ai-data-science-team 0.0.0.9008__py3-none-any.whl → 0.0.0.9010__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_data_science_team/_version.py +1 -1
- ai_data_science_team/agents/__init__.py +0 -1
- ai_data_science_team/agents/data_cleaning_agent.py +50 -39
- ai_data_science_team/agents/data_loader_tools_agent.py +69 -0
- ai_data_science_team/agents/data_visualization_agent.py +45 -50
- ai_data_science_team/agents/data_wrangling_agent.py +50 -49
- ai_data_science_team/agents/feature_engineering_agent.py +48 -67
- ai_data_science_team/agents/sql_database_agent.py +130 -76
- ai_data_science_team/ml_agents/__init__.py +2 -0
- ai_data_science_team/ml_agents/h2o_ml_agent.py +852 -0
- ai_data_science_team/ml_agents/mlflow_tools_agent.py +327 -0
- ai_data_science_team/multiagents/sql_data_analyst.py +120 -9
- ai_data_science_team/parsers/__init__.py +0 -0
- ai_data_science_team/{tools → parsers}/parsers.py +0 -1
- ai_data_science_team/templates/__init__.py +1 -0
- ai_data_science_team/templates/agent_templates.py +78 -7
- ai_data_science_team/tools/data_loader.py +378 -0
- ai_data_science_team/tools/{metadata.py → dataframe.py} +0 -91
- ai_data_science_team/tools/h2o.py +643 -0
- ai_data_science_team/tools/mlflow.py +961 -0
- ai_data_science_team/tools/sql.py +126 -0
- ai_data_science_team/{tools → utils}/regex.py +59 -1
- {ai_data_science_team-0.0.0.9008.dist-info → ai_data_science_team-0.0.0.9010.dist-info}/METADATA +56 -24
- ai_data_science_team-0.0.0.9010.dist-info/RECORD +35 -0
- ai_data_science_team-0.0.0.9008.dist-info/RECORD +0 -26
- /ai_data_science_team/{tools → utils}/logging.py +0 -0
- {ai_data_science_team-0.0.0.9008.dist-info → ai_data_science_team-0.0.0.9010.dist-info}/LICENSE +0 -0
- {ai_data_science_team-0.0.0.9008.dist-info → ai_data_science_team-0.0.0.9010.dist-info}/WHEEL +0 -0
- {ai_data_science_team-0.0.0.9008.dist-info → ai_data_science_team-0.0.0.9010.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,378 @@
|
|
1
|
+
|
2
|
+
from langchain.tools import tool
|
3
|
+
|
4
|
+
import pandas as pd
|
5
|
+
|
6
|
+
from typing import Tuple, List, Dict
|
7
|
+
|
8
|
+
|
9
|
+
@tool(response_format='content_and_artifact')
|
10
|
+
def load_directory(dir_path: str) -> Tuple[str, Dict]:
|
11
|
+
"""
|
12
|
+
Tool: load_directory
|
13
|
+
Description: Loads all recognized tabular files in a directory.
|
14
|
+
|
15
|
+
Parameters:
|
16
|
+
----------
|
17
|
+
dir_path : str
|
18
|
+
The path to the directory to load.
|
19
|
+
|
20
|
+
Returns:
|
21
|
+
-------
|
22
|
+
Tuple[str, Dict]
|
23
|
+
A tuple containing a message and a dictionary of data frames.
|
24
|
+
"""
|
25
|
+
print(" * Tool: load_directory")
|
26
|
+
import os
|
27
|
+
import pandas as pd
|
28
|
+
data_frames = {}
|
29
|
+
for filename in os.listdir(dir_path):
|
30
|
+
file_path = os.path.join(dir_path, filename)
|
31
|
+
# Skip directories
|
32
|
+
if os.path.isdir(file_path):
|
33
|
+
continue
|
34
|
+
try:
|
35
|
+
data_frames[filename] = auto_load_file(file_path).to_dict()
|
36
|
+
except Exception as e:
|
37
|
+
data_frames[filename] = f"Error loading file: {e}"
|
38
|
+
return f"Returned the following data frames: {list(data_frames.keys())}", data_frames
|
39
|
+
|
40
|
+
@tool(response_format='content_and_artifact')
|
41
|
+
def load_file(file_path: str) -> Tuple[str, Dict]:
|
42
|
+
"""
|
43
|
+
Automatically loads a file based on its extension.
