STIC-JPL 1.1.0__py3-none-any.whl → 1.2.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of STIC-JPL might be problematic. Click here for more details.
- STIC_JPL/FVC_from_NDVI.py +49 -0
- STIC_JPL/LAI_from_NDVI.py +61 -0
- STIC_JPL/STIC_JPL.py +3 -370
- STIC_JPL/celcius_to_kelvin.py +11 -0
- STIC_JPL/generate_STIC_inputs.py +65 -0
- STIC_JPL/initialize_with_solar.py +1 -2
- STIC_JPL/iterate_with_solar.py +1 -1
- STIC_JPL/model.py +372 -0
- STIC_JPL/process_STIC_table.py +61 -0
- STIC_JPL/soil_moisture_initialization.py +2 -1
- STIC_JPL/version.txt +1 -1
- {stic_jpl-1.1.0.dist-info → stic_jpl-1.2.2.dist-info}/METADATA +20 -10
- stic_jpl-1.2.2.dist-info/RECORD +25 -0
- {stic_jpl-1.1.0.dist-info → stic_jpl-1.2.2.dist-info}/WHEEL +1 -1
- STIC_JPL/diagnostic.py +0 -70
- STIC_JPL/meteorology_conversion/__init__.py +0 -1
- STIC_JPL/meteorology_conversion/meteorology_conversion.py +0 -123
- STIC_JPL/soil_heat_flux/__init__.py +0 -1
- STIC_JPL/soil_heat_flux/calculate_SEBAL_soil_heat_flux.py +0 -40
- STIC_JPL/timer/__init__.py +0 -1
- STIC_JPL/timer/timer.py +0 -77
- STIC_JPL/vegetation_conversion/__init__.py +0 -1
- STIC_JPL/vegetation_conversion/vegetation_conversion.py +0 -47
- stic_jpl-1.1.0.dist-info/RECORD +0 -28
- {stic_jpl-1.1.0.dist-info → stic_jpl-1.2.2.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
from typing import Union
|
|
2
|
+
import numpy as np
|
|
3
|
+
import rasters as rt
|
|
4
|
+
from rasters import Raster
|
|
5
|
+
|
|
6
|
+
KPAR = 0.5
|
|
7
|
+
MIN_FIPAR = 0.0
|
|
8
|
+
MAX_FIPAR = 1.0
|
|
9
|
+
MIN_LAI = 0.0
|
|
10
|
+
MAX_LAI = 10.0
|
|
11
|
+
|
|
12
|
+
def FVC_from_NDVI(NDVI: Union[Raster, np.ndarray]) -> Union[Raster, np.ndarray]:
|
|
13
|
+
"""
|
|
14
|
+
Estimate Fractional Vegetation Cover (FVC) from Normalized Difference Vegetation Index (NDVI)
|
|
15
|
+
using a scaled NDVI approach.
|
|
16
|
+
|
|
17
|
+
This method linearly scales NDVI values between two endmembers:
|
|
18
|
+
- NDVIs: NDVI value for bare soil (typically ~0.04 ± 0.03)
|
|
19
|
+
- NDVIv: NDVI value for full vegetation (typically ~0.52 ± 0.03)
|
|
20
|
+
|
|
21
|
+
The resulting Fractional Vegetation Cover (FVC) is calculated as:
|
|
22
|
+
|
|
23
|
+
FVC = clip((NDVI - NDVIs) / (NDVIv - NDVIs), 0.0, 1.0)
|
|
24
|
+
|
|
25
|
+
This approach is based on the assumption that NDVI increases linearly with vegetation cover
|
|
26
|
+
between these two extremes, and is well-supported in the literature.
|
|
27
|
+
|
|
28
|
+
References:
|
|
29
|
+
Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover,
|
|
30
|
+
and leaf area index. Remote Sensing of Environment, 62(3), 241–252.
|
|
31
|
+
https://doi.org/10.1016/S0034-4257(97)00104-1
|
|
32
|
+
|
|
33
|
+
Gutman, G., & Ignatov, A. (1998). The derivation of the green vegetation fraction from NOAA/AVHRR
|
|
34
|
+
data for use in numerical weather prediction models. International Journal of Remote Sensing,
|
|
35
|
+
19(8), 1533–1543. https://doi.org/10.1080/014311698215333
|
|
36
|
+
|
|
37
|
+
Parameters:
|
|
38
|
+
NDVI (Union[Raster, np.ndarray]): Input NDVI data.
|
|
39
|
+
|
|
40
|
+
Returns:
|
|
41
|
+
Union[Raster, np.ndarray]: Estimated Fractional Vegetation Cover (FVC).
|
|
42
|
+
"""
|
|
43
|
+
NDVIv = 0.52 # NDVI for fully vegetated pixel
|
|
44
|
+
NDVIs = 0.04 # NDVI for bare soil pixel
|
|
45
|
+
|
|
46
|
+
# Scale NDVI to FVC using a linear model and clip to [0, 1]
|
|
47
|
+
FVC = rt.clip((NDVI - NDVIs) / (NDVIv - NDVIs), 0.0, 1.0)
|
|
48
|
+
|
|
49
|
+
return FVC
|
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
from typing import Union
|
|
2
|
+
import numpy as np
|
|
3
|
+
import rasters as rt
|
|
4
|
+
from rasters import Raster
|
|
5
|
+
|
|
6
|
+
# Constants
|
|
7
|
+
KPAR = 0.5 # Extinction coefficient for PAR, assumed average for broadleaf canopies (Weiss & Baret, 2010)
|
|
8
|
+
MIN_FIPAR = 0.0
|
|
9
|
+
MAX_FIPAR = 1.0
|
|
10
|
+
MIN_LAI = 0.0
|
|
11
|
+
MAX_LAI = 10.0
|
|
12
|
+
|
|
13
|
+
def LAI_from_NDVI(
|
|
14
|
+
NDVI: Union[Raster, np.ndarray],
|
|
15
|
+
min_fIPAR: float = MIN_FIPAR,
|
|
16
|
+
max_fIPAR: float = MAX_FIPAR,
|
|
17
|
+
min_LAI: float = MIN_LAI,
|
|
18
|
+
max_LAI: float = MAX_LAI) -> Union[Raster, np.ndarray]:
|
|
19
|
+
"""
|
|
20
|
+
Estimate Leaf Area Index (LAI) from NDVI using a simplified two-step empirical model.
