AeroViz 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of AeroViz might be problematic. Click here for more details.

Files changed (102) hide show
  1. AeroViz/__init__.py +15 -0
  2. AeroViz/dataProcess/Chemistry/__init__.py +63 -0
  3. AeroViz/dataProcess/Chemistry/_calculate.py +27 -0
  4. AeroViz/dataProcess/Chemistry/_isoropia.py +99 -0
  5. AeroViz/dataProcess/Chemistry/_mass_volume.py +175 -0
  6. AeroViz/dataProcess/Chemistry/_ocec.py +184 -0
  7. AeroViz/dataProcess/Chemistry/_partition.py +29 -0
  8. AeroViz/dataProcess/Chemistry/_teom.py +16 -0
  9. AeroViz/dataProcess/Optical/_IMPROVE.py +61 -0
  10. AeroViz/dataProcess/Optical/__init__.py +62 -0
  11. AeroViz/dataProcess/Optical/_absorption.py +54 -0
  12. AeroViz/dataProcess/Optical/_extinction.py +36 -0
  13. AeroViz/dataProcess/Optical/_mie.py +16 -0
  14. AeroViz/dataProcess/Optical/_mie_sd.py +143 -0
  15. AeroViz/dataProcess/Optical/_scattering.py +30 -0
  16. AeroViz/dataProcess/SizeDistr/__init__.py +61 -0
  17. AeroViz/dataProcess/SizeDistr/__merge.py +250 -0
  18. AeroViz/dataProcess/SizeDistr/_merge.py +245 -0
  19. AeroViz/dataProcess/SizeDistr/_merge_v1.py +254 -0
  20. AeroViz/dataProcess/SizeDistr/_merge_v2.py +243 -0
  21. AeroViz/dataProcess/SizeDistr/_merge_v3.py +518 -0
  22. AeroViz/dataProcess/SizeDistr/_merge_v4.py +424 -0
  23. AeroViz/dataProcess/SizeDistr/_size_distr.py +93 -0
  24. AeroViz/dataProcess/VOC/__init__.py +19 -0
  25. AeroViz/dataProcess/VOC/_potential_par.py +76 -0
  26. AeroViz/dataProcess/__init__.py +11 -0
  27. AeroViz/dataProcess/core/__init__.py +92 -0
  28. AeroViz/plot/__init__.py +7 -0
  29. AeroViz/plot/distribution/__init__.py +1 -0
  30. AeroViz/plot/distribution/distribution.py +582 -0
  31. AeroViz/plot/improve/__init__.py +1 -0
  32. AeroViz/plot/improve/improve.py +240 -0
  33. AeroViz/plot/meteorology/__init__.py +1 -0
  34. AeroViz/plot/meteorology/meteorology.py +317 -0
  35. AeroViz/plot/optical/__init__.py +2 -0
  36. AeroViz/plot/optical/aethalometer.py +77 -0
  37. AeroViz/plot/optical/optical.py +388 -0
  38. AeroViz/plot/templates/__init__.py +8 -0
  39. AeroViz/plot/templates/contour.py +47 -0
  40. AeroViz/plot/templates/corr_matrix.py +108 -0
  41. AeroViz/plot/templates/diurnal_pattern.py +42 -0
  42. AeroViz/plot/templates/event_evolution.py +65 -0
  43. AeroViz/plot/templates/koschmieder.py +156 -0
  44. AeroViz/plot/templates/metal_heatmap.py +57 -0
  45. AeroViz/plot/templates/regression.py +256 -0
  46. AeroViz/plot/templates/scatter.py +130 -0
  47. AeroViz/plot/templates/templates.py +398 -0
  48. AeroViz/plot/timeseries/__init__.py +1 -0
  49. AeroViz/plot/timeseries/timeseries.py +317 -0
  50. AeroViz/plot/utils/__init__.py +3 -0
  51. AeroViz/plot/utils/_color.py +71 -0
  52. AeroViz/plot/utils/_decorator.py +74 -0
  53. AeroViz/plot/utils/_unit.py +55 -0
  54. AeroViz/process/__init__.py +31 -0
  55. AeroViz/process/core/DataProc.py +19 -0
  56. AeroViz/process/core/SizeDist.py +90 -0
  57. AeroViz/process/core/__init__.py +4 -0
  58. AeroViz/process/method/PyMieScatt_update.py +567 -0
  59. AeroViz/process/method/__init__.py +2 -0
