ai-data-science-team 0.0.0.9006__py3-none-any.whl → 0.0.0.9008__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_data_science_team/_version.py +1 -1
- ai_data_science_team/agents/__init__.py +5 -4
- ai_data_science_team/agents/data_cleaning_agent.py +371 -45
- ai_data_science_team/agents/data_visualization_agent.py +764 -0
- ai_data_science_team/agents/data_wrangling_agent.py +507 -23
- ai_data_science_team/agents/feature_engineering_agent.py +467 -34
- ai_data_science_team/agents/sql_database_agent.py +394 -30
- ai_data_science_team/multiagents/__init__.py +1 -0
- ai_data_science_team/multiagents/sql_data_analyst.py +286 -0
- ai_data_science_team/multiagents/supervised_data_analyst.py +2 -0
- ai_data_science_team/templates/__init__.py +9 -0
- ai_data_science_team/templates/agent_templates.py +247 -42
- ai_data_science_team/tools/metadata.py +110 -47
- ai_data_science_team/tools/regex.py +33 -0
- ai_data_science_team/utils/__init__.py +0 -0
- ai_data_science_team/utils/plotly.py +24 -0
- ai_data_science_team-0.0.0.9008.dist-info/METADATA +231 -0
- ai_data_science_team-0.0.0.9008.dist-info/RECORD +26 -0
- {ai_data_science_team-0.0.0.9006.dist-info → ai_data_science_team-0.0.0.9008.dist-info}/WHEEL +1 -1
- ai_data_science_team-0.0.0.9006.dist-info/METADATA +0 -165
- ai_data_science_team-0.0.0.9006.dist-info/RECORD +0 -20
- {ai_data_science_team-0.0.0.9006.dist-info → ai_data_science_team-0.0.0.9008.dist-info}/LICENSE +0 -0
- {ai_data_science_team-0.0.0.9006.dist-info → ai_data_science_team-0.0.0.9008.dist-info}/top_level.txt +0 -0
ai_data_science_team/_version.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
__version__ = "0.0.0.
|
1
|
+
__version__ = "0.0.0.9008"
|
@@ -1,5 +1,6 @@
|
|
1
|
-
from ai_data_science_team.agents.data_cleaning_agent import make_data_cleaning_agent
|
2
|
-
from ai_data_science_team.agents.feature_engineering_agent import make_feature_engineering_agent
|
3
|
-
from ai_data_science_team.agents.data_wrangling_agent import make_data_wrangling_agent
|
4
|
-
from ai_data_science_team.agents.sql_database_agent import make_sql_database_agent
|
1
|
+
from ai_data_science_team.agents.data_cleaning_agent import make_data_cleaning_agent, DataCleaningAgent
|
2
|
+
from ai_data_science_team.agents.feature_engineering_agent import make_feature_engineering_agent, FeatureEngineeringAgent
|
3
|
+
from ai_data_science_team.agents.data_wrangling_agent import make_data_wrangling_agent, DataWranglingAgent
|
4
|
+
from ai_data_science_team.agents.sql_database_agent import make_sql_database_agent, SQLDatabaseAgent
|
5
|
+
from ai_data_science_team.agents.data_visualization_agent import make_data_visualization_agent, DataVisualizationAgent
|
5
6
|
|
@@ -17,15 +17,18 @@ import os
|
|
17
17
|
import io
|
18
18
|
import pandas as pd
|
19
19
|
|
20
|
-
from
|
20
|
+
from IPython.display import Markdown
|
21
|
+
|
22
|
+
from ai_data_science_team.templates import(
|
21
23
|
node_func_execute_agent_code_on_data,
|
22
24
|
node_func_human_review,
|
23
25
|
node_func_fix_agent_code,
|
24
26
|
node_func_explain_agent_code,
|
25
|
-
create_coding_agent_graph
|
27
|
+
create_coding_agent_graph,
|
28
|
+
BaseAgent,
|
26
29
|
)
|
27
30
|
from ai_data_science_team.tools.parsers import PythonOutputParser
|
28
|
-
from ai_data_science_team.tools.regex import relocate_imports_inside_function, add_comments_to_top
|
31
|
+
from ai_data_science_team.tools.regex import relocate_imports_inside_function, add_comments_to_top, format_agent_name, format_recommended_steps
|
29
32
|
from ai_data_science_team.tools.metadata import get_dataframe_summary
|
30
33
|
from ai_data_science_team.tools.logging import log_ai_function
|
31
34
|
|
@@ -33,9 +36,281 @@ from ai_data_science_team.tools.logging import log_ai_function
|
|
33
36
|
AGENT_NAME = "data_cleaning_agent"
|
34
37
|
LOG_PATH = os.path.join(os.getcwd(), "logs/")
|
35
38
|
|
39
|
+
|
40
|
+
|
41
|
+
# Class
|
42
|
+
class DataCleaningAgent(BaseAgent):
|
43
|
+
"""
|
44
|
+
Creates a data cleaning agent that can process datasets based on user-defined instructions or default cleaning steps.