|
|
21
|
+
|
|
22
|
+
This method first approximates the fraction of absorbed photosynthetically active radiation (fIPAR)
|
|
23
|
+
from NDVI, and then estimates LAI using the Beer–Lambert Law. The extinction coefficient for PAR (KPAR)
|
|
24
|
+
is assumed to be 0.5, which is typical for broadleaf canopies under diffuse light conditions.
|
|
25
|
+
|
|
26
|
+
Steps:
|
|
27
|
+
1. fIPAR ≈ NDVI - 0.05 (empirical offset to account for soil background and sensor noise)
|
|
28
|
+
- Based on observed relationships in Myneni & Williams (1994)
|
|
29
|
+
2. LAI = -ln(1 - fIPAR) / KPAR (Beer–Lambert Law)
|
|
30
|
+
- From Sellers (1985)
|
|
31
|
+
|
|
32
|
+
All outputs are clipped to user-defined minimum and maximum thresholds to ensure physical realism.
|
|
33
|
+
|
|
34
|
+
Parameters:
|
|
35
|
+
NDVI (Union[Raster, np.ndarray]): Input NDVI data.
|
|
36
|
+
min_fIPAR (float): Minimum fIPAR value for clipping (default 0.0).
|
|
37
|
+
max_fIPAR (float): Maximum fIPAR value for clipping (default 1.0).
|
|
38
|
+
min_LAI (float): Minimum LAI value for clipping (default 0.0).
|
|
39
|
+
max_LAI (float): Maximum LAI value for clipping (default 10.0).
|
|
40
|
+
|
|
41
|
+
Returns:
|
|
42
|
+
Union[Raster, np.ndarray]: Estimated LAI values.
|
|
43
|
+
|
|
44
|
+
References:
|
|
45
|
+
- Sellers, P. J. (1985). Canopy reflectance, photosynthesis and transpiration.
|
|
46
|
+
*International Journal of Remote Sensing*, 6(8), 1335–1372.
|
|
47
|
+
- Myneni, R. B., & Williams, D. L. (1994). On the relationship between FAPAR and NDVI.
|
|
48
|
+
*Remote Sensing of Environment*, 49(3), 200–211.
|
|
49
|
+
- Weiss, M., & Baret, F. (2010). CAN-EYE V6.1 User Manual. INRA-CSE.
|
|
50
|
+
|
|
51
|
+
"""
|
|
52
|
+
# Empirical conversion from NDVI to fIPAR (adjusted for background noise)
|
|
53
|
+
fIPAR = rt.clip(NDVI - 0.05, min_fIPAR, max_fIPAR)
|
|
54
|
+
|
|
55
|
+
# Avoid division by zero or log of 0 by masking zero fIPAR values
|
|
56
|
+
fIPAR = np.where(fIPAR == 0, np.nan, fIPAR)
|
|
57
|
+
|
|
58
|
+
# Apply Beer–Lambert law to estimate LAI
|
|
59
|
+
LAI = rt.clip(-np.log(1 - fIPAR) * (1 / KPAR), min_LAI, max_LAI)
|
|
60
|
+
|
|
61
|
+
return LAI
|
STIC_JPL/STIC_JPL.py
CHANGED
|
@@ -1,370 +1,3 @@
|
|
|
1
|
-
from
|
|
2
|
-
import
|
|
3
|
-
from
|
|
4
|
-
from os.path import join, abspath, expanduser
|
|
5
|
-
from typing import Dict, List
|
|
6
|
-
import numpy as np
|
|
7
|
-
import warnings
|
|
8
|
-
from .diagnostic import diagnostic
|
|
9
|
-
import colored_logging as cl
|
|
10
|
-
from .meteorology_conversion import calculate_air_density, calculate_specific_heat, calculate_specific_humidity, calculate_surface_pressure, celcius_to_kelvin
|
|
11
|
-
import rasters as rt
|
|
12
|
-
from GEOS5FP import GEOS5FP
|
|
13
|
-
from solar_apparent_time import solar_day_of_year_for_area, solar_hour_of_day_for_area
|
|
14
|
-
|
|
15
|
-
from .timer import Timer
|
|
16
|
-
|
|
17
|
-
from rasters import Raster, RasterGeometry
|
|
18
|
-
|
|
19
|
-
from .vegetation_conversion.vegetation_conversion import FVC_from_NDVI, LAI_from_NDVI
|
|
20
|
-
|
|
21
|
-
from .constants import *
|
|
22
|
-
from .closure import STIC_closure
|
|
23
|
-
from .soil_moisture_initialization import initialize_soil_moisture
|
|
24
|
-
from .soil_moisture_iteration import iterate_soil_moisture
|
|
25
|
-
from .net_radiation import calculate_net_longwave_radiation
|
|
26
|
-
from .initialize_with_solar import initialize_with_solar
|
|
27
|
-
from .canopy_air_stream import calculate_canopy_air_stream_vapor_pressure
|
|
28
|
-
from .initialize_without_solar import initialize_without_solar