  60. AeroViz/process/method/mie_theory.py +258 -0
  61. AeroViz/process/method/prop.py +62 -0
  62. AeroViz/process/script/AbstractDistCalc.py +143 -0
  63. AeroViz/process/script/Chemical.py +176 -0
  64. AeroViz/process/script/IMPACT.py +49 -0
  65. AeroViz/process/script/IMPROVE.py +161 -0
  66. AeroViz/process/script/Others.py +65 -0
  67. AeroViz/process/script/PSD.py +103 -0
  68. AeroViz/process/script/PSD_dry.py +94 -0
  69. AeroViz/process/script/__init__.py +5 -0
  70. AeroViz/process/script/retrieve_RI.py +70 -0
  71. AeroViz/rawDataReader/__init__.py +68 -0
  72. AeroViz/rawDataReader/core/__init__.py +397 -0
  73. AeroViz/rawDataReader/script/AE33.py +31 -0
  74. AeroViz/rawDataReader/script/AE43.py +34 -0
  75. AeroViz/rawDataReader/script/APS_3321.py +47 -0
  76. AeroViz/rawDataReader/script/Aurora.py +38 -0
  77. AeroViz/rawDataReader/script/BC1054.py +46 -0
  78. AeroViz/rawDataReader/script/EPA_vertical.py +18 -0
  79. AeroViz/rawDataReader/script/GRIMM.py +35 -0
  80. AeroViz/rawDataReader/script/IGAC_TH.py +104 -0
  81. AeroViz/rawDataReader/script/IGAC_ZM.py +90 -0
  82. AeroViz/rawDataReader/script/MA350.py +45 -0
  83. AeroViz/rawDataReader/script/NEPH.py +57 -0
  84. AeroViz/rawDataReader/script/OCEC_LCRES.py +34 -0
  85. AeroViz/rawDataReader/script/OCEC_RES.py +28 -0
  86. AeroViz/rawDataReader/script/SMPS_TH.py +41 -0
  87. AeroViz/rawDataReader/script/SMPS_aim11.py +51 -0
  88. AeroViz/rawDataReader/script/SMPS_genr.py +51 -0
  89. AeroViz/rawDataReader/script/TEOM.py +46 -0
  90. AeroViz/rawDataReader/script/Table.py +28 -0
  91. AeroViz/rawDataReader/script/VOC_TH.py +30 -0
  92. AeroViz/rawDataReader/script/VOC_ZM.py +37 -0
  93. AeroViz/rawDataReader/script/__init__.py +22 -0
  94. AeroViz/tools/__init__.py +3 -0
  95. AeroViz/tools/database.py +94 -0
  96. AeroViz/tools/dataclassifier.py +117 -0
  97. AeroViz/tools/datareader.py +66 -0
  98. AeroViz-0.1.0.dist-info/LICENSE +21 -0
  99. AeroViz-0.1.0.dist-info/METADATA +117 -0
  100. AeroViz-0.1.0.dist-info/RECORD +102 -0
  101. AeroViz-0.1.0.dist-info/WHEEL +5 -0
  102. AeroViz-0.1.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,161 @@
1
+ from typing import Literal
2
+
3
+ from pathlib import Path
4
+ from pandas import read_csv, concat, read_json
5
+
6
+ from AeroViz.process.core import DataProc
7
+ from AeroViz.tools.datareader import DataReader
8
+
9
+
10
+ class ImproveProc(DataProc):
11
+ """
12
+ A class for process improved chemical data.
13
+
14
+ Parameters:
15
+ -----------
16
+ reset : bool, optional
17
+ If True, resets the process. Default is False.
18
+ filename : str, optional
19
+ The name of the file to process. Default is None.
20
+ version : str, optional
21
+ The version of the data process. Should be one of 'revised' or 'modified'.
22
+ Default is None.
23
+
24
+ Methods:
25
+ --------
26
+ revised(_df):
27
+ Calculate revised version of particle contribution.
28
+
29
+ modified(_df):
30
+ Calculate modified version of particle contribution.
31
+
32
+ gas(_df):
33
+ Calculate gas contribution.
34
+
35
+ frh(_RH, version=None):
36
+ Helper function to get frh values based on relative humidity (RH) and version.
