ai-data-science-team 0.0.0.9006__py3-none-any.whl → 0.0.0.9008__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_data_science_team/_version.py +1 -1
- ai_data_science_team/agents/__init__.py +5 -4
- ai_data_science_team/agents/data_cleaning_agent.py +371 -45
- ai_data_science_team/agents/data_visualization_agent.py +764 -0
- ai_data_science_team/agents/data_wrangling_agent.py +507 -23
- ai_data_science_team/agents/feature_engineering_agent.py +467 -34
- ai_data_science_team/agents/sql_database_agent.py +394 -30
- ai_data_science_team/multiagents/__init__.py +1 -0
- ai_data_science_team/multiagents/sql_data_analyst.py +286 -0
- ai_data_science_team/multiagents/supervised_data_analyst.py +2 -0
- ai_data_science_team/templates/__init__.py +9 -0
- ai_data_science_team/templates/agent_templates.py +247 -42
- ai_data_science_team/tools/metadata.py +110 -47
- ai_data_science_team/tools/regex.py +33 -0
- ai_data_science_team/utils/__init__.py +0 -0
- ai_data_science_team/utils/plotly.py +24 -0
- ai_data_science_team-0.0.0.9008.dist-info/METADATA +231 -0
- ai_data_science_team-0.0.0.9008.dist-info/RECORD +26 -0
- {ai_data_science_team-0.0.0.9006.dist-info → ai_data_science_team-0.0.0.9008.dist-info}/WHEEL +1 -1
- ai_data_science_team-0.0.0.9006.dist-info/METADATA +0 -165
- ai_data_science_team-0.0.0.9006.dist-info/RECORD +0 -20
- {ai_data_science_team-0.0.0.9006.dist-info → ai_data_science_team-0.0.0.9008.dist-info}/LICENSE +0 -0
- {ai_data_science_team-0.0.0.9006.dist-info → ai_data_science_team-0.0.0.9008.dist-info}/top_level.txt +0 -0
@@ -14,18 +14,25 @@ from langgraph.types import Command
|
|
14
14
|
from langgraph.checkpoint.memory import MemorySaver
|
15
15
|
|
16
16
|
import os
|
17
|
-
import io
|
18
17
|
import pandas as pd
|
19
18
|
|
20
|
-
from
|
19
|
+
from IPython.display import Markdown
|
20
|
+
|
21
|
+
from ai_data_science_team.templates import(
|
21
22
|
node_func_execute_agent_code_on_data,
|
22
23
|
node_func_human_review,
|
23
24
|
node_func_fix_agent_code,
|
24
25
|
node_func_explain_agent_code,
|
25
|
-
create_coding_agent_graph
|
26
|
+
create_coding_agent_graph,
|
27
|
+
BaseAgent,
|
26
28
|
)
|
27
29
|
from ai_data_science_team.tools.parsers import PythonOutputParser
|
28
|
-
from ai_data_science_team.tools.regex import
|
30
|
+
from ai_data_science_team.tools.regex import (
|
31
|
+
relocate_imports_inside_function,
|
32
|
+
add_comments_to_top,
|
33
|
+
format_agent_name,
|
34
|
+
format_recommended_steps
|
35
|
+
)
|
29
36
|
from ai_data_science_team.tools.metadata import get_dataframe_summary
|
30
37
|
from ai_data_science_team.tools.logging import log_ai_function
|
31
38
|
|
@@ -33,9 +40,386 @@ from ai_data_science_team.tools.logging import log_ai_function
|
|
33
40
|
AGENT_NAME = "feature_engineering_agent"
|
34
41
|
LOG_PATH = os.path.join(os.getcwd(), "logs/")
|
35
42
|
|
43
|
+
# Class
|
44
|
+
|
45
|
+
class FeatureEngineeringAgent(BaseAgent):
|
46
|
+
"""
|
47
|
+
Creates a feature engineering agent that can process datasets based on user-defined instructions or
|
48
|
+
default feature engineering steps. The agent generates a Python function to engineer features, executes it,
|
49
|
+
and logs the process, including code and errors. It is designed to facilitate reproducible and
|
50
|
+
customizable feature engineering workflows.
