@ class SQLDataAnalyst(BaseAgent):
|
|
90
90
|
self._params[k] = v
|
91
91
|
self._compiled_graph = self._make_compiled_graph()
|
92
92
|
|
93
|
-
def ainvoke_agent(self, user_instructions, **kwargs):
|
93
|
+
async def ainvoke_agent(self, user_instructions, max_retries:int=3, retry_count:int=0, **kwargs):
|
94
94
|
"""
|
95
95
|
Asynchronosly nvokes the SQL Data Analyst Multi-Agent.
|
96
96
|
|
@@ -108,15 +108,53 @@ class SQLDataAnalyst(BaseAgent):
|
|
108
108
|
Example:
|
109
109
|
--------
|
110
110
|
``` python
|
111
|
-
|
111
|
+
from langchain_openai import ChatOpenAI
|
112
|
+
import sqlalchemy as sql
|
113
|
+
from ai_data_science_team.multiagents import SQLDataAnalyst
|
114
|
+
from ai_data_science_team.agents import SQLDatabaseAgent, DataVisualizationAgent
|
115
|
+
|
116
|
+
llm = ChatOpenAI(model = "gpt-4o-mini")
|
117
|
+
|
118
|
+
sql_engine = sql.create_engine("sqlite:///data/northwind.db")
|
119
|
+
|
120
|
+
conn = sql_engine.connect()
|
121
|
+
|
122
|
+
sql_data_analyst = SQLDataAnalyst(
|
123
|
+
model = llm,
|
124
|
+
sql_database_agent = SQLDatabaseAgent(
|
125
|
+
model = llm,
|
126
|
+
connection = conn,
|
127
|
+
n_samples = 1,
|
128
|
+
),
|
129
|
+
data_visualization_agent = DataVisualizationAgent(
|
130
|
+
model = llm,
|
131
|
+
n_samples = 10,
|
132
|
+
)
|
133
|
+
)
|
134
|
+
|
135
|
+
sql_data_analyst.ainvoke_agent(
|
136
|
+
user_instructions = "Make a plot of sales revenue by month by territory. Make a dropdown for the user to select the territory.",
|
137
|
+
)
|
138
|
+
|
139
|
+
sql_data_analyst.get_sql_query_code()
|
140
|
+
|
141
|
+
sql_data_analyst.get_data_sql()
|
142
|
+
|
143
|
+
sql_data_analyst.get_plotly_graph()
|
112
144
|
```
|
113
145
|
"""
|
114
|
-
response = self._compiled_graph.ainvoke({
|
146
|
+
response = await self._compiled_graph.ainvoke({
|
115
147
|
"user_instructions": user_instructions,
|
148
|
+
"max_retries": max_retries,
|
149
|
+
"retry_count": retry_count,
|
116
150
|
}, **kwargs)
|
151
|
+
|
152
|
+
if response.get("messages"):
|
153
|
+
response["messages"] = remove_consecutive_duplicates(response["messages"])
|
154
|
+
|
117
155
|
self.response = response
|
118
156
|
|
119
|
-
def invoke_agent(self, user_instructions, **kwargs):
|
157
|
+
def invoke_agent(self, user_instructions, max_retries:int=3, retry_count:int=0, **kwargs):
|
120
158
|
"""
|
121
159
|
Invokes the SQL Data Analyst Multi-Agent.
|
122
160
|
|
@@ -124,6 +162,10 @@ class SQLDataAnalyst(BaseAgent):
|
|
124
162
|
----------
|
125
163
|
user_instructions: str
|
126
164
|
The user's instructions for the combined SQL and (optionally) Data Visualization agents.
|
165
|
+
max_retries (int):
|
166
|
+
Maximum retry attempts for cleaning.
|
167
|
+
retry_count (int):
|
168
|
+
Current retry attempt.
|
127
169
|
**kwargs:
|
128
170
|
Additional keyword arguments to pass to the compiled graph's `invoke` method.
