AeroViz 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of AeroViz might be problematic. Click here for more details.

Files changed (102) hide show
  1. AeroViz/__init__.py +15 -0
  2. AeroViz/dataProcess/Chemistry/__init__.py +63 -0
  3. AeroViz/dataProcess/Chemistry/_calculate.py +27 -0
  4. AeroViz/dataProcess/Chemistry/_isoropia.py +99 -0
  5. AeroViz/dataProcess/Chemistry/_mass_volume.py +175 -0
  6. AeroViz/dataProcess/Chemistry/_ocec.py +184 -0
  7. AeroViz/dataProcess/Chemistry/_partition.py +29 -0
  8. AeroViz/dataProcess/Chemistry/_teom.py +16 -0
  9. AeroViz/dataProcess/Optical/_IMPROVE.py +61 -0
  10. AeroViz/dataProcess/Optical/__init__.py +62 -0
  11. AeroViz/dataProcess/Optical/_absorption.py +54 -0
  12. AeroViz/dataProcess/Optical/_extinction.py +36 -0
  13. AeroViz/dataProcess/Optical/_mie.py +16 -0
  14. AeroViz/dataProcess/Optical/_mie_sd.py +143 -0
  15. AeroViz/dataProcess/Optical/_scattering.py +30 -0
  16. AeroViz/dataProcess/SizeDistr/__init__.py +61 -0
  17. AeroViz/dataProcess/SizeDistr/__merge.py +250 -0
  18. AeroViz/dataProcess/SizeDistr/_merge.py +245 -0
  19. AeroViz/dataProcess/SizeDistr/_merge_v1.py +254 -0
  20. AeroViz/dataProcess/SizeDistr/_merge_v2.py +243 -0
  21. AeroViz/dataProcess/SizeDistr/_merge_v3.py +518 -0
  22. AeroViz/dataProcess/SizeDistr/_merge_v4.py +424 -0
  23. AeroViz/dataProcess/SizeDistr/_size_distr.py +93 -0
  24. AeroViz/dataProcess/VOC/__init__.py +19 -0
  25. AeroViz/dataProcess/VOC/_potential_par.py +76 -0
  26. AeroViz/dataProcess/__init__.py +11 -0
  27. AeroViz/dataProcess/core/__init__.py +92 -0
  28. AeroViz/plot/__init__.py +7 -0
  29. AeroViz/plot/distribution/__init__.py +1 -0
  30. AeroViz/plot/distribution/distribution.py +582 -0
  31. AeroViz/plot/improve/__init__.py +1 -0
  32. AeroViz/plot/improve/improve.py +240 -0
  33. AeroViz/plot/meteorology/__init__.py +1 -0
  34. AeroViz/plot/meteorology/meteorology.py +317 -0
  35. AeroViz/plot/optical/__init__.py +2 -0
  36. AeroViz/plot/optical/aethalometer.py +77 -0
  37. AeroViz/plot/optical/optical.py +388 -0
  38. AeroViz/plot/templates/__init__.py +8 -0
  39. AeroViz/plot/templates/contour.py +47 -0
  40. AeroViz/plot/templates/corr_matrix.py +108 -0
  41. AeroViz/plot/templates/diurnal_pattern.py +42 -0
  42. AeroViz/plot/templates/event_evolution.py +65 -0
  43. AeroViz/plot/templates/koschmieder.py +156 -0
  44. AeroViz/plot/templates/metal_heatmap.py +57 -0
  45. AeroViz/plot/templates/regression.py +256 -0
  46. AeroViz/plot/templates/scatter.py +130 -0
  47. AeroViz/plot/templates/templates.py +398 -0
  48. AeroViz/plot/timeseries/__init__.py +1 -0
  49. AeroViz/plot/timeseries/timeseries.py +317 -0
  50. AeroViz/plot/utils/__init__.py +3 -0
  51. AeroViz/plot/utils/_color.py +71 -0
  52. AeroViz/plot/utils/_decorator.py +74 -0
