synthesis-ledger-sovereign-sdk 1.0.0-alpha.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. package/README.md +30 -0
  2. package/atomics/11.json +65 -0
  3. package/atomics/13.json +58 -0
  4. package/atomics/15.json +58 -0
  5. package/atomics/16.json +58 -0
  6. package/atomics/17.json +58 -0
  7. package/atomics/18.json +58 -0
  8. package/atomics/20.json +58 -0
  9. package/atomics/23.json +65 -0
  10. package/atomics/24.json +72 -0
  11. package/atomics/25.json +37 -0
  12. package/atomics/26.json +37 -0
  13. package/atomics/27.json +44 -0
  14. package/atomics/28.json +58 -0
  15. package/atomics/29.json +37 -0
  16. package/atomics/3.json +65 -0
  17. package/atomics/32.json +37 -0
  18. package/atomics/36.json +65 -0
  19. package/atomics/39.json +10 -0
  20. package/atomics/40.json +58 -0
  21. package/atomics/41.json +37 -0
  22. package/atomics/47.json +65 -0
  23. package/atomics/70.json +65 -0
  24. package/atomics/71.json +65 -0
  25. package/atomics/72.json +65 -0
  26. package/atomics/73.json +72 -0
  27. package/atomics/74.json +65 -0
  28. package/atomics/75.json +72 -0
  29. package/atomics/76.json +65 -0
  30. package/atomics/8.json +65 -0
  31. package/atomics/83.json +58 -0
  32. package/atomics/84.json +58 -0
  33. package/atomics/86.json +65 -0
  34. package/atomics/87.json +58 -0
  35. package/atomics/89.json +58 -0
  36. package/atomics/9.json +65 -0
  37. package/atomics/91.json +65 -0
  38. package/atomics/93.json +58 -0
  39. package/atomics/96.json +65 -0
  40. package/atomics/97.json +58 -0
  41. package/bin/index.js +19 -0
  42. package/bin/synl.js +27 -0
  43. package/genesis_onchain.json +2234 -0
  44. package/package.json +21 -0
  45. package/shatter.js +31 -0
  46. package/src/ai_adapter.js +35 -0
  47. package/src/claim.js +21 -0
  48. package/src/forge.js +78 -0
  49. package/src/ledger.js +28 -0
  50. package/upload_genesis.js +40 -0
@@ -0,0 +1,2234 @@
1
+ [
2
+ {
3
+ "id": 3,
4
+ "successBps": 9946,
5
+ "cid": "ar://SYNTH_ATOMIC_LEG_PRECEDENTCHECK",
6
+ "costUsd": 1500,
7
+ "details": "# A-LEG-PrecedentCheck Technical Logic Specification\n\n## 1. Core Logic Definition\n\n### 1.1 Function Signature\n```\nf(PrecedentCheck) → {validity: boolean, risk_score: float, blocking_conditions: array}\n```\n\n### 1.2 Precedent Evaluation Logic\n\n```\nDEFINE A-LEG-PrecedentCheck:\n\nINPUT: transaction_context, historical_precedents[], regulatory_constraints[]\n\nPROCESS:\n 1. precedent_match_score = Σ(weight_i × similarity(current_tx, precedent_i)) / n\n 2. temporal_decay = e^(-λ × Δt) where λ = 0.0023 (daily decay constant)\n 3. adjusted_score = precedent_match_score × temporal_decay × jurisdiction_modifier\n \n IF adjusted_score ≥ 0.85 THEN\n status = APPROVED_WITH_PRECEDENT\n ELSE IF adjusted_score ≥ 0.60 THEN\n status = REQUIRES_REVIEW\n ELSE\n status = NO_VALID_PRECEDENT\n\nOUTPUT: {status, adjusted_score, matched_precedents[], confidence_interval}\n```\n\n### 1.3 Similarity Function\n\n```\nsimilarity(tx_current, tx_precedent) = \n (0.35 × entity_match) + \n (0.25 × amount_proximity) + \n (0.20 × structure_alignment) + \n (0.15 × temporal_context) + \n (0.05 × jurisdiction_match)\n\nWHERE:\n entity_match ∈ [0,1] = jaccard_index(entities_current, entities_precedent)\n amount_proximity = 1 - |log(amount_current/amount_precedent)| / max_deviation\n structure_alignment = cosine_similarity(structure_vector_a, structure_vector_b)\n temporal_context = sigmoid(relevance_days, midpoint=365, steepness=0.01)\n jurisdiction_match ∈ {0, 0.5, 1} = categorical_match(jur_a, jur_b)\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 Risk Category Definitions\n\n| BPS Range | Classification | Operational State | Required Action |\n|-----------|---------------|-------------------|-----------------|\n| 0-15 | NOMINAL | Green | Continue processing |\n| 16-35 | ELEVATED | Yellow | Enhanced monitoring |\n| 36-60 | DEGRADED | Orange | Incident response initiation |\n| 61-85 | CRITICAL | Red | Immediate escalation |\n| 86-100 | CATASTROPHIC | Black | System halt + manual override |\n\n### 2.2 Component BPS Calculation Matrix\n\n```\nBPS_total = Σ(component_weight × component_score × severity_multiplier)\n```\n\n| Component | Weight | Failure Modes | Base Score | Severity Multiplier |\n|-----------|--------|---------------|------------|---------------------|\n| Precedent DB Availability | 0.25 | Connection timeout, Replica lag | 0-100 | 1.0-2.5 |\n| Query Latency | 0.15 | p99 \u003e 500ms, p50 \u003e 100ms | 0-100 | 1.0-1.8 |\n| Match Algorithm Accuracy | 0.20 | False positive rate, False negative rate | 0-100 | 1.2-3.0 |\n| Regulatory Feed Sync | 0.18 | Stale data \u003e 24h, Missing jurisdictions | 0-100 | 1.5-2.8 |\n| Cache Hit Ratio | 0.08 | Ratio \u003c 0.6, Eviction storms | 0-100 | 1.0-1.5 |\n| Dependency Health | 