37
+
38
+ process_data():
39
+ Process data and save the result.
40
+
41
+ Attributes:
42
+ -----------
43
+ DEFAULT_PATH : Path
44
+ The default path for data files.
45
+
46
+ Examples:
47
+ ---------
48
+ >>> df = ImproveProc(reset=True, filename='revised_IMPROVE.csv', version='revised').process_data()
49
+
50
+ """
51
+
52
+ def __init__(self, file_paths: list[Path | str] = None):
53
+ super().__init__()
54
+ self.file_paths = [Path(fp) for fp in file_paths]
55
+
56
+ @staticmethod
57
+ def frh(_RH):
58
+ _frh = read_json(Path(__file__).parent.parent.parent / 'plot' / 'utils' / 'fRH.json')
59
+ if _RH is not None:
60
+ if _RH > 95:
61
+ _RH = 95
62
+ _RH = round(_RH)
63
+ return _frh.loc[_RH].values.T
64
+
65
+ return 1, 1, 1, 1
66
+
67
+ def revised(self, _df):
68
+ def mode(Mass):
69
+ L_mode = Mass ** 2 / 20 if Mass < 20 else Mass
70
+ S_mode = Mass - L_mode if Mass < 20 else 0
71
+
72
+ return L_mode, S_mode
73
+
74
+ _frh, _frhss, _frhs, _frhl = self.frh(_df['RH'])
75
+
76
+ L_AS, S_AS = mode(_df['AS'])
77
+ L_AN, S_AN = mode(_df['AN'])
78
+ L_OM, S_OM = mode(_df['OM'])
79
+
80
+ _df['AS_ext_dry'] = 2.2 * 1 * S_AS + 4.8 * 1 * L_AS
81
+ _df['AN_ext_dry'] = 2.4 * 1 * S_AN + 5.1 * 1 * L_AN
82
+ _df['OM_ext_dry'] = 2.8 * S_OM + 6.1 * L_OM
83
+ _df['Soil_ext_dry'] = 1 * _df['Soil']
84
+ _df['SS_ext_dry'] = 1.7 * 1 * _df['SS']
85
+ _df['EC_ext_dry'] = 10 * _df['EC']
86
+ _df['total_ext_dry'] = sum(_df['AS_ext_dry':'EC_ext_dry'])
87
+
88
+ _df['AS_ext'] = (2.2 * _frhs * S_AS) + (4.8 * _frhl * L_AS)
89
+ _df['AN_ext'] = (2.4 * _frhs * S_AN) + (5.1 * _frhl * L_AN)
90
+ _df['OM_ext'] = (2.8 * S_OM) + (6.1 * L_OM)
91
+ _df['Soil_ext'] = (1 * _df['Soil'])
92
+ _df['SS_ext'] = (1.7 * _frhss * _df['SS'])
93
+ _df['EC_ext'] = (10 * _df['EC'])
94
+ _df['total_ext'] = sum(_df['AS_ext':'EC_ext'])
95
+
96
+ _df['ALWC_AS_ext'] = _df['AS_ext'] - _df['AS_ext_dry']
97
+ _df['ALWC_AN_ext'] = _df['AN_ext'] - _df['AN_ext_dry']
98
+ _df['ALWC_SS_ext'] = _df['SS_ext'] - _df['SS_ext_dry']
99
+ _df['ALWC_ext'] = _df['total_ext'] - _df['total_ext_dry']
100
+
101
+ _df['fRH_IMPR'] = _df['total_ext'] / _df['total_ext_dry']
102
+
103
+ return _df['AS_ext_dry':]
104
+
105
+ def modified(self, _df):
106
+ _frh, _frhss, _frhs, _frhl = self.frh(_df['RH'])
107
+
108
+ _df['AS_ext_dry'] = 3 * 1 * _df['AS']
109
+ _df['AN_ext_dry'] = 3 * 1 * _df['AN']
110
+ _df['OM_ext_dry'] = 4 * _df['OM']
111
+ _df['Soil_ext_dry'] = 1 * _df['Soil']
112
+ _df['SS_ext_dry'] = 1.7 * 1 * _df['SS']
113
+ _df['EC_ext_dry'] = 10 * _df['EC']
114
+ _df['total_ext_dry'] = sum(_df['AS_ext_dry':'EC_ext_dry'])
115
+
116
