STIC-JPL 1.1.0__py3-none-any.whl → 1.2.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of STIC-JPL might be problematic. Click here for more details.
- STIC_JPL/FVC_from_NDVI.py +49 -0
- STIC_JPL/LAI_from_NDVI.py +61 -0
- STIC_JPL/STIC_JPL.py +3 -370
- STIC_JPL/celcius_to_kelvin.py +11 -0
- STIC_JPL/generate_STIC_inputs.py +65 -0
- STIC_JPL/initialize_with_solar.py +1 -2
- STIC_JPL/iterate_with_solar.py +1 -1
- STIC_JPL/model.py +372 -0
- STIC_JPL/process_STIC_table.py +61 -0
- STIC_JPL/soil_moisture_initialization.py +2 -1
- STIC_JPL/version.txt +1 -1
- {stic_jpl-1.1.0.dist-info → stic_jpl-1.2.2.dist-info}/METADATA +20 -10
- stic_jpl-1.2.2.dist-info/RECORD +25 -0
- {stic_jpl-1.1.0.dist-info → stic_jpl-1.2.2.dist-info}/WHEEL +1 -1
- STIC_JPL/diagnostic.py +0 -70
- STIC_JPL/meteorology_conversion/__init__.py +0 -1
- STIC_JPL/meteorology_conversion/meteorology_conversion.py +0 -123
- STIC_JPL/soil_heat_flux/__init__.py +0 -1
- STIC_JPL/soil_heat_flux/calculate_SEBAL_soil_heat_flux.py +0 -40
- STIC_JPL/timer/__init__.py +0 -1
- STIC_JPL/timer/timer.py +0 -77
- STIC_JPL/vegetation_conversion/__init__.py +0 -1
- STIC_JPL/vegetation_conversion/vegetation_conversion.py +0 -47
- stic_jpl-1.1.0.dist-info/RECORD +0 -28
- {stic_jpl-1.1.0.dist-info → stic_jpl-1.2.2.dist-info}/top_level.txt +0 -0
STIC_JPL/model.py
ADDED
|
@@ -0,0 +1,372 @@
|
|
|
1
|
+
from typing import Union, Callable
|
|
2
|
+
import logging
|
|
3
|
+
from datetime import datetime, timedelta
|
|
4
|
+
from os.path import join, abspath, expanduser
|
|
5
|
+
from typing import Dict, List
|
|
6
|
+
import numpy as np
|
|
7
|
+
import warnings
|
|
8
|
+
|
|
9
|
+
from pytictoc import TicToc
|
|
10
|
+
|
|
11
|
+
import colored_logging as cl
|
|
12
|
+
from check_distribution import check_distribution
|
|
13
|
+
import rasters as rt
|
|
14
|
+
from GEOS5FP import GEOS5FP
|
|
15
|
+
from solar_apparent_time import solar_day_of_year_for_area, solar_hour_of_day_for_area
|
|
16
|
+
from SEBAL_soil_heat_flux import calculate_SEBAL_soil_heat_flux
|
|
17
|
+
|
|
18
|
+
from rasters import Raster, RasterGeometry
|
|
19
|
+
|
|
20
|
+
from .constants import *
|
|
21
|
+
from .closure import STIC_closure
|
|
22
|
+
from .soil_moisture_initialization import initialize_soil_moisture
|
|
23
|
+
from .soil_moisture_iteration import iterate_soil_moisture
|
|
24
|
+
from .net_radiation import calculate_net_longwave_radiation
|
|
25
|
+
from .initialize_with_solar import initialize_with_solar
|
|
26
|
+
from .canopy_air_stream import calculate_canopy_air_stream_vapor_pressure
|
|
27
|
+
from .initialize_without_solar import initialize_without_solar
|
|
28
|
+
from .iterate_with_solar import iterate_with_solar
|
|
29
|
+
from .iterate_without_solar import iterate_without_solar
|
|
30
|
+
from .root_zone_initialization import calculate_root_zone_moisture
|
|
31
|
+
from .FVC_from_NDVI import FVC_from_NDVI
|
|
32
|
+
from .LAI_from_NDVI import LAI_from_NDVI
|
|
33
|
+
from .celcius_to_kelvin import celcius_to_kelvin
|
|
34
|
+
|
|
35
|
+
__author__ = 'Kaniska Mallick, Madeleine Pascolini-Campbell, Gregory Halverson'
|
|
36
|
+
|
|
37
|
+
logger = logging.getLogger(__name__)
|
|
38
|
+
|
|
39
|
+
def STIC_JPL(
|
|
40
|
+
ST_C: Union[Raster, np.ndarray],
|
|
41
|
+
emissivity: Union[Raster, np.ndarray],
|
|
42
|
+
NDVI: Union[Raster, np.ndarray],
|
|
43
|
+
albedo: Union[Raster, np.ndarray],
|
|
44
|
+
Rn_Wm2: Union[Raster, np.ndarray],
|
|
45
|
+
geometry: RasterGeometry = None,
|
|
46
|
+
time_UTC: datetime = None,
|
|
47
|
+
hour_of_day: np.ndarray = None,
|
|
48
|
+
day_of_year: np.ndarray = None,
|
|
49
|
+
GEOS5FP_connection: GEOS5FP = None,
|
|
50
|
+
Ta_C: Union[Raster, np.ndarray] = None,
|
|
51
|
+
RH: Union[Raster, np.ndarray] = None,
|
|
52
|
+
