ai-data-science-team 0.0.0.9006__py3-none-any.whl → 0.0.0.9008__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,165 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: ai-data-science-team
3
- Version: 0.0.0.9006
4
- Summary: Build and run an AI-powered data science team.
5
- Home-page: https://github.com/business-science/ai-data-science-team
6
- Author: Matt Dancho
7
- Author-email: mdancho@business-science.io
8
- Requires-Python: >=3.9
9
- Description-Content-Type: text/markdown
10
- License-File: LICENSE
11
- Requires-Dist: openpyxl
12
- Requires-Dist: langchain
13
- Requires-Dist: langchain_community
14
- Requires-Dist: langchain_openai
15
- Requires-Dist: langchain_experimental
16
- Requires-Dist: langgraph>=0.2.57
17
- Requires-Dist: openai
18
- Requires-Dist: pandas
19
- Requires-Dist: numpy
20
- Requires-Dist: plotly
21
- Requires-Dist: streamlit
22
- Requires-Dist: scikit-learn
23
- Requires-Dist: xgboost
24
-
25
- # Your AI Data Science Team (An Army Of Copilots)
26
-
27
- **An AI-powered data science team of copilots that uses agents to help you perform common data science tasks 10X faster**.
28
-
29
- Star ⭐ This GitHub (Takes 2 seconds and means a lot).
30
-
31
- ---
32
-
33
- The AI Data Science Team of Copilots includes Agents that specialize data cleaning, preparation, feature engineering, modeling (machine learning), and interpretation of various business problems like:
34
-
35
- - Churn Modeling
36
- - Employee Attrition
37
- - Lead Scoring
38
- - Insurance Risk
39
- - Credit Card Risk
40
- - And more
41
-
42
- ## Companies That Want An AI Data Science Team Copilot
43
-
44
- If you are interested in having your own custom enteprise-grade AI Data Science Team Copilot, send inquiries here: [https://www.business-science.io/contact.html](https://www.business-science.io/contact.html)
45
-
46
- ## Free Generative AI For Data Scientists Workshop
47
-
48
- If you want to learn how to build AI Agents for your company that performs Data Science, Business Intelligence, Churn Modeling, Time Series Forecasting, and more, [register for my next Generative AI for Data Scientists workshop here.](https://learn.business-science.io/ai-register)
49
-
50
- ## Data Science Agents
51
-
52
- This project is a work in progress. New data science agents will be released soon.
53
-
54
- ![Data Science Team](/img/ai_data_science_team.jpg)
55
-
56
- ### Agents Available Now
57
-
58
- 1. **Data Wrangling Agent:** Merges, Joins, Preps and Wrangles data into a format that is ready for data analysis.
59
- 2. **Data Cleaning Agent:** Performs Data Preparation steps including handling missing values, outliers, and data type conversions.
60
- 3. **Feature Engineering Agent:** Converts the prepared data into ML-ready data. Adds features to increase predictive accuracy of ML models.
61
- 4. **SQL Database Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelins to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations.
62
-
63
- ### Agents Coming Soon
64
-
65
- 1. **Data Analyst:** Analyzes data structure, creates exploratory visualizations, and performs correlation analysis to identify relationships.
66
- 2. **Machine Learning Agent:** Builds and logs the machine learning models.
67
- 3. **Interpretability Agent:** Performs Interpretable ML to explain why the model returned predictions including which features were the most important to the model.
68
- 4. **Supervisor:** Forms task list. Moderates sub-agents. Returns completed assignment.
69
-
70
- ## Disclaimer
71
-
72
- **This project is for educational purposes only.**
73
-
74
- - It is not intended to replace your company's data science team
75
- - No warranties or guarantees provided
76
- - Creator assumes no liability for financial loss
77
- - Consult an experienced Generative AI Data Scientist for building your own custom AI Data Science Team
78
- - If you want a custom enterprise-grade AI Data Science Team, [send inquiries here](https://www.business-science.io/contact.html).
79
-
80
- By using this software, you agree to use it solely for learning purposes.