|
51
|
+
|
52
|
+
The agent can perform the following default feature engineering steps unless instructed otherwise:
|
53
|
+
- Convert features to appropriate data types
|
54
|
+
- Remove features that have unique values for each row
|
55
|
+
- Remove constant features
|
56
|
+
- Encode high-cardinality categoricals (threshold <= 5% of dataset) as 'other'
|
57
|
+
- One-hot-encode categorical variables
|
58
|
+
- Convert booleans to integer (1/0)
|
59
|
+
- Create datetime-based features (if applicable)
|
60
|
+
- Handle target variable encoding if specified
|
61
|
+
- Any user-provided instructions to add, remove, or modify steps
|
62
|
+
|
63
|
+
Parameters
|
64
|
+
----------
|
65
|
+
model : langchain.llms.base.LLM
|
66
|
+
The language model used to generate the feature engineering function.
|
67
|
+
n_samples : int, optional
|
68
|
+
Number of samples used when summarizing the dataset. Defaults to 30.
|
69
|
+
log : bool, optional
|
70
|
+
Whether to log the generated code and errors. Defaults to False.
|
71
|
+
log_path : str, optional
|
72
|
+
Directory path for storing log files. Defaults to None.
|
73
|
+
file_name : str, optional
|
74
|
+
Name of the file for saving the generated response. Defaults to "feature_engineer.py".
|
75
|
+
function_name : str, optional
|
76
|
+
Name of the function for data visualization. Defaults to "feature_engineer".
|
77
|
+
overwrite : bool, optional
|
78
|
+
Whether to overwrite the log file if it exists. If False, a unique file name is created. Defaults to True.
|
79
|
+
human_in_the_loop : bool, optional
|
80
|
+
Enables user review of feature engineering instructions. Defaults to False.
|
81
|
+
bypass_recommended_steps : bool, optional
|
82
|
+
If True, skips the default recommended steps. Defaults to False.
|
83
|
+
bypass_explain_code : bool, optional
|
84
|
+
If True, skips the step that provides code explanations. Defaults to False.
|
85
|
+
|
86
|
+
Methods
|
87
|
+
-------
|
88
|
+
update_params(**kwargs)
|
89
|
+
Updates the agent's parameters and rebuilds the compiled state graph.
|
90
|
+
ainvoke_agent(
|
91
|
+
user_instructions: str,
|
92
|
+
data_raw: pd.DataFrame,
|
93
|
+
target_variable: str = None,
|
94
|
+
max_retries=3,
|
95
|
+
retry_count=0
|
96
|
+
)
|
97
|
+
Engineers features from the provided dataset asynchronously based on user instructions.
|
98
|
+
invoke_agent(
|
99
|
+
user_instructions: str,
|
100
|
+
data_raw: pd.DataFrame,
|
101
|
+
target_variable: str = None,
|
102
|
+
max_retries=3,
|
103
|
+
retry_count=0
|
104
|
+
)
|
105
|
+
Engineers features from the provided dataset synchronously based on user instructions.
|
106
|
+
explain_feature_engineering_steps()
|
107
|
+
Returns an explanation of the feature engineering steps performed by the agent.
|
108
|
+
get_log_summary()
|
109
|
+
Retrieves a summary of logged operations if logging is enabled.
|
110
|
+
get_data_engineered()
|
111
|
+
Retrieves the feature-engineered dataset as a pandas DataFrame.
|
112
|
+
get_data_raw()
|
113
|
+
Retrieves the raw dataset as a pandas DataFrame.
|
114
|
+
get_feature_engineer_function()
|
115
|
+
Retrieves the generated Python function used for feature engineering.
|
116
|
+
get_recommended_feature_engineering_steps()
|
117
|
+
Retrieves the agent's recommended feature engineering steps.
|
118
|
+
get_response()
|
119
|
+
Returns the response from the agent as a dictionary.
|
120
|
+
show()
|
121
|
+
Displays the agent's mermaid diagram.