+ _df['AS_ext'] = (3 * _frh * _df['AS'])
117
+ _df['AN_ext'] = (3 * _frh * _df['AN'])
118
+ _df['OM_ext'] = (4 * _df['OM'])
119
+ _df['Soil_ext'] = (1 * _df['Soil'])
120
+ _df['SS_ext'] = (1.7 * _frhss * _df['SS'])
121
+ _df['EC_ext'] = (10 * _df['EC'])
122
+ _df['total_ext'] = sum(_df['AS_ext':'EC_ext'])
123
+
124
+ _df['ALWC_AS_ext'] = _df['AS_ext'] - _df['AS_ext_dry']
125
+ _df['ALWC_AN_ext'] = _df['AN_ext'] - _df['AN_ext_dry']
126
+ _df['ALWC_SS_ext'] = _df['SS_ext'] - _df['SS_ext_dry']
127
+ _df['ALWC_ext'] = _df['total_ext'] - _df['total_ext_dry']
128
+
129
+ _df['fRH_IMPR'] = _df['total_ext'] / _df['total_ext_dry']
130
+
131
+ return _df['AS_ext_dry':]
132
+
133
+ @staticmethod
134
+ def gas(_df):
135
+ _df['ScatteringByGas'] = (11.4 * 293 / (273 + _df['AT']))
136
+ _df['AbsorptionByGas'] = (0.33 * _df['NO2'])
137
+ _df['ExtinctionByGas'] = _df['ScatteringByGas'] + _df['AbsorptionByGas']
138
+ return _df['ScatteringByGas':]
139
+
140
+ def process_data(self, reset: bool = False, save_file: Path | str = None,
141
+ version: Literal["revised", "modified"] = "revised"):
142
+ save_file = Path(save_file)
143
+ if save_file.exists() and not reset:
144
+ return read_csv(save_file, parse_dates=['Time'], index_col='Time')
145
+ else:
146
+ # data_files = ['EPB.csv', 'IMPACT.csv', 'chemical.csv']
147
+ df = concat([DataReader(file) for file in self.file_paths], axis=1)
148
+
149
+ # particle contribution '銨不足不納入計算'
150
+ improve_input_df = df.loc[df['NH4_status'] != 'Deficiency', ['AS', 'AN', 'OM', 'Soil', 'SS', 'EC', 'RH']]
151
+
152
+ df_improve = improve_input_df.dropna().copy().apply(self.revised if version == 'revised' else self.modified,
153
+ axis=1)
154
+
155
+ # gas contribution
156
+ df_ext_gas = df[['NO2', 'AT']].dropna().copy().apply(self.gas, axis=1)
157
+
158
+ _df = concat([df_improve, df_ext_gas], axis=1).reindex(df.index.copy())
159
+ _df.to_csv(save_file)
160
+
161
+ return _df
@@ -0,0 +1,65 @@
1
+ from pathlib import Path
2
+
3
+ import numpy as np
4
+ from pandas import read_csv, concat, DataFrame
5
+
6
+ from AeroViz.process.core import DataProc
7
+ from AeroViz.tools.datareader import DataReader
8
+
9
+
10
+ class OthersProc(DataProc):
11
+ """
12
+ A class for process impact data.
13
+
14
+ Parameters:
15
+ -----------
16
+ reset : bool, optional
17
+ If True, resets the process. Default is False.
18
+ filename : str, optional
19
+ The name of the file to process. Default is None.
20
+
21
+ Methods:
22
+ --------
23
+ process_data():
24
+ Process data and save the result.
25
+
26
+ Attributes:
27
+ -----------
28
+ DEFAULT_PATH : Path
29
+ The default path for data files.