|
45
|
+
The agent generates a Python function to clean the dataset, performs the cleaning, and logs the process, including code
|
46
|
+
and errors. It is designed to facilitate reproducible and customizable data cleaning workflows.
|
47
|
+
|
48
|
+
The agent performs the following default cleaning steps unless instructed otherwise:
|
49
|
+
|
50
|
+
- Removing columns with more than 40% missing values.
|
51
|
+
- Imputing missing values with the mean for numeric columns.
|
52
|
+
- Imputing missing values with the mode for categorical columns.
|
53
|
+
- Converting columns to appropriate data types.
|
54
|
+
- Removing duplicate rows.
|
55
|
+
- Removing rows with missing values.
|
56
|
+
- Removing rows with extreme outliers (values 3x the interquartile range).
|
57
|
+
|
58
|
+
User instructions can modify, add, or remove any of these steps to tailor the cleaning process.
|
59
|
+
|
60
|
+
Parameters
|
61
|
+
----------
|
62
|
+
model : langchain.llms.base.LLM
|
63
|
+
The language model used to generate the data cleaning function.
|
64
|
+
n_samples : int, optional
|
65
|
+
Number of samples used when summarizing the dataset. Defaults to 30. Reducing this number can help
|
66
|
+
avoid exceeding the model's token limits.
|
67
|
+
log : bool, optional
|
68
|
+
Whether to log the generated code and errors. Defaults to False.
|
69
|
+
log_path : str, optional
|
70
|
+
Directory path for storing log files. Defaults to None.
|
71
|
+
file_name : str, optional
|
72
|
+
Name of the file for saving the generated response. Defaults to "data_cleaner.py".
|
73
|
+
function_name : str, optional
|
74
|
+
Name of the generated data cleaning function. Defaults to "data_cleaner".
|
75
|
+
overwrite : bool, optional
|
76
|
+
Whether to overwrite the log file if it exists. If False, a unique file name is created. Defaults to True.
|
77
|
+
human_in_the_loop : bool, optional
|
78
|
+
Enables user review of data cleaning instructions. Defaults to False.
|
79
|
+
bypass_recommended_steps : bool, optional
|
80
|
+
If True, skips the default recommended cleaning steps. Defaults to False.
|
81
|
+
bypass_explain_code : bool, optional
|
82
|
+
If True, skips the step that provides code explanations. Defaults to False.
|
83
|
+
|
84
|
+
Methods
|
85
|
+
-------
|
86
|
+
update_params(**kwargs)
|
87
|
+
Updates the agent's parameters and rebuilds the compiled state graph.
|
88
|
+
ainvoke_agent(user_instructions: str, data_raw: pd.DataFrame, max_retries=3, retry_count=0)
|
89
|
+
Cleans the provided dataset asynchronously based on user instructions.
|
90
|
+
invoke_agent(user_instructions: str, data_raw: pd.DataFrame, max_retries=3, retry_count=0)
|
91
|
+
Cleans the provided dataset synchronously based on user instructions.
|
92
|
+
explain_cleaning_steps()
|
93
|
+
Returns an explanation of the cleaning steps performed by the agent.
|
94
|
+
get_log_summary()
|
95
|
+
Retrieves a summary of logged operations if logging is enabled.
|
96
|
+
get_state_keys()
|
97
|
+
Returns a list of keys from the state graph response.
|
98
|
+
get_state_properties()
|
99
|
+
Returns detailed properties of the state graph response.