G: Union[Raster, np.ndarray] = None,
|
|
53
|
+
G_method: str = DEFAULT_G_METHOD,
|
|
54
|
+
SM: Union[Raster, np.ndarray] = None,
|
|
55
|
+
Rg_Wm2: Union[Raster, np.ndarray] = None,
|
|
56
|
+
FVC: Union[Raster, np.ndarray] = None,
|
|
57
|
+
LAI: Union[Raster, np.ndarray] = None,
|
|
58
|
+
elevation_m: Union[Raster, np.ndarray] = None,
|
|
59
|
+
delta_hPa: Union[Raster, np.ndarray] = None,
|
|
60
|
+
gamma_hPa: Union[Raster, np.ndarray, float] = GAMMA_HPA,
|
|
61
|
+
rho_kgm3: Union[Raster, np.ndarray] = RHO_KGM3,
|
|
62
|
+
Cp_Jkg: Union[Raster, np.ndarray] = CP_JKG,
|
|
63
|
+
alpha: float = PT_ALPHA,
|
|
64
|
+
LE_convergence_target: float = LE_CONVERGENCE_TARGET_WM2,
|
|
65
|
+
max_iterations: int = MAX_ITERATIONS,
|
|
66
|
+
diagnostic_directory: str = None,
|
|
67
|
+
show_distributions: bool = SHOW_DISTRIBUTIONS,
|
|
68
|
+
use_variable_alpha: bool = USE_VARIABLE_ALPHA) -> Dict[str, Union[Raster, np.ndarray]]:
|
|
69
|
+
results = {}
|
|
70
|
+
|
|
71
|
+
if geometry is None and isinstance(ST_C, Raster):
|
|
72
|
+
geometry = ST_C.geometry
|
|
73
|
+
|
|
74
|
+
if GEOS5FP_connection is None:
|
|
75
|
+
GEOS5FP_connection = GEOS5FP()
|
|
76
|
+
|
|
77
|
+
if (day_of_year is None or hour_of_day is None) and time_UTC is not None and geometry is not None:
|
|
78
|
+
day_of_year = solar_day_of_year_for_area(time_UTC=time_UTC, geometry=geometry)
|
|
79
|
+
hour_of_day = solar_hour_of_day_for_area(time_UTC=time_UTC, geometry=geometry)
|
|
80
|
+
|
|
81
|
+
if time_UTC is None and day_of_year is None and hour_of_day is None:
|
|
82
|
+
raise ValueError("no time given between time_UTC, day_of_year, and hour_of_day")
|
|
83
|
+
|
|
84
|
+
diag_kwargs = {
|
|
85
|
+
"show_distributions": show_distributions,
|
|
86
|
+
"output_directory": diagnostic_directory
|
|
87
|
+
}
|
|
88
|
+
|
|
89
|
+
seconds_of_day = hour_of_day * 3600.0
|
|
90
|
+
|
|
91
|
+
# load air temperature in Celsius if not provided
|
|
92
|
+
if Ta_C is None:
|
|
93
|
+
Ta_C = GEOS5FP_connection.Ta_C(time_UTC=time_UTC, geometry=geometry, resampling=resampling)
|
|
94
|
+
|
|
95
|
+
# load relative humidity if not provided
|
|
96
|
+
if RH is None:
|
|
97
|
+
RH = GEOS5FP_connection.RH(time_UTC=time_UTC, geometry=geometry, resampling=resampling)
|
|
98
|
+
|
|
99
|
+
# calculate fraction of vegetation cover if it's not given
|
|
100
|
+
if FVC is None:
|
|
101
|
+
FVC = FVC_from_NDVI(NDVI)
|
|
102
|
+
|
|
103
|
+
# calculate leaf area index if it's not given
|
|
104
|
+
if LAI is None:
|
|
105
|
+
LAI = LAI_from_NDVI(NDVI)
|
|
106
|
+
|
|
107
|
+
# saturation air pressure in hPa
|
|
108
|
+
SVP_hPa = 6.13753 * (np.exp((17.27 * Ta_C) / (Ta_C + 237.3)))
|
|
109
|
+
|
|
110
|
+
# calculate delta term if it's not given
|
|
111
|
+
if delta_hPa is None:
|
|
112
|
+
# slope of saturation vapor pressure to air temperature (hpa/K)
|
|
113
|
+
delta_hPa = 4098 * SVP_hPa / (Ta_C + 237.3) ** 2
|
|
114
|
+
|
|
115
|
+
Ta_K = celcius_to_kelvin(Ta_C)
|
|
116
|
+
|
|
117
|
+
# actual vapor pressure at TA (hpa/K)
|
|
118
|
+
Ea_hPa = SVP_hPa * (RH)
|
|
119
|
+
Ea_Pa = Ea_hPa * 100.0
|
|
120
|
+
|
|
121
|
+
# vapor pressure deficit (hPa)
|
|
122
|
+
VPD_hPa = SVP_hPa - Ea_hPa
|
|
123
|
+
|
|
124
|
+
# swapping in the dew-point calculation from PT-JPL
|
|
125
|
+
Td_C = Ta_C - ((100 - RH * 100) / 5.0)
|
|
126
|
+
|
|
127
|
+
# difference between surface and air temperature (Celsius)
|
|
128
|
+
dTS_C = ST_C - Ta_C
|
|
129
|
+
|
|
130
|
+
# saturation vapor pressure at surface temperature (hPa/K)
|
|
131
|
+
Estar_hPa = 6.13753 * np.exp((17.27 * ST_C) / (ST_C + 237.3))
|
|
132
|
+
|
|
133
|
+
if Rg_Wm2 is None:
|
|
134
|
+
# if G is None and SM is None:
|
|
135
|
+
# raise ValueError("soil heat flux or soil moisture prior required if solar radiation is not given")
|
|
136
|
+