|
|
29
|
-
from .iterate_with_solar import iterate_with_solar
|
|
30
|
-
from .iterate_without_solar import iterate_without_solar
|
|
31
|
-
from .root_zone_initialization import calculate_root_zone_moisture
|
|
32
|
-
|
|
33
|
-
from .soil_heat_flux import calculate_SEBAL_soil_heat_flux
|
|
34
|
-
|
|
35
|
-
__author__ = 'Kaniska Mallick, Madeleine Pascolini-Campbell, Gregory Halverson'
|
|
36
|
-
|
|
37
|
-
logger = logging.getLogger(__name__)
|
|
38
|
-
|
|
39
|
-
def STIC_JPL(
|
|
40
|
-
ST_C: Union[Raster, np.ndarray],
|
|
41
|
-
emissivity: Union[Raster, np.ndarray],
|
|
42
|
-
NDVI: Union[Raster, np.ndarray],
|
|
43
|
-
albedo: Union[Raster, np.ndarray],
|
|
44
|
-
Rn_Wm2: Union[Raster, np.ndarray],
|
|
45
|
-
geometry: RasterGeometry = None,
|
|
46
|
-
time_UTC: datetime = None,
|
|
47
|
-
hour_of_day: np.ndarray = None,
|
|
48
|
-
day_of_year: np.ndarray = None,
|
|
49
|
-
GEOS5FP_connection: GEOS5FP = None,
|
|
50
|
-
Ta_C: Union[Raster, np.ndarray] = None,
|
|
51
|
-
RH: Union[Raster, np.ndarray] = None,
|
|
52
|
-
G: Union[Raster, np.ndarray] = None,
|
|
53
|
-
G_method: str = DEFAULT_G_METHOD,
|
|
54
|
-
SM: Union[Raster, np.ndarray] = None,
|
|
55
|
-
Rg_Wm2: Union[Raster, np.ndarray] = None,
|
|
56
|
-
FVC: Union[Raster, np.ndarray] = None,
|
|
57
|
-
LAI: Union[Raster, np.ndarray] = None,
|
|
58
|
-
elevation_m: Union[Raster, np.ndarray] = None,
|
|
59
|
-
delta_hPa: Union[Raster, np.ndarray] = None,
|
|
60
|
-
gamma_hPa: Union[Raster, np.ndarray, float] = GAMMA_HPA,
|
|
61
|
-
rho_kgm3: Union[Raster, np.ndarray] = RHO_KGM3,
|
|
62
|
-
Cp_Jkg: Union[Raster, np.ndarray] = CP_JKG,
|
|
63
|
-
alpha: float = PT_ALPHA,
|
|
64
|
-
LE_convergence_target: float = LE_CONVERGENCE_TARGET_WM2,
|
|
65
|
-
max_iterations: int = MAX_ITERATIONS,
|
|
66
|
-
diagnostic_directory: str = None,
|
|
67
|
-
show_distributions: bool = SHOW_DISTRIBUTIONS,
|
|
68
|
-
use_variable_alpha: bool = USE_VARIABLE_ALPHA) -> Dict[str, Union[Raster, np.ndarray]]:
|
|
69
|
-
results = {}
|
|
70
|
-
|
|
71
|
-
if geometry is None and isinstance(ST_C, Raster):
|
|
72
|
-
geometry = ST_C.geometry
|
|
73
|
-
|
|
74
|
-
if GEOS5FP_connection is None:
|
|
75
|
-
GEOS5FP_connection = GEOS5FP()
|
|
76
|
-
|
|
77
|
-
if (day_of_year is None or hour_of_day is None) and time_UTC is not None and geometry is not None:
|
|
78
|
-
day_of_year = solar_day_of_year_for_area(time_UTC=time_UTC, geometry=geometry)
|
|
79
|
-
hour_of_day = solar_hour_of_day_for_area(time_UTC=time_UTC, geometry=geometry)
|
|
80
|
-
|
|
81
|
-
if time_UTC is None and day_of_year is None and hour_of_day is None:
|
|
82
|
-
raise ValueError("no time given between time_UTC, day_of_year, and hour_of_day")
|
|
83
|
-
|
|
84
|
-
diag_kwargs = {
|
|
85
|
-
"show_distributions": show_distributions,
|
|
86
|
-
"output_directory": diagnostic_directory
|
|
87
|
-
}
|
|
88
|
-
|
|
89
|
-
seconds_of_day = hour_of_day * 3600.0
|
|
90
|
-
|
|
91
|
-
# load air temperature in Celsius if not provided
|
|
92
|
-
if Ta_C is None:
|
|
93
|
-
Ta_C = GEOS5FP_connection.Ta_C(time_UTC=time_UTC, geometry=geometry, resampling=resampling)
|
|
94
|
-
|
|
95
|
-
# load relative humidity if not provided
|
|
96
|
-
if RH is None:
|
|
97
|
-
RH = GEOS5FP_connection.RH(time_UTC=time_UTC, geometry=geometry, resampling=resampling)
|
|
98
|
-
|
|
99
|
-
# calculate fraction of vegetation cover if it's not given
|
|
100
|
-
if FVC is None:
|
|
101
|
-
FVC = FVC_from_NDVI(NDVI)
|
|
102
|
-
|
|
103
|
-
# calculate leaf area index if it's not given
|
|
104
|
-
if LAI is None:
|
|
105