|
100
|
+
get_data_cleaned()
|
101
|
+
Retrieves the cleaned dataset as a pandas DataFrame.
|
102
|
+
get_data_raw()
|
103
|
+
Retrieves the raw dataset as a pandas DataFrame.
|
104
|
+
get_data_cleaner_function()
|
105
|
+
Retrieves the generated Python function used for cleaning the data.
|
106
|
+
get_recommended_cleaning_steps()
|
107
|
+
Retrieves the agent's recommended cleaning steps.
|
108
|
+
get_response()
|
109
|
+
Returns the response from the agent as a dictionary.
|
110
|
+
show()
|
111
|
+
Displays the agent's mermaid diagram.
|
112
|
+
|
113
|
+
Examples
|
114
|
+
--------
|
115
|
+
```python
|
116
|
+
import pandas as pd
|
117
|
+
from langchain_openai import ChatOpenAI
|
118
|
+
from ai_data_science_team.agents import DataCleaningAgent
|
119
|
+
|
120
|
+
llm = ChatOpenAI(model="gpt-4o-mini")
|
121
|
+
|
122
|
+
data_cleaning_agent = DataCleaningAgent(
|
123
|
+
model=llm, n_samples=50, log=True, log_path="logs", human_in_the_loop=True
|
124
|
+
)
|
125
|
+
|
126
|
+
df = pd.read_csv("https://raw.githubusercontent.com/business-science/ai-data-science-team/refs/heads/master/data/churn_data.csv")
|
127
|
+
|
128
|
+
data_cleaning_agent.invoke_agent(
|
129
|
+
user_instructions="Don't remove outliers when cleaning the data.",
|
130
|
+
data_raw=df,
|
131
|
+
max_retries=3,
|
132
|
+
retry_count=0
|
133
|
+
)
|
134
|
+
|
135
|
+
cleaned_data = data_cleaning_agent.get_data_cleaned()
|
136
|
+
|
137
|
+
response = data_cleaning_agent.response
|
138
|
+
```
|
139
|
+
|
140
|
+
Returns
|
141
|
+
--------
|
142
|
+
DataCleaningAgent : langchain.graphs.CompiledStateGraph
|
143
|
+
A data cleaning agent implemented as a compiled state graph.
|
144
|
+
"""
|
145
|
+
|
146
|
+
def __init__(
|
147
|
+
self,
|
148
|
+
model,
|
149
|
+
n_samples=30,
|
150
|
+
log=False,
|
151
|
+
log_path=None,
|
152
|
+
file_name="data_cleaner.py",
|
153
|
+
function_name="data_cleaner",
|
154
|
+
overwrite=True,
|
155
|
+
human_in_the_loop=False,
|
156
|
+
bypass_recommended_steps=False,
|
157
|
+
bypass_explain_code=False
|
158
|
+
):
|
159
|
+
self._params = {
|
160
|
+
"model": model,
|
161
|
+
"n_samples": n_samples,
|
162
|
+
"log": log,
|
163
|
+
"log_path": log_path,
|
164
|
+
"file_name": file_name,
|
165
|
+
"function_name": function_name,
|
166
|
+
"overwrite": overwrite,
|
167
|
+
"human_in_the_loop": human_in_the_loop,
|
168
|
+
"bypass_recommended_steps": bypass_recommended_steps,
|
169
|
+
"bypass_explain_code": bypass_explain_code,
|
170
|
+
}
|
171
|
+
self._compiled_graph = self._make_compiled_graph()
|
172
|
+
self.response = None
|
173
|
+
|
174
|
+
def _make_compiled_graph(self):
|
175
|
+
"""
|
176
|
+
Create the compiled graph for the data cleaning agent. Running this method will reset the response to None.
|
177
|
+
"""
|
178
|
+
self.response=None
|
179
|
+
return make_data_cleaning_agent(**self._params)
|
180
|
+
|
181
|
+
|
182
|
+
def ainvoke_agent(self, data_raw: pd.DataFrame, user_instructions: str=None, max_retries:int=3, retry_count:int=0, **kwargs):
|
183
|
+
"""
|
184
|
+
Asynchronously invokes the agent. The response is stored in the response attribute.
|
185
|
+
|
186
|
+
Parameters:
|
187
|
+
----------
|
188
|
+
data_raw (pd.DataFrame):
|
189
|
+
The raw dataset to be cleaned.
