ai-data-science-team 0.0.0.9006__py3-none-any.whl → 0.0.0.9008__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,165 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: ai-data-science-team
3
- Version: 0.0.0.9006
4
- Summary: Build and run an AI-powered data science team.
5
- Home-page: https://github.com/business-science/ai-data-science-team
6
- Author: Matt Dancho
7
- Author-email: mdancho@business-science.io
8
- Requires-Python: >=3.9
9
- Description-Content-Type: text/markdown
10
- License-File: LICENSE
11
- Requires-Dist: openpyxl
12
- Requires-Dist: langchain
13
- Requires-Dist: langchain_community
14
- Requires-Dist: langchain_openai
15
- Requires-Dist: langchain_experimental
16
- Requires-Dist: langgraph>=0.2.57
17
- Requires-Dist: openai
18
- Requires-Dist: pandas
19
- Requires-Dist: numpy
20
- Requires-Dist: plotly
21
- Requires-Dist: streamlit
22
- Requires-Dist: scikit-learn
23
- Requires-Dist: xgboost
24
-
25
- # Your AI Data Science Team (An Army Of Copilots)
26
-
27
- **An AI-powered data science team of copilots that uses agents to help you perform common data science tasks 10X faster**.
28
-
29
- Star ⭐ This GitHub (Takes 2 seconds and means a lot).
30
-
31
- ---
32
-
33
- The AI Data Science Team of Copilots includes Agents that specialize data cleaning, preparation, feature engineering, modeling (machine learning), and interpretation of various business problems like:
34
-
35
- - Churn Modeling
36
- - Employee Attrition
37
- - Lead Scoring
38
- - Insurance Risk
39
- - Credit Card Risk
40
- - And more
41
-
42
- ## Companies That Want An AI Data Science Team Copilot
43
-
44
- If you are interested in having your own custom enteprise-grade AI Data Science Team Copilot, send inquiries here: [https://www.business-science.io/contact.html](https://www.business-science.io/contact.html)
45
-
46
- ## Free Generative AI For Data Scientists Workshop
47
-
48
- If you want to learn how to build AI Agents for your company that performs Data Science, Business Intelligence, Churn Modeling, Time Series Forecasting, and more, [register for my next Generative AI for Data Scientists workshop here.](https://learn.business-science.io/ai-register)
49
-
50
- ## Data Science Agents
51
-
52
- This project is a work in progress. New data science agents will be released soon.
53
-
54
- ![Data Science Team](/img/ai_data_science_team.jpg)
55
-
56
- ### Agents Available Now
57
-
58
- 1. **Data Wrangling Agent:** Merges, Joins, Preps and Wrangles data into a format that is ready for data analysis.
59
- 2. **Data Cleaning Agent:** Performs Data Preparation steps including handling missing values, outliers, and data type conversions.
60
- 3. **Feature Engineering Agent:** Converts the prepared data into ML-ready data. Adds features to increase predictive accuracy of ML models.
61
- 4. **SQL Database Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelins to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations.
62
-
63
- ### Agents Coming Soon
64
-
65
- 1. **Data Analyst:** Analyzes data structure, creates exploratory visualizations, and performs correlation analysis to identify relationships.
66
- 2. **Machine Learning Agent:** Builds and logs the machine learning models.
67
- 3. **Interpretability Agent:** Performs Interpretable ML to explain why the model returned predictions including which features were the most important to the model.
68
- 4. **Supervisor:** Forms task list. Moderates sub-agents. Returns completed assignment.
69
-
70
- ## Disclaimer
71
-
72
- **This project is for educational purposes only.**
73
-
74
- - It is not intended to replace your company's data science team
75
- - No warranties or guarantees provided
76
- - Creator assumes no liability for financial loss
77
- - Consult an experienced Generative AI Data Scientist for building your own custom AI Data Science Team
78
- - If you want a custom enterprise-grade AI Data Science Team, [send inquiries here](https://www.business-science.io/contact.html).
79
-
80
- By using this software, you agree to use it solely for learning purposes.