|
129
171
|
|
@@ -134,14 +176,53 @@ class SQLDataAnalyst(BaseAgent):
|
|
134
176
|
Example:
|
135
177
|
--------
|
136
178
|
``` python
|
137
|
-
|
179
|
+
from langchain_openai import ChatOpenAI
|
180
|
+
import sqlalchemy as sql
|
181
|
+
from ai_data_science_team.multiagents import SQLDataAnalyst
|
182
|
+
from ai_data_science_team.agents import SQLDatabaseAgent, DataVisualizationAgent
|
183
|
+
|
184
|
+
llm = ChatOpenAI(model = "gpt-4o-mini")
|
185
|
+
|
186
|
+
sql_engine = sql.create_engine("sqlite:///data/northwind.db")
|
187
|
+
|
188
|
+
conn = sql_engine.connect()
|
189
|
+
|
190
|
+
sql_data_analyst = SQLDataAnalyst(
|
191
|
+
model = llm,
|
192
|
+
sql_database_agent = SQLDatabaseAgent(
|
193
|
+
model = llm,
|
194
|
+
connection = conn,
|
195
|
+
n_samples = 1,
|
196
|
+
),
|
197
|
+
data_visualization_agent = DataVisualizationAgent(
|
198
|
+
model = llm,
|
199
|
+
n_samples = 10,
|
200
|
+
)
|
201
|
+
)
|
202
|
+
|
203
|
+
sql_data_analyst.invoke_agent(
|
204
|
+
user_instructions = "Make a plot of sales revenue by month by territory. Make a dropdown for the user to select the territory.",
|
205
|
+
)
|
206
|
+
|
207
|
+
sql_data_analyst.get_sql_query_code()
|
208
|
+
|
209
|
+
sql_data_analyst.get_data_sql()
|
210
|
+
|
211
|
+
sql_data_analyst.get_plotly_graph()
|
138
212
|
```
|
139
213
|
"""
|
140
214
|
response = self._compiled_graph.invoke({
|
141
215
|
"user_instructions": user_instructions,
|
216
|
+
"max_retries": max_retries,
|
217
|
+
"retry_count": retry_count,
|
142
218
|
}, **kwargs)
|
219
|
+
|
220
|
+
if response.get("messages"):
|
221
|
+
response["messages"] = remove_consecutive_duplicates(response["messages"])
|
222
|
+
|
143
223
|
self.response = response
|
144
224
|
|
225
|
+
|
145
226
|
def get_data_sql(self):
|
146
227
|
"""
|
147
228
|
Returns the SQL data as a Pandas DataFrame.
|
@@ -205,6 +286,34 @@ class SQLDataAnalyst(BaseAgent):
|
|
205
286
|
if markdown:
|
206
287
|
return Markdown(f"```python\n{self.response.get('data_visualization_function')}\n```")
|
207
288
|
return self.response.get("data_visualization_function")
|
289
|
+
|
290
|
+
def get_workflow_summary(self, markdown=False):
|
291
|
+
"""
|
292
|
+
Returns a summary of the SQL Data Analyst workflow.
|
293
|
+
|
294
|
+
Parameters:
|
295
|
+
----------
|
296
|
+
markdown: bool
|
297
|
+
If True, returns the summary as a Markdown-formatted string.