|
|
137
|
+
if G is None:
|
|
138
|
+
G = calculate_SEBAL_soil_heat_flux(
|
|
139
|
+
ST_C=ST_C,
|
|
140
|
+
NDVI=NDVI,
|
|
141
|
+
albedo=albedo,
|
|
142
|
+
Rn=Rn_Wm2,
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
phi_Wm2 = Rn_Wm2 - G
|
|
146
|
+
|
|
147
|
+
# initialize without solar radiation
|
|
148
|
+
SM, SMrz, s1, s3, s33, s44, Ms, Tsd_C, Es_hPa, Ds = initialize_without_solar(
|
|
149
|
+
ST_C = ST_C, # Surface temperature in Celsius
|
|
150
|
+
Ta_C = Ta_C, # Air temperature in Celsius
|
|
151
|
+
dTS = dTS_C, # Temperature difference between surface and air in Celsius
|
|
152
|
+
Td_C = Td_C, # Dewpoint temperature in Celsius
|
|
153
|
+
Ea_hPa = Ea_hPa, # Actual vapor pressure in hPa
|
|
154
|
+
Estar_hPa = Estar_hPa, # Saturation vapor pressure at surface temperature (hPa/K)
|
|
155
|
+
SVP_hPa = SVP_hPa, # Saturation vapor pressure at the surface in hPa
|
|
156
|
+
delta_hPa = delta_hPa, # Slope of the saturation vapor pressure-temperature curve in hPa/K
|
|
157
|
+
phi_Wm2 = phi_Wm2, # Available energy in W/m2
|
|
158
|
+
gamma_hPa = gamma_hPa, # Psychrometric constant in hPa/°C
|
|
159
|
+
alpha = alpha # Priestley-Taylor alpha
|
|
160
|
+
)
|
|
161
|
+
else:
|
|
162
|
+
SM, SMrz, Ms, s1, s3, Ep_PT, Rnsoil, LWnet_Wm2, G, Tsd_C, Ds, Es_hPa, phi_Wm2 = initialize_with_solar(
|
|
163
|
+
seconds_of_day = seconds_of_day, # time of day in seconds since midnight
|
|
164
|
+
Rg_Wm2 = Rg_Wm2, # solar radiation (W/m^2)
|
|
165
|
+
Rn_Wm2 = Rn_Wm2, # net radiation (W/m^2)
|
|
166
|
+
ST_C = ST_C, # surface temperature (Celsius)
|
|
167
|
+
emissivity = emissivity, # emissivity of the surface
|
|
168
|
+
Ta_C = Ta_C, # air temperature (Celsius)
|
|
169
|
+
dTS_C = dTS_C, # surface air temperature difference (Celsius)
|
|
170
|
+
Td_C = Td_C, # dew point temperature (Celsius)
|
|
171
|
+
VPD_hPa = VPD_hPa, # vapor pressure deficit (hPa)
|
|
172
|
+
SVP_hPa = SVP_hPa, # saturation vapor pressure at given air temperature (hPa)
|
|
173
|
+
Ea_hPa = Ea_hPa, # actual vapor pressure at air temperature (hPa)
|
|
174
|
+
Estar_hPa = Estar_hPa, # saturation vapor pressure at surface temperature (hPa)
|
|
175
|
+
delta_hPa = delta_hPa, # slope of saturation vapor pressure to air temperature (hpa/K)
|
|
176
|
+
NDVI=NDVI, # normalized difference vegetation index
|
|
177
|
+
FVC = FVC, # fractional vegetation cover
|
|
178
|
+
LAI = LAI, # leaf area index
|
|
179
|
+
albedo = albedo, # albedo of the surface
|
|
180
|
+
gamma_hPa=gamma_hPa, # psychrometric constant (hPa/°C)
|
|
181
|
+
G_method = DEFAULT_G_METHOD, # method for calculating soil heat flux
|
|
182
|
+
)
|
|
183
|
+
|
|
184
|
+
check_distribution(Ms, "Ms")
|
|
185
|
+
|
|
186
|
+
# STIC analytical equations (convergence on LE)
|
|
187
|
+
gB_ms, gS_ms, dT_C, EF = STIC_closure(
|
|
188
|
+
delta_hPa=delta_hPa,
|
|
189
|
+
phi_Wm2=phi_Wm2,
|
|
190
|
+
Es_hPa=Es_hPa,
|
|
191
|
+
Ea_hPa=Ea_hPa,
|
|
192
|
+
Estar_hPa=Estar_hPa,
|
|
193
|
+
SM=SM,
|
|
194
|
+
gamma_hPa=gamma_hPa,
|
|
195
|
+
rho_kgm3=rho_kgm3,
|
|
196
|
+
Cp_Jkg=Cp_Jkg,
|
|
197
|
+
alpha=alpha
|
|
198
|
+
)
|
|
199
|
+
|
|
200
|
+
gBB = gB_ms
|
|
201
|
+
gSS = gS_ms
|
|
202
|
+
gBB_by_gSS = rt.where(gSS == 0, 0, gBB / gSS)
|
|
203
|
+
gB_by_gS = rt.where(gS_ms == 0, 0, gB_ms / gS_ms)
|
|
204
|
+
dT_C = dT_C
|
|
205
|
+
T0_C = dT_C + Ta_C
|
|
206
|
+
|
|
207
|
+
PET_Wm2 = ((delta_hPa * phi_Wm2 + rho_kgm3 * Cp_Jkg * gB_ms * VPD_hPa) / (delta_hPa + gamma_hPa)) # Penman potential evaporation
|
|
208
|
+
|
|
209
|
+
gR = (4 * SB_SIGMA * (Ta_C + 273) ** 3 * emissivity) / (rho_kgm3 * Cp_Jkg)
|
|
210
|
+
omega = ((delta_hPa / gamma_hPa) + 1) / ((delta_hPa / gamma_hPa) + 1 + gB_by_gS)
|
|
211
|
+
LE_eq = (phi_Wm2 * (delta_hPa / gamma_hPa)) / ((delta_hPa / gamma_hPa) + 1)
|
|
212
|
+