|
190
|
+
user_instructions (str):
|
191
|
+
Instructions for data cleaning agent.
|
192
|
+
max_retries (int):
|
193
|
+
Maximum retry attempts for cleaning.
|
194
|
+
retry_count (int):
|
195
|
+
Current retry attempt.
|
196
|
+
**kwargs
|
197
|
+
Additional keyword arguments to pass to ainvoke().
|
198
|
+
|
199
|
+
Returns:
|
200
|
+
--------
|
201
|
+
None. The response is stored in the response attribute.
|
202
|
+
"""
|
203
|
+
response = self._compiled_graph.ainvoke({
|
204
|
+
"user_instructions": user_instructions,
|
205
|
+
"data_raw": data_raw.to_dict(),
|
206
|
+
"max_retries": max_retries,
|
207
|
+
"retry_count": retry_count,
|
208
|
+
}, **kwargs)
|
209
|
+
self.response = response
|
210
|
+
return None
|
211
|
+
|
212
|
+
def invoke_agent(self, data_raw: pd.DataFrame, user_instructions: str=None, max_retries:int=3, retry_count:int=0, **kwargs):
|
213
|
+
"""
|
214
|
+
Invokes the agent. The response is stored in the response attribute.
|
215
|
+
|
216
|
+
Parameters:
|
217
|
+
----------
|
218
|
+
data_raw (pd.DataFrame):
|
219
|
+
The raw dataset to be cleaned.
|
220
|
+
user_instructions (str):
|
221
|
+
Instructions for data cleaning agent.
|
222
|
+
max_retries (int):
|
223
|
+
Maximum retry attempts for cleaning.
|
224
|
+
retry_count (int):
|
225
|
+
Current retry attempt.
|
226
|
+
**kwargs
|
227
|
+
Additional keyword arguments to pass to invoke().
|
228
|
+
|
229
|
+
Returns:
|
230
|
+
--------
|
231
|
+
None. The response is stored in the response attribute.
|
232
|
+
"""
|
233
|
+
response = self._compiled_graph.invoke({
|
234
|
+
"user_instructions": user_instructions,
|
235
|
+
"data_raw": data_raw.to_dict(),
|
236
|
+
"max_retries": max_retries,
|
237
|
+
"retry_count": retry_count,
|
238
|
+
},**kwargs)
|
239
|
+
self.response = response
|
240
|
+
return None
|
241
|
+
|
242
|
+
def explain_cleaning_steps(self):
|
243
|
+
"""
|
244
|
+
Provides an explanation of the cleaning steps performed by the agent.
|
245
|
+
|
246
|
+
Returns:
|
247
|
+
str: Explanation of the cleaning steps.
|
248
|
+
"""
|
249
|
+
messages = self.response.get("messages", [])
|
250
|
+
return messages
|
251
|
+
|
252
|
+
def get_log_summary(self, markdown=False):
|
253
|
+
"""
|
254
|
+
Logs a summary of the agent's operations, if logging is enabled.
|
255
|
+
"""
|
256
|
+
if self.response:
|
257
|
+
if self.response.get('data_cleaner_function_path'):
|
258
|
+
log_details = f"Log Path: {self.response.get('data_cleaner_function_path')}"
|
259
|
+
if markdown:
|
260
|
+
return Markdown(log_details)
|
261
|
+
else:
|
262
|
+
return log_details
|
263
|
+
|
264
|
+
def get_data_cleaned(self):
|
265
|
+
"""
|
266
|
+
Retrieves the cleaned data stored after running invoke_agent or clean_data methods.
|
267
|
+
"""
|
268
|
+
if self.response:
|
269
|
+
return pd.DataFrame(self.response.get("data_cleaned"))
|
270
|
+
|
271
|
+
def get_data_raw(self):
|
272
|
+
"""
|
273
|
+
Retrieves the raw data.
|
274
|
+
"""
|
275
|
+
if self.response:
|
276
|
+
return pd.DataFrame(self.response.get("data_raw"))
|
277
|
+
|
278
|
+
def get_data_cleaner_function(self, markdown=False):
|
279
|
+
"""
|
280
|
+
Retrieves the agent's pipeline function.