|
122
|
+
|
123
|
+
Examples
|
124
|
+
--------
|
125
|
+
```python
|
126
|
+
import pandas as pd
|
127
|
+
from langchain_openai import ChatOpenAI
|
128
|
+
from ai_data_science_team.agents import FeatureEngineeringAgent
|
129
|
+
|
130
|
+
llm = ChatOpenAI(model="gpt-4o-mini")
|
131
|
+
|
132
|
+
feature_agent = FeatureEngineeringAgent(
|
133
|
+
model=llm,
|
134
|
+
n_samples=30,
|
135
|
+
log=True,
|
136
|
+
log_path="logs",
|
137
|
+
human_in_the_loop=True
|
138
|
+
)
|
139
|
+
|
140
|
+
df = pd.read_csv("https://raw.githubusercontent.com/business-science/ai-data-science-team/refs/heads/master/data/churn_data.csv")
|
141
|
+
|
142
|
+
feature_agent.invoke_agent(
|
143
|
+
user_instructions="Also encode the 'PaymentMethod' column with one-hot encoding.",
|
144
|
+
data_raw=df,
|
145
|
+
target_variable="Churn",
|
146
|
+
max_retries=3,
|
147
|
+
retry_count=0
|
148
|
+
)
|
149
|
+
|
150
|
+
engineered_data = feature_agent.get_data_engineered()
|
151
|
+
response = feature_agent.get_response()
|
152
|
+
```
|
153
|
+
|
154
|
+
Returns
|
155
|
+
-------
|
156
|
+
FeatureEngineeringAgent : langchain.graphs.CompiledStateGraph
|
157
|
+
A feature engineering agent implemented as a compiled state graph.
|
158
|
+
"""
|
159
|
+
|
160
|
+
def __init__(
|
161
|
+
self,
|
162
|
+
model,
|
163
|
+
n_samples=30,
|
164
|
+
log=False,
|
165
|
+
log_path=None,
|
166
|
+
file_name="feature_engineer.py",
|
167
|
+
function_name="feature_engineer",
|
168
|
+
overwrite=True,
|
169
|
+
human_in_the_loop=False,
|
170
|
+
bypass_recommended_steps=False,
|
171
|
+
bypass_explain_code=False
|
172
|
+
):
|
173
|
+
self._params = {
|
174
|
+
"model": model,
|
175
|
+
"n_samples": n_samples,
|
176
|
+
"log": log,
|
177
|
+
"log_path": log_path,
|
178
|
+
"file_name": file_name,
|
179
|
+
"function_name": function_name,
|
180
|
+
"overwrite": overwrite,
|
181
|
+
"human_in_the_loop": human_in_the_loop,
|
182
|
+
"bypass_recommended_steps": bypass_recommended_steps,
|
183
|
+
"bypass_explain_code": bypass_explain_code
|
184
|
+
}
|
185
|
+
self._compiled_graph = self._make_compiled_graph()
|
186
|
+
self.response = None
|
187
|
+
|
188
|
+
def _make_compiled_graph(self):
|
189
|
+
"""
|
190
|
+
Create the compiled graph for the feature engineering agent.
|
191
|
+
Running this method will reset the response to None.
|
192
|
+
"""
|
193
|
+
self.response = None
|
194
|
+
return make_feature_engineering_agent(**self._params)
|
195
|
+
|
196
|
+
def update_params(self, **kwargs):
|
197
|
+
"""
|
198
|
+
Updates the agent's parameters and rebuilds the compiled graph.
|
199
|
+
"""
|
200
|
+
for k, v in kwargs.items():
|
201
|
+
self._params[k] = v
|
202
|
+
self._compiled_graph = self._make_compiled_graph()
|
203
|
+
|
204
|
+
def ainvoke_agent(
|
205
|
+
self,
|
206
|
+
data_raw: pd.DataFrame,
|
207
|
+
user_instructions: str=None,
|
208
|
+
target_variable: str = None,
|
209
|
+
max_retries=3,
|
210
|
+
retry_count=0,
|
211
|
+
**kwargs
|
212
|
+
):
|
213
|
+
"""
|
214
|
+
Asynchronously engineers features for the provided dataset.
|
215
|
+
The response is stored in the 'response' attribute.
|
216
|
+
|
217
|
+
Parameters
|
218
|
+
----------
|
219
|
+
data_raw : pd.DataFrame
|
220
|
+
The raw dataset to be processed.
|
221
|
+
user_instructions : str, optional
|
222
|
+
Instructions for feature engineering.
|
223
|
+
target_variable : str, optional
|
224
|
+
The name of the target variable (if any).
|
225
|
+
max_retries : int
|
226
|
+
Maximum retry attempts.
|
227
|
+
retry_count : int
|
228
|
+
Current retry attempt count.
|
229
|
+
**kwargs
|
230
|
+
Additional keyword arguments to pass to ainvoke().