|
44
|
+
|
45
|
+
Parameters:
|
46
|
+
----------
|
47
|
+
file_path : str
|
48
|
+
The path to the file to load.
|
49
|
+
|
50
|
+
Returns:
|
51
|
+
-------
|
52
|
+
Tuple[str, Dict]
|
53
|
+
A tuple containing a message and a dictionary of the data frame.
|
54
|
+
"""
|
55
|
+
print(" * Tool: load_file")
|
56
|
+
return f"Returned the following data frame from this file: {file_path}", auto_load_file(file_path).to_dict()
|
57
|
+
|
58
|
+
|
59
|
+
@tool(response_format='content_and_artifact')
|
60
|
+
def list_directory_contents(directory_path: str, show_hidden: bool = False) -> Tuple[List[str], List[Dict]]:
|
61
|
+
"""
|
62
|
+
Tool: list_directory_contents
|
63
|
+
Description: Lists all files and folders in the specified directory.
|
64
|
+
Args:
|
65
|
+
directory_path (str): The path of the directory to list.
|
66
|
+
show_hidden (bool): Whether to include hidden files (default: False).
|
67
|
+
Returns:
|
68
|
+
tuple:
|
69
|
+
- content (list[str]): A list of filenames/folders (suitable for display)
|
70
|
+
- artifact (list[dict]): A list of dictionaries where each dict has keys like {"filename": <name>}.
|
71
|
+
This structure can be easily converted to a pandas DataFrame.
|
72
|
+
"""
|
73
|
+
print(" * Tool: list_directory_contents")
|
74
|
+
import os
|
75
|
+
|
76
|
+
items = []
|
77
|
+
for item in os.listdir(directory_path):
|
78
|
+
# If show_hidden is False, skip items starting with '.'
|
79
|
+
if not show_hidden and item.startswith('.'):
|
80
|
+
continue
|
81
|
+
items.append(item)
|
82
|
+
|
83
|
+
# content: just the raw list of filenames
|
84
|
+
content = items
|
85
|
+
|
86
|
+
# artifact: list of dicts (each row is {"filename": ...}), easily turned into a DataFrame
|
87
|
+
artifact = [{"filename": item} for item in items]
|
88
|
+
|
89
|
+
return content, artifact
|
90
|
+
|
91
|
+
|
92
|
+
@tool(response_format='content_and_artifact')
|
93
|
+
def list_directory_recursive(directory_path: str, show_hidden: bool = False) -> Tuple[str, List[Dict]]:
|
94
|
+
"""
|
95
|
+
Tool: list_directory_recursive
|
96
|
+
Description:
|
97
|
+
Recursively lists all files and folders within the specified directory.
|
98
|
+
Returns a two-tuple:
|
99
|
+
(1) A human-readable tree representation of the directory (content).
|
100
|
+
(2) A list of dicts (artifact) that can be easily converted into a DataFrame.
|
101
|
+
|
102
|
+
Args:
|
103
|
+
directory_path (str): The path of the directory to list.
|
104
|
+
show_hidden (bool): Whether to include hidden files (default: False).
|
105
|
+
|
106
|
+
Returns:
|
107
|
+
Tuple[str, List[dict]]:
|
108
|
+
content: A multiline string showing the directory tree.
|
109
|
+
artifact: A list of dictionaries, each with information about a file or directory.
|
110
|
+
|
111
|
+
Example:
|
112
|
+
content, artifact = list_directory_recursive("/path/to/folder", show_hidden=False)
|
113
|
+
"""
|
114
|
+
print(" * Tool: list_directory_recursive")
|
115
|
+
|
116
|
+
# We'll store two things as we recurse:
|
117
|
+
# 1) lines for building the "tree" string
|
118
|
+
# 2) records in a list of dicts for easy DataFrame creation
|
119
|
+
import os
|
120
|
+
|
121
|
+
lines = []
|
122
|
+
records = []
|
123
|
+
|
124
|
+
def recurse(path: str, indent_level: int = 0):
|
125
|
+
# List items in the current directory
|
126
|
+
try:
|
127
|
+
items = os.listdir(path)
|
128
|
+
except PermissionError:
|
129
|
+
# If we don't have permission to read the directory, just note it.
|
130
|
+
lines.append(" " * indent_level + "[Permission Denied]")
|
131
|
+
return
|
132
|
+
|
133
|
+
# Sort items for a consistent order (optional)
|
134
|
+
items.sort()
|
135
|
+
|
136
|
+
for item in items:
|
137
|
+
if not show_hidden and item.startswith('.'):
|
138
|
+
continue
|
139
|
+
|
140
|
+
full_path = os.path.join(path, item)
|
141
|
+
# Build an indented prefix for the tree
|
142
|
+
prefix = " " * indent_level
|
143
|
+
|
144
|
+
if os.path.isdir(full_path):
|
145
|
+
# Directory
|
146
|
+
lines.append(f"{prefix}{item}/")
|
147
|
+
records.append({
|
148
|
+
"type": "directory",
|
149
|
+
"name": item,
|
150
|
+
"parent_path": path,
|
151
|
+
"absolute_path": full_path
|
152
|
+
})
|
153
|
+
# Recursively descend
|
154
|
+
recurse(full_path, indent_level + 1)
|
155
|
+
else:
|
156
|
+
# File
|
157
|
+
lines.append(f"{prefix}- {item}")
|
158
|
+
records.append({
|
159
|
+
"type": "file",
|
160
|
+
"name": item,
|
161
|
+
"parent_path": path,
|
162
|
+
"absolute_path": full_path
|
163
|
+
})
|
164
|
+
|
165
|
+
# Kick off recursion
|
166
|
+
if os.path.isdir(directory_path):
|
167
|
+
# Add the top-level directory to lines/records if you like
|
168
|
+
dir_name = os.path.basename(os.path.normpath(directory_path)) or directory_path
|
169
|
+
lines.append(f"{dir_name}/") # Show the root as well
|
170
|
+
records.append({
|
171
|
+
"type": "directory",
|
172
|
+
"name": dir_name,
|
173
|
+
"parent_path": os.path.dirname(directory_path),
|
174
|
+
"absolute_path": os.path.abspath(directory_path)
|
175
|
+
})
|
176
|
+
recurse(directory_path, indent_level=1)
|
177
|
+
else:
|
178
|
+
# If the given path is not a directory, just return a note
|
179
|
+
lines.append(f"{directory_path} is not a directory.")
|
180
|
+
records.append({
|
181
|
+
"type": "error",
|
182
|
+
"name": directory_path,
|
183
|
+
"parent_path": None,
|
184
|
+
"absolute_path": os.path.abspath(directory_path)
|
185
|
+
})
|
186
|
+
|
187
|
+
# content: multiline string with the entire tree
|
188
|
+
content = "\n".join(lines)
|
189
|
+
# artifact: list of dicts, easily converted into a DataFrame
|
190
|
+
artifact = records
|
191
|
+
|
192
|
+
return content, artifact
|
193
|
+
|
194
|
+
|
195
|
+
@tool(response_format='content_and_artifact')
|
196
|
+
def get_file_info(file_path: str) -> Tuple[str, List[Dict]]:
|
197
|
+
"""
|
198
|
+
Tool: get_file_info
|
199
|
+
Description: Retrieves metadata (size, modification time, etc.) about a file.
|
200
|
+
Returns a tuple (content, artifact):
|
201
|
+
- content (str): A textual summary of the file info.
|
202
|
+
- artifact (List[Dict]): A list with a single dictionary of file metadata.
|
203
|
+
Useful for direct conversion into a DataFrame.
|
204
|
+
Args:
|
205
|
+
file_path (str): The path of the file to inspect.
|
206
|
+
Returns:
|
207
|
+
Tuple[str, List[dict]]:
|
208
|
+
content: Summary text
|
209
|
+
artifact: A list[dict] of file metadata
|
210
|
+
Example:
|
211
|
+
content, artifact = get_file_info("/path/to/mydata.csv")
|
212
|
+
"""
|
213
|
+
print(" * Tool: get_file_info")
|
214
|
+
|
215
|
+
# Ensure the file exists
|
216
|
+
import os
|
217
|
+
import time
|
218
|
+
|
219
|
+
if not os.path.isfile(file_path):
|
220
|
+
raise FileNotFoundError(f"{file_path} is not a valid file.")