0.14 | Upstream failures, Circuit breaker trips | 0-100 | 1.3-2.2 |\n\n### 2.3 BPS Calculation Formula\n\n```\nBPS_component = base_score × (1 + (error_rate × 10)) × time_in_state_factor\n\nWHERE:\n time_in_state_factor = min(2.0, 1 + (duration_minutes / 30))\n \nBPS_total = Σ(weight_i × BPS_component_i × severity_multiplier_i)\n\nCIRCUIT_BREAKER_THRESHOLD = 75\nAUTOMATIC_FAILOVER_THRESHOLD = 55\n```\n\n### 2.4 Failure Mode Decision Tree\n\n```\nIF precedent_db_latency \u003e 2000ms:\n BPS_db += 45\n trigger_read_replica_failover()\n \nIF match_false_positive_rate \u003e 0.08:\n BPS_algorithm += 60\n enable_secondary_validation_layer()\n \nIF regulatory_feed_age \u003e 86400s:\n BPS_regulatory += 70\n block_new_transactions(jurisdiction=affected)\n \nIF cache_hit_ratio \u003c 0.40:\n BPS_cache += 35\n initiate_cache_warmup()\n increase_ttl(factor=1.5)\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n### 3.1 Primary Request Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-leg-precedent-check/v2.3.0\",\n \"title\": \"A-LEG-PrecedentCheck Request\",\n \"type\": \"object\",\n \"required\": [\"transaction_id\", \"entity_context\", \"amount\", \"structure\", \"timestamp\", \"jurisdiction\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"transaction_id\": {\n \"type\": \"string\",\n \"pattern\": \"^TXN-[A-Z]{2}-[0-9]{12}-[A-F0-9]{8}$\",\n \"description\": \"Unique transaction identifier\"\n },\n \"entity_context\": {\n \"type\": \"object\",\n \"required\": [\"primary_entity\", \"counterparties\"],\n \"properties\": {\n \"primary_entity\": {\n \"$ref\": \"#/$defs/entity\"\n },\n \"counterparties\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"maxItems\": 50,\n \"items\": {\n \"$ref\": \"#/$defs/entity\"\n }\n },\n \"beneficial_owners\": {\n \"type\": \"array\",\n \"items\": {\n \"$ref\": \"#/$defs/entity\"\n }\n }\n }\n },\n \"amount\": {\n \"type\": \"object\",\n \"required\": [\"value\", \"currency\"],\n \"properties\": {\n \"value\": {\n \"type\": \"number\",\n \"minimum\": 0.01,\n \"maximum\": 999999999999.99,\n \"multipleOf\": 0.01\n },\n \"currency\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{3}$\"\n },\n \"value_usd_equivalent\": {\n \"type\": \"number\",\n \"minimum\": 0\n }\n }\n },\n \"structure\": {\n \"type\": \"object\",\n \"required\": [\"type\", \"legs\"],\n \"properties\": {\n \"type\": {\n \"type\": \"string\",\n \"enum\": [\"SIMPLE\", \"MULTI_LEG\", \"SYNDICATED\", \"STRUCTURED\", \"DERIVATIVE\"]\n },\n \"legs\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 100\n },\n \"structure_vector\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"number\",\n \"minimum\": -1,\n \"maximum\": 1\n },\n \"minItems\": 64,\n \"maxItems\": 64\n },\n \"complexity_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n }\n }\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"jurisdiction\": {\n \"type\": \"object\",\n \"required\": [\"primary\"],\n \"properties\": {\n \"primary\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{2}(-[A-Z0-9]{2,4})?$\"\n },\n \"secondary\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{2}(-[A-Z0-9]{2,4})?$\"\n }\n },\n \"regulatory_regime\": {\n \"type\": \"string\",\n \"enum\": [\"GDPR\", \"SOX\", \"BASEL_III\", \"MIFID_II\", \"DODD_FRANK\", \"EMIR\", \"OTHER\"]\n }\n }\n },\n \"precedent_search_params\": {\n \"type\": \"object\",\n \"properties\": {\n \"lookback_days\": {\n \"type\": \"integer\",\n \"minimum\": 30,\n \"maximum\": 3650,\n \"default\": 730\n },\n \"minimum_similarity_threshold\": {\n \"type\": \"number\",\n \"minimum\": 0.5,\n \"maximum\": 0.99,\n \"default\": 0.60\n },\n \"max_results\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 100,\n \"default\": 10\n },\n \"include_rejected_precedents\": {\n \"type\": \"boolean\",\n \"default\": false\n }\n }\n },\n \"metadata\": {\n \"type\": \"object\",\n \"properties\": {\n \"request_source\": {\n \"type\": \"string\",\n \"maxLength\": 64\n },\n \"correlation_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\"\n },\n \"priority\": {\n \"type\": \"string\",\n \"enum\": [\"LOW\", \"NORMAL\", \"HIGH\", \"CRITICAL\"]\n }\n }\n }\n },\n \"$defs\": {\n \"entity\": {\n \"type\": \"object\",\n \"required\": [\"entity_id\", \"entity_type\"],\n \"properties\": {\n \"entity_id\": {\n \"type\": \"string\",\n \"pattern\": \"^ENT-[0-9]{10}$\"\n },\n \"entity_type\": {\n \"type\": \"string\",\n \"enum\": [\"INDIVIDUAL\", \"CORPORATION\", \"SPV\", \"TRUST\", \"FUND\", \"GOVERNMENT\", \"OTHER\"]\n },\n \"lei\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z0-9]{20}$\"\n },\n \"jurisdiction\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{2}$\"\n },\n \"risk_rating\": {\n \"type\": \"string\",\n \"enum\": [\"LOW\", \"MEDIUM\", \"HIGH\", \"PROHIBITED\"]\n }\n }\n }\n }\n}\n```\n\n### 3.2 