|
231
|
+
|
232
|
+
Returns
|
233
|
+
-------
|
234
|
+
None
|
235
|
+
"""
|
236
|
+
response = self._compiled_graph.ainvoke({
|
237
|
+
"user_instructions": user_instructions,
|
238
|
+
"data_raw": data_raw.to_dict(),
|
239
|
+
"target_variable": target_variable,
|
240
|
+
"max_retries": max_retries,
|
241
|
+
"retry_count": retry_count
|
242
|
+
}, **kwargs)
|
243
|
+
self.response = response
|
244
|
+
return None
|
245
|
+
|
246
|
+
def invoke_agent(
|
247
|
+
self,
|
248
|
+
data_raw: pd.DataFrame,
|
249
|
+
user_instructions: str=None,
|
250
|
+
target_variable: str = None,
|
251
|
+
max_retries=3,
|
252
|
+
retry_count=0,
|
253
|
+
**kwargs
|
254
|
+
):
|
255
|
+
"""
|
256
|
+
Synchronously engineers features for the provided dataset.
|
257
|
+
The response is stored in the 'response' attribute.
|
258
|
+
|
259
|
+
Parameters
|
260
|
+
----------
|
261
|
+
data_raw : pd.DataFrame
|
262
|
+
The raw dataset to be processed.
|
263
|
+
user_instructions : str
|
264
|
+
Instructions for feature engineering agent.
|
265
|
+
target_variable : str, optional
|
266
|
+
The name of the target variable (if any).
|
267
|
+
max_retries : int
|
268
|
+
Maximum retry attempts.
|
269
|
+
retry_count : int
|
270
|
+
Current retry attempt count.
|
271
|
+
**kwargs
|
272
|
+
Additional keyword arguments to pass to invoke().
|
273
|
+
|
274
|
+
Returns
|
275
|
+
-------
|
276
|
+
None
|
277
|
+
"""
|
278
|
+
response = self._compiled_graph.invoke({
|
279
|
+
"user_instructions": user_instructions,
|
280
|
+
"data_raw": data_raw.to_dict(),
|
281
|
+
"target_variable": target_variable,
|
282
|
+
"max_retries": max_retries,
|
283
|
+
"retry_count": retry_count
|
284
|
+
}, **kwargs)
|
285
|
+
self.response = response
|
286
|
+
return None
|
287
|
+
|
288
|
+
def explain_feature_engineering_steps(self):
|
289
|
+
"""
|
290
|
+
Provides an explanation of the feature engineering steps performed by the agent.
|
291
|
+
|
292
|
+
Returns
|
293
|
+
-------
|
294
|
+
str or list
|
295
|
+
Explanation of the feature engineering steps.
|
296
|
+
"""
|
297
|
+
if self.response:
|
298
|
+
return self.response.get("messages", [])
|
299
|
+
return []
|
300
|
+
|
301
|
+
def get_log_summary(self, markdown=False):
|
302
|
+
"""
|
303
|
+
Logs a summary of the agent's operations, if logging is enabled.
|
304
|
+
|
305
|
+
Parameters
|
306
|
+
----------
|
307
|
+
markdown : bool, optional
|
308
|
+
If True, returns Markdown-formatted output.
|
309
|
+
|
310
|
+
Returns
|
311
|
+
-------
|
312
|
+
str or None
|
313
|
+
Summary of logs, or None if not available.
|
314
|
+
"""
|
315
|
+
if self.response and self.response.get("feature_engineer_function_path"):
|
316
|
+
log_details = f"Log Path: {self.response.get('feature_engineer_function_path')}"
|
317
|
+
if markdown:
|
318
|
+
return Markdown(log_details)
|
319
|
+
else:
|
320
|
+
return log_details
|
321
|
+
return None
|
322
|
+
|
323
|
+
def get_data_engineered(self):
|
324
|
+
"""
|
325
|
+
Retrieves the engineered data stored after running invoke/ainvoke.
|
326
|
+
|
327
|
+
Returns
|
328
|
+
-------
|
329
|
+
pd.DataFrame or None
|
330
|
+
The engineered dataset as a pandas DataFrame.
|
331
|
+
"""
|
332
|
+
if self.response and "data_engineered" in self.response:
|
333
|
+
return pd.DataFrame(self.response["data_engineered"])
|
334
|
+
return None
|
335
|
+
|
336
|
+
def get_data_raw(self):
|
337
|
+
"""
|
338
|
+
Retrieves the raw data.