|
-
LAI = LAI_from_NDVI(NDVI)
|
|
106
|
-
|
|
107
|
-
# saturation air pressure in hPa
|
|
108
|
-
SVP_hPa = 6.13753 * (np.exp((17.27 * Ta_C) / (Ta_C + 237.3)))
|
|
109
|
-
|
|
110
|
-
# calculate delta term if it's not given
|
|
111
|
-
if delta_hPa is None:
|
|
112
|
-
# slope of saturation vapor pressure to air temperature (hpa/K)
|
|
113
|
-
delta_hPa = 4098 * SVP_hPa / (Ta_C + 237.3) ** 2
|
|
114
|
-
|
|
115
|
-
Ta_K = celcius_to_kelvin(Ta_C)
|
|
116
|
-
|
|
117
|
-
# actual vapor pressure at TA (hpa/K)
|
|
118
|
-
Ea_hPa = SVP_hPa * (RH)
|
|
119
|
-
Ea_Pa = Ea_hPa * 100.0
|
|
120
|
-
|
|
121
|
-
# vapor pressure deficit (hPa)
|
|
122
|
-
VPD_hPa = SVP_hPa - Ea_hPa
|
|
123
|
-
|
|
124
|
-
# swapping in the dew-point calculation from PT-JPL
|
|
125
|
-
Td_C = Ta_C - ((100 - RH * 100) / 5.0)
|
|
126
|
-
|
|
127
|
-
# difference between surface and air temperature (Celsius)
|
|
128
|
-
dTS_C = ST_C - Ta_C
|
|
129
|
-
|
|
130
|
-
# saturation vapor pressure at surface temperature (hPa/K)
|
|
131
|
-
Estar_hPa = 6.13753 * np.exp((17.27 * ST_C) / (ST_C + 237.3))
|
|
132
|
-
|
|
133
|
-
if Rg_Wm2 is None:
|
|
134
|
-
# if G is None and SM is None:
|
|
135
|
-
# raise ValueError("soil heat flux or soil moisture prior required if solar radiation is not given")
|
|
136
|
-
|
|
137
|
-
if G is None:
|
|
138
|
-
G = calculate_SEBAL_soil_heat_flux(
|
|
139
|
-
ST_C=ST_C,
|
|
140
|
-
NDVI=NDVI,
|
|
141
|
-
albedo=albedo,
|
|
142
|
-
Rn=Rn_Wm2,
|
|
143
|
-
)
|
|
144
|
-
|
|
145
|
-
phi_Wm2 = Rn_Wm2 - G
|
|
146
|
-
|
|
147
|
-
# initialize without solar radiation
|
|
148
|
-
SM, SMrz, s1, s3, s33, s44, Ms, Tsd_C, Es_hPa, Ds = initialize_without_solar(
|
|
149
|
-
ST_C = ST_C, # Surface temperature in Celsius
|
|
150
|
-
Ta_C = Ta_C, # Air temperature in Celsius
|
|
151
|
-
dTS = dTS_C, # Temperature difference between surface and air in Celsius
|
|
152
|
-
Td_C = Td_C, # Dewpoint temperature in Celsius
|
|
153
|
-
Ea_hPa = Ea_hPa, # Actual vapor pressure in hPa
|
|
154
|
-
Estar_hPa = Estar_hPa, # Saturation vapor pressure at surface temperature (hPa/K)
|
|
155
|
-
SVP_hPa = SVP_hPa, # Saturation vapor pressure at the surface in hPa
|
|
156
|
-
delta_hPa = delta_hPa, # Slope of the saturation vapor pressure-temperature curve in hPa/K
|
|
157
|
-
phi_Wm2 = phi_Wm2, # Available energy in W/m2
|
|
158
|
-
gamma_hPa = gamma_hPa, # Psychrometric constant in hPa/°C
|
|
159
|
-
alpha = alpha # Priestley-Taylor alpha
|
|
160
|
-
)
|
|
161
|
-
else:
|
|
162
|
-
SM, SMrz, Ms, s1, s3, Ep_PT, Rnsoil, LWnet_Wm2, G, Tsd_C, Ds, Es_hPa, phi_Wm2 = initialize_with_solar(
|
|
163
|
-
seconds_of_day = seconds_of_day, # time of day in seconds since midnight
|
|
164
|
-
Rg_Wm2 = Rg_Wm2, # solar radiation (W/m^2)
|
|
165
|
-
Rn_Wm2 = Rn_Wm2, # net radiation (W/m^2)
|
|
166
|
-
ST_C = ST_C, # surface temperature (Celsius)
|
|
167
|
-
emissivity = emissivity, # emissivity of the surface
|
|
168
|
-
Ta_C = Ta_C, # air temperature (Celsius)
|
|
169
|
-
dTS_C = dTS_C, # surface air temperature difference (Celsius)
|
|
170
|
-
Td_C = Td_C, # dew point temperature (Celsius)
|
|
171
|
-
VPD_hPa = VPD_hPa, # vapor pressure deficit (hPa)
|
|
172
|
-
SVP_hPa = SVP_hPa, # saturation vapor pressure at given air temperature (hPa)
|
|
173
|
-
Ea_hPa = Ea_hPa, # actual vapor pressure at air temperature (hPa)
|
|
174
|
-
Estar_hPa = Estar_hPa, # saturation vapor pressure at surface temperature (hPa)
|
|
175
|
-
delta_hPa = delta_hPa, # slope of saturation vapor pressure to air temperature (hpa/K)
|
|
176
|
-
NDVI=NDVI, # normalized difference vegetation index