|
298
|
+
"""
|
299
|
+
if self.response and self.get_response()['messages']:
|
300
|
+
|
301
|
+
agents = [self.get_response()['messages'][i].role for i in range(len(self.get_response()['messages']))]
|
302
|
+
|
303
|
+
agent_labels = []
|
304
|
+
for i in range(len(agents)):
|
305
|
+
agent_labels.append(f"- **Agent {i+1}:** {agents[i]}")
|
306
|
+
|
307
|
+
# Construct header
|
308
|
+
header = f"# SQL Data Analyst Workflow Summary Report\n\nThis agentic workflow contains {len(agents)} agents:\n\n" + "\n".join(agent_labels)
|
309
|
+
|
310
|
+
reports = []
|
311
|
+
for msg in self.get_response()['messages']:
|
312
|
+
reports.append(get_generic_summary(json.loads(msg.content)))
|
313
|
+
|
314
|
+
if markdown:
|
315
|
+
return Markdown(header + "\n\n".join(reports))
|
316
|
+
return "\n\n".join(reports)
|
208
317
|
|
209
318
|
|
210
319
|
|
@@ -250,6 +359,8 @@ def make_sql_data_analyst(
|
|
250
359
|
plot_required: bool
|
251
360
|
data_visualization_function: str
|
252
361
|
plotly_graph: dict
|
362
|
+
max_retries: int
|
363
|
+
retry_count: int
|
253
364
|
|
254
365
|
def route_to_visualization(state) -> Command[Literal["data_visualization_agent", "__end__"]]:
|
255
366
|
|
File without changes
|
@@ -8,11 +8,16 @@ from langgraph.pregel.types import StreamMode
|
|
8
8
|
|
9
9
|
import pandas as pd
|
10
10
|
import sqlalchemy as sql
|
11
|
+
import json
|
11
12
|
|
12
|
-
from typing import Any, Callable, Dict, Type, Optional, Union
|
13
|
+
from typing import Any, Callable, Dict, Type, Optional, Union, List
|
13
14
|
|
14
|
-
from ai_data_science_team.
|
15
|
-
from ai_data_science_team.
|
15
|
+
from ai_data_science_team.parsers.parsers import PythonOutputParser
|
16
|
+
from ai_data_science_team.utils.regex import (
|
17
|
+
relocate_imports_inside_function,
|
18
|
+
add_comments_to_top,
|
19
|
+
remove_consecutive_duplicates
|
20
|
+
)
|
16
21
|
|
17
22
|
from IPython.display import Image, display
|
18
23
|
import pandas as pd
|
@@ -82,9 +87,13 @@ class BaseAgent(CompiledStateGraph):
|
|
82
87
|
Any: The agent's response.
|
83
88
|
"""
|
84
89
|
self.response = self._compiled_graph.invoke(input=input, config=config,**kwargs)
|
90
|
+
|
91
|
+
if self.response.get("messages"):
|
92
|
+
self.response["messages"] = remove_consecutive_duplicates(self.response["messages"])
|
93
|
+
|
85
94
|
return self.response
|
86
95
|
|
87
|
-
def ainvoke(
|
96
|
+
async def ainvoke(
|
88
97
|
self,
|
89
98
|
input: Union[dict[str, Any], Any],
|
90
99
|
config: Optional[RunnableConfig] = None,
|
@@ -101,7 +110,11 @@ class BaseAgent(CompiledStateGraph):
|
|
101
110
|
Returns:
|
102
111
|
Any: The agent's response.
|
103
112
|
"""
|
104
|
-
self.response = self._compiled_graph.ainvoke(input=input, config=config,**kwargs)
|
113
|
+
self.response = await self._compiled_graph.ainvoke(input=input, config=config,**kwargs)
|
114
|
+
|
115
|
+
if self.response.get("messages"):
|
116
|
+
self.response["messages"] = remove_consecutive_duplicates(self.response["messages"])
|
117
|
+
|
105
118
|
return self.response
|
106
119
|
|
107
120
|
def stream(
|
@@ -129,9 +142,13 @@ class BaseAgent(CompiledStateGraph):
|
|
129
142
|
Any: The agent's response.