  53. AeroViz/plot/utils/_unit.py +55 -0
  54. AeroViz/process/__init__.py +31 -0
  55. AeroViz/process/core/DataProc.py +19 -0
  56. AeroViz/process/core/SizeDist.py +90 -0
  57. AeroViz/process/core/__init__.py +4 -0
  58. AeroViz/process/method/PyMieScatt_update.py +567 -0
  59. AeroViz/process/method/__init__.py +2 -0
  60. AeroViz/process/method/mie_theory.py +258 -0
  61. AeroViz/process/method/prop.py +62 -0
  62. AeroViz/process/script/AbstractDistCalc.py +143 -0
  63. AeroViz/process/script/Chemical.py +176 -0
  64. AeroViz/process/script/IMPACT.py +49 -0
  65. AeroViz/process/script/IMPROVE.py +161 -0
  66. AeroViz/process/script/Others.py +65 -0
  67. AeroViz/process/script/PSD.py +103 -0
  68. AeroViz/process/script/PSD_dry.py +94 -0
  69. AeroViz/process/script/__init__.py +5 -0
  70. AeroViz/process/script/retrieve_RI.py +70 -0
  71. AeroViz/rawDataReader/__init__.py +68 -0
  72. AeroViz/rawDataReader/core/__init__.py +397 -0
  73. AeroViz/rawDataReader/script/AE33.py +31 -0
  74. AeroViz/rawDataReader/script/AE43.py +34 -0
  75. AeroViz/rawDataReader/script/APS_3321.py +47 -0
  76. AeroViz/rawDataReader/script/Aurora.py +38 -0
  77. AeroViz/rawDataReader/script/BC1054.py +46 -0
  78. AeroViz/rawDataReader/script/EPA_vertical.py +18 -0
  79. AeroViz/rawDataReader/script/GRIMM.py +35 -0
  80. AeroViz/rawDataReader/script/IGAC_TH.py +104 -0
  81. AeroViz/rawDataReader/script/IGAC_ZM.py +90 -0
  82. AeroViz/rawDataReader/script/MA350.py +45 -0
  83. AeroViz/rawDataReader/script/NEPH.py +57 -0
  84. AeroViz/rawDataReader/script/OCEC_LCRES.py +34 -0
  85. AeroViz/rawDataReader/script/OCEC_RES.py +28 -0
  86. AeroViz/rawDataReader/script/SMPS_TH.py +41 -0
  87. AeroViz/rawDataReader/script/SMPS_aim11.py +51 -0
  88. AeroViz/rawDataReader/script/SMPS_genr.py +51 -0
  89. AeroViz/rawDataReader/script/TEOM.py +46 -0
  90. AeroViz/rawDataReader/script/Table.py +28 -0
  91. AeroViz/rawDataReader/script/VOC_TH.py +30 -0
  92. AeroViz/rawDataReader/script/VOC_ZM.py +37 -0
  93. AeroViz/rawDataReader/script/__init__.py +22 -0
  94. AeroViz/tools/__init__.py +3 -0
  95. AeroViz/tools/database.py +94 -0
  96. AeroViz/tools/dataclassifier.py +117 -0
  97. AeroViz/tools/datareader.py +66 -0
  98. AeroViz-0.1.0.dist-info/LICENSE +21 -0
  99. AeroViz-0.1.0.dist-info/METADATA +117 -0
  100. AeroViz-0.1.0.dist-info/RECORD +102 -0
  101. AeroViz-0.1.0.dist-info/WHEEL +5 -0
  102. AeroViz-0.1.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,243 @@
1
+ from AeroViz.dataProcess.core import _union_index
2
+
3
+ from datetime import datetime as dtm
4
+ from pandas import DataFrame, to_datetime
5
+ # from scipy.interpolate import interp1d
6
+ from scipy.interpolate import UnivariateSpline as unvpline, interp1d
7
+ import numpy as np
8
+
9
+ __all__ = ['_merge_SMPS_APS']