|
|
177
|
-
FVC = FVC, # fractional vegetation cover
|
|
178
|
-
LAI = LAI, # leaf area index
|
|
179
|
-
albedo = albedo, # albedo of the surface
|
|
180
|
-
gamma_hPa=gamma_hPa, # psychrometric constant (hPa/°C)
|
|
181
|
-
G_method = DEFAULT_G_METHOD, # method for calculating soil heat flux
|
|
182
|
-
)
|
|
183
|
-
|
|
184
|
-
diagnostic(Ms, "Ms", **diag_kwargs)
|
|
185
|
-
|
|
186
|
-
# STIC analytical equations (convergence on LE)
|
|
187
|
-
gB_ms, gS_ms, dT_C, EF = STIC_closure(
|
|
188
|
-
delta_hPa=delta_hPa,
|
|
189
|
-
phi_Wm2=phi_Wm2,
|
|
190
|
-
Es_hPa=Es_hPa,
|
|
191
|
-
Ea_hPa=Ea_hPa,
|
|
192
|
-
Estar_hPa=Estar_hPa,
|
|
193
|
-
SM=SM,
|
|
194
|
-
gamma_hPa=gamma_hPa,
|
|
195
|
-
rho_kgm3=rho_kgm3,
|
|
196
|
-
Cp_Jkg=Cp_Jkg,
|
|
197
|
-
alpha=alpha
|
|
198
|
-
)
|
|
199
|
-
|
|
200
|
-
gBB = gB_ms
|
|
201
|
-
gSS = gS_ms
|
|
202
|
-
gBB_by_gSS = rt.where(gSS == 0, 0, gBB / gSS)
|
|
203
|
-
gB_by_gS = rt.where(gS_ms == 0, 0, gB_ms / gS_ms)
|
|
204
|
-
dT_C = dT_C
|
|
205
|
-
T0_C = dT_C + Ta_C
|
|
206
|
-
|
|
207
|
-
PET_Wm2 = ((delta_hPa * phi_Wm2 + rho_kgm3 * Cp_Jkg * gB_ms * VPD_hPa) / (delta_hPa + gamma_hPa)) # Penman potential evaporation
|
|
208
|
-
|
|
209
|
-
gR = (4 * SB_SIGMA * (Ta_C + 273) ** 3 * emissivity) / (rho_kgm3 * Cp_Jkg)
|
|
210
|
-
omega = ((delta_hPa / gamma_hPa) + 1) / ((delta_hPa / gamma_hPa) + 1 + gB_by_gS)
|
|
211
|
-
LE_eq = (phi_Wm2 * (delta_hPa / gamma_hPa)) / ((delta_hPa / gamma_hPa) + 1)
|
|
212
|
-
LE_imp = (Cp_Jkg * 0.0289644 / gamma_hPa) * gS_ms * 40 * VPD_hPa
|
|
213
|
-
LE_init = omega * LE_eq + (1 - omega) * LE_imp
|
|
214
|
-
dry = (Ds > VPD_hPa) & (PET_Wm2 > phi_Wm2) & (dTS_C > 0) & (Td_C <= 0)
|
|
215
|
-
omega = rt.where(dry,
|
|
216
|
-
((delta_hPa / gamma_hPa) + 1 + gR / gB_ms) / ((delta_hPa / gamma_hPa) + 1 + gB_ms / gS_ms + gR / gS_ms + gR / gB_ms),
|
|
217
|
-
omega)
|
|
218
|
-
LE_eq = rt.where(dry, (phi_Wm2 * (delta_hPa / gamma_hPa)) / ((delta_hPa / gamma_hPa) + 1 + gR / gB_ms), LE_eq)
|
|
219
|
-
LE_init = rt.where(dry, omega * LE_eq + (1 - omega * LE_imp), LE_init)
|
|
220
|
-
|
|
221
|
-
# sensible heat flux
|
|
222
|
-
H_Wm2 = ((gamma_hPa * phi_Wm2 * (1 + gB_by_gS) - rho_kgm3 * Cp_Jkg * gB_ms * VPD_hPa) / (delta_hPa + gamma_hPa * (1 + (gB_by_gS))))
|
|
223
|
-
|
|
224
|
-
LE_Wm2_new = LE_init
|
|
225
|
-
LE_Wm2_change = LE_convergence_target
|
|
226
|
-
LE_Wm2_old = LE_Wm2_new
|
|
227
|
-
LE_transpiration_Wm2 = None
|
|
228
|
-
PT_Wm2 = None
|
|
229
|
-
iteration = 1
|
|
230
|
-
LE_Wm2_max_change = 0
|
|
231
|
-
t = Timer()
|
|
232
|
-
|
|
233
|
-
while (np.nanmax(LE_Wm2_change) >= LE_convergence_target and iteration <= max_iterations):
|
|
234
|
-
logger.info(f"running STIC iteration {cl.val(iteration)} / {cl.val(max_iterations)}")
|
|
235
|
-
|
|
236
|
-
if Rg_Wm2 is None:
|
|
237
|
-
SM, SMrz, Ms, s1, e0, e0star, Tsd_C, D0, alphaN = iterate_without_solar(
|
|
238
|
-
LE = LE_Wm2_new, # Latent heat flux (W/m^2)
|
|
239
|
-
PET = PET_Wm2, # Potential evapotranspiration (W/m^2)
|
|
240
|
-
SM = SM,
|
|
241
|
-
ST_C = ST_C, # Surface temperature (°C)
|
|
242
|
-
Ta_C = Ta_C, # Air temperature (°C)
|
|
243
|
-
dTS = dTS_C, # Surface-air temperature difference (°C)
|
|
244
|
-
T0 = T0_C, # Reference temperature (°C)
|
|
245
|
-
gB = gB_ms, # Boundary layer conductance (m/s)
|
|
246
|
-
gS = gS_ms, # Stomatal conductance (m/s)
|
|
247
|
-
Ea_hPa = Ea_hPa, # Actual vapor pressure (hPa)
|
|
248
|
-
Td_C = Td_C, # Dew point temperature (°C)
|
|
249
|
-
VPD_hPa = VPD_hPa, # Vapor pressure deficit (hPa)
|
|
250
|
-
Estar = Estar_hPa, # Saturation vapor pressure at surface temperature (hPa)