|
339
|
+
|
340
|
+
Returns
|
341
|
+
-------
|
342
|
+
pd.DataFrame or None
|
343
|
+
The raw dataset as a pandas DataFrame if available.
|
344
|
+
"""
|
345
|
+
if self.response and "data_raw" in self.response:
|
346
|
+
return pd.DataFrame(self.response["data_raw"])
|
347
|
+
return None
|
348
|
+
|
349
|
+
def get_feature_engineer_function(self, markdown=False):
|
350
|
+
"""
|
351
|
+
Retrieves the feature engineering function generated by the agent.
|
352
|
+
|
353
|
+
Parameters
|
354
|
+
----------
|
355
|
+
markdown : bool, optional
|
356
|
+
If True, returns the function in Markdown code block format.
|
357
|
+
|
358
|
+
Returns
|
359
|
+
-------
|
360
|
+
str or None
|
361
|
+
The Python function code, or None if unavailable.
|
362
|
+
"""
|
363
|
+
if self.response and "feature_engineer_function" in self.response:
|
364
|
+
code = self.response["feature_engineer_function"]
|
365
|
+
if markdown:
|
366
|
+
return Markdown(f"```python\n{code}\n```")
|
367
|
+
return code
|
368
|
+
return None
|
369
|
+
|
370
|
+
def get_recommended_feature_engineering_steps(self, markdown=False):
|
371
|
+
"""
|
372
|
+
Retrieves the agent's recommended feature engineering steps.
|
373
|
+
|
374
|
+
Parameters
|
375
|
+
----------
|
376
|
+
markdown : bool, optional
|
377
|
+
If True, returns the steps in Markdown format.
|
378
|
+
|
379
|
+
Returns
|
380
|
+
-------
|
381
|
+
str or None
|
382
|
+
The recommended steps, or None if not available.
|
383
|
+
"""
|
384
|
+
if self.response and "recommended_steps" in self.response:
|
385
|
+
steps = self.response["recommended_steps"]
|
386
|
+
if markdown:
|
387
|
+
return Markdown(steps)
|
388
|
+
return steps
|
389
|
+
return None
|
390
|
+
|
391
|
+
def get_response(self):
|
392
|
+
"""
|
393
|
+
Returns the agent's full response dictionary.
|
394
|
+
|
395
|
+
Returns
|
396
|
+
-------
|
397
|
+
dict or None
|
398
|
+
The response dictionary if available, otherwise None.
|
399
|
+
"""
|
400
|
+
return self.response
|
401
|
+
|
402
|
+
def show(self):
|
403
|
+
"""
|
404
|
+
Displays the agent's mermaid diagram for visual inspection of the compiled graph.
|
405
|
+
"""
|
406
|
+
return self._compiled_graph.show()
|
407
|
+
|
408
|
+
|
36
409
|
# * Feature Engineering Agent
|
37
410
|
|
38
|
-
def make_feature_engineering_agent(
|
411
|
+
def make_feature_engineering_agent(
|
412
|
+
model,
|
413
|
+
n_samples=30,
|
414
|
+
log=False,
|
415
|
+
log_path=None,
|
416
|
+
file_name="feature_engineer.py",
|
417
|
+
function_name="feature_engineer",
|
418
|
+
overwrite = True,
|
419
|
+
human_in_the_loop=False,
|
420
|
+
bypass_recommended_steps=False,
|
421
|
+
bypass_explain_code=False,
|
422
|
+
):
|
39
423
|
"""
|
40
424
|
Creates a feature engineering agent that can be run on a dataset. The agent applies various feature engineering
|
41
425
|
techniques, such as encoding categorical variables, scaling numeric variables, creating interaction terms,
|
@@ -61,11 +445,19 @@ def make_feature_engineering_agent(model, log=False, log_path=None, overwrite =
|
|
61
445
|
----------
|
62
446
|
model : langchain.llms.base.LLM
|
63
447
|
The language model to use to generate code.
|
448
|
+
n_samples : int, optional
|
449
|
+
The number of data samples to use for generating the feature engineering code. Defaults to 30.
|
450
|
+
If you get an error due to maximum tokens, try reducing this number.
|
451
|
+
> "This model's maximum context length is 128000 tokens. However, your messages resulted in 333858 tokens. Please reduce the length of the messages."
|
64
452
|
log : bool, optional
|
65
453
|
Whether or not to log the code generated and any errors that occur.