81
-
82
- ## Table of Contents
83
-
84
- - [Your AI Data Science Team (An Army Of Copilots)](#your-ai-data-science-team-an-army-of-copilots)
85
- - [Companies That Want An AI Data Science Team Copilot](#companies-that-want-an-ai-data-science-team-copilot)
86
- - [Free Generative AI For Data Scientists Workshop](#free-generative-ai-for-data-scientists-workshop)
87
- - [Data Science Agents](#data-science-agents)
88
- - [Agents Available Now](#agents-available-now)
89
- - [Agents Coming Soon](#agents-coming-soon)
90
- - [Disclaimer](#disclaimer)
91
- - [Table of Contents](#table-of-contents)
92
- - [Installation](#installation)
93
- - [Usage](#usage)
94
- - [Example 1: Feature Engineering with the Feature Engineering Agent](#example-1-feature-engineering-with-the-feature-engineering-agent)
95
- - [Example 2: Cleaning Data with the Data Cleaning Agent](#example-2-cleaning-data-with-the-data-cleaning-agent)
96
- - [Contributing](#contributing)
97
- - [License](#license)
98
-
99
- ## Installation
100
-
101
- ``` bash
102
- pip install git+https://github.com/business-science/ai-data-science-team.git --upgrade
103
- ```
104
-
105
- ## Usage
106
-
107
- [See all examples here.](/examples)
108
-
109
- ### Example 1: Feature Engineering with the Feature Engineering Agent
110
-
111
- [See the full example here.](/examples/feature_engineering_agent.ipynb)
112
-
113
- ``` python
114
- feature_engineering_agent = make_feature_engineering_agent(model = llm)
115
-
116
- response = feature_engineering_agent.invoke({
117
- "user_instructions": "Make sure to scale and center numeric features",
118
- "target_variable": "Churn",
119
- "data_raw": df.to_dict(),
120
- "max_retries":3,
121
- "retry_count":0
122
- })
123
- ```
124
-
125
- ``` bash
126
- ---FEATURE ENGINEERING AGENT----
127
- * CREATE FEATURE ENGINEER CODE
128
- * EXECUTING AGENT CODE
129
- * EXPLAIN AGENT CODE
130
- ```
131
-
132
- ### Example 2: Cleaning Data with the Data Cleaning Agent
133
-
134
- [See the full example here.](/examples/data_cleaning_agent.ipynb)
135
-
136
- ``` python
137
- data_cleaning_agent = make_data_cleaning_agent(model = llm)
138
-
139
- response = data_cleaning_agent.invoke({
140
- "user_instructions": "Don't remove outliers when cleaning the data.",
141
- "data_raw": df.to_dict(),
142
- "max_retries":3,
143
- "retry_count":0
144
- })
145
- ```
146
-
147
- ``` bash
148
- ---DATA CLEANING AGENT----
149
- * CREATE DATA CLEANER CODE
150
- * EXECUTING AGENT CODE
151
- * EXPLAIN AGENT CODE
152
- ```
153
-
154
- ## Contributing
155
-
156
- 1. Fork the repository
157
- 2. Create a feature branch
158
- 3. Commit your changes
159
- 4. Push to the branch
160
- 5. Create a Pull Request
161
-
162
- ## License
163
-
164
- This project is licensed under the MIT License. See LICENSE file for details.
165
-
@@ -1,20 +0,0 @@
1
- ai_data_science_team/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- ai_data_science_team/_version.py,sha256=kTc236xj1NaDUZVS5zSKWSI-QWDToxRsLpOvSdPaLxo,26
3
- ai_data_science_team/orchestration.py,sha256=xiIFOsrLwPdkSmtme7wNCCGv8XopnMTNElNzlZokL-4,303
4
- ai_data_science_team/agents/__init__.py,sha256=1lrC6l-wJJNguHM14cDhX_QX7PLr1V9H_j33d-KouMc,353
5
- ai_data_science_team/agents/data_cleaning_agent.py,sha256=-16zPLqtsvwxWID6KI9j9-9qxN1hMb9si_CTKmiyvss,14884
6
- ai_data_science_team/agents/data_wrangling_agent.py,sha256=kt-jYEdZzSGtOnFh7KQA5DzkHFRp0MINp7UqfwqMlV8,14768
7
- ai_data_science_team/agents/feature_engineering_agent.py,sha256=FguDb7fSLXDgyMSJIwxphCZ-PlfCXsaCXsxtFp_9mrQ,16421
8
- ai_data_science_team/agents/sql_database_agent.py,sha256=AVgm9e4GZZiQ6C7-vANjEpI256STi6jmQI6MuYdOXmU,15181
9
- ai_data_science_team/templates/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
- ai_data_science_team/templates/agent_templates.py,sha256=xohVgEfxPcVukPLpPfV7mZ0cpFgp-oJVLZRWCv2V-WU,19948
11
- ai_data_science_team/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
- ai_data_science_team/tools/logging.py,sha256=7wFOv6GGhXR_RPbh-8p0GyrS608XOnZtiaGK2IbDl_s,2081
13
- ai_data_science_team/tools/metadata.py,sha256=Vd3gX4K31A4o5IiM4pr9Al_8jkzGOtDCxWMd264AoAM,5772
14
- ai_data_science_team/tools/parsers.py,sha256=BAi-fJT7BBt9nRS3w5n9LDTsu7JAJsH8CAI9-Qf7jCs,2086
15
- ai_data_science_team/tools/regex.py,sha256=TLXSgYbSOL6e9IJt1BY3Is2O9MCjTVeXpdKR4CIMuQc,2330
16
- ai_data_science_team-0.0.0.9006.dist-info/LICENSE,sha256=Xif0IRLdd2HGLATxV2EVp91aSY6KOuacRr_6BorKGzA,1084
17
- ai_data_science_team-0.0.0.9006.dist-info/METADATA,sha256=BAkiV4V3ygds8ctQH6kDC99_HQp8vU6OA9Q6KDoHXVQ,6086
18
- ai_data_science_team-0.0.0.9006.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
19
- ai_data_science_team-0.0.0.9006.dist-info/top_level.txt,sha256=CnoMgOphCoAdGTLueWdCVByVyjwOubaGiTB1lchdy4M,21
20
- ai_data_science_team-0.0.0.9006.dist-info/RECORD,,