|
281
|
+
"""
|
282
|
+
if self.response:
|
283
|
+
if markdown:
|
284
|
+
return Markdown(f"```python\n{self.response.get('data_cleaner_function')}\n```")
|
285
|
+
else:
|
286
|
+
return self.response.get("data_cleaner_function")
|
287
|
+
|
288
|
+
def get_recommended_cleaning_steps(self, markdown=False):
|
289
|
+
"""
|
290
|
+
Retrieves the agent's recommended cleaning steps
|
291
|
+
"""
|
292
|
+
if self.response:
|
293
|
+
if markdown:
|
294
|
+
return Markdown(self.response.get('recommended_steps'))
|
295
|
+
else:
|
296
|
+
return self.response.get('recommended_steps')
|
297
|
+
|
298
|
+
|
299
|
+
|
36
300
|
# Agent
|
37
301
|
|
38
|
-
def make_data_cleaning_agent(
|
302
|
+
def make_data_cleaning_agent(
|
303
|
+
model,
|
304
|
+
n_samples = 30,
|
305
|
+
log=False,
|
306
|
+
log_path=None,
|
307
|
+
file_name="data_cleaner.py",
|
308
|
+
function_name="data_cleaner",
|
309
|
+
overwrite = True,
|
310
|
+
human_in_the_loop=False,
|
311
|
+
bypass_recommended_steps=False,
|
312
|
+
bypass_explain_code=False
|
313
|
+
):
|
39
314
|
"""
|
40
315
|
Creates a data cleaning agent that can be run on a dataset. The agent can be used to clean a dataset in a variety of
|
41
316
|
ways, such as removing columns with more than 40% missing values, imputing missing
|
@@ -44,9 +319,9 @@ def make_data_cleaning_agent(model, log=False, log_path=None, overwrite = True,
|
|
44
319
|
The agent takes in a dataset and some user instructions, and outputs a python
|
45
320
|
function that can be used to clean the dataset. The agent also logs the code
|
46
321
|
generated and any errors that occur.
|
47
|
-
|
322
|
+
|
48
323
|
The agent is instructed to to perform the following data cleaning steps:
|
49
|
-
|
324
|
+
|
50
325
|
- Removing columns if more than 40 percent of the data is missing
|
51
326
|
- Imputing missing values with the mean of the column if the column is numeric
|
52
327
|
- Imputing missing values with the mode of the column if the column is categorical
|
@@ -60,12 +335,20 @@ def make_data_cleaning_agent(model, log=False, log_path=None, overwrite = True,
|
|
60
335
|
----------
|
61
336
|
model : langchain.llms.base.LLM
|
62
337
|
The language model to use to generate code.
|
338
|
+
n_samples : int, optional
|
339
|
+
The number of samples to use when summarizing the dataset. Defaults to 30.
|
340
|
+
If you get an error due to maximum tokens, try reducing this number.
|
341
|
+
> "This model's maximum context length is 128000 tokens. However, your messages resulted in 333858 tokens. Please reduce the length of the messages."
|
63
342
|
log : bool, optional
|
64
343
|
Whether or not to log the code generated and any errors that occur.
|
65
344
|
Defaults to False.
|
66
345
|
log_path : str, optional
|
67
346
|
The path to the directory where the log files should be stored. Defaults to
|
68
347
|
"logs/".
|
348
|
+
file_name : str, optional
|
349
|
+
The name of the file to save the response to. Defaults to "data_cleaner.py".
|
350
|
+
function_name : str, optional
|
351
|
+
The name of the function that will be generated to clean the data. Defaults to "data_cleaner".
|
69
352
|
overwrite : bool, optional
|
70
353
|
Whether or not to overwrite the log file if it already exists. If False, a unique file name will be created.
|
71
354
|
Defaults to True.