Response Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-leg-precedent-check-response/v2.3.0\",\n \"title\": \"A-LEG-PrecedentCheck Response\",\n \"type\": \"object\",\n \"required\": [\"transaction_id\", \"status\", \"adjusted_score\", \"processing_metadata\"],\n \"properties\": {\n \"transaction_id\": {\n \"type\": \"string\"\n },\n \"status\": {\n \"type\": \"string\",\n \"enum\": [\"APPROVED_WITH_PRECEDENT\", \"REQUIRES_REVIEW\", \"NO_VALID_PRECEDENT\", \"ERROR\", \"TIMEOUT\"]\n },\n \"adjusted_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"confidence_interval\": {\n \"type\": \"object\",\n \"properties\": {\n \"lower_bound\": { \"type\": \"number\" },\n \"upper_bound\": { \"type\": \"number\" },\n \"confidence_level\": { \"type\": \"number\" }\n }\n },\n \"matched_precedents\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"precedent_id\": { \"type\": \"string\" },\n \"similarity_score\": { \"type\": \"number\" },\n \"temporal_decay_applied\": { \"type\": \"number\" },\n \"precedent_date\": { \"type\": \"string\", \"format\": \"date-time\" },\n \"outcome\": { \"type\": \"string\" }\n }\n }\n },\n \"blocking_conditions\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"condition_code\": { \"type\": \"string\" },\n \"severity\": { \"type\": \"string\" },\n \"description\": { \"type\": \"string\" }\n }\n }\n },\n \"processing_metadata\": {\n \"type\": \"object\",\n \"required\": [\"processing_time_ms\", \"precedents_evaluated\", \"cache_hit\"],\n \"properties\": {\n \"processing_time_ms\": { \"type\": \"integer\" },\n \"precedents_evaluated\": { \"type\": \"integer\" },\n \"cache_hit\": { \"type\": \"boolean\" },\n \"algorithm_version\": { \"type\": \"string\" },\n \"node_id\": { \"type\": \"string\" }\n }\n }\n }\n}\n```\n\n---\n\n## 4. SRE Metrics Specification\n\n### 4.1 Service Level Objectives (SLOs)\n\n| Metric | Target | Measurement Window | Burn Rate Alert |\n|--------|--------|-------------------|-----------------|\n| Availability | 99.95% | 30-day rolling | 14.4x (1h), 6x (6h) |\n| Latency p50 | ≤ 85ms | 5-minute rolling | N/A |\n| Latency p95 | ≤ 250ms | 5-minute rolling | 3x threshold |\n| Latency p99 | ≤ 500ms | 5-minute rolling | 2x threshold |\n| Error Rate | ≤ 0.1% | 15-minute rolling | 10x baseline |\n| Precedent Match Accuracy | ≥ 94% | 24-hour rolling | 5% degradation |\n\n### 4.2 Service Level Indicators (SLIs)\n\n```yaml\nslis:\n availability:\n formula: \"(successful_requests / total_requests) × 100\"\n good_event: \"response_code \u003c 500 AND response_time \u003c 30000ms\"\n valid_event: \"all incoming requests excluding health checks\"\n \n latency:\n formula: \"histogram_quantile(target_percentile, request_duration_seconds)\"\n buckets: [0.01, 0.025, 0.05, 0.085, 0.1, 0.25, 0.5, 1, 2.5, 5, 10]\n \n correctness:\n formula: \"(validated_matches / total_matches) × 100\"\n validation_method: \"async_audit_sampling\"\n sample_rate: 0.05\n \n throughput:\n formula: \"rate(requests_total[5m])\"\n capacity_threshold: 15000 # requests per second\n```\n\n### 4.3 Operational Metrics Dashboard Specification\n\n```yaml\nmetrics:\n # Request Metrics\n - name: precedent_check_requests_total\n type: counter\n labels: [status, jurisdiction, structure_type, priority]\n \n - name: precedent_check_duration_seconds\n type: histogram\n labels: [status, cache_hit]\n buckets: [0.01, 0.025, 0.05, 0.085, 0.1,\n```]\n\n## 3. Resilience Layer\n- **Noise_Tolerance**: 0.15\n- **Confidence_Threshold**: 0.85\n- **Logic_Smoothing**: Bayesian",
8
+ "outcome": "A-LEG-PrecedentCheck",
9
+ "rType": 0,
10
+ "persona": "LEG",
11
+ "primary_model": "Claude-3.5-Reasoning",
12
+ "privacy_tier": "Public",
13
+ "sybox_fee_split": {
14
+ "dev": 0.5,
15
+ "curation": 0.4,
16
+ "author": 0.1
17
+ },
18
+ "ticker": "SYNL",
19
+ "audit_cadence": "Weekly",
20
+ "lifecycle": "Genesis-Platinum",
21
+ "global_outputs": [
22
+ "synthesis_id",
23
+ "logic_id",
24
+ "bps_verified",
25
+ "model_stack",
26
+ "processing_ms",
27
+ "timestamp"
28
+ ],
29
+ "custom_outputs": [
30
+ {
31
+ "field_name": "Type",
32
+ "type": "Description",
33
+ "description": "Downstream Intent",
34
+ "downstream_intent": "BPS Sensitivity",
35
+ "bps_sensitivity": ""
36
+ },
37
+ {
38
+ "field_name": "precedent_confidence_interval",
39
+ "type": "Object",
40
+ "description": "Contains the `adjusted_score` (0.0-1.0) and the 95% CI bounds.",
41
+ "downstream_intent": "**A-LEG-ClauseParser**; used to override or \"Smooth\" Bayesian logic.",
42
+ "bps_sensitivity": "High"
43
+ },
44
+ {
45
+ "field_name": "matched_artifact_pointers",
46
+ "type": "Array",
47
+ "description": "Arweave/IPFS CIDs for the top 5 most similar historical transactions.",
48
+ "downstream_intent": "**Human Auditor**; allows for \"drill-down\" verification if requested.",
49
+ "bps_sensitivity": "Low"
50
+ },
51
+ {
52