|
130
143
|
"""
|
131
144
|
self.response = self._compiled_graph.stream(input=input, config=config, stream_mode=stream_mode, **kwargs)
|
145
|
+
|
146
|
+
if self.response.get("messages"):
|
147
|
+
self.response["messages"] = remove_consecutive_duplicates(self.response["messages"])
|
148
|
+
|
132
149
|
return self.response
|
133
150
|
|
134
|
-
def astream(
|
151
|
+
async def astream(
|
135
152
|
self,
|
136
153
|
input: dict[str, Any] | Any,
|
137
154
|
config: RunnableConfig | None = None,
|
@@ -155,7 +172,11 @@ class BaseAgent(CompiledStateGraph):
|
|
155
172
|
Returns:
|
156
173
|
Any: The agent's response.
|
157
174
|
"""
|
158
|
-
self.response = self._compiled_graph.astream(input=input, config=config, stream_mode=stream_mode, **kwargs)
|
175
|
+
self.response = await self._compiled_graph.astream(input=input, config=config, stream_mode=stream_mode, **kwargs)
|
176
|
+
|
177
|
+
if self.response.get("messages"):
|
178
|
+
self.response["messages"] = remove_consecutive_duplicates(self.response["messages"])
|
179
|
+
|
159
180
|
return self.response
|
160
181
|
|
161
182
|
def get_state_keys(self):
|
@@ -183,6 +204,9 @@ class BaseAgent(CompiledStateGraph):
|
|
183
204
|
Returns:
|
184
205
|
Any: The agent's response.
|
185
206
|
"""
|
207
|
+
if self.response.get("messages"):
|
208
|
+
self.response["messages"] = remove_consecutive_duplicates(self.response["messages"])
|
209
|
+
|
186
210
|
return self.response
|
187
211
|
|
188
212
|
def show(self, xray: int = 0):
|
@@ -729,3 +753,50 @@ def node_func_explain_agent_code(
|
|
729
753
|
# Return an error message if there was a problem with the code
|
730
754
|
message = AIMessage(content=error_message)
|
731
755
|
return {result_key: [message]}
|
756
|
+
|
757
|
+
|
758
|
+
|
759
|
+
def node_func_report_agent_outputs(
|
760
|
+
state: Dict[str, Any],
|
761
|
+
keys_to_include: List[str],
|
762
|
+
result_key: str,
|
763
|
+
role: str,
|
764
|
+
custom_title: str = "Agent Output Summary"
|
765
|
+
) -> Dict[str, Any]:
|
766
|
+
"""
|
767
|
+
Gathers relevant data directly from the state (filtered by `keys_to_include`)
|
768
|
+
and returns them as a structured message in `state[result_key]`.
|
769
|
+
|
770
|
+
No LLM is used.
|
771
|
+
|
772
|
+
Parameters
|
773
|
+
----------
|
774
|
+
state : Dict[str, Any]
|
775
|
+
The current state dictionary holding all agent variables.
|
776
|
+
keys_to_include : List[str]
|
777
|
+
The list of keys in `state` to include in the output.
|
778
|
+
result_key : str
|
779
|
+
The key in `state` under which we'll store the final structured message.
|
780
|
+
role : str
|
781
|
+
The role that will be used in the final AIMessage (e.g., "DataCleaningAgent").
|
782
|
+
custom_title : str, optional
|
783
|
+
A title or heading for your report. Defaults to "Agent Output Summary".
|
784
|
+
"""
|
785
|
+
print(" * REPORT AGENT OUTPUTS")
|
786
|
+
|
787
|
+
final_report = {"report_title": custom_title}
|
788
|
+
|
789
|
+
for key in keys_to_include:
|
790
|
+
final_report[key] = state.get(key, f"<{key}_not_found_in_state>")
|
791
|
+
|
792
|
+
# Wrap it in a list of messages (like the current "messages" pattern).
|
793
|
+
# You can serialize this dictionary as JSON or just cast it to string.
|
794
|
+
return {
|
795
|
+
result_key: [
|
796
|
+
AIMessage(
|
797
|
+
content=json.dumps(final_report, indent=2),
|
798
|
+
role=role
|
799
|
+
)
|
800
|
+
]
|
801
|
+
}
|
802
|
+
|