|
221
|
+
|
222
|
+
file_stats = os.stat(file_path)
|
223
|
+
|
224
|
+
# Construct the data dictionary
|
225
|
+
file_data = {
|
226
|
+
"file_name": os.path.basename(file_path),
|
227
|
+
"size_bytes": file_stats.st_size,
|
228
|
+
"modification_time": time.ctime(file_stats.st_mtime),
|
229
|
+
"absolute_path": os.path.abspath(file_path),
|
230
|
+
}
|
231
|
+
|
232
|
+
# Create a user-friendly summary (content)
|
233
|
+
content_str = (
|
234
|
+
f"File Name: {file_data['file_name']}\n"
|
235
|
+
f"Size (bytes): {file_data['size_bytes']}\n"
|
236
|
+
f"Last Modified: {file_data['modification_time']}\n"
|
237
|
+
f"Absolute Path: {file_data['absolute_path']}"
|
238
|
+
)
|
239
|
+
|
240
|
+
# Artifact should be a list of dict(s) to easily convert to DataFrame
|
241
|
+
artifact = [file_data]
|
242
|
+
|
243
|
+
return content_str, artifact
|
244
|
+
|
245
|
+
|
246
|
+
@tool(response_format='content_and_artifact')
|
247
|
+
def search_files_by_pattern(directory_path: str, pattern: str = "*.csv", recursive: bool = False) -> Tuple[str, List[Dict]]:
|
248
|
+
"""
|
249
|
+
Tool: search_files_by_pattern
|
250
|
+
Description:
|
251
|
+
Searches for files (optionally in subdirectories) that match a given
|
252
|
+
wildcard pattern (e.g. "*.csv", "*.xlsx", etc.), returning a tuple:
|
253
|
+
(1) content (str): A multiline summary of the matched files.
|
254
|
+
(2) artifact (List[Dict]): A list of dicts with file path info.
|
255
|
+
|
256
|
+
Args:
|
257
|
+
directory_path (str): Directory path to start searching from.
|
258
|
+
pattern (str): A wildcard pattern, e.g. "*.csv". Default is "*.csv".
|
259
|
+
recursive (bool): Whether to search in subdirectories. Default is False.
|
260
|
+
|
261
|
+
Returns:
|
262
|
+
Tuple[str, List[Dict]]:
|
263
|
+
content: A user-friendly string showing matched file paths.
|
264
|
+
artifact: A list of dictionaries, each representing a matched file.
|
265
|
+
|
266
|
+
Example:
|
267
|
+
content, artifact = search_files_by_pattern("/path/to/folder", "*.csv", recursive=True)
|
268
|
+
"""
|
269
|
+
print(" * Tool: search_files_by_pattern")
|
270
|
+
|
271
|
+
import os
|
272
|
+
import fnmatch
|
273
|
+
|
274
|
+
matched_files = []
|
275
|
+
if recursive:
|
276
|
+
for root, dirs, files in os.walk(directory_path):
|
277
|
+
for filename in files:
|
278
|
+
if fnmatch.fnmatch(filename, pattern):
|
279
|
+
matched_files.append(os.path.join(root, filename))
|
280
|
+
else:
|
281
|
+
# Non-recursive
|
282
|
+
for filename in os.listdir(directory_path):
|
283
|
+
full_path = os.path.join(directory_path, filename)
|
284
|
+
if os.path.isfile(full_path) and fnmatch.fnmatch(filename, pattern):
|
285
|
+
matched_files.append(full_path)
|
286
|
+
|
287
|
+
# Create a human-readable summary (content)
|
288
|
+
if matched_files:
|
289
|
+
lines = [f"Found {len(matched_files)} file(s) matching '{pattern}':"]
|
290
|
+
for f in matched_files:
|
291
|
+
lines.append(f" - {f}")
|
292
|
+
content = "\n".join(lines)
|
293
|
+
else:
|
294
|
+
content = f"No files found matching '{pattern}'."
|
295
|
+
|
296
|
+
# Create artifact as a list of dicts for DataFrame conversion
|
297
|
+
artifact = [{"file_path": path} for path in matched_files]
|
298
|
+
|
299
|
+
return content, artifact
|
300
|
+
|
301
|
+
|
302
|
+
# Loaders
|
303
|
+
|
304
|
+
def auto_load_file(file_path: str) -> pd.DataFrame:
|
305
|
+
"""
|
306
|
+
Auto loads a file based on its extension.
|
307
|
+
|
308
|
+
Parameters:
|
309
|
+
----------
|
310
|
+
file_path : str
|
311
|
+
The path to the file to load.