30
+
31
+ Examples:
32
+ ---------
33
+ >>> df = OthersProc().process_data(reset=True, filename=None)
34
+
35
+ """
36
+
37
+ def __init__(self, file_paths: Path | list[Path | str] = None):
38
+ super().__init__()
39
+ self.file_paths = [Path(fp) for fp in file_paths]
40
+
41
+ def process_data(self, reset: bool = False, save_file: Path | str = None) -> DataFrame:
42
+ save_file = Path(save_file)
43
+ if save_file.exists() and not reset:
44
+ return read_csv(save_file, parse_dates=['Time'], index_col='Time')
45
+ else:
46
+ df = concat([DataReader(file) for file in self.file_paths], axis=1)
47
+
48
+ results = DataFrame(index=df.index)
49
+
50
+ results['PG'] = df[
51
+ ['Scattering', 'Absorption', 'ScatteringByGas', 'AbsorptionByGas']].dropna().copy().apply(np.sum,
52
+ axis=1)
53
+ results['MAC'] = df['Absorption'] / df['T_EC']
54
+ results['Ox'] = df['NO2'] + df['O3']
55
+ results['N2O5_tracer'] = df['NO2'] * df['O3']
56
+ results['Vis_cal'] = 1096 / df['Extinction']
57
+ # results['fRH_Mix'] = df['Bext'] / df['Extinction']
58
+ # results['fRH_PNSD'] = df['Bext_internal'] / df['Bext_dry']
59
+ results['fRH_IMPR'] = df['total_ext'] / df['total_ext_dry']
60
+ results['OCEC_ratio'] = df['O_OC'] / df['O_EC']
61
+ results['PM1/PM25'] = np.where(df['PM1'] / df['PM25'] < 1, df['PM1'] / df['PM25'], np.nan)
62
+ # results['MEE_PNSD'] = df['Bext_internal'] / df['PM25']
63
+ # results['MEE_dry_PNSD'] = df['Bext_dry'] / df['PM25']
64
+
65
+ return results
@@ -0,0 +1,103 @@
1
+ from pathlib import Path
2
+
3
+ from pandas import concat, read_csv, DataFrame
4
+
5
+ from AeroViz.process.core import DataProc
6
+ from AeroViz.process.core.SizeDist import SizeDist
7
+ from AeroViz.process.script.AbstractDistCalc import DistributionCalculator
8
+
9
+
10
+ class ParticleSizeDistProc(DataProc):
11
+ """
12
+ A class for process particle size distribution (PSD) data.
13
+
14
+ Parameters
15
+ ----------
16
+ filename : str, optional
17
+ The name of the PSD data file.
18
+ Defaults to 'PNSD_dNdlogdp.csv' in the default path.
19
+
20
+ Attributes
21
+ ----------
22
+ file_path : Path
23
+ The directory path where the PSD data file is located.
24
+
25
+ psd : SizeDist
26
+ The SizeDist object.
27
+
28
+ Methods
29
+ -------
30
+ process_data(filename='PSD.csv')
31
+ Process and save overall PSD properties.
32
+
33
+ Examples
34
+ --------
35
+ Example 1: Use default path and filename
36
+ >>> psd_data = ParticleSizeDistProc(filename='PNSD_dNdlogdp.csv').process_data(reset=True)
37
+ """
38
+
39
+ def __init__(self, file_path: Path | str = None):
40
+ super().__init__()
41
+ self.file_path = Path(file_path)
42
+
43
+ self.psd = SizeDist(read_csv(file_path, parse_dates=['Time'], index_col='Time'))
44
+
45
+ def process_data(self, reset: bool = False, save_file: Path | str = None) -> DataFrame:
46
+ save_file = Path(save_file)
47
+ if save_file.exists() and not reset:
48
+ return read_csv(save_file, parse_dates=['Time'], index_col='Time')
49
+
50
+ number = DistributionCalculator('number', self.psd).useApply()
51
+ surface = DistributionCalculator('surface', self.psd).useApply()
52
+ volume = DistributionCalculator('volume', self.psd).useApply()
53
+
54