LE_imp = (Cp_Jkg * 0.0289644 / gamma_hPa) * gS_ms * 40 * VPD_hPa
|
|
213
|
+
LE_init = omega * LE_eq + (1 - omega) * LE_imp
|
|
214
|
+
dry = (Ds > VPD_hPa) & (PET_Wm2 > phi_Wm2) & (dTS_C > 0) & (Td_C <= 0)
|
|
215
|
+
omega = rt.where(dry,
|
|
216
|
+
((delta_hPa / gamma_hPa) + 1 + gR / gB_ms) / ((delta_hPa / gamma_hPa) + 1 + gB_ms / gS_ms + gR / gS_ms + gR / gB_ms),
|
|
217
|
+
omega)
|
|
218
|
+
LE_eq = rt.where(dry, (phi_Wm2 * (delta_hPa / gamma_hPa)) / ((delta_hPa / gamma_hPa) + 1 + gR / gB_ms), LE_eq)
|
|
219
|
+
LE_init = rt.where(dry, omega * LE_eq + (1 - omega * LE_imp), LE_init)
|
|
220
|
+
|
|
221
|
+
# sensible heat flux
|
|
222
|
+
H_Wm2 = ((gamma_hPa * phi_Wm2 * (1 + gB_by_gS) - rho_kgm3 * Cp_Jkg * gB_ms * VPD_hPa) / (delta_hPa + gamma_hPa * (1 + (gB_by_gS))))
|
|
223
|
+
|
|
224
|
+
LE_Wm2_new = LE_init
|
|
225
|
+
LE_Wm2_change = LE_convergence_target
|
|
226
|
+
LE_Wm2_old = LE_Wm2_new
|
|
227
|
+
LE_transpiration_Wm2 = None
|
|
228
|
+
PT_Wm2 = None
|
|
229
|
+
iteration = 1
|
|
230
|
+
LE_Wm2_max_change = 0
|
|
231
|
+
|
|
232
|
+
t = TicToc()
|
|
233
|
+
t.tic()
|
|
234
|
+
|
|
235
|
+
while (np.nanmax(LE_Wm2_change) >= LE_convergence_target and iteration <= max_iterations):
|
|
236
|
+
logger.info(f"running STIC iteration {cl.val(iteration)} / {cl.val(max_iterations)}")
|
|
237
|
+
|
|
238
|
+
if Rg_Wm2 is None:
|
|
239
|
+
SM, SMrz, Ms, s1, e0, e0star, Tsd_C, D0, alphaN = iterate_without_solar(
|
|
240
|
+
LE = LE_Wm2_new, # Latent heat flux (W/m^2)
|
|
241
|
+
PET = PET_Wm2, # Potential evapotranspiration (W/m^2)
|
|
242
|
+
SM = SM,
|
|
243
|
+
ST_C = ST_C, # Surface temperature (°C)
|
|
244
|
+
Ta_C = Ta_C, # Air temperature (°C)
|
|
245
|
+
dTS = dTS_C, # Surface-air temperature difference (°C)
|
|
246
|
+
T0 = T0_C, # Reference temperature (°C)
|
|
247
|
+
gB = gB_ms, # Boundary layer conductance (m/s)
|
|
248
|
+
gS = gS_ms, # Stomatal conductance (m/s)
|
|
249
|
+
Ea_hPa = Ea_hPa, # Actual vapor pressure (hPa)
|
|
250
|
+
Td_C = Td_C, # Dew point temperature (°C)
|
|
251
|
+
VPD_hPa = VPD_hPa, # Vapor pressure deficit (hPa)
|
|
252
|
+
Estar = Estar_hPa, # Saturation vapor pressure at surface temperature (hPa)
|
|
253
|
+
delta = delta_hPa, # Slope of the saturation vapor pressure-temperature curve (hPa/°C)
|
|
254
|
+
phi = phi_Wm2, # available energy (W/m^2)
|
|
255
|
+
Ds = Ds, # Vapor pressure deficit at source (hPa)
|
|
256
|
+
Es = Es_hPa, # Saturation vapor pressure (hPa)
|
|
257
|
+
s3 = s3, # Slope of the saturation vapor pressure and temperature
|
|
258
|
+
s4 = s44, # Slope of the saturation vapor pressure and temperature
|
|
259
|
+
gB_by_gS = gB_by_gS, # Ratio of boundary layer conductance to stomatal conductance
|
|
260
|
+
gamma_hPa = gamma_hPa, # Psychrometric constant (hPa/°C)
|
|
261
|
+
rho_kgm3 = rho_kgm3, # Air density (kg/m^3)
|
|
262
|
+
Cp_Jkg = Cp_Jkg # Specific heat at constant pressure (J/kg/K)
|
|
263
|
+
)
|
|
264
|
+
else:
|
|
265
|
+
SM, G, e0, e0star, D0, alphaN = iterate_with_solar(
|
|
266
|
+
seconds_of_day = seconds_of_day, # Seconds of the day
|
|
267
|
+
ST_C = ST_C, # Soil temperature (°C)
|
|
268
|
+
NDVI = NDVI, # Normalized Difference Vegetation Index
|
|
269
|
+
albedo = albedo, # Albedo
|
|
270
|
+
gB_ms = gB_ms, # boundary layer conductance (m/s)
|
|
271
|
+
gS_ms = gS_ms, # stomatal conductance (m/s)
|
|
272
|
+
LE_Wm2 = LE_Wm2_new, # latent heat flux (W/m^2)
|
|
273
|
+
Rg_Wm2 = Rg_Wm2, # Incoming solar radiation (W/m^2)
|
|
274
|
+
Rn_Wm2 = Rn_Wm2, # Net radiation (W/m^2)
|
|
275
|
+
LWnet_Wm2 = LWnet_Wm2, # Net longwave radiation (W/m^2)
|
|
276
|
+
Ta_C = Ta_C, # Air temperature (°C)
|
|
277
|
+
dTS_C = dTS_C, # Change in soil temperature (°C)
|
|
278
|
+
Td_C = Td_C, # Dew point temperature (°C)
|
|
279
|
+
Tsd_C = Tsd_C, # Soil dew point temperature (°C)