|
312
|
+
|
313
|
+
Returns:
|
314
|
+
-------
|
315
|
+
pd.DataFrame
|
316
|
+
"""
|
317
|
+
import pandas as pd
|
318
|
+
try:
|
319
|
+
ext = file_path.split(".")[-1].lower()
|
320
|
+
if ext == "csv":
|
321
|
+
return load_csv(file_path)
|
322
|
+
elif ext in ["xlsx", "xls"]:
|
323
|
+
return load_excel(file_path)
|
324
|
+
elif ext == "json":
|
325
|
+
return load_json(file_path)
|
326
|
+
elif ext == "parquet":
|
327
|
+
return load_parquet(file_path)
|
328
|
+
elif ext == "pkl":
|
329
|
+
return load_pickle(file_path)
|
330
|
+
else:
|
331
|
+
return f"Unsupported file extension: {ext}"
|
332
|
+
except Exception as e:
|
333
|
+
return f"Error loading file: {e}"
|
334
|
+
|
335
|
+
def load_csv(file_path: str) -> pd.DataFrame:
|
336
|
+
"""
|
337
|
+
Tool: load_csv
|
338
|
+
Description: Loads a CSV file into a pandas DataFrame.
|
339
|
+
Args:
|
340
|
+
file_path (str): Path to the CSV file.
|
341
|
+
Returns:
|
342
|
+
pd.DataFrame
|
343
|
+
"""
|
344
|
+
import pandas as pd
|
345
|
+
return pd.read_csv(file_path)
|
346
|
+
|
347
|
+
def load_excel(file_path: str, sheet_name=None) -> pd.DataFrame:
|
348
|
+
"""
|
349
|
+
Tool: load_excel
|
350
|
+
Description: Loads an Excel file into a pandas DataFrame.
|
351
|
+
"""
|
352
|
+
import pandas as pd
|
353
|
+
return pd.read_excel(file_path, sheet_name=sheet_name)
|
354
|
+
|
355
|
+
def load_json(file_path: str) -> pd.DataFrame:
|
356
|
+
"""
|
357
|
+
Tool: load_json
|
358
|
+
Description: Loads a JSON file or NDJSON into a pandas DataFrame.
|
359
|
+
"""
|
360
|
+
import pandas as pd
|
361
|
+
# For simple JSON arrays
|
362
|
+
return pd.read_json(file_path, orient="records", lines=False)
|
363
|
+
|
364
|
+
def load_parquet(file_path: str) -> pd.DataFrame:
|
365
|
+
"""
|
366
|
+
Tool: load_parquet
|
367
|
+
Description: Loads a Parquet file into a pandas DataFrame.
|
368
|
+
"""
|
369
|
+
import pandas as pd
|
370
|
+
return pd.read_parquet(file_path)
|
371
|
+
|
372
|
+
def load_pickle(file_path: str) -> pd.DataFrame:
|
373
|
+
"""
|
374
|
+
Tool: load_pickle
|
375
|
+
Description: Loads a Pickle file into a pandas DataFrame.
|
376
|
+
"""
|
377
|
+
import pandas as pd
|
378
|
+
return pd.read_pickle(file_path)
|
@@ -1,6 +1,5 @@
|
|
1
1
|
import io
|
2
2
|
import pandas as pd
|
3
|
-
import sqlalchemy as sql
|
4
3
|
from typing import Union, List, Dict
|
5
4
|
|
6
5
|
def get_dataframe_summary(
|
@@ -138,93 +137,3 @@ def _summarize_dataframe(df: pd.DataFrame, dataset_name: str, n_sample=30, skip_
|
|
138
137
|
return summary_text.strip()
|
139
138
|
|
140
139
|
|
141
|
-
|
142
|
-
def get_database_metadata(connection: Union[sql.engine.base.Connection, sql.engine.base.Engine],
|
143
|
-
n_samples: int = 10) -> str:
|
144
|
-
"""
|
145
|
-
Collects metadata and sample data from a database, with safe identifier quoting and
|
146
|
-
basic dialect-aware row limiting. Prevents issues with spaces/reserved words in identifiers.
|
147
|
-
|
148
|
-
Parameters
|
149
|
-
----------
|
150
|
-
connection : Union[sql.engine.base.Connection, sql.engine.base.Engine]
|
151
|
-
An active SQLAlchemy connection or engine.