10
+
11
+
12
+ def __test_plot(smpsx, smps, apsx, aps, mergex, merge, mergeox, mergeo, _sh):
13
+ from matplotlib.pyplot import subplots, close, show, rcParams
14
+
15
+ ## parameter
16
+ # '''
17
+ ## plot
18
+ fig, ax = subplots()
19
+
20
+ ax.plot(smpsx, smps, c='#ff794c', label='smps', marker='o', lw=2)
21
+ ax.plot(apsx, aps, c='#4c79ff', label='aps', marker='o', lw=2)
22
+ ax.plot(mergex, merge, c='#79796a', label='merge')
23
+ # ax.plot(mergeox,mergeo,c='#111111',label='mergeo',marker='o',lw=.75)
24
+
25
+ ax.set(xscale='log', yscale='log', )
26
+
27
+ ax.legend(framealpha=0, )
28
+ ax.set_title((_sh ** 2)[0], fontsize=13)
29
+
30
+ show()
31
+ close()
32
+
33
+
34
+ # '''
35
+
36
+
37
+ ## Overlap fitting
38
+ ## Create a fitting func. by smps data
39
+ ## return : shift factor
40
+ def _overlap_fitting(_smps_ori, _aps_ori, _smps_lb, _aps_hb):
41
+ print(f"\t\t{dtm.now().strftime('%m/%d %X')} : \033[92moverlap range fitting\033[0m")
42
+
43
+ ## overlap fitting
44
+ ## parmeter
45
+ _dt_indx = _smps_ori.index
46
+
47
+ ## overlap diameter data
48
+ _aps = _aps_ori[_aps_ori.keys()[_aps_ori.keys() < _aps_hb]].copy()
49
+ _smps = _smps_ori[_smps_ori.keys()[_smps_ori.keys() > _smps_lb]].copy()
50
+
51
+ ## use SMPS data apply power law fitting
52
+ ## y = Ax^B, A = e**coefa, B = coefb, x = logx, y = logy
53
+ ## ref : http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html
54
+ ## power law fit to SMPS num conc at upper bins to log curve
55
+
56
+ ## coefficient A, B
57
+ _smps_qc_cond = ((_smps != 0) & np.isfinite(_smps))
58
+ _smps_qc = _smps.where(_smps_qc_cond)
59
+
60
+ _size = _smps_qc_cond.sum(axis=1)
61
+ _size = _size.where(_size != 0.).copy()
62
+
63
+ _logx, _logy = np.log(_smps_qc.keys()._data.astype(float)), np.log(_smps_qc)
64
+ _x, _y, _xy, _xx = _logx.sum(), _logy.sum(axis=1), (_logx * _logy).sum(axis=1), (_logx ** 2).sum()
65
+
66
+ _coeB = ((_size * _xy - _x * _y) / (_size * _xx - _x ** 2.))
67
+ _coeA = np.exp((_y - _coeB * _x) / _size).values.reshape(-1, 1)
68
+ _coeB = _coeB.values.reshape(-1, 1)
69
+
70
+ ## rebuild shift smps data by coe. A, B
71
+ ## x_shift = (y_ori/A)**(1/B)
72
+ _aps_shift_x = (_aps / _coeA) ** (1 / _coeB)
73
+ _aps_shift_x = _aps_shift_x.where(np.isfinite(_aps_shift_x))
74
+
75
+ ## the least squares of diameter
76
+ ## the shift factor which the cklosest to 1
77
+ _shift_factor = (_aps_shift_x.keys()._data.astype(float) / _aps_shift_x)
78
+ _shift_factor.columns = range(len(_aps_shift_x.keys()))
79
+
80
+ _dropna_idx = _shift_factor.dropna(how='all').index.copy()
81
+
82
+ ## use the target function to get the similar aps and smps bin
83
+ ## S2 = sum( (smps_fit_line(dia) - aps(dia*shift_factor) )**2 )
84
+ ## assumption : the same diameter between smps and aps should get the same conc.