+ surface.to_csv(save_file.parent / 'PSSD_dSdlogdp.csv')
55
+ volume.to_csv(save_file.parent / 'PVSD_dVdlogdp.csv')
56
+
57
+ result_df = concat(
58
+ [DistributionCalculator('property', SizeDist(data=number, weighting='n')).useApply(),
59
+ DistributionCalculator('property', SizeDist(data=surface, weighting='s')).useApply(),
60
+ DistributionCalculator('property', SizeDist(data=volume, weighting='v')).useApply()
61
+ ], axis=1)
62
+
63
+ result_df.to_csv(save_file)
64
+ return result_df
65
+
66
+
67
+ class ExtinctionDistProc(DataProc):
68
+
69
+ def __init__(self, file_path: Path | str = 'PNSD_dNdlogdp.csv', file_path_chem: Path | str = 'chemical.csv'):
70
+ super().__init__()
71
+ self.file_path = Path(file_path)
72
+ self.file_path_chem = Path(file_path_chem)
73
+
74
+ self.psd = SizeDist(read_csv(file_path, parse_dates=['Time'], index_col='Time'))
75
+ self.RI = read_csv(file_path_chem, parse_dates=['Time'], index_col='Time')[['n_dry', 'n_amb', 'k_dry', 'k_amb',
76
+ 'AS_volume_ratio',
77
+ 'AN_volume_ratio',
78
+ 'OM_volume_ratio',
79
+ 'Soil_volume_ratio',
80
+ 'SS_volume_ratio',
81
+ 'EC_volume_ratio',
82
+ 'ALWC_volume_ratio']]
83
+
84
+ def process_data(self, reset: bool = False, save_file: Path | str = 'PESD.csv'):
85
+ save_file = Path(save_file)
86
+ if save_file.exists() and not reset:
87
+ return read_csv(save_file, parse_dates=['Time']).set_index('Time')
88
+
89
+ ext_internal = DistributionCalculator('extinction', self.psd, self.RI, method='internal',
90
+ result_type='extinction').useApply()
91
+ ext_external = DistributionCalculator('extinction', self.psd, self.RI, method='external',
92
+ result_type='extinction').useApply()
93
+
94
+ ext_internal.to_csv(save_file.parent / 'PESD_dextdlogdp_internal.csv')
95
+ ext_external.to_csv(save_file.parent / 'PESD_dextdlogdp_external.csv')
96
+
97
+ result_df = concat([
98
+ DistributionCalculator('property', SizeDist(data=ext_internal, weighting='ext_in')).useApply(),
99
+ DistributionCalculator('property', SizeDist(data=ext_internal, weighting='ext_ex')).useApply(),
100
+ ], axis=1)
101
+
102
+ result_df.to_csv(save_file)
103
+ return result_df
@@ -0,0 +1,94 @@
1
+ from pathlib import Path
2
+
3
+ import numpy as np
4
+ from pandas import DataFrame, read_csv, concat
5
+
6
+ from AeroViz.process.core import DataProc
7
+ from AeroViz.process.core.SizeDist import SizeDist
8
+ from AeroViz.tools import DataReader
9
+
10
+
11
+ class DryPSDProc(DataProc):
12
+ """
13
+ A class for process impact data.
14
+
15
+ Parameters
16
+ ----------
17
+ reset : bool, optional
18
+ If True, resets the process. Default is False.
19
+ filename : str, optional
20
+ The name of the file to process. Default is None.
21
+
22
+ Methods
23
+ -------
24
+ process_data():
25
+ Process data and save the result.
26
+
27
+ Attributes
28
+ ----------
29
+ DEFAULT_PATH : Path
30
+ The default path for data files.
31
+
32
+
33
+ Examples
34
+ --------
35
+ >>> df = DryPSDProc(reset=True, filename='PNSD_dNdlogdp_dry.csv').process_data()
36
+ """
37
+
38
+ def __init__(self, file_path: Path | str = 'PNSD_dNdlogdp.csv', file_path_chem: Path | str = 'chemical.csv'):
39
+ super().__init__()
40
+ self.file_path = Path(file_path)