+ "field_name": "regulatory_clearance_matrix",
53
+ "type": "Object",
54
+ "description": "Boolean status per jurisdiction (e.g., `US: true`, `LU: true`).",
55
+ "downstream_intent": "**A-FIN-SettlementEngine**; prevents cross-border compliance breaches.",
56
+ "bps_sensitivity": "Critical"
57
+ },
58
+ {
59
+ "field_name": "displaced_toil_hours",
60
+ "type": "Float",
61
+ "description": "Calculated ROI in manual hours saved for this specific execution.",
62
+ "downstream_intent": "**A-CEO-KPISiphon**; aggregates platform-wide value delivery.",
63
+ "bps_sensitivity": "None"
64
+ }
65
+ ]
66
+ },
67
+ {
68
+ "id": 8,
69
+ "successBps": 9698,
70
+ "cid": "ar://SYNTH_ATOMIC_HC_PATHVALIDATOR",
71
+ "costUsd": 1500,
72
+ "details": "# A-HC-PathValidator Technical Specification\n\n## 1. Core Logic Definition\n\n### 1.1 Functional Purpose\nA-HC-PathValidator performs hierarchical path validation for distributed system routing, ensuring path integrity across service mesh topologies with deterministic failure detection.\n\n### 1.2 Validation Algorithm\n\n```\nFUNCTION ValidatePath(path: PathObject) -\u003e ValidationResult:\n \n // Phase 1: Structural Validation\n IF path.segments.length == 0 THEN\n RETURN {valid: false, error: \"EMPTY_PATH\", bps: 100}\n \n IF path.segments.length \u003e MAX_DEPTH (default: 64) THEN\n RETURN {valid: false, error: \"DEPTH_EXCEEDED\", bps: 85}\n \n // Phase 2: Node Connectivity Validation\n FOR i = 0 TO path.segments.length - 1:\n current_node = path.segments[i]\n \n // Existence Check\n IF NOT NodeRegistry.exists(current_node.id) THEN\n RETURN {valid: false, error: \"NODE_NOT_FOUND\", node: i, bps: 95}\n \n // Health Check\n IF current_node.health_score \u003c HEALTH_THRESHOLD (default: 0.7) THEN\n RETURN {valid: false, error: \"UNHEALTHY_NODE\", node: i, bps: 75}\n \n // Edge Validation (for non-terminal nodes)\n IF i \u003c path.segments.length - 1:\n next_node = path.segments[i + 1]\n edge_weight = EdgeMatrix[current_node.id][next_node.id]\n \n IF edge_weight == NULL OR edge_weight == INFINITY THEN\n RETURN {valid: false, error: \"DISCONNECTED_EDGE\", edge: [i, i+1], bps: 90}\n \n IF edge_weight \u003e LATENCY_THRESHOLD (default: 500ms) THEN\n RETURN {valid: false, error: \"LATENCY_VIOLATION\", edge: [i, i+1], bps: 60}\n \n // Phase 3: Cycle Detection (Tortoise-Hare)\n visited = HashSet()\n FOR segment IN path.segments:\n IF visited.contains(segment.id) THEN\n RETURN {valid: false, error: \"CYCLE_DETECTED\", bps: 80}\n visited.add(segment.id)\n \n // Phase 4: Policy Compliance\n policy_result = PolicyEngine.evaluate(path)\n IF NOT policy_result.compliant THEN\n RETURN {valid: false, error: \"POLICY_VIOLATION\", details: policy_result, bps: 70}\n \n // Phase 5: Compute Path Score\n path_score = ComputePathScore(path)\n \n RETURN {valid: true, score: path_score, bps: 0}\n```\n\n### 1.3 Path Score Computation\n\n```\nFUNCTION ComputePathScore(path: PathObject) -\u003e Float:\n \n // Weighted scoring model\n W_latency = 0.35\n W_reliability = 0.30\n W_capacity = 0.20\n W_hops = 0.15\n \n // Latency Score (inverse normalized)\n total_latency = SUM(EdgeMatrix[path.segments[i]][path.segments[i+1]].latency)\n latency_score = 1 - (total_latency / MAX_ACCEPTABLE_LATENCY)\n latency_score = CLAMP(latency_score, 0, 1)\n \n // Reliability Score (product of node reliabilities)\n reliability_score = PRODUCT(path.segments[i].reliability FOR i IN range)\n \n // Capacity Score (minimum bottleneck normalized)\n min_capacity = MIN(EdgeMatrix[path.segments[i]][path.segments[i+1]].capacity)\n capacity_score = min_capacity / BASELINE_CAPACITY\n capacity_score = CLAMP(capacity_score, 0, 1)\n \n // Hop Score (inverse normalized)\n hop_score = 1 - (path.segments.length / MAX_DEPTH)\n \n // Final weighted score\n RETURN (W_latency * latency_score) + \n (W_reliability * reliability_score) + \n (W_capacity * capacity_score) + \n (W_hops * hop_score)\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 BPS Definition\nBPS quantifies operational failure risk on scale 0-100, where:\n- **0-25**: Low risk, recoverable\n- **26-50**: Moderate risk, degraded operation\n- **51-75**: High risk, service impact\n- **76-100**: Critical risk, system failure\n\n### 2.2 BPS Matrix\n\n| Error Code | BPS | Category | MTTR Target | Escalation Level | Auto-Recovery |\n|------------|-----|----------|-------------|------------------|---------------|\n| `EMPTY_PATH` | 100 | Input | N/A | L0 | Reject |\n| `NODE_NOT_FOUND` | 95 | Registry | 30s | L2 | Registry Sync |\n| `DISCONNECTED_EDGE` | 90 | Topology | 60s | L2 | Topology Rebuild |\n| `DEPTH_EXCEEDED` | 85 | Input | N/A | L0 | Reject |\n| `CYCLE_DETECTED` | 80 | Logic | N/A | L1 | Path Recompute |\n| `UNHEALTHY_NODE` | 75 | Health | 120s | L1 | Node Bypass |\n| `POLICY_VIOLATION` | 70 | Compliance | 300s | L3 | Manual Review |\n| `LATENCY_VIOLATION` | 60 | Performance | 180s | L1 | Route Optimization |\n| `CAPACITY_WARNING` | 45 | Performance | 600s | L1 | Load Balancing |\n| `SUBOPTIMAL_PATH` | 30 | Optimization | 900s | L0 | Background Recompute |\n\n### 2.3 BPS Aggregation Formula\n\n```\nFUNCTION AggregateBPS(validation_results: List[ValidationResult]) -\u003e SystemBPS:\n \n IF validation_results.length == 0 THEN\n RETURN 0\n \n // Weighted aggregation with severity amplification\n critical_count = COUNT(r WHERE r.bps \u003e= 76)\n high_count = COUNT(r WHERE r.bps \u003e= 51 AND r.bps \u003c 76)\n \n base_bps = AVG(r.bps FOR r IN validation_results)\n \n // Amplification factor for clustered failures\n amplification = 1 + (0.1 * critical_count) + (0.05 * high_count)\n \n system_bps = MIN(base_bps * amplification, 100)\n \n RETURN {\n score: system_bps,\n critical_failures: critical_count,\n high_failures: high_count,\n recommendation: DeriveRecommendation(system_bps)\n }\n```\n\n### 2.4 BPS Threshold Actions\n\n```\nBPS_THRESHOLDS = {\n 90: {action: \"CIRCUIT_BREAK\", alert: \"P1\", runbook: \"RB-001\"},\n 75: {action: \"SHED_LOAD\", alert: \"P2\", runbook: \"RB-002\"},\n 50: {action: \"ENABLE_FALLBACK\", alert: \"P3\", runbook: \"RB-003\"},\n 25: {action: \"LOG_WARNING\", alert: \"P4\", runbook: \"RB-004\"}\n}\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n### 3.1 PathValidationRequest Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-hc-pathvalidator/request/v1\",\n \"title\": \"A-HC-PathValidator Request\",\n \"type\": \"object\",\n \"required\": [\"request_id\", \"timestamp\", \"path\", \"validation_config\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\",\n \"description\": \"Unique request identifier for tracing\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 request timestamp\"\n },\n \"path\": {\n \"$ref\": \"#/$defs/PathObject\"\n },\n \"validation_config\": {\n \"$ref\": \"#/$defs/ValidationConfig\"\n },\n \"metadata\": {\n \"type\": \"object\",\n \"properties\": {\n \"source_service\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-z][a-z0-9-]{2,62}$\"\n },\n \"priority\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 10\n },\n \"trace_context\": {\n \"type\": \"string\",\n \"pattern\": \"^[0-9a-f]{32}$\"\n }\n }\n }\n },\n \"$defs\": {\n \"PathObject\": {\n \"type\": \"object\",\n \"required\": [\"segments\", \"source\", \"destination\"],\n \"properties\": {\n \"segments\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"maxItems\": 64,\n \"items\": {\n \"$ref\": \"#/$defs/PathSegment\"\n }\n },\n \"source\": {\n \"$ref\": \"#/$defs/NodeIdentifier\"\n },\n \"destination\": {\n \"$ref\": \"#/$defs/NodeIdentifier\"\n },\n \"path_type\": {\n \"type\": \"string\",\n \"enum\": [\"PRIMARY\", \"FALLBACK\", \"EMERGENCY\", \"TEST\"]\n },\n \"ttl_ms\": {\n \"type\": \"integer\",\n \"minimum\": 100,\n \"maximum\": 300000,\n \"default\": 30000\n }\n }\n },\n \"PathSegment\": {\n \"type\": \"object\",\n \"required\": [\"id\", \"type\"],\n \"properties\": {\n \"id\": {\n \"$ref\": \"#/$defs/NodeIdentifier\"\n },\n \"type\": {\n \"type\": \"string\",\n \"enum\": [\"GATEWAY\", \"SERVICE\", \"PROXY\", \"LOAD_BALANCER\", \"DATABASE\", \"CACHE\", \"QUEUE\"]\n },\n \"region\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-z]{2}-[a-z]+-[0-9]$\"\n },\n \"zone\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-z]$\"\n },\n \"weight\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1,\n \"default\": 1\n },\n \"health_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"reliability\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"attributes\": {\n \"type\": \"object\",\n \"additionalProperties\": {\n \"type\": [\"string\", \"number\", \"boolean\"]\n }\n }\n }\n },\n \"NodeIdentifier\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-z0-9][a-z0-9-_.]{0,126}[a-z0-9]$\",\n \"minLength\": 2,\n \"maxLength\": 128\n },\n \"ValidationConfig\": {\n \"type\": \"object\",\n \"properties\": {\n \"max_depth\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 128,\n \"default\": 64\n },\n \"health_threshold\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1,\n \"default\": 0.7\n },\n \"latency_threshold_ms\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 60000,\n \"default\": 500\n },\n \"enable_cycle_detection\": {\n \"type\": \"boolean\",\n \"default\": true\n },\n \"enable_policy_check\": {\n \"type\": \"boolean\",\n \"default\": true\n },\n \"strict_mode\": {\n \"type\": \"boolean\",\n \"default\": false\n },\n \"timeout_ms\": {\n \"type\": \"integer\",\n \"minimum\": 10,\n \"maximum\": 30000,\n \"default\": 5000\n }\n }\n }\n }\n}\n```\n\n### 3.2 PathValidationResponse Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-hc-pathvalidator/response/v1\",\n \"title\": \"A-HC-PathValidator Response\",\n \"type\": \"object\",\n \"required\": [\"request_id\", \"timestamp\", \"valid\", \"bps\"],\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"valid\": {\n \"type\": \"boolean\"\n },\n \"bps\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 100\n },\n \"path_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"errors\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"code\", \"message\", \"severity\"],\n \"properties\": {\n \"code\": {\n \"type\": \"string\",\n \"enum\": [\n \"EMPTY_PATH\",\n \"DEPTH_EXCEEDED\",\n \"NODE_NOT_FOUND\",\n \"UNHEALTHY_NODE\",\n \"DISCONNECTED_EDGE\",\n \"LATENCY_VIOLATION\",\n \"CYCLE_DETECTED\",\n \"POLICY_VIOLATION\",\n \"TIMEOUT\",\n \"INTERNAL_ERROR\"\n ]\n },\n \"message\": {\n \"type\": \"string\"\n },\n \"severity\": {\n \"type\": \"string\",\n \"enum\": [\"CRITICAL\", \"HIGH\", \"MEDIUM\", \"LOW\"]\n },\n \"location\": {\n \"type\": \"object\",\n \"properties\": {\n \"segment_index\": {\"type\": \"integer\"},\n \"node_id\": {\"type\": \"string\"},\n \"edge\": {\n \"type\": \"array\",\n \"items\": {\"type\": \"integer\"},\n \"minItems\": 2,\n \"maxItems\": 2\n }\n }\n }\n }\n }\n },\n \"metrics\": {\n \"type\": \"object\",\n \"properties\": {\n \"validation_duration_ms\": {\"type\": \"number\"},\n \"segments_validated\": {\"type\": \"integer\"},\n \"edges_validated\": {\"type\": \"integer\"},\n \"policies_evaluated\": {\"type\": \"integer\"}\n }\n },\n \"recommendations\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"action\": {\"type\": \"string\"},\n \"priority\": {\"type\": \"integer\"},\n \"runbook_id\": {\"type\": \"string\"}\n }\n }\n }\n }\n}\n```\n\n---\n\n## 4. SRE Metrics Specification\n\n### 4.1 Service Level Indicators (SLIs)\n\n| SLI ID | Metric Name | Formula | Target |\n|--------|-------------|---------|--------|\n| `S",
73
+ "outcome": "A-HC-PathValidator",
74
+ "rType": 0,
75
+ "persona": "HC",
76
+ "primary_model": "Claude-3.5-Reasoning",
77
+ "privacy_tier": "Local-First",
78
+ "sybox_fee_split": {
79
+ "dev": 0.5,
80
+ "curation": 0.4,
81
+ "author": 0.1
82
+ },
83
+ "ticker": "SYNL",
84
+ "audit_cadence": "Weekly",
85
+ "lifecycle": "Genesis-Platinum",
86
+ "global_outputs": [
87
+ "synthesis_id",
88
+ "logic_id",
89
+ "bps_verified",
90
+ "model_stack",
91
+ "processing_ms",
92
+ "timestamp"
93
+ ],
94
+ "custom_outputs": [
95
+ {
96
+ "field_name": "path_validity_state",
97
+ "type": "Boolean",
98
+ "description": "Final deterministic verdict on the requested route.",
99
+ "downstream_intent": "Traffic-Controller",
100
+ "bps_sensitivity": "YES"
101
+ },
102
+ {
103
+ "field_name": "topology_bottleneck_ref",
104
+ "type": "Object",
105
+ "description": "Segment ID and metrics for the lowest-performing link (latency/capacity).",
106
+ "downstream_intent": "SRE-Dashboard",
107
+ "bps_sensitivity": "YES"
108
+ },
109
+ {
110
+ "field_name": "cycle_detection_verdict",
111
+ "type": "String",
112
+ "description": "Deterministic status: ACYCLIC or CYCLE_DETECTED.",
113
+ "downstream_intent": "Network-Orch",
114
+ "bps_sensitivity": "YES"
115
+ },
116
+ {
117
+ "field_name": "weighted_score_decomposition",
118
+ "type": "Object",
119
+ "description": "Latency, Reliability, and Hop scores used for the 0.912+ result.",
120
+ "downstream_intent": "Cloud-Architect",
121
+ "bps_sensitivity": "NO"
122
+ },
123
+ {
124
+ "field_name": "revalidation_ttl_ms",
125
+ "type": "Integer",
126
+ "description": "System-calculated time before the current path is considered stale.",
127
+ "downstream_intent": "Cache-Layer",
128
+ "bps_sensitivity": "YES"
129
+ }
130
+ ]
131
+ },
132
+ {
133
+ "id": 9,
134
+ "successBps": 9771,
135
+ "cid": "ar://SYNTH_ATOMIC_RE_PERMITSIPHON",
136
+ "costUsd": 1500,
137
+ "details": "# A-RE-PermitSiphon Technical Specification\n\n## System Overview\n\nA-RE-PermitSiphon is an automated permit request extraction and routing system designed to siphon permit data from heterogeneous sources, normalize payloads, and route to downstream approval engines with fault-tolerant guarantees.\n\n---\n\n## Core Logic Block\n\n### 1. Data Flow Architecture\n\n```\n┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐\n│ Permit Sources │────▶│ Siphon Engine │────▶│ Routing Layer │\n│ (n endpoints) │ │ (normalization) │ │ (k partitions) │\n└─────────────────┘ └──────────────────┘ └─────────────────┘\n │ │ │\n ▼ ▼ ▼\n ┌───────────┐ ┌───────────┐ ┌───────────┐\n │ Rate Limiter│ │ Validator │ │ Dead Letter│\n │ (token bucket)│ │ (schema) │ │ Queue │\n └───────────┘ └───────────┘ └───────────┘\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### BPS Calculation Formula\n\n```\nBPS = Σ(Wᵢ × Sᵢ × Pᵢ) / Σ(Wᵢ)\n\nWhere:\n Wᵢ = Weight factor for failure mode i (1-10)\n Sᵢ = Severity coefficient (1.0 - 5.0)\n Pᵢ = Probability of occurrence (0.0 - 1.0)\n```\n\n### BPS Risk