85
+
86
+ ## be sure they art in log value
87
+ _S2 = DataFrame(index=_aps_shift_x.index)
88
+ _dia_table = DataFrame(np.full(_aps_shift_x.shape, _aps_shift_x.keys()),
89
+ columns=_aps_shift_x.keys(), index=_aps_shift_x.index)
90
+ for _idx, _factor in _shift_factor.items():
91
+ _smps_fit_df = _coeA * (_dia_table / _factor.to_frame().values) ** _coeB
92
+ _S2[_idx] = ((_smps_fit_df - _aps) ** 2).sum(axis=1)
93
+
94
+ _least_squ_idx = _S2.idxmin(axis=1).loc[_dropna_idx]
95
+
96
+ _shift_factor_out = DataFrame(_shift_factor.loc[_dropna_idx].values[range(len(_dropna_idx)), _least_squ_idx.values],
97
+ index=_dropna_idx).reindex(_dt_indx)
98
+
99
+ return _shift_factor_out, (DataFrame(_coeA, index=_dt_indx), DataFrame(_coeB, index=_dt_indx))
100
+
101
+
102
+ ## Remove big shift data ()
103
+ ## Return : aps, smps, shift (without big shift data)
104
+ def _shift_data_process(_shift):
105
+ print(f"\t\t{dtm.now().strftime('%m/%d %X')} : \033[92mshift-data quality control\033[0m")
106
+
107
+ _rho = _shift ** 2
108
+ _shift = _shift.mask((~np.isfinite(_shift)) | (_rho > 2.6) | (_rho < 0.6))
109
+
110
+ # _qc_index = _shift.mask((_rho<0.6) | (_shift.isna())).dropna().index
111
+
112
+ # return _qc_index, _shift
113
+ return _shift
114
+
115
+
116
+ # return _smps.loc[~_big_shift], _aps.loc[~_big_shift], _shift[~_big_shift].reshape(-1,1)
117
+
118
+
119
+ ## Create merge data
120
+ ## shift all smps bin and remove the aps bin which smaller than the latest old smps bin
121
+ ## Return : merge bins, merge data, density
122
+ def _merge_data(_smps_ori, _aps_ori, _shift_ori, _smps_lb, _aps_hb, _coe, _shift_mode):
123
+ print(f"\t\t{dtm.now().strftime('%m/%d %X')} : \033[92mcreate merge data : {_shift_mode}\033[0m")
124
+
125
+ _ori_idx = _smps_ori.index
126
+ _merge_idx = _smps_ori.loc[_aps_ori.dropna(how='all').index].dropna(how='all').index
127
+
128
+ _corr_aps_cond = _aps_ori.keys() < 700
129
+ _corr_aps_ky = _aps_ori.keys()[_corr_aps_cond]
130
+
131
+ _uni_idx, _count = np.unique(np.hstack((_smps_ori.dropna(how='all').index, _aps_ori.dropna(how='all').index,
132
+ _shift_ori.dropna(how='all').index)), return_counts=True)
133
+
134
+ _merge_idx = to_datetime(np.unique(_uni_idx[_count == 3]))
135
+
136
+ _smps, _aps, _shift = _smps_ori.loc[_merge_idx], _aps_ori.loc[_merge_idx], _shift_ori.loc[_merge_idx].values
137
+
138
+ ## parameter
139
+ _coeA, _coeB = _coe[0].loc[_merge_idx], _coe[1].loc[_merge_idx]
140
+ _smps_key, _aps_key = _smps.keys()._data.astype(float), _aps.keys()._data.astype(float)
141
+
142
+ _cntr = 1000
143
+ _bin_lb = _smps_key[-1]
144
+
145
+ ## make shift bins
146
+ _smps_bin = np.full(_smps.shape, _smps_key)
147
+ _aps_bin = np.full(_aps.shape, _aps_key)
148
+
149
+ _std_bin = np.geomspace(_smps_key[0], _aps_key[-1], 230)
150
+ _std_bin_merge = _std_bin[(_std_bin < _cntr) & (_std_bin > _bin_lb)]
151
+ _std_bin_inte1 = _std_bin[_std_bin <= _bin_lb]
152
+ _std_bin_inte2 = _std_bin[_std_bin >= _cntr]
153
+
154
+ if _shift_mode == 'mobility':
155
+ _aps_bin /= _shift
156
+
157
+ elif _shift_mode == 'aerodynamic':
158
+ _smps_bin *= _shift
159
+
160
+ ## merge
161
+ _merge_lst, _corr_lst = [], []