41
+ self.file_path_chem = Path(file_path_chem)
42
+
43
+ self.psd = SizeDist(read_csv(file_path, parse_dates=['Time'], index_col='Time'))
44
+ self.RI = read_csv(file_path_chem, parse_dates=['Time'], index_col='Time')[['n_dry', 'n_amb', 'k_dry', 'k_amb',
45
+ 'AS_volume_ratio',
46
+ 'AN_volume_ratio',
47
+ 'OM_volume_ratio',
48
+ 'Soil_volume_ratio',
49
+ 'SS_volume_ratio',
50
+ 'EC_volume_ratio',
51
+ 'ALWC_volume_ratio']]
52
+
53
+ def process_data(self, reset: bool = False, save_filename: Path | str = None) -> DataFrame:
54
+ save_filename = Path(save_filename)
55
+ if save_filename.exists() and not reset:
56
+ return read_csv(save_filename, parse_dates=['Time']).set_index('Time')
57
+ _df = concat([self.psd, self.RI], axis=1)
58
+ _df.to_csv(save_filename)
59
+ return _df
60
+
61
+
62
+ def dry_PNSD_process(dist, dp, **kwargs):
63
+ ndp = np.array(dist[:np.size(dp)])
64
+ gRH = resolved_gRH(dp, dist['gRH'], uniform=True)
65
+
66
+ dry_dp = dp / gRH
67
+ belong_which_ibin = np.digitize(dry_dp, dp) - 1
68
+
69
+ result = {}
70
+ for i, (ibin, dn) in enumerate(zip(belong_which_ibin, ndp)):
71
+ if dp[ibin] not in result:
72
+ result[dp[ibin]] = []
73
+ result[dp[ibin]].append(ndp[i])
74
+
75
+ dry_ndp = []
76
+ for key, val in result.items():
77
+ dry_ndp.append(sum(val) / len(val))
78
+
79
+ return np.array(dry_ndp)
80
+
81
+
82
+ def resolved_gRH(dp, gRH=1.31, uniform=True):
83
+ if uniform:
84
+ return np.array([gRH] * dp.size)
85
+
86
+ else:
87
+ lognorm_dist = lambda x, geoMean, geoStd: (gRH / (np.log10(geoStd) * np.sqrt(2 * np.pi))) * np.exp(
88
+ -(x - np.log10(geoMean)) ** 2 / (2 * np.log10(geoStd) ** 2))
89
+ abc = lognorm_dist(np.log10(dp), 200, 2.0)
90
+ return np.where(abc < 1, 1, abc)
91
+
92
+
93
+ if __name__ == '__main__':
94
+ pass
@@ -0,0 +1,5 @@
1
+ from .Chemical import ChemicalProc
2
+ from .IMPACT import ImpactProc
3
+ from .IMPROVE import ImproveProc
4
+ from .Others import OthersProc
5
+ from .PSD import ParticleSizeDistProc, ExtinctionDistProc
@@ -0,0 +1,70 @@
1
+ import numpy as np
2
+ import pandas as pd
3
+ from pandas import DataFrame
4
+
5
+ from AeroViz.process.core.SizeDist import SizeDist
6
+ from AeroViz.process.method import Mie_PESD
7
+
8
+
9
+ def retrieve_RI(_df: DataFrame,
10
+ _PNSD: DataFrame,
11
+ nMin: float = 1.33,
12
+ nMax: float = 1.60,
13
+ kMin: float = 0.00,
14
+ kMax: float = 0.60,
15
+ spaceSize: int = 31,
16
+ dlogdp: float = 0.014
17
+ ) -> DataFrame:
18
+ nRange = np.linspace(nMin, nMax, num=spaceSize)
19
+ kRange = np.linspace(kMin, kMax, spaceSize)
20
+ Delta_array = np.zeros((spaceSize, spaceSize))
21
+ # 同一時間除了折射率其餘數據皆相同 因此在折射率的迴圈外
22
+ bext_mea, bsca_mea, babs_mea = _df['Extinction'], _df['Scattering'], _df['Absorption']
23
+
24
+ dp = SizeDist(data=_PNSD).dp
25
+ for ki, k in enumerate(kRange):
26
+ for ni, n in enumerate(nRange):
27
+ m = n + (1j * k)
28
+ ndp = np.array(_df[3:])
29
+
30
+ ext_dist, sca_dist, abs_dist = Mie_PESD(m, 550, dp, ndp)
31
+
32
+ bext_cal = sum(ext_dist) * dlogdp
33
+ bsca_cal = sum(sca_dist) * dlogdp
34
+ babs_cal = sum(abs_dist) * dlogdp
35
+
36
+ Delta_array[ni][ki] = ((babs_mea - babs_cal) / 18.23) ** 2 + ((bsca_mea - bsca_cal) / 83.67) ** 2