|
|
280
|
+
Ea_hPa = Ea_hPa, # actual vapor pressure (hPa)
|
|
281
|
+
Estar_hPa = Estar_hPa, # saturation vapor pressure at surface temperature (hPa)
|
|
282
|
+
VPD_hPa = VPD_hPa, # Vapor pressure deficit (hPa)
|
|
283
|
+
SVP_hPa = SVP_hPa, # Saturation vapor pressure (hPa)
|
|
284
|
+
delta_hPa = delta_hPa, # Slope of the saturation vapor pressure-temperature curve (hPa/°C)
|
|
285
|
+
phi_Wm2 = phi_Wm2, # Net radiation minus soil heat flux (W/m^2)
|
|
286
|
+
Es_hPa = Es_hPa, # Saturation vapor pressure (hPa)
|
|
287
|
+
s1 = s1, # Soil moisture parameter
|
|
288
|
+
s3 = s3, # Soil moisture parameter
|
|
289
|
+
FVC = FVC, # Fractional canopy cover
|
|
290
|
+
T0_C = T0_C, # Reference temperature (°C)
|
|
291
|
+
gB_by_gS = gB_by_gS, # Ratio of boundary layer conductance to stomatal conductance
|
|
292
|
+
gamma_hPa = gamma_hPa, # Psychrometric constant (hPa/°C)
|
|
293
|
+
rho_kgm3 = rho_kgm3, # Air density (kg/m^3)
|
|
294
|
+
Cp_Jkg = Cp_Jkg, # Specific heat at constant pressure (J/kg/K)
|
|
295
|
+
G_method = "santanello" # Method for calculating soil heat flux
|
|
296
|
+
)
|
|
297
|
+
|
|
298
|
+
if use_variable_alpha:
|
|
299
|
+
alpha = alphaN
|
|
300
|
+
logger.info(f"using variable Priestley-Taylor alpha with mean: {cl.val(np.round(np.nanmean(alpha), 3))}")
|
|
301
|
+
|
|
302
|
+
# re-estimated conductances and states
|
|
303
|
+
gB_ms, gS_ms, dT_C, EF = STIC_closure(
|
|
304
|
+
delta_hPa=delta_hPa, # Slope of the saturation vapor pressure-temperature curve (hPa/°C)
|
|
305
|
+
phi_Wm2=phi_Wm2, # available energy (W/m^2)
|
|
306
|
+
Es_hPa=Es_hPa, # Vapor pressure at the reference height (hPa)
|
|
307
|
+
Ea_hPa=Ea_hPa, # Actual vapor pressure (hPa)
|
|
308
|
+
Estar_hPa=Estar_hPa, # Saturation vapor pressure at the reference height (hPa)
|
|
309
|
+
SM=SM, # Soil moisture (m³/m³)
|
|
310
|
+
gamma_hPa=gamma_hPa, # Psychrometric constant (hPa/°C)
|
|
311
|
+
rho_kgm3=rho_kgm3, # Air density (kg/m³)
|
|
312
|
+
Cp_Jkg=Cp_Jkg, # Specific heat capacity of air (J/kg/°C)
|
|
313
|
+
alpha=alpha # Stability correction factor for conductance
|
|
314
|
+
)
|
|
315
|
+
|
|
316
|
+
gB_by_gS = rt.where(gS_ms == 0, 0, gB_ms / gS_ms)
|
|
317
|
+
T0_C = dT_C + Ta_C
|
|
318
|
+
# latent heat flux
|
|
319
|
+
LE_Wm2_new = ((delta_hPa * phi_Wm2 + rho_kgm3 * Cp_Jkg * gB_ms * VPD_hPa) / (delta_hPa + gamma_hPa * (1 + gB_by_gS)))
|
|
320
|
+
LE_Wm2_new = rt.where(LE_Wm2_new > phi_Wm2, phi_Wm2, LE_Wm2_new)
|
|
321
|
+
# Sensible Heat Flux
|
|
322
|
+
H_Wm2 = ((gamma_hPa * phi_Wm2 * (1 + gB_by_gS) - rho_kgm3 * Cp_Jkg * gB_ms * VPD_hPa) / (delta_hPa + gamma_hPa * (1 + (gB_by_gS))))
|
|
323
|
+
# potential evaporation (Penman)
|
|
324
|
+
PET_Wm2 = ((delta_hPa * phi_Wm2 + rho_kgm3 * Cp_Jkg * gB_ms * VPD_hPa) / (delta_hPa + gamma_hPa))
|
|
325
|
+
# Potential Transpiration
|
|
326
|
+
PT_Wm2 = (delta_hPa * phi_Wm2 + rho_kgm3 * Cp_Jkg * gB_ms * VPD_hPa) / (delta_hPa + gamma_hPa * (1 + SM * gB_by_gS)) # potential transpiration
|
|
327
|
+
# ET PARTITIONING
|
|
328
|
+
LE_soil_Wm2 = rt.clip(SM * PET_Wm2, 0, None)
|
|
329
|
+
LE_transpiration_Wm2 = rt.clip(LE_Wm2_new - LE_soil_Wm2, 0, None)
|
|
330
|
+
# change in latent heat flux estimate
|
|
331
|
+
LE_Wm2_change = np.abs(LE_Wm2_old - LE_Wm2_new)
|
|
332
|
+
LE_Wm2_new = rt.where(np.isnan(LE_Wm2_new), LE_Wm2_old, LE_Wm2_new)
|
|
333
|
+
LE_Wm2_old = LE_Wm2_new
|
|
334
|
+
LE_Wm2_max_change = np.nanmax(LE_Wm2_change)
|
|
335
|
+
logger.info(
|
|
336
|
+
f"completed STIC iteration {cl.val(iteration)} / {cl.val(max_iterations)} with max LE change: {cl.val(np.round(LE_Wm2_max_change, 3))} ({t.tocvalue()} seconds)")
|
|
337
|
+
|
|
338
|
+
check_distribution(SM, f"SM_{iteration}")
|
|
339
|
+
check_distribution(G, f"G_{iteration}")
|
|
340
|
+