|
66
454
|
Defaults to False.
|
67
455
|
log_path : str, optional
|
68
456
|
The path to the directory where the log files should be stored. Defaults to "logs/".
|
457
|
+
file_name : str, optional
|
458
|
+
The name of the file to save the log to. Defaults to "feature_engineer.py".
|
459
|
+
function_name : str, optional
|
460
|
+
The name of the function that will be generated. Defaults to "feature_engineer".
|
69
461
|
overwrite : bool, optional
|
70
462
|
Whether or not to overwrite the log file if it already exists. If False, a unique file name will be created.
|
71
463
|
Defaults to True.
|
@@ -102,10 +494,15 @@ def make_feature_engineering_agent(model, log=False, log_path=None, overwrite =
|
|
102
494
|
|
103
495
|
Returns
|
104
496
|
-------
|
105
|
-
app : langchain.graphs.
|
497
|
+
app : langchain.graphs.CompiledStateGraph
|
106
498
|
The feature engineering agent as a state graph.
|
107
499
|
"""
|
108
500
|
llm = model
|
501
|
+
|
502
|
+
# Human in th loop requires recommended steps
|
503
|
+
if bypass_recommended_steps and human_in_the_loop:
|
504
|
+
bypass_recommended_steps = False
|
505
|
+
print("Bypass recommended steps set to False to enable human in the loop.")
|
109
506
|
|
110
507
|
# Setup Log Directory
|
111
508
|
if log:
|
@@ -125,6 +522,7 @@ def make_feature_engineering_agent(model, log=False, log_path=None, overwrite =
|
|
125
522
|
all_datasets_summary: str
|
126
523
|
feature_engineer_function: str
|
127
524
|
feature_engineer_function_path: str
|
525
|
+
feature_engineer_file_name: str
|
128
526
|
feature_engineer_function_name: str
|
129
527
|
feature_engineer_error: str
|
130
528
|
max_retries: int
|
@@ -135,7 +533,7 @@ def make_feature_engineering_agent(model, log=False, log_path=None, overwrite =
|
|
135
533
|
Recommend a series of feature engineering steps based on the input data.
|
136
534
|
These recommended steps will be appended to the user_instructions.
|
137
535
|
"""
|
138
|
-
print(
|
536
|
+
print(format_agent_name(AGENT_NAME))
|
139
537
|
print(" * RECOMMEND FEATURE ENGINEERING STEPS")
|
140
538
|
|
141
539
|
# Prompt to get recommended steps from the LLM
|
@@ -182,6 +580,7 @@ def make_feature_engineering_agent(model, log=False, log_path=None, overwrite =
|
|
182
580
|
|
183
581
|
Avoid these:
|
184
582
|
1. Do not include steps to save files.
|
583
|
+
2. Do not include unrelated user instructions that are not related to the feature engineering.
|
185
584
|
""",
|
186
585
|
input_variables=["user_instructions", "recommended_steps", "all_datasets_summary"]
|
187
586
|
)
|
@@ -189,7 +588,7 @@ def make_feature_engineering_agent(model, log=False, log_path=None, overwrite =
|
|
189
588
|
data_raw = state.get("data_raw")
|
190
589
|
df = pd.DataFrame.from_dict(data_raw)
|
191
590
|
|
192
|
-
all_datasets_summary = get_dataframe_summary([df])
|
591
|
+
all_datasets_summary = get_dataframe_summary([df], n_sample=n_samples)
|
193
592
|
|
194
593
|
all_datasets_summary_str = "\n\n".join(all_datasets_summary)
|
195
594
|
|
@@ -201,29 +600,57 @@ def make_feature_engineering_agent(model, log=False, log_path=None, overwrite =
|
|
201
600
|
})
|
202
601
|
|
203
602
|
return {
|
204
|
-
"recommended_steps": "
|
603
|
+