|
|
251
|
-
delta = delta_hPa, # Slope of the saturation vapor pressure-temperature curve (hPa/°C)
|
|
252
|
-
phi = phi_Wm2, # available energy (W/m^2)
|
|
253
|
-
Ds = Ds, # Vapor pressure deficit at source (hPa)
|
|
254
|
-
Es = Es_hPa, # Saturation vapor pressure (hPa)
|
|
255
|
-
s3 = s3, # Slope of the saturation vapor pressure and temperature
|
|
256
|
-
s4 = s44, # Slope of the saturation vapor pressure and temperature
|
|
257
|
-
gB_by_gS = gB_by_gS, # Ratio of boundary layer conductance to stomatal conductance
|
|
258
|
-
gamma_hPa = gamma_hPa, # Psychrometric constant (hPa/°C)
|
|
259
|
-
rho_kgm3 = rho_kgm3, # Air density (kg/m^3)
|
|
260
|
-
Cp_Jkg = Cp_Jkg # Specific heat at constant pressure (J/kg/K)
|
|
261
|
-
)
|
|
262
|
-
else:
|
|
263
|
-
SM, G, e0, e0star, D0, alphaN = iterate_with_solar(
|
|
264
|
-
seconds_of_day = seconds_of_day, # Seconds of the day
|
|
265
|
-
ST_C = ST_C, # Soil temperature (°C)
|
|
266
|
-
NDVI = NDVI, # Normalized Difference Vegetation Index
|
|
267
|
-
albedo = albedo, # Albedo
|
|
268
|
-
gB_ms = gB_ms, # boundary layer conductance (m/s)
|
|
269
|
-
gS_ms = gS_ms, # stomatal conductance (m/s)
|
|
270
|
-
LE_Wm2 = LE_Wm2_new, # latent heat flux (W/m^2)
|
|
271
|
-
Rg_Wm2 = Rg_Wm2, # Incoming solar radiation (W/m^2)
|
|
272
|
-
Rn_Wm2 = Rn_Wm2, # Net radiation (W/m^2)
|
|
273
|
-
LWnet_Wm2 = LWnet_Wm2, # Net longwave radiation (W/m^2)
|
|
274
|
-
Ta_C = Ta_C, # Air temperature (°C)
|
|
275
|
-
dTS_C = dTS_C, # Change in soil temperature (°C)
|
|
276
|
-
Td_C = Td_C, # Dew point temperature (°C)
|
|
277
|
-
Tsd_C = Tsd_C, # Soil dew point temperature (°C)
|
|
278
|
-
Ea_hPa = Ea_hPa, # actual vapor pressure (hPa)
|
|
279
|
-
Estar_hPa = Estar_hPa, # saturation vapor pressure at surface temperature (hPa)
|
|
280
|
-
VPD_hPa = VPD_hPa, # Vapor pressure deficit (hPa)
|
|
281
|
-
SVP_hPa = SVP_hPa, # Saturation vapor pressure (hPa)
|
|
282
|
-
delta_hPa = delta_hPa, # Slope of the saturation vapor pressure-temperature curve (hPa/°C)
|
|
283
|
-
phi_Wm2 = phi_Wm2, # Net radiation minus soil heat flux (W/m^2)
|
|
284
|
-
Es_hPa = Es_hPa, # Saturation vapor pressure (hPa)
|
|
285
|
-
s1 = s1, # Soil moisture parameter
|
|
286
|
-
s3 = s3, # Soil moisture parameter
|
|
287
|
-
FVC = FVC, # Fractional canopy cover
|
|
288
|
-
T0_C = T0_C, # Reference temperature (°C)
|
|
289
|
-
gB_by_gS = gB_by_gS, # Ratio of boundary layer conductance to stomatal conductance
|
|
290
|
-
gamma_hPa = gamma_hPa, # Psychrometric constant (hPa/°C)
|
|
291
|
-
rho_kgm3 = rho_kgm3, # Air density (kg/m^3)
|
|
292
|
-
Cp_Jkg = Cp_Jkg, # Specific heat at constant pressure (J/kg/K)
|
|
293
|
-
G_method = "santanello" # Method for calculating soil heat flux
|
|
294
|
-
)
|
|
295
|
-
|
|
296
|
-
if use_variable_alpha:
|
|
297
|
-
alpha = alphaN
|
|
298
|
-
logger.info(f"using variable Priestley-Taylor alpha with mean: {cl.val(np.round(np.nanmean(alpha), 3))}")
|
|
299
|
-
|
|
300
|
-
# re-estimated conductances and states
|
|
301
|
-
gB_ms, gS_ms, dT_C, EF = STIC_closure(
|
|
302
|
-
delta_hPa=delta_hPa, # Slope of the saturation vapor pressure-temperature curve (hPa/°C)
|
|
303
|
-
phi_Wm2=phi_Wm2, # available energy (W/m^2)
|
|
304
|
-
Es_hPa=Es_hPa, # Vapor pressure at the reference height (hPa)
|
|
305
|
-
Ea_hPa=Ea_hPa, # Actual vapor pressure (hPa)
|
|
306
|
-
Estar_hPa=Estar_hPa, # Saturation vapor pressure at the reference height (hPa)
|
|
307
|
-
SM=SM, # Soil moisture (m³/m³)
|
|
308
|
-
gamma_hPa=gamma_hPa, # Psychrometric constant (hPa/°C)
|
|
309
|
-