check_distribution(LE_Wm2_new, f"LE_{iteration}")
|
|
341
|
+
|
|
342
|
+
if LE_Wm2_max_change <= LE_convergence_target:
|
|
343
|
+
logger.info(f"max LE change {cl.val(np.round(LE_Wm2_max_change, 3))} within convergence target {cl.val(np.round(LE_convergence_target, 3))} with {cl.val(iteration)} iteration{'s' if iteration > 1 else ''}")
|
|
344
|
+
|
|
345
|
+
iteration += 1
|
|
346
|
+
|
|
347
|
+
iteration -= 1
|
|
348
|
+
results["LE_max_change"] = LE_Wm2_max_change
|
|
349
|
+
results["iteration"] = iteration
|
|
350
|
+
|
|
351
|
+
LE = LE_Wm2_new
|
|
352
|
+
|
|
353
|
+
results["LE"] = LE
|
|
354
|
+
results["LE_change"] = LE_Wm2_change
|
|
355
|
+
results["LEt"] = LE_transpiration_Wm2
|
|
356
|
+
results["PT"] = PT_Wm2
|
|
357
|
+
results["PET"] = PET_Wm2
|
|
358
|
+
results["G"] = G
|
|
359
|
+
|
|
360
|
+
if isinstance(geometry, RasterGeometry):
|
|
361
|
+
for name, array in results.items():
|
|
362
|
+
try:
|
|
363
|
+
results[name] = Raster(array.reshape(geometry.shape), geometry=geometry)
|
|
364
|
+
except Exception as e:
|
|
365
|
+
pass
|
|
366
|
+
|
|
367
|
+
results["LE"].cmap = ET_COLORMAP
|
|
368
|
+
results["PET"].cmap = ET_COLORMAP
|
|
369
|
+
|
|
370
|
+
warnings.resetwarnings()
|
|
371
|
+
|
|
372
|
+
return results
|
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
from dateutil import parser
|
|
5
|
+
from pandas import DataFrame
|
|
6
|
+
from rasters import Point
|
|
7
|
+
from sentinel_tiles import sentinel_tiles
|
|
8
|
+
from solar_apparent_time import UTC_to_solar
|
|
9
|
+
from SEBAL_soil_heat_flux import calculate_SEBAL_soil_heat_flux
|
|
10
|
+
|
|
11
|
+
from .model import STIC_JPL, MAX_ITERATIONS, USE_VARIABLE_ALPHA
|
|
12
|
+
|
|
13
|
+
logger = logging.getLogger(__name__)
|
|
14
|
+
|
|
15
|
+
def process_STIC_table(
|
|
16
|
+
input_df: DataFrame,
|
|
17
|
+
max_iterations = MAX_ITERATIONS,
|
|
18
|
+
use_variable_alpha = USE_VARIABLE_ALPHA) -> DataFrame:
|
|
19
|
+
hour_of_day = np.float64(np.array(input_df.hour_of_day))
|
|
20
|
+
lon = np.float64(np.array(input_df.lon))
|
|
21
|
+
ST_C = np.float64(np.array(input_df.ST_C))
|
|
22
|
+
emissivity = np.float64(np.array(input_df.EmisWB))
|
|
23
|
+
NDVI = np.float64(np.array(input_df.NDVI))
|
|
24
|
+
albedo = np.float64(np.array(input_df.albedo))
|
|
25
|
+
Ta_C = np.float64(np.array(input_df.Ta_C))
|
|
26
|
+
RH = np.float64(np.array(input_df.RH))
|
|
27
|
+
Rn = np.float64(np.array(input_df.Rn))
|
|
28
|
+
Rg = np.float64(np.array(input_df.Rg))
|
|
29
|
+
|
|
30
|
+
if "G" in input_df:
|
|
31
|
+
G = np.array(input_df.G)
|
|
32
|
+
else:
|
|
33
|
+
G = calculate_SEBAL_soil_heat_flux(
|
|
34
|
+
Rn=Rn,
|
|
35
|
+
ST_C=ST_C,
|
|
36
|
+
NDVI=NDVI,
|
|
37
|
+
albedo=albedo
|
|
38
|
+
)
|
|
39
|
+
|
|
40
|
+
results = STIC_JPL(
|
|
41
|
+
hour_of_day=hour_of_day,
|
|
42
|
+
# longitude=lon,
|
|
43
|
+
ST_C = ST_C,
|
|
44
|
+
emissivity=emissivity,
|
|
45
|
+
NDVI=NDVI,
|
|
46
|
+
albedo=albedo,
|
|
47
|
+
Ta_C=Ta_C,
|
|
48
|
+
RH=RH,
|
|
49
|
+
Rn_Wm2=Rn,
|
|
50
|
+
G=G,
|
|
51
|
+
# Rg_Wm2=Rg,
|
|
52
|
+
max_iterations=max_iterations,
|
|
53
|
+
use_variable_alpha=use_variable_alpha
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
output_df = input_df.copy()
|
|
57
|
+
|
|
58
|
+
for key, value in results.items():
|
|
59
|
+
output_df[key] = value
|
|
60
|
+
|
|
61
|
+
return output_df
|
|
@@ -4,7 +4,8 @@ import numpy as np
|
|
|
4
4
|
import rasters as rt
|
|
5
5
|
from rasters import Raster
|
|
6
6
|
|
|
7
|
-
from .
|
|
7
|
+
from .FVC_from_NDVI import FVC_from_NDVI
|
|
8
|
+
from .LAI_from_NDVI import LAI_from_NDVI
|
|
8
9
|
|
|
9
10
|
from .constants import GAMMA_HPA
|
|
10
11
|
from .root_zone_initialization import calculate_root_zone_moisture
|
STIC_JPL/version.txt
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
1.