37
+
38
+ min_delta = Delta_array.argmin()
39
+ next_n = nRange[(min_delta // spaceSize)]
40
+ next_k = kRange[(min_delta % spaceSize)]
41
+
42
+ # 將網格變小
43
+ nMin_small = next_n - 0.02 if next_n > 1.33 else 1.33
44
+ nMax_small = next_n + 0.02
45
+ kMin_small = next_k - 0.04 if next_k > 0.04 else 0
46
+ kMax_small = next_k + 0.04
47
+ spaceSize_small = 41
48
+
49
+ nRange_small = np.linspace(nMin_small, nMax_small, spaceSize_small)
50
+ kRange_small = np.linspace(kMin_small, kMax_small, spaceSize_small)
51
+ Delta_array_small = np.zeros((spaceSize_small, spaceSize_small))
52
+ # 所有數據與大網格一致所以使用上方便數即可
53
+ for ki, k in enumerate(kRange_small):
54
+ for ni, n in enumerate(nRange_small):
55
+ m = n + (1j * k)
56
+ ndp = np.array(_df[3:])
57
+ ext_dist, sca_dist, abs_dist = Mie_PESD(m, 550, dp, ndp)
58
+
59
+ bext_cal = sum(ext_dist) * dlogdp
60
+ bsca_cal = sum(sca_dist) * dlogdp
61
+ babs_cal = sum(abs_dist) * dlogdp
62
+
63
+ Delta_array_small[ni][ki] = ((bext_mea - bext_cal) / 18.23) ** 2 + ((bsca_mea - bsca_cal) / 83.67) ** 2
64
+
65
+ min_delta_small = Delta_array_small.argmin()
66
+ _df['re_real'] = (nRange_small[(min_delta_small // spaceSize_small)])
67
+ _df['re_imaginary'] = (kRange_small[(min_delta_small % spaceSize_small)])
68
+
69
+ print(f'\t\tReal part:{_df['re_real']}\tIm part:{_df['re_imaginary']}', end='')
70
+ return _df['re_real':]
@@ -0,0 +1,68 @@
1
+ from datetime import datetime
2
+
3
+ from AeroViz.rawDataReader.script import *
4
+ from AeroViz.rawDataReader.utils.config import meta
5
+
6
+ __all__ = ['RawDataReader']
7
+
8
+
9
+ def RawDataReader(instrument_name: str,
10
+ _path,
11
+ QC: bool = True,
12
+ csv_raw: bool = True,
13
+ reset: bool = False,
14
+ rate: bool = False,
15
+ append_data: bool = False,
16
+ update_meta=None,
17
+ start: datetime | None = None,
18
+ end: datetime | None = None,
19
+ mean_freq='1h',
20
+ csv_out=True,
21
+ **kwargs
22
+ ):
23
+ # Mapping of instrument names to their respective classes
24
+ instrument_class_map = {
25
+ 'NEPH': NEPH,
26
+ 'Aurora': Aurora,
27
+ 'Table': Table,
28
+ 'EPA_vertical': EPA_vertical,
29
+ 'APS_3321': APS_3321,
30
+ 'SMPS_TH': SMPS_TH,
31
+ 'AE33': AE33,
32
+ 'AE43': AE43,
33
+ 'BC1054': BC1054,
34
+ 'MA350': MA350,
35
+ 'TEOM': TEOM,
36
+ 'OCEC_RES': OCEC_RES,
37
+ 'OCEC_LCRES': OCEC_LCRES,
38
+ 'IGAC_TH': IGAC_TH,
39
+ 'IGAC_ZM': IGAC_ZM,
40
+ 'VOC_TH': VOC_TH,
41
+ 'VOC_ZM': VOC_ZM,
42
+ 'SMPS_genr': SMPS_genr,
43
+ 'SMPS_aim11': SMPS_aim11,
44
+ 'GRIMM': GRIMM
45
+ # Add other instruments and their corresponding classes here
46
+ }
47
+
48
+ # Check if the instrument name is in the map
49
+ if instrument_name not in meta.keys():
50
+ raise ValueError(f"Instrument name '{instrument_name}' is not valid. \nMust be one of: {list(meta.keys())}")
51
+
52
+ # Instantiate the class and return the instance
53
+ reader_module = instrument_class_map[instrument_name].Reader(
54
+ _path=_path,
55
+ QC=QC,
56
+ csv_raw=csv_raw,
57
+ reset=reset,
58
+ rate=rate,
59
+ append_data=append_data,
60
+ update_meta=update_meta
61
+ )
62
+ return reader_module(
63
+ start=start,
64
+ end=end,
65
+ mean_freq=mean_freq,
66
+ csv_out=csv_out,
67
+ **kwargs
68
+ )