81
-
82
- ## Table of Contents
83
-
84
- - [Your AI Data Science Team (An Army Of Copilots)](#your-ai-data-science-team-an-army-of-copilots)
85
- - [Companies That Want An AI Data Science Team Copilot](#companies-that-want-an-ai-data-science-team-copilot)
86
- - [Free Generative AI For Data Scientists Workshop](#free-generative-ai-for-data-scientists-workshop)
87
- - [Data Science Agents](#data-science-agents)
88
- - [Agents Available Now](#agents-available-now)
89
- - [Agents Coming Soon](#agents-coming-soon)
90
- - [Disclaimer](#disclaimer)
91
- - [Table of Contents](#table-of-contents)
92
- - [Installation](#installation)
93
- - [Usage](#usage)
94
- - [Example 1: Feature Engineering with the Feature Engineering Agent](#example-1-feature-engineering-with-the-feature-engineering-agent)
95
- - [Example 2: Cleaning Data with the Data Cleaning Agent](#example-2-cleaning-data-with-the-data-cleaning-agent)
96
- - [Contributing](#contributing)
97
- - [License](#license)
98
-
99
- ## Installation
100
-
101
- ``` bash
102
- pip install git+https://github.com/business-science/ai-data-science-team.git --upgrade
103
- ```
104
-
105
- ## Usage
106
-
107
- [See all examples here.](/examples)
108
-
109
- ### Example 1: Feature Engineering with the Feature Engineering Agent
110
-
111
- [See the full example here.](/examples/feature_engineering_agent.ipynb)
112
-
113
- ``` python
114
- feature_engineering_agent = make_feature_engineering_agent(model = llm)
115
-
116
- response = feature_engineering_agent.invoke({
117
- "user_instructions": "Make sure to scale and center numeric features",
118
- "target_variable": "Churn",
119
- "data_raw": df.to_dict(),
120
- "max_retries":3,
121
- "retry_count":0
122
- })
123
- ```
124
-
125
- ``` bash
126
- ---FEATURE ENGINEERING AGENT----
127
- * CREATE FEATURE ENGINEER CODE
128
- * EXECUTING AGENT CODE
129
- * EXPLAIN AGENT CODE
130
- ```
131
-
132
- ### Example 2: Cleaning Data with the Data Cleaning Agent
133
-
134
- [See the full example here.](/examples/data_cleaning_agent.ipynb)
135
-
136
- ``` python
137
- data_cleaning_agent = make_data_cleaning_agent(model = llm)
138
-
139
- response = data_cleaning_agent.invoke({
140
- "user_instructions": "Don't remove outliers when cleaning the data.",
141
- "data_raw": df.to_dict(),
142
- "max_retries":3,
143
- "retry_count":0
144
- })
145
- ```
146
-
147
- ``` bash
148
- ---DATA CLEANING AGENT----
149
- * CREATE DATA CLEANER CODE
150
- * EXECUTING AGENT CODE
151
- * EXPLAIN AGENT CODE
152
- ```
153
-
154
- ## Contributing
155
-
156
- 1. Fork the repository
157
- 2. Create a feature branch
158
- 3. Commit your changes
159
- 4. Push to the branch
160
- 5. Create a Pull Request
161
-
162
- ## License
163
-
164
- This project is licensed under the MIT License. See LICENSE file for details.
165
-
@@ -1,20 +0,0 @@
1
- ai_data_science_team/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- ai_data_science_team/_version.py,sha256=kTc236xj1NaDUZVS5zSKWSI-QWDToxRsLpOvSdPaLxo,26
3
- ai_data_science_team/orchestration.py,sha256=xiIFOsrLwPdkSmtme7wNCCGv8XopnMTNElNzlZokL-4,303
4
- ai_data_science_team/agents/__init__.py,sha256=1lrC6l-wJJNguHM14cDhX_QX7PLr1V9H_j33d-KouMc,353
5
- ai_data_science_team/agents/data_cleaning_agent.py,sha256=-16zPLqtsvwxWID6KI9j9-9qxN1hMb9si_CTKmiyvss,14884
6
- ai_data_science_team/agents/data_wrangling_agent.py,sha256=kt-jYEdZzSGtOnFh7KQA5DzkHFRp0MINp7UqfwqMlV8,14768
7
- ai_data_science_team/agents/feature_engineering_agent.py,sha256=FguDb7fSLXDgyMSJIwxphCZ-PlfCXsaCXsxtFp_9mrQ,16421
8
- ai_data_science_team/agents/sql_database_agent.py,sha256=AVgm9e4GZZiQ6C7-vANjEpI256STi6jmQI6MuYdOXmU,15181
9
- ai_data_science_team/templates/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
- ai_data_science_team/templates/agent_templates.py,sha256=xohVgEfxPcVukPLpPfV7mZ0cpFgp-oJVLZRWCv2V-WU,19948
11
- ai_data_science_team/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
- ai_data_science_team/tools/logging.py,sha256=7wFOv6GGhXR_RPbh-8p0GyrS608XOnZtiaGK2IbDl_s,2081
13
- ai_data_science_team/tools/metadata.py,sha256=Vd3gX4K31A4o5IiM4pr9Al_8jkzGOtDCxWMd264AoAM,5772
14
- ai_data_science_team/tools/parsers.py,sha256=BAi-fJT7BBt9nRS3w5n9LDTsu7JAJsH8CAI9-Qf7jCs,2086
15
- ai_data_science_team/tools/regex.py,sha256=TLXSgYbSOL6e9IJt1BY3Is2O9MCjTVeXpdKR4CIMuQc,2330
16
- ai_data_science_team-0.0.0.9006.dist-info/LICENSE,sha256=Xif0IRLdd2HGLATxV2EVp91aSY6KOuacRr_6BorKGzA,1084
17
- ai_data_science_team-0.0.0.9006.dist-info/METADATA,sha256=BAkiV4V3ygds8ctQH6kDC99_HQp8vU6OA9Q6KDoHXVQ,6086
18
- ai_data_science_team-0.0.0.9006.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
19
- ai_data_science_team-0.0.0.9006.dist-info/top_level.txt,sha256=CnoMgOphCoAdGTLueWdCVByVyjwOubaGiTB1lchdy4M,21
20
- ai_data_science_team-0.0.0.9006.dist-info/RECORD,,