rho_kgm3=rho_kgm3, # Air density (kg/m³)
|
|
310
|
-
Cp_Jkg=Cp_Jkg, # Specific heat capacity of air (J/kg/°C)
|
|
311
|
-
alpha=alpha # Stability correction factor for conductance
|
|
312
|
-
)
|
|
313
|
-
|
|
314
|
-
gB_by_gS = rt.where(gS_ms == 0, 0, gB_ms / gS_ms)
|
|
315
|
-
T0_C = dT_C + Ta_C
|
|
316
|
-
# latent heat flux
|
|
317
|
-
LE_Wm2_new = ((delta_hPa * phi_Wm2 + rho_kgm3 * Cp_Jkg * gB_ms * VPD_hPa) / (delta_hPa + gamma_hPa * (1 + gB_by_gS)))
|
|
318
|
-
LE_Wm2_new = rt.where(LE_Wm2_new > phi_Wm2, phi_Wm2, LE_Wm2_new)
|
|
319
|
-
# Sensible Heat Flux
|
|
320
|
-
H_Wm2 = ((gamma_hPa * phi_Wm2 * (1 + gB_by_gS) - rho_kgm3 * Cp_Jkg * gB_ms * VPD_hPa) / (delta_hPa + gamma_hPa * (1 + (gB_by_gS))))
|
|
321
|
-
# potential evaporation (Penman)
|
|
322
|
-
PET_Wm2 = ((delta_hPa * phi_Wm2 + rho_kgm3 * Cp_Jkg * gB_ms * VPD_hPa) / (delta_hPa + gamma_hPa))
|
|
323
|
-
# Potential Transpiration
|
|
324
|
-
PT_Wm2 = (delta_hPa * phi_Wm2 + rho_kgm3 * Cp_Jkg * gB_ms * VPD_hPa) / (delta_hPa + gamma_hPa * (1 + SM * gB_by_gS)) # potential transpiration
|
|
325
|
-
# ET PARTITIONING
|
|
326
|
-
LE_soil_Wm2 = rt.clip(SM * PET_Wm2, 0, None)
|
|
327
|
-
LE_transpiration_Wm2 = rt.clip(LE_Wm2_new - LE_soil_Wm2, 0, None)
|
|
328
|
-
# change in latent heat flux estimate
|
|
329
|
-
LE_Wm2_change = np.abs(LE_Wm2_old - LE_Wm2_new)
|
|
330
|
-
LE_Wm2_new = rt.where(np.isnan(LE_Wm2_new), LE_Wm2_old, LE_Wm2_new)
|
|
331
|
-
LE_Wm2_old = LE_Wm2_new
|
|
332
|
-
LE_Wm2_max_change = np.nanmax(LE_Wm2_change)
|
|
333
|
-
logger.info(
|
|
334
|
-
f"completed STIC iteration {cl.val(iteration)} / {cl.val(max_iterations)} with max LE change: {cl.val(np.round(LE_Wm2_max_change, 3))} ({t} seconds)")
|
|
335
|
-
|
|
336
|
-
diagnostic(SM, f"SM_{iteration}", **diag_kwargs)
|
|
337
|
-
diagnostic(G, f"G_{iteration}", **diag_kwargs)
|
|
338
|
-
diagnostic(LE_Wm2_new, f"LE_{iteration}", **diag_kwargs)
|
|
339
|
-
|
|
340
|
-
if LE_Wm2_max_change <= LE_convergence_target:
|
|
341
|
-
logger.info(f"max LE change {cl.val(np.round(LE_Wm2_max_change, 3))} within convergence target {cl.val(np.round(LE_convergence_target, 3))} with {cl.val(iteration)} iteration{'s' if iteration > 1 else ''}")
|
|
342
|
-
|
|
343
|
-
iteration += 1
|
|
344
|
-
|
|
345
|
-
iteration -= 1
|
|
346
|
-
results["LE_max_change"] = LE_Wm2_max_change
|
|
347
|
-
results["iteration"] = iteration
|
|
348
|
-
|
|
349
|
-
LE = LE_Wm2_new
|
|
350
|
-
|
|
351
|
-
results["LE"] = LE
|
|
352
|
-
results["LE_change"] = LE_Wm2_change
|
|
353
|
-
results["LEt"] = LE_transpiration_Wm2
|
|
354
|
-
results["PT"] = PT_Wm2
|
|
355
|
-
results["PET"] = PET_Wm2
|
|
356
|
-
results["G"] = G
|
|
357
|
-
|
|
358
|
-
if isinstance(geometry, RasterGeometry):
|
|
359
|
-
for name, array in results.items():
|
|
360
|
-
try:
|
|
361
|
-
results[name] = Raster(array.reshape(geometry.shape), geometry=geometry)
|
|
362
|
-
except Exception as e:
|
|
363
|
-
pass
|
|
364
|
-
|
|
365
|
-
results["LE"].cmap = ET_COLORMAP
|
|
366
|
-
results["PET"].cmap = ET_COLORMAP
|
|
367
|
-
|
|
368
|
-
warnings.resetwarnings()
|
|
369
|
-
|
|
370
|
-
return results
|
|
1
|
+
from .model import *
|
|
2
|
+
from .generate_STIC_inputs import generate_STIC_inputs
|
|
3
|
+
from .process_STIC_table import process_STIC_table
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
from typing import Union
|
|
2
|
+
import numpy as np
|
|
3
|
+
from rasters import Raster
|
|
4
|
+
|
|
5
|
+
def celcius_to_kelvin(T_C: Union[Raster, np.ndarray]) -> Union[Raster, np.ndarray]:
|
|
6
|
+
"""
|
|
7
|
+
convert temperature in celsius to kelvin.