"recommended_steps": format_recommended_steps(recommended_steps.content.strip(), heading="# Recommended Feature Engineering Steps:"),
|
205
604
|
"all_datasets_summary": all_datasets_summary_str
|
206
605
|
}
|
207
606
|
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
607
|
+
# Human Review
|
608
|
+
|
609
|
+
prompt_text_human_review = "Are the following feature engineering instructions correct? (Answer 'yes' or provide modifications)\n{steps}"
|
610
|
+
|
611
|
+
if not bypass_explain_code:
|
612
|
+
def human_review(state: GraphState) -> Command[Literal["recommend_feature_engineering_steps", "explain_feature_engineering_code"]]:
|
613
|
+
return node_func_human_review(
|
614
|
+
state=state,
|
615
|
+
prompt_text=prompt_text_human_review,
|
616
|
+
yes_goto= 'explain_feature_engineering_code',
|
617
|
+
no_goto="recommend_feature_engineering_steps",
|
618
|
+
user_instructions_key="user_instructions",
|
619
|
+
recommended_steps_key="recommended_steps",
|
620
|
+
code_snippet_key="feature_engineer_function",
|
621
|
+
)
|
622
|
+
else:
|
623
|
+
def human_review(state: GraphState) -> Command[Literal["recommend_feature_engineering_steps", "__end__"]]:
|
624
|
+
return node_func_human_review(
|
625
|
+
state=state,
|
626
|
+
prompt_text=prompt_text_human_review,
|
627
|
+
yes_goto= '__end__',
|
628
|
+
no_goto="recommend_feature_engineering_steps",
|
629
|
+
user_instructions_key="user_instructions",
|
630
|
+
recommended_steps_key="recommended_steps",
|
631
|
+
code_snippet_key="feature_engineer_function",
|
632
|
+
)
|
217
633
|
|
218
634
|
def create_feature_engineering_code(state: GraphState):
|
219
635
|
if bypass_recommended_steps:
|
220
|
-
print(
|
636
|
+
print(format_agent_name(AGENT_NAME))
|
637
|
+
|
638
|
+
data_raw = state.get("data_raw")
|
639
|
+
df = pd.DataFrame.from_dict(data_raw)
|
640
|
+
|
641
|
+
all_datasets_summary = get_dataframe_summary([df], n_sample=n_samples)
|
642
|
+
|
643
|
+
all_datasets_summary_str = "\n\n".join(all_datasets_summary)
|
644
|
+
|
645
|
+
else:
|
646
|
+
all_datasets_summary_str = state.get("all_datasets_summary")
|
647
|
+
|
221
648
|
print(" * CREATE FEATURE ENGINEERING CODE")
|
222
649
|
|
223
650
|
feature_engineering_prompt = PromptTemplate(
|
224
651
|
template="""
|
225
652
|
|
226
|
-
You are a Feature Engineering Agent. Your job is to create a
|
653
|
+
You are a Feature Engineering Agent. Your job is to create a {function_name}() function that can be run on the data provided using the following recommended steps.
|
227
654
|
|
228
655
|
Recommended Steps:
|
229
656
|
{recommended_steps}
|
@@ -237,11 +664,11 @@ def make_feature_engineering_agent(model, log=False, log_path=None, overwrite =
|
|
237
664
|
|
238
665
|
You can use Pandas, Numpy, and Scikit Learn libraries to feature engineer the data.
|
239
666
|
|
240
|
-
Return Python code in ```python``` format with a single function definition,
|
667
|
+
Return Python code in ```python``` format with a single function definition, {function_name}(data_raw), including all imports inside the function.
|
241
668
|
|
242
669
|
Return code to provide the feature engineering function:
|
243
670
|
|
244
|
-
def
|
671
|
+
def {function_name}(data_raw):
|
245
672
|
import pandas as pd
|
246
673
|
import numpy as np
|
247
674
|
...