|
|
1
|
+
1.2.2
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: STIC-JPL
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.2.2
|
|
4
4
|
Summary: Surface Temperature Initiated Closure (STIC) Evapotranspiration Model Python Implementation
|
|
5
5
|
Author-email: Gregory Halverson <gregory.h.halverson@jpl.nasa.gov>, Kaniska Mallick <kaniska.mallick@list.lu>, Madeleine Pascolini-Campbell <madeleine.a.pascolini-campbell@jpl.nasa.gov>, "Claire S. Villanueva-Weeks" <claire.s.villanueva-weeks@jpl.gov>
|
|
6
6
|
Project-URL: Homepage, https://github.com/JPL-Evapotranspiration-Algorithms/STIC-JPL
|
|
@@ -8,14 +8,21 @@ Classifier: Programming Language :: Python :: 3
|
|
|
8
8
|
Classifier: Operating System :: OS Independent
|
|
9
9
|
Requires-Python: >=3.10
|
|
10
10
|
Description-Content-Type: text/markdown
|
|
11
|
+
Requires-Dist: check-distribution
|
|
11
12
|
Requires-Dist: colored-logging
|
|
12
|
-
Requires-Dist: ECOv002-CMR
|
|
13
|
-
Requires-Dist: ECOv002-granules
|
|
13
|
+
Requires-Dist: ECOv002-CMR>=1.0.5
|
|
14
|
+
Requires-Dist: ECOv002-granules>=1.0.3
|
|
15
|
+
Requires-Dist: ECOv003-granules
|
|
14
16
|
Requires-Dist: GEOS5FP>=1.1.1
|
|
17
|
+
Requires-Dist: monte-carlo-sensitivity
|
|
15
18
|
Requires-Dist: numpy
|
|
16
19
|
Requires-Dist: pandas
|
|
17
|
-
Requires-Dist:
|
|
20
|
+
Requires-Dist: pytictoc
|
|
21
|
+
Requires-Dist: rasters>=1.4.6
|
|
22
|
+
Requires-Dist: seaborn
|
|
23
|
+
Requires-Dist: SEBAL-soil-heat-flux
|
|
18
24
|
Requires-Dist: solar-apparent-time
|
|
25
|
+
Requires-Dist: verma-net-radiation>=1.1.0
|
|
19
26
|
Provides-Extra: dev
|
|
20
27
|
Requires-Dist: build; extra == "dev"
|
|
21
28
|
Requires-Dist: pytest>=6.0; extra == "dev"
|
|
@@ -24,7 +31,8 @@ Requires-Dist: jupyter; extra == "dev"
|
|
|
24
31
|
Requires-Dist: pytest; extra == "dev"
|
|
25
32
|
Requires-Dist: twine; extra == "dev"
|
|
26
33
|
|
|
27
|
-
#
|
|
34
|
+
# `STIC-JPL`
|
|
35
|
+
## Surface Temperature Initiated Closure (STIC) Evapotranspiration Model Python Implementation
|
|
28
36
|
|
|
29
37
|
[](https://github.com/JPL-Evapotranspiration-Algorithms/STIC/actions/workflows/ci.yml)
|
|
30
38
|
|
|
@@ -63,21 +71,23 @@ NASA Jet Propulsion Laboratory 329G
|
|
|
63
71
|
|
|
64
72
|
## Installation
|
|
65
73
|
|
|
66
|
-
Use the pip package manager to install the `STIC` PyPi package.
|
|
74
|
+
Use the pip package manager to install the `STIC-JPL` PyPi package with dashes in the name.
|
|
67
75
|
|
|
68
76
|
```
|
|
69
|
-
pip install STIC
|
|
77
|
+
pip install STIC-JPL
|
|
70
78
|
```
|
|
71
79
|
|
|
72
80
|
## Usage
|
|
73
81
|
|
|
74
|
-
Import the `
|
|
82
|
+
Import the `STIC_JPL` function from the `STIC_JPL` package with underscores in the name.
|
|
75
83
|
|
|
76
84
|
```
|
|
77
|
-
from
|
|
85
|
+
from STIC_JPL import STIC_JPL
|
|
78
86
|
```
|
|
79
87
|
|
|
80
|
-
See the [ECOSTRESS example](ECOSTRESS%20Example.ipynb) for usage.
|
|
88
|
+
See the [ECOSTRESS example](ECOSTRESS%20Example.ipynb) notebook for usage.
|
|
89
|
+
|
|
90
|
+
See the [STIC sensitivity](STIC%20Sensitivity.ipynb) notebook for sensitivity analysis.
|
|
81
91
|
|
|
82
92
|
## References
|
|
83
93
|
|
|
@@ -0,0 +1,25 @@
|
|
|
1
|
+
STIC_JPL/FVC_from_NDVI.py,sha256=QiALDwRVoOmG9XLfQHZQhAfi8B7QuKc2cae6RIi9yYI,1852
|
|
2
|
+
STIC_JPL/LAI_from_NDVI.py,sha256=XgBIEtFG_sSAzNpb-v2E3rQ1HFoxw4gHhviQoiTVAPU,2529
|
|
3
|
+
STIC_JPL/STIC_JPL.py,sha256=qqxz7JOEHgmP_hoz1ZT_66v0WNs9R0SITRt-60rYb3I,127
|
|
4
|
+
STIC_JPL/__init__.py,sha256=FmTp-Ir0Wbae0SbZgxlNIxq48TDrWCev17Gv1hWskxU,216
|
|
5
|
+
STIC_JPL/canopy_air_stream.py,sha256=UYp3l7mt0XH4SqvCGZhRzCIL-v7-Rvxxfm-C81lheSU,1637
|
|
6
|
+
STIC_JPL/celcius_to_kelvin.py,sha256=QZ1gA8BHBHbdlgn1v8tEMG17yY2r-SCBnaHrGXySItg,316
|
|
7
|
+
STIC_JPL/closure.py,sha256=AzWoLnpoZ1MlQAKq0CgpmCMfDGVsp8-hYZ50ry33cic,4031
|
|
8
|
+
STIC_JPL/constants.py,sha256=xIVTsdc3_Rf3EPSgSk1QPjWiojFGn4lf1Swffov3oTM,595
|
|
9
|
+
STIC_JPL/generate_STIC_inputs.py,sha256=Vwuqq-PLiH2IBd1v0Vt2TVbdIRK8D1zU_uMgReCefmQ,2382
|
|
10
|
+
STIC_JPL/initialize_with_solar.py,sha256=P-22Wn8-sdvh2o4LGb9XfbCdXGWcOxdWwMzEYfx2Nfo,3759
|
|
11
|
+
STIC_JPL/initialize_without_solar.py,sha256=M_7QfP2pr2w5sQO7UOW1GPqxpmQkjmsQ526BgYVVALk,4675