|
|
8
|
+
:param T_C: temperature in celsius
|
|
9
|
+
:return: temperature in kelvin
|
|
10
|
+
"""
|
|
11
|
+
return T_C + 273.15
|
|
@@ -0,0 +1,65 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
from dateutil import parser
|
|
5
|
+
from pandas import DataFrame
|
|
6
|
+
from rasters import Point
|
|
7
|
+
from sentinel_tiles import sentinel_tiles
|
|
8
|
+
from solar_apparent_time import UTC_to_solar
|
|
9
|
+
from SEBAL_soil_heat_flux import calculate_SEBAL_soil_heat_flux
|
|
10
|
+
|
|
11
|
+
from .model import STIC_JPL, MAX_ITERATIONS, USE_VARIABLE_ALPHA
|
|
12
|
+
|
|
13
|
+
logger = logging.getLogger(__name__)
|
|
14
|
+
|
|
15
|
+
def generate_STIC_inputs(STIC_inputs_from_calval_df: DataFrame) -> DataFrame:
|
|
16
|
+
"""
|
|
17
|
+
STIC_inputs_from_claval_df:
|
|
18
|
+
Pandas DataFrame containing the columns: tower, lat, lon, time_UTC, albedo, elevation_km
|
|
19
|
+
return:
|
|
20
|
+
Pandas DataFrame containing the columns: tower, lat, lon, time_UTC, doy, albedo, elevation_km, AOT, COT, vapor_gccm, ozone_cm, SZA, KG
|
|
21
|
+
"""
|
|
22
|
+
# output_rows = []
|
|
23
|
+
STIC_inputs_df = STIC_inputs_from_calval_df.copy()
|
|
24
|
+
|
|
25
|
+
hour_of_day = []
|
|
26
|
+
doy = []
|
|
27
|
+
Topt = []
|
|
28
|
+
fAPARmax = []
|
|
29
|
+
|
|
30
|
+
for i, input_row in STIC_inputs_from_calval_df.iterrows():
|
|
31
|
+
tower = input_row.tower
|
|
32
|
+
lat = input_row.lat
|
|
33
|
+
lon = input_row.lon
|
|
34
|
+
time_UTC = input_row.time_UTC
|
|
35
|
+
albedo = input_row.albedo
|
|
36
|
+
elevation_km = input_row.elevation_km
|
|
37
|
+
logger.info(f"collecting STIC inputs for tower {tower} lat {lat} lon {lon} time {time_UTC} UTC")
|
|
38
|
+
time_UTC = parser.parse(str(time_UTC))
|
|
39
|
+
time_solar = UTC_to_solar(time_UTC, lon)
|
|
40
|
+
hour_of_day.append(time_solar.hour)
|
|
41
|
+
doy.append(time_UTC.timetuple().tm_yday)
|
|
42
|
+
date_UTC = time_UTC.date()
|
|
43
|
+
tile = sentinel_tiles.toMGRS(lat, lon)[:5]
|
|
44
|
+
tile_grid = sentinel_tiles.grid(tile=tile, cell_size=70)
|
|
45
|
+
rows, cols = tile_grid.shape
|
|
46
|
+
row, col = tile_grid.index_point(Point(lon, lat))
|
|
47
|
+
geometry = tile_grid[max(0, row - 1):min(row + 2, rows - 1),
|
|
48
|
+
max(0, col - 1):min(col + 2, cols - 1)]
|
|
49
|
+
|
|
50
|
+
if not "hour_of_day" in STIC_inputs_df.columns:
|
|
51
|
+
STIC_inputs_df["hour_of_day"] = hour_of_day
|
|
52
|
+
|
|
53
|
+
if not "doy" in STIC_inputs_df.columns:
|
|
54
|
+
STIC_inputs_df["doy"] = doy
|
|
55
|
+
|
|
56
|
+
if not "Topt" in STIC_inputs_df.columns:
|
|
57
|
+
STIC_inputs_df["Topt"] = Topt
|
|
58
|
+
|
|
59
|
+
if not "fAPARmax" in STIC_inputs_df.columns:
|
|
60
|
+
STIC_inputs_df["fAPARmax"] = fAPARmax
|
|
61
|
+
|
|
62
|
+
if "Ta" in STIC_inputs_df and "Ta_C" not in STIC_inputs_df:
|
|
63
|
+
STIC_inputs_df.rename({"Ta": "Ta_C"}, inplace=True)
|
|
64
|
+
|
|
65
|
+
return STIC_inputs_df
|
|
@@ -5,8 +5,7 @@ import rasters as rt
|
|
|
5
5
|
|
|
6
6
|
from rasters import Raster
|
|
7
7
|
|
|
8
|
-
from
|
|
9
|
-
from .soil_heat_flux import calculate_SEBAL_soil_heat_flux
|
|
8
|
+
from SEBAL_soil_heat_flux import calculate_SEBAL_soil_heat_flux
|
|
10
9
|
|
|
11
10
|
from .constants import *
|
|
12
11
|
from .soil_moisture_initialization import initialize_soil_moisture
|
STIC_JPL/iterate_with_solar.py
CHANGED
|
@@ -5,7 +5,7 @@ import rasters as rt
|
|
|
5
5
|
|
|
6
6
|
from rasters import Raster
|
|
7
7
|
|
|
8
|
-
from
|
|
8
|
+
from SEBAL_soil_heat_flux import calculate_SEBAL_soil_heat_flux
|
|
9
9
|
|
|
10
10
|
from .constants import *
|
|
11
11
|
from .canopy_air_stream import calculate_canopy_air_stream_vapor_pressure
|