|
@@ -264,7 +691,7 @@ def make_feature_engineering_agent(model, log=False, log_path=None, overwrite =
|
|
264
691
|
|
265
692
|
|
266
693
|
""",
|
267
|
-
input_variables=["recommeded_steps", "target_variable", "all_datasets_summary"]
|
694
|
+
input_variables=["recommeded_steps", "target_variable", "all_datasets_summary", "function_name"]
|
268
695
|
)
|
269
696
|
|
270
697
|
feature_engineering_agent = feature_engineering_prompt | llm | PythonOutputParser()
|
@@ -272,16 +699,17 @@ def make_feature_engineering_agent(model, log=False, log_path=None, overwrite =
|
|
272
699
|
response = feature_engineering_agent.invoke({
|
273
700
|
"recommended_steps": state.get("recommended_steps"),
|
274
701
|
"target_variable": state.get("target_variable"),
|
275
|
-
"all_datasets_summary":
|
702
|
+
"all_datasets_summary": all_datasets_summary_str,
|
703
|
+
"function_name": function_name
|
276
704
|
})
|
277
705
|
|
278
706
|
response = relocate_imports_inside_function(response)
|
279
707
|
response = add_comments_to_top(response, agent_name=AGENT_NAME)
|
280
708
|
|
281
709
|
# For logging: store the code generated
|
282
|
-
file_path,
|
710
|
+
file_path, file_name_2 = log_ai_function(
|
283
711
|
response=response,
|
284
|
-
file_name=
|
712
|
+
file_name=file_name,
|
285
713
|
log=log,
|
286
714
|
log_path=log_path,
|
287
715
|
overwrite=overwrite
|
@@ -290,11 +718,11 @@ def make_feature_engineering_agent(model, log=False, log_path=None, overwrite =
|
|
290
718
|
return {
|
291
719
|
"feature_engineer_function": response,
|
292
720
|
"feature_engineer_function_path": file_path,
|
293
|
-
"
|
721
|
+
"feature_engineer_file_name": file_name_2,
|
722
|
+
"feature_engineer_function_name": function_name,
|
723
|
+
"all_datasets_summary": all_datasets_summary_str
|
294
724
|
}
|
295
725
|
|
296
|
-
|
297
|
-
|
298
726
|
def execute_feature_engineering_code(state):
|
299
727
|
return node_func_execute_agent_code_on_data(
|
300
728
|
state=state,
|
@@ -302,7 +730,7 @@ def make_feature_engineering_agent(model, log=False, log_path=None, overwrite =
|
|
302
730
|
result_key="data_engineered",
|
303
731
|
error_key="feature_engineer_error",
|
304
732
|
code_snippet_key="feature_engineer_function",
|
305
|
-
agent_function_name="
|
733
|
+
agent_function_name=state.get("feature_engineer_function_name"),
|
306
734
|
pre_processing=lambda data: pd.DataFrame.from_dict(data),
|
307
735
|
post_processing=lambda df: df.to_dict() if isinstance(df, pd.DataFrame) else df,
|
308
736
|
error_message_prefix="An error occurred during feature engineering: "
|
@@ -310,11 +738,13 @@ def make_feature_engineering_agent(model, log=False, log_path=None, overwrite =
|
|
310
738
|
|
311
739
|
def fix_feature_engineering_code(state: GraphState):
|
312
740
|
feature_engineer_prompt = """
|
313
|
-
You are a Feature Engineering Agent. Your job is to fix the
|
741
|
+
You are a Feature Engineering Agent. Your job is to fix the {function_name}() function that currently contains errors.
|
742
|
+
|
743
|
+
Provide only the corrected function definition for {function_name}().
|
314
744
|
|
315
|
-
|
745
|
+
Return Python code in ```python``` format with a single function definition, {function_name}(data_raw), that includes all imports inside the function.
|
316
746
|
|
317
|
-
|
747
|
+
This is the broken code (please fix):
|
318
748
|
{code_snippet}
|
319
749
|
|
320
750
|
Last Known Error:
|
@@ -330,6 +760,7 @@ def make_feature_engineering_agent(model, log=False, log_path=None, overwrite =
|
|
330
760
|
agent_name=AGENT_NAME,
|
331
761
|
log=log,
|
332
762
|
file_path=state.get("feature_engineer_function_path"),
|
763
|
+
function_name=state.get("feature_engineer_function_name"),
|
333
764
|
)
|
334
765
|
|
335
766
|
def explain_feature_engineering_code(state: GraphState):
|
@@ -366,9 +797,11 @@ def make_feature_engineering_agent(model, log=False, log_path=None, overwrite =
|
|
366
797
|
fix_code_node_name="fix_feature_engineering_code",
|
367
798
|
explain_code_node_name="explain_feature_engineering_code",
|
368
799
|
error_key="feature_engineer_error",
|
800
|
+
max_retries_key = "max_retries",
|
801
|
+
retry_count_key = "retry_count",
|
369
802
|
human_in_the_loop=human_in_the_loop,
|
370
803
|
human_review_node_name="human_review",
|
371
|
-
checkpointer=MemorySaver()
|
804
|
+
checkpointer=MemorySaver(),
|
372
805
|
bypass_recommended_steps=bypass_recommended_steps,
|
373
806
|
bypass_explain_code=bypass_explain_code,
|
374
807
|
)
|