|
@@ -82,30 +365,35 @@ def make_data_cleaning_agent(model, log=False, log_path=None, overwrite = True,
|
|
82
365
|
import pandas as pd
|
83
366
|
from langchain_openai import ChatOpenAI
|
84
367
|
from ai_data_science_team.agents import data_cleaning_agent
|
85
|
-
|
368
|
+
|
86
369
|
llm = ChatOpenAI(model = "gpt-4o-mini")
|
87
370
|
|
88
371
|
data_cleaning_agent = make_data_cleaning_agent(llm)
|
89
|
-
|
372
|
+
|
90
373
|
df = pd.read_csv("https://raw.githubusercontent.com/business-science/ai-data-science-team/refs/heads/master/data/churn_data.csv")
|
91
|
-
|
374
|
+
|
92
375
|
response = data_cleaning_agent.invoke({
|
93
376
|
"user_instructions": "Don't remove outliers when cleaning the data.",
|
94
377
|
"data_raw": df.to_dict(),
|
95
378
|
"max_retries":3,
|
96
379
|
"retry_count":0
|
97
380
|
})
|
98
|
-
|
381
|
+
|
99
382
|
pd.DataFrame(response['data_cleaned'])
|
100
383
|
```
|
101
384
|
|
102
385
|
Returns
|
103
386
|
-------
|
104
|
-
app : langchain.graphs.
|
387
|
+
app : langchain.graphs.CompiledStateGraph
|
105
388
|
The data cleaning agent as a state graph.
|
106
389
|
"""
|
107
390
|
llm = model
|
108
391
|
|
392
|
+
# Human in th loop requires recommended steps
|
393
|
+
if bypass_recommended_steps and human_in_the_loop:
|
394
|
+
bypass_recommended_steps = False
|
395
|
+
print("Bypass recommended steps set to False to enable human in the loop.")
|
396
|
+
|
109
397
|
# Setup Log Directory
|
110
398
|
if log:
|
111
399
|
if log_path is None:
|
@@ -123,6 +411,7 @@ def make_data_cleaning_agent(model, log=False, log_path=None, overwrite = True,
|
|
123
411
|
all_datasets_summary: str
|
124
412
|
data_cleaner_function: str
|
125
413
|
data_cleaner_function_path: str
|
414
|
+
data_cleaner_file_name: str
|
126
415
|
data_cleaner_function_name: str
|
127
416
|
data_cleaner_error: str
|
128
417
|
max_retries: int
|
@@ -134,7 +423,7 @@ def make_data_cleaning_agent(model, log=False, log_path=None, overwrite = True,
|
|
134
423
|
Recommend a series of data cleaning steps based on the input data.
|
135
424
|
These recommended steps will be appended to the user_instructions.
|
136
425
|
"""
|
137
|
-
print(
|
426
|
+
print(format_agent_name(AGENT_NAME))
|
138
427
|
print(" * RECOMMEND CLEANING STEPS")
|
139
428
|
|
140
429
|
# Prompt to get recommended steps from the LLM
|
@@ -177,6 +466,7 @@ def make_data_cleaning_agent(model, log=False, log_path=None, overwrite = True,
|
|
177
466
|
|
178
467
|
Avoid these:
|
179
468
|
1. Do not include steps to save files.
|
469
|
+
2. Do not include unrelated user instructions that are not related to the data cleaning.
|
180
470
|
""",
|
181
471
|
input_variables=["user_instructions", "recommended_steps", "all_datasets_summary"]
|
182
472
|
)
|
@@ -184,7 +474,7 @@ def make_data_cleaning_agent(model, log=False, log_path=None, overwrite = True,
|
|
184
474
|
data_raw = state.get("data_raw")
|
185
475
|
df = pd.DataFrame.from_dict(data_raw)
|
186
476
|
|
187
|
-
all_datasets_summary = get_dataframe_summary([df])
|
477
|
+
all_datasets_summary = get_dataframe_summary([df], n_sample=n_samples)
|
188
478
|
|
189
479
|
all_datasets_summary_str = "\n\n".join(all_datasets_summary)
|
190
480
|
|
@@ -196,60 +486,73 @@ def make_data_cleaning_agent(model, log=False, log_path=None, overwrite = True,
|
|
196
486
|
})
|
197
487
|
|
198
488
|
return {
|
199
|
-
"recommended_steps": "
|
489
|
+
"recommended_steps": format_recommended_steps(recommended_steps.content.strip(), heading="# Recommended Data Cleaning Steps:"),
|
200
490
|
"all_datasets_summary": all_datasets_summary_str
|
201
491
|
}
|
202
492
|
|
203
493
|
def create_data_cleaner_code(state: GraphState):
|
204
|
-
|
205
|
-
print("---DATA CLEANING AGENT----")
|
494
|
+
|
206
495
|
print(" * CREATE DATA CLEANER CODE")
|
207
496
|
|
497
|
+
if bypass_recommended_steps:
|
498
|
+
print(format_agent_name(AGENT_NAME))
|
499
|
+
|
500
|
+
data_raw = state.get("data_raw")
|
501
|
+
df = pd.DataFrame.from_dict(data_raw)
|
502
|
+
|
503
|
+
all_datasets_summary = get_dataframe_summary([df], n_sample=n_samples)
|
504
|
+
|
505
|
+
all_datasets_summary_str = "\n\n".join(all_datasets_summary)
|
506
|
+
else:
|
507
|
+
all_datasets_summary_str = state.get("all_datasets_summary")
|
508
|
+
|
509
|
+
|
208
510
|
data_cleaning_prompt = PromptTemplate(
|
209
511
|
template="""
|
210
|
-
You are a Data Cleaning Agent. Your job is to create a
|
211
|
-
|
512
|
+
You are a Data Cleaning Agent. Your job is to create a {function_name}() function that can be run on the data provided using the following recommended steps.