162
+ for _bin_smps, _bin_aps, _dt_smps, _dt_aps, _sh in zip(_smps_bin, _aps_bin, _smps.values, _aps.values, _shift):
163
+ ## keep complete smps bins and data
164
+ ## remove the aps bin data lower than smps bin
165
+ _condi = _bin_aps >= _bin_smps[-1]
166
+
167
+ _merge_bin = np.hstack((_bin_smps, _bin_aps[_condi]))
168
+ _merge_dt = np.hstack((_dt_smps, _dt_aps[_condi]))
169
+
170
+ _merge_fit_loc = (_merge_bin < 1500) & (_merge_bin > _smps_lb)
171
+
172
+ ## coeA and coeB
173
+ _unvpl_fc = unvpline(np.log(_merge_bin[_merge_fit_loc]), np.log(_merge_dt[_merge_fit_loc]), s=50)
174
+ _inte_fc = interp1d(_merge_bin, _merge_dt, kind='linear', fill_value='extrapolate')
175
+
176
+ _merge_dt_fit = np.hstack((_inte_fc(_std_bin_inte1), np.exp(_unvpl_fc(np.log(_std_bin_merge))),
177
+ _inte_fc(_std_bin_inte2)))
178
+
179
+ _merge_lst.append(_merge_dt_fit)
180
+ _corr_lst.append(interp1d(_std_bin, _merge_dt_fit)(_bin_aps[_corr_aps_cond]))
181
+
182
+ _df_merge = DataFrame(_merge_lst, columns=_std_bin, index=_merge_idx)
183
+ _df_merge = _df_merge.mask(_df_merge < 0)
184
+
185
+ _df_corr = DataFrame(_corr_lst, columns=_corr_aps_ky, index=_merge_idx) / _aps_ori.loc[_merge_idx, _corr_aps_ky]
186
+
187
+ ## process output df
188
+ ## average, align with index
189
+ def _out_df(*_df_arg, **_df_kwarg):
190
+ _df = DataFrame(*_df_arg, **_df_kwarg).reindex(_ori_idx)
191
+ _df.index.name = 'time'
192
+ return _df
193
+
194
+ return _out_df(_df_merge), _out_df(_shift_ori ** 2), _out_df(_df_corr)
195
+
196
+
197
+ def merge_SMPS_APS(df_smps, df_aps, aps_unit='um', smps_overlap_lowbound=500, aps_fit_highbound=1000):
198
+ df_smps, df_aps = _union_index(df_smps, df_aps)
199
+
200
+ ## set to the same units
201
+ smps, aps_ori = df_smps.copy(), df_aps.copy()
202
+ smps.columns = smps.keys().to_numpy(float)
203
+ aps_ori.columns = aps_ori.keys().to_numpy(float)
204
+
205
+ if aps_unit == 'um':
206
+ aps_ori.columns = aps_ori.keys() * 1e3
207
+
208
+ den_lst, mer_lst = [], []
209
+ aps_input = aps_ori.loc[:, aps_ori.keys() > 700].copy()
210
+
211
+ for _count in range(2):
212
+
213
+ ## shift infomation, calculate by powerlaw fitting
214
+ shift, coe = _overlap_fitting(smps, aps_input, smps_overlap_lowbound, aps_fit_highbound)
215
+
216
+ ## process data by shift infomation, and average data
217
+ shift = _shift_data_process(shift)
218
+
219
+ ## merge aps and smps
220
+ merge_arg = (smps, aps_ori, shift, smps_overlap_lowbound, aps_fit_highbound, coe)
221
+ merge_data_mob, density, _corr = _merge_data(*merge_arg, 'mobility')
222
+ merge_data_aer, density, _ = _merge_data(*merge_arg, 'aerodynamic')
223
+ density.columns = ['density']
224
+
225
+ if _count == 0:
226
+ corr = _corr.resample('1d').mean().reindex(smps.index).ffill()
227
+ corr = corr.mask(corr < 1, 1)
228
+ aps_ori.loc[:, corr.keys()] *= corr
229
+
230
+ aps_input = aps_ori.copy()
231
+
232
+ ## out
233
+ out_dic = {
234
+ 'data_all': merge_data_mob,
235
+ 'data_all_aer': merge_data_aer,
236
+ 'density_all': density,
237
+ }
238
+
239
+ ## process data
240
+ for _nam, _df in out_dic.items():
241
+ out_dic[_nam] = _df.reindex(smps.index).copy()
242
+
243
+ return out_dic