|
152
|
-
n_samples : int
|
153
|
-
Number of sample values to retrieve for each column.
|
154
|
-
|
155
|
-
Returns
|
156
|
-
-------
|
157
|
-
str
|
158
|
-
A formatted string with database metadata, including some sample data from each column.
|
159
|
-
"""
|
160
|
-
|
161
|
-
# If a connection is passed, use it; if an engine is passed, connect to it
|
162
|
-
is_engine = isinstance(connection, sql.engine.base.Engine)
|
163
|
-
conn = connection.connect() if is_engine else connection
|
164
|
-
|
165
|
-
output = []
|
166
|
-
try:
|
167
|
-
# Grab the engine off the connection
|
168
|
-
sql_engine = conn.engine
|
169
|
-
dialect_name = sql_engine.dialect.name.lower()
|
170
|
-
|
171
|
-
output.append(f"Database Dialect: {sql_engine.dialect.name}")
|
172
|
-
output.append(f"Driver: {sql_engine.driver}")
|
173
|
-
output.append(f"Connection URL: {sql_engine.url}")
|
174
|
-
|
175
|
-
# Inspect the database
|
176
|
-
inspector = sql.inspect(sql_engine)
|
177
|
-
tables = inspector.get_table_names()
|
178
|
-
output.append(f"Tables: {tables}")
|
179
|
-
output.append(f"Schemas: {inspector.get_schema_names()}")
|
180
|
-
|
181
|
-
# Helper to build a dialect-specific limit clause
|
182
|
-
def build_query(col_name_quoted: str, table_name_quoted: str, n: int) -> str:
|
183
|
-
"""
|
184
|
-
Returns a SQL query string to select N rows from the given column/table
|
185
|
-
across different dialects (SQLite, MySQL, Postgres, MSSQL, Oracle, etc.)
|
186
|
-
"""
|
187
|
-
if "sqlite" in dialect_name or "mysql" in dialect_name or "postgres" in dialect_name:
|
188
|
-
# Common dialects supporting LIMIT
|
189
|
-
return f"SELECT {col_name_quoted} FROM {table_name_quoted} LIMIT {n}"
|
190
|
-
elif "mssql" in dialect_name:
|
191
|
-
# Microsoft SQL Server syntax
|
192
|
-
return f"SELECT TOP {n} {col_name_quoted} FROM {table_name_quoted}"
|
193
|
-
elif "oracle" in dialect_name:
|
194
|
-
# Oracle syntax
|
195
|
-
return f"SELECT {col_name_quoted} FROM {table_name_quoted} WHERE ROWNUM <= {n}"
|
196
|
-
else:
|
197
|
-
# Fallback
|
198
|
-
return f"SELECT {col_name_quoted} FROM {table_name_quoted} LIMIT {n}"
|
199
|
-
|
200
|
-
# Prepare for quoting
|
201
|
-
preparer = inspector.bind.dialect.identifier_preparer
|
202
|
-
|
203
|
-
# For each table, get columns and sample data
|
204
|
-
for table_name in tables:
|
205
|
-
output.append(f"\nTable: {table_name}")
|
206
|
-
# Properly quote the table name
|
207
|
-
table_name_quoted = preparer.quote_identifier(table_name)
|
208
|
-
|
209
|
-
for column in inspector.get_columns(table_name):
|
210
|
-
col_name = column["name"]
|
211
|
-
col_type = column["type"]
|
212
|
-
output.append(f" Column: {col_name} Type: {col_type}")
|
213
|
-
|
214
|
-
# Properly quote the column name
|
215
|
-
col_name_quoted = preparer.quote_identifier(col_name)
|
216
|
-
|
217
|
-
# Build a dialect-aware query with safe quoting
|
218
|
-
query = build_query(col_name_quoted, table_name_quoted, n_samples)
|
219
|
-
|
220
|
-
# Read a few sample values
|
221
|
-
df = pd.read_sql(sql.text(query), conn)
|
222
|
-
first_values = df[col_name].tolist()
|
223
|
-
output.append(f" First {n_samples} Values: {first_values}")
|
224
|
-
|
225
|
-
finally:
|
226
|
-
# Close connection if created inside the function
|
227
|
-
if is_engine:
|
228
|
-
conn.close()
|
229
|
-
|
230
|
-
return "\n".join(output)
|