|
513
|
+
|
212
514
|
Recommended Steps:
|
213
515
|
{recommended_steps}
|
214
|
-
|
516
|
+
|
215
517
|
You can use Pandas, Numpy, and Scikit Learn libraries to clean the data.
|
216
|
-
|
518
|
+
|
217
519
|
Below are summaries of all datasets provided. Use this information about the data to help determine how to clean the data:
|
218
520
|
|
219
521
|
{all_datasets_summary}
|
220
|
-
|
221
|
-
Return Python code in ```python
|
222
|
-
|
522
|
+
|
523
|
+
Return Python code in ```python``` format with a single function definition, {function_name}(data_raw), that includes all imports inside the function.
|
524
|
+
|
223
525
|
Return code to provide the data cleaning function:
|
224
|
-
|
225
|
-
def
|
526
|
+
|
527
|
+
def {function_name}(data_raw):
|
226
528
|
import pandas as pd
|
227
529
|
import numpy as np
|
228
530
|
...
|
229
531
|
return data_cleaned
|
230
|
-
|
532
|
+
|
231
533
|
Best Practices and Error Preventions:
|
232
|
-
|
534
|
+
|
233
535
|
Always ensure that when assigning the output of fit_transform() from SimpleImputer to a Pandas DataFrame column, you call .ravel() or flatten the array, because fit_transform() returns a 2D array while a DataFrame column is 1D.
|
234
536
|
|
235
537
|
""",
|
236
|
-
input_variables=["recommended_steps", "all_datasets_summary"]
|
538
|
+
input_variables=["recommended_steps", "all_datasets_summary", "function_name"]
|
237
539
|
)
|
238
540
|
|
239
541
|
data_cleaning_agent = data_cleaning_prompt | llm | PythonOutputParser()
|
240
542
|
|
241
543
|
response = data_cleaning_agent.invoke({
|
242
544
|
"recommended_steps": state.get("recommended_steps"),
|
243
|
-
"all_datasets_summary":
|
545
|
+
"all_datasets_summary": all_datasets_summary_str,
|
546
|
+
"function_name": function_name
|
244
547
|
})
|
245
548
|
|
246
549
|
response = relocate_imports_inside_function(response)
|
247
550
|
response = add_comments_to_top(response, agent_name=AGENT_NAME)
|
248
551
|
|
249
552
|
# For logging: store the code generated:
|
250
|
-
file_path,
|
553
|
+
file_path, file_name_2 = log_ai_function(
|
251
554
|
response=response,
|
252
|
-
file_name=
|
555
|
+
file_name=file_name,
|
253
556
|
log=log,
|
254
557
|
log_path=log_path,
|
255
558
|
overwrite=overwrite
|
@@ -258,18 +561,37 @@ def make_data_cleaning_agent(model, log=False, log_path=None, overwrite = True,
|
|
258
561
|
return {
|
259
562
|
"data_cleaner_function" : response,
|
260
563
|
"data_cleaner_function_path": file_path,
|
261
|
-
"
|
564
|
+
"data_cleaner_file_name": file_name_2,
|
565
|
+
"data_cleaner_function_name": function_name,
|
566
|
+
"all_datasets_summary": all_datasets_summary_str
|
262
567
|
}
|
568
|
+
|
569
|
+
# Human Review
|
570
|
+
|
571
|
+
prompt_text_human_review = "Are the following data cleaning instructions correct? (Answer 'yes' or provide modifications)\n{steps}"
|
263
572
|
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
573
|
+
if not bypass_explain_code:
|
574
|
+
def human_review(state: GraphState) -> Command[Literal["recommend_cleaning_steps", "explain_data_cleaner_code"]]:
|
575
|
+