|
|
12
|
+
STIC_JPL/iterate_with_solar.py,sha256=T9DezL59xaV63o6f7_ouCGcQwPi1dIvhlJB26TMGuDo,6373
|
|
13
|
+
STIC_JPL/iterate_without_solar.py,sha256=09RERpN6tdZr6ORDhMwEFXwx8941vyn1HMJQ-Q_bY6s,6140
|
|
14
|
+
STIC_JPL/model.py,sha256=W-4MPm4SHcQNGJGRV6xf823pbauFoDooY-YA-yg_I_w,17339
|
|
15
|
+
STIC_JPL/net_radiation.py,sha256=Uwudsazul8V-x5t8KQLi3wpYi-wjMwT__eqZCRV2bIw,1187
|
|
16
|
+
STIC_JPL/process_STIC_table.py,sha256=5s-fxbchyVnPCzUG5KZX-RrHZDpN4JVcwu42s821Kdw,1712
|
|
17
|
+
STIC_JPL/root_zone_initialization.py,sha256=3JVKNDt3ebIiGVfuhBawjKs-BicNwkbfMprkzSxd4Cg,1581
|
|
18
|
+
STIC_JPL/root_zone_iteration.py,sha256=1XOMFE3-TdJZzUU5vouflUO4NKaZwAW6s1KJrNez3Es,3787
|
|
19
|
+
STIC_JPL/soil_moisture_initialization.py,sha256=wWhAmvNT8tAIm_Sul8mEj6VdNuj7K14TBGUjKfqJrso,5610
|
|
20
|
+
STIC_JPL/soil_moisture_iteration.py,sha256=QJXOPMxxwIIskpx9zLkXUPfuhWgFPUBcRnGhZo2UjAw,6493
|
|
21
|
+
STIC_JPL/version.txt,sha256=xipcxhrEUlk1dT9ewoTAoFKksdpLOjWA3OK313ohVK4,6
|
|
22
|
+
stic_jpl-1.2.2.dist-info/METADATA,sha256=bTOMDANHZrwipZlIVEgzKx-trZnQhi0T-px1i6rjgf0,5789
|
|
23
|
+
stic_jpl-1.2.2.dist-info/WHEEL,sha256=wXxTzcEDnjrTwFYjLPcsW_7_XihufBwmpiBeiXNBGEA,91
|
|
24
|
+
stic_jpl-1.2.2.dist-info/top_level.txt,sha256=9NkchxttzACJcGcAaWzMaZarzX40OXQ216hERNA9LIo,9
|
|
25
|
+
stic_jpl-1.2.2.dist-info/RECORD,,
|
STIC_JPL/diagnostic.py
DELETED
|
@@ -1,70 +0,0 @@
|
|
|
1
|
-
from typing import Union
|
|
2
|
-
from os.path import join
|
|
3
|
-
from datetime import date
|
|
4
|
-
import numpy as np
|
|
5
|
-
import logging
|
|
6
|
-
|
|
7
|
-
import colored_logging as cl
|
|
8
|
-
from rasters import Raster
|
|
9
|
-
|
|
10
|
-
logger = logging.getLogger(__name__)
|
|
11
|
-
|
|
12
|
-
def diagnostic(values: Union[Raster, np.ndarray], variable: str, show_distributions: bool = True, output_directory: str = None):
|
|
13
|
-
if isinstance(values, Raster) and output_directory is not None:
|
|
14
|
-
filename = join(output_directory, f"{variable}.tif")
|
|
15
|
-
logger.info(filename)
|
|
16
|
-
values.to_geotiff(filename)
|
|
17
|
-
|
|
18
|
-
if show_distributions:
|
|
19
|
-
unique = np.unique(values)
|
|
20
|
-
nan_proportion = np.count_nonzero(np.isnan(values)) / np.size(values)
|
|
21
|
-
|
|
22
|
-
if len(unique) < 10:
|
|
23
|
-
logger.info(f"variable {cl.name(variable)} ({values.dtype}) has {cl.val(unique)} unique values")
|
|
24
|
-
|
|
25
|
-
for value in unique:
|
|
26
|
-
if np.isnan(value):
|
|
27
|
-
count = np.count_nonzero(np.isnan(values))
|
|
28
|
-
else:
|
|
29
|
-
count = np.count_nonzero(values == value)
|
|
30
|
-
|
|
31
|
-
if value == 0 or np.isnan(value):
|
|
32
|
-
logger.info(f"* {cl.colored(value, 'red')}: {cl.colored(count, 'red')}")
|
|
33
|
-
else:
|
|
34
|
-
logger.info(f"* {cl.val(value)}: {cl.val(count)}")
|
|
35
|
-
else:
|
|
36
|
-
minimum = np.nanmin(values)
|
|
37
|
-
|
|
38
|
-
if minimum < 0:
|
|
39
|
-
minimum_string = cl.colored(f"{minimum:0.3f}", "red")
|
|
40
|
-
else:
|
|
41
|
-
minimum_string = cl.val(f"{minimum:0.3f}")
|
|
42
|
-
|
|
43
|
-
maximum = np.nanmax(values)
|
|
44
|
-
|
|
45
|
-
if maximum <= 0:
|
|
46
|
-
maximum_string = cl.colored(f"{maximum:0.3f}", "red")
|
|
47
|
-
else:
|
|
48
|
-
maximum_string = cl.val(f"{maximum:0.3f}")
|
|
49
|
-
|
|
50
|
-
if nan_proportion > 0.5:
|
|
51
|
-
nan_proportion_string = cl.colored(f"{(nan_proportion * 100):0.2f}%", "yellow")
|
|
52
|
-
elif nan_proportion == 1:
|
|
53
|
-
nan_proportion_string = cl.colored(f"{(nan_proportion * 100):0.2f}%", "red")
|
|
54
|
-
else:
|
|
55
|
-
nan_proportion_string = cl.val(f"{(nan_proportion * 100):0.2f}%")
|
|
56
|
-
|
|
57
|
-
message = "variable " + cl.name(variable) + \
|
|
58
|
-
" min: " + minimum_string + \
|
|
59
|
-
" mean: " + cl.val(f"{np.nanmean(values):0.3f}") + \
|
|
60
|
-
" max: " + maximum_string + \
|
|
61
|
-
" nan: " + nan_proportion_string
|
|
62
|
-
|
|
63
|
-
if np.all(values == 0):
|
|
64
|
-
message += " all zeros"
|
|
65
|
-
logger.warning(message)
|
|
66
|
-
else:
|
|
67
|
-
logger.info(message)
|
|
68
|
-
|
|
69
|
-
if nan_proportion == 1:
|
|
70
|
-
raise ValueError(f"variable {variable} is blank")
|
|
@@ -1 +0,0 @@
|
|
|
1
|
-
from .meteorology_conversion import *
|