return node_func_human_review(
|
576
|
+
state=state,
|
577
|
+
prompt_text=prompt_text_human_review,
|
578
|
+
yes_goto= 'explain_data_cleaner_code',
|
579
|
+
no_goto="recommend_cleaning_steps",
|
580
|
+
user_instructions_key="user_instructions",
|
581
|
+
recommended_steps_key="recommended_steps",
|
582
|
+
code_snippet_key="data_cleaner_function",
|
583
|
+
)
|
584
|
+
else:
|
585
|
+
def human_review(state: GraphState) -> Command[Literal["recommend_cleaning_steps", "__end__"]]:
|
586
|
+
return node_func_human_review(
|
587
|
+
state=state,
|
588
|
+
prompt_text=prompt_text_human_review,
|
589
|
+
yes_goto= '__end__',
|
590
|
+
no_goto="recommend_cleaning_steps",
|
591
|
+
user_instructions_key="user_instructions",
|
592
|
+
recommended_steps_key="recommended_steps",
|
593
|
+
code_snippet_key="data_cleaner_function",
|
594
|
+
)
|
273
595
|
|
274
596
|
def execute_data_cleaner_code(state):
|
275
597
|
return node_func_execute_agent_code_on_data(
|
@@ -278,7 +600,7 @@ def make_data_cleaning_agent(model, log=False, log_path=None, overwrite = True,
|
|
278
600
|
result_key="data_cleaned",
|
279
601
|
error_key="data_cleaner_error",
|
280
602
|
code_snippet_key="data_cleaner_function",
|
281
|
-
agent_function_name="
|
603
|
+
agent_function_name=state.get("data_cleaner_function_name"),
|
282
604
|
pre_processing=lambda data: pd.DataFrame.from_dict(data),
|
283
605
|
post_processing=lambda df: df.to_dict() if isinstance(df, pd.DataFrame) else df,
|
284
606
|
error_message_prefix="An error occurred during data cleaning: "
|
@@ -286,11 +608,11 @@ def make_data_cleaning_agent(model, log=False, log_path=None, overwrite = True,
|
|
286
608
|
|
287
609
|
def fix_data_cleaner_code(state: GraphState):
|
288
610
|
data_cleaner_prompt = """
|
289
|
-
You are a Data Cleaning Agent. Your job is to create a
|
611
|
+
You are a Data Cleaning Agent. Your job is to create a {function_name}() function that can be run on the data provided. The function is currently broken and needs to be fixed.
|
290
612
|
|
291
|
-
Make sure to only return the function definition for
|
613
|
+
Make sure to only return the function definition for {function_name}().
|
292
614
|
|
293
|
-
Return Python code in ```python``` format with a single function definition,
|
615
|
+
Return Python code in ```python``` format with a single function definition, {function_name}(data_raw), that includes all imports inside the function.
|
294
616
|
|
295
617
|
This is the broken code (please fix):
|
296
618
|
{code_snippet}
|
@@ -308,6 +630,7 @@ def make_data_cleaning_agent(model, log=False, log_path=None, overwrite = True,
|
|
308
630
|
agent_name=AGENT_NAME,
|
309
631
|
log=log,
|
310
632
|
file_path=state.get("data_cleaner_function_path"),
|
633
|
+
function_name=state.get("data_cleaner_function_name"),
|
311
634
|
)
|
312
635
|
|
313
636
|
def explain_data_cleaner_code(state: GraphState):
|
@@ -353,3 +676,6 @@ def make_data_cleaning_agent(model, log=False, log_path=None, overwrite = True,
|
|
353
676
|
)
|
354
677
|
|
355
678
|
return app
|
679
|
+
|
680
|
+
|
681
|
+
|