Matrix\n\n| Failure Mode | Code | Weight (W) | Severity (S) | Probability (P) | BPS Component | Threshold |\n|--------------|------|------------|--------------|-----------------|---------------|-----------|\n| Source Timeout | FT-001 | 8 | 3.5 | 0.15 | 4.20 | ≤ 5.0 |\n| Schema Violation | FV-002 | 9 | 4.0 | 0.08 | 2.88 | ≤ 3.0 |\n| Queue Overflow | FQ-003 | 10 | 5.0 | 0.03 | 1.50 | ≤ 2.0 |\n| Routing Deadlock | FR-004 | 7 | 4.5 | 0.05 | 1.575 | ≤ 2.0 |\n| Auth Token Expiry | FA-005 | 6 | 2.5 | 0.12 | 1.80 | ≤ 2.5 |\n| Downstream Rejection | FD-006 | 8 | 3.0 | 0.10 | 2.40 | ≤ 3.0 |\n| Data Corruption | FC-007 | 10 | 5.0 | 0.01 | 0.50 | ≤ 1.0 |\n| Rate Limit Breach | FR-008 | 5 | 2.0 | 0.20 | 2.00 | ≤ 2.5 |\n\n### Aggregate BPS Calculation\n\n```\nTotal_BPS = (4.20 + 2.88 + 1.50 + 1.575 + 1.80 + 2.40 + 0.50 + 2.00) / 8\nTotal_BPS = 16.855 / 8\nTotal_BPS = 2.107\n\nCritical Threshold: BPS \u003e 3.5 triggers circuit breaker\nWarning Threshold: BPS \u003e 2.5 triggers alerting\nNominal Range: BPS ≤ 2.0\n```\n\n### BPS State Machine\n\n```\n ┌─────────────────────────────────────┐\n │ │\n ▼ │\n ┌─────────┐ BPS \u003e 2.5 ┌─────────┐ │\n │ NOMINAL │──────────────▶│ WARNING │ │\n │ (green) │ │ (yellow)│ │\n └─────────┘ └─────────┘ │\n ▲ │ │\n │ │ BPS \u003e 3.5│\n │ BPS ≤ 2.0 ▼ │\n │ ┌─────────┐ │\n │ │CRITICAL │ │\n └────────────────────│ (red) │─────┘\n cooldown: 300s └─────────┘\n circuit_open\n```\n\n---\n\n## 3. Input Validation JSON Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-re-permit-siphon/v2.1.0\",\n \"title\": \"A-RE-PermitSiphon Input Payload\",\n \"type\": \"object\",\n \"required\": [\n \"permit_id\",\n \"source_system\",\n \"timestamp\",\n \"payload\",\n \"routing_metadata\"\n ],\n \"properties\": {\n \"permit_id\": {\n \"type\": \"string\",\n \"pattern\": \"^PRM-[A-Z]{2}-[0-9]{8}-[A-F0-9]{6}$\",\n \"description\": \"Unique permit identifier: PRM-{region}-{date}-{hash}\"\n },\n \"source_system\": {\n \"type\": \"object\",\n \"required\": [\"system_id\", \"version\", \"auth_token_hash\"],\n \"properties\": {\n \"system_id\": {\n \"type\": \"string\",\n \"enum\": [\"SYS_ALPHA\", \"SYS_BETA\", \"SYS_GAMMA\", \"SYS_DELTA\", \"SYS_LEGACY\"]\n },\n \"version\": {\n \"type\": \"string\",\n \"pattern\": \"^[0-9]+\\\\.[0-9]+\\\\.[0-9]+$\"\n },\n \"auth_token_hash\": {\n \"type\": \"string\",\n \"minLength\": 64,\n \"maxLength\": 64,\n \"pattern\": \"^[a-f0-9]{64}$\"\n }\n }\n },\n \"timestamp\": {\n \"type\": \"object\",\n \"required\": [\"created_at\", \"received_at\"],\n \"properties\": {\n \"created_at\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"received_at\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"ttl_seconds\": {\n \"type\": \"integer\",\n \"minimum\": 60,\n \"maximum\": 86400,\n \"default\": 3600\n }\n }\n },\n \"payload\": {\n \"type\": \"object\",\n \"required\": [\"permit_type\", \"applicant\", \"jurisdiction\", \"data\"],\n \"properties\": {\n \"permit_type\": {\n \"type\": \"string\",\n \"enum\": [\n \"CONSTRUCTION\",\n \"ELECTRICAL\",\n \"PLUMBING\",\n \"MECHANICAL\",\n \"DEMOLITION\",\n \"OCCUPANCY\",\n \"SPECIAL_USE\"\n ]\n },\n \"applicant\": {\n \"type\": \"object\",\n \"required\": [\"entity_id\", \"entity_type\"],\n \"properties\": {\n \"entity_id\": {\n \"type\": \"string\",\n \"pattern\": \"^ENT-[0-9]{12}$\"\n },\n \"entity_type\": {\n \"type\": \"string\",\n \"enum\": [\"INDIVIDUAL\", \"CORPORATION\", \"LLC\", \"GOVERNMENT\", \"NONPROFIT\"]\n }\n }\n },\n \"jurisdiction\": {\n \"type\": \"object\",\n \"required\": [\"code\", \"level\"],\n \"properties\": {\n \"code\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{2}-[A-Z0-9]{3,6}$\"\n },\n \"level\": {\n \"type\": \"string\",\n \"enum\": [\"FEDERAL\", \"STATE\", \"COUNTY\", \"MUNICIPAL\", \"DISTRICT\"]\n }\n }\n },\n \"data\": {\n \"type\": \"object\",\n \"additionalProperties\": true,\n \"maxProperties\": 100\n },\n \"priority\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 10,\n \"default\": 5\n }\n }\n },\n \"routing_metadata\": {\n \"type\": \"object\",\n \"required\": [\"partition_key\", \"retry_policy\"],\n \"properties\": {\n \"partition_key\": {\n \"type\": \"string\",\n \"minLength\": 1,\n \"maxLength\": 256\n },\n \"retry_policy\": {\n \"type\": \"object\",\n \"required\": [\"max_attempts\", \"backoff_multiplier\"],\n \"properties\": {\n \"max_attempts\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 10\n },\n \"backoff_multiplier\": {\n \"type\": \"number\",\n \"minimum\": 1.0,\n \"maximum\": 5.0\n },\n \"initial_delay_ms\": {\n \"type\": \"integer\",\n \"minimum\": 100,\n \"maximum\": 30000,\n \"default\": 1000\n }\n }\n },\n \"dead_letter_config\": {\n \"type\": \"object\",\n \"properties\": {\n \"enabled\": {\n \"type\": \"boolean\",\n \"default\": true\n },\n \"queue_arn\": {\n \"type\": \"string\",\n \"pattern\": \"^arn:aws:sqs:[a-z0-9-]+:[0-9]{12}:[a-zA-Z0-9_-]+$\"\n }\n }\n }\n }\n },\n \"checksum\": {\n \"type\": \"object\",\n \"required\": [\"algorithm\", \"value\"],\n \"properties\": {\n \"algorithm\": {\n \"type\": \"string\",\n \"enum\": [\"SHA256\", \"SHA512\", \"BLAKE3\"]\n },\n \"value\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]+$\"\n }\n }\n }\n },\n \"additionalProperties\": false\n}\n```\n\n---\n\n## 4. SRE Operational Metrics\n\n### 4.1 Service Level Indicators (SLIs)\n\n| Metric ID | Metric Name | Calculation | Unit |\n|-----------|-------------|-------------|------|\n| SLI-001 | Ingestion Latency P50 | `percentile(ingestion_duration_ms, 50)` | ms |\n| SLI-002 | Ingestion Latency P99 | `percentile(ingestion_duration_ms, 99)` | ms |\n| SLI-003 | Validation Success Rate | `(valid_payloads / total_payloads) × 100` | % |\n| SLI-004 | Routing Success Rate | `(routed_success / routed_attempts) × 100` | % |\n| SLI-005 | End-to-End Latency P95 | `percentile(e2e_duration_ms, 95)` | ms |\n| SLI-006 | Throughput | `count(processed_permits) / interval_seconds` | req/s |\n| SLI-007 | Error Rate | `(error_count / total_requests) × 100` | % |\n| SLI-008 | Queue Depth | `current_queue_size / max_queue_capacity` | ratio |\n\n### 4.2 Service Level Objectives (SLOs)\n\n```yaml\nslo_definitions:\n availability:\n target: 99.95%\n window: 30d\n calculation: |\n (successful_requests / total_requests) \u003e= 0.9995\n error_budget_burn_rate:\n fast: 14.4 # 1h window\n slow: 6.0 # 6h window\n\n latency_p99:\n target: 500ms\n window: 30d\n calculation: |\n percentile(request_duration_ms, 99) \u003c= 500\n\n throughput:\n target: 10000 req/s\n window: 1h\n calculation: |\n rate(processed_permits_total[1h]) \u003e= 10000\n\n data_integrity:\n target: 99.999%\n window: 30d\n calculation: |\n (permits_without_corruption / total_permits) \u003e= 0.99999\n```\n\n### 4.3 Operational Metrics Dashboard Queries\n\n```promql\n# Ingestion Rate (5m rolling)\nrate(permit_siphon_ingested_total[5m])\n\n# Validation Failure Rate\nsum(rate(permit_siphon_validation_failures_total[5m])) \n / sum(rate(permit_siphon_ingested_total[5m])) * 100\n\n# P99 Latency by Source System\nhistogram_quantile(0.99, \n sum(rate(permit_siphon_duration_seconds_bucket[5m])) \n by (le, source_system)\n)\n\n# Queue Saturation\npermit_siphon_queue_current_size \n / permit_siphon_queue_max_capacity\n\n# Error Budget Remaining\n1 - (\n sum(increase(permit_siphon_errors_total[30d])) \n / sum(increase(permit_siphon_requests_total[30d]))\n) / (1 - 0.9995)\n\n# BPS Real-time Calculation\nsum(\n permit_siphon_failure_weight \n * permit_siphon_failure_severity \n * permit_siphon_failure_probability\n) / sum(permit_siphon_failure_weight)\n\n# Circuit Breaker State\npermit_siphon_circuit_breaker_state{state=\"open\"}\n```\n\n### 4.4 Alerting Rules\n\n```yaml\ngroups:\n - name: permit_siphon_critical\n rules:\n - alert: PermitSiphonHighErrorRate\n expr: |\n sum(rate(permit_siphon_errors_total[5m])) \n / sum(rate(permit_siphon_requests_total[5m])) \u003e 0.01\n for: 2m\n labels:\n severity: critical\n team: sre-platform\n annotations:\n summary: \"Error rate exceeds 1% threshold\"\n runbook: \"https://runbooks.internal/permit-siphon/high-error-rate\"\n\n - alert: PermitSiphonBPSCritical\n expr: permit_siphon_bps_score \u003e 3.5\n for: 1m\n labels:\n severity: critical\n team: sre-platform\n annotations:\n summary: \"BPS score critical - circuit breaker engaged\"\n\n - alert: PermitSiphonLatencyDegradation\n expr: |\n histogram_quantile(0.99, \n sum(rate(permit_siphon_duration_seconds_bucket[5m])) by (le)\n ) \u003e 0.5\n for: 5m\n labels:\n severity: warning\n team: sre-platform\n annotations:\n summary: \"P99 latency exceeds 500ms SLO\"\n\n - alert: PermitSiphonQueueBackpressure\n expr: |\n permit_siphon_queue_current_size \n / permit_siphon_queue_max_capacity \u003e 0.85\n for: 3m\n labels:\n severity: warning\n```",
138
+ "outcome": "A-RE-PermitSiphon",
139
+ "rType": 0,
140
+ "persona": "RE",
141
+ "primary_model": "GPT-4o-Synthesis",
142
+ "privacy_tier": "Public",
143
+ "sybox_fee_split": {
144
+ "dev": 0.5,
145
+ "curation": 0.4,
146
+ "author": 0.1
147
+ },
148
+ "ticker": "SYNL",
149
+ "audit_cadence": "Weekly",
150
+ "lifecycle": "Genesis-Platinum",
151
+ "global_outputs": [
152
+ "synthesis_id",
153
+ "logic_id",
154
+ "bps_verified",
155
+ "model_stack",
156
+ "processing_ms",
157
+ "timestamp"
158
+ ],
159
+ "custom_outputs": [
160
+ {
161
+ "field_name": "Type",
162
+ "type": "Description",
163
+ "description": "Downstream Intent",
164
+ "downstream_intent": "BPS Sensitivity",
165
+ "bps_sensitivity": ""
166
+ },
167
+ {
168
+ "field_name": "normalized_payload",
169
+ "type": "Object",
170
+ "description": "The permit data mapped to the internal schema (type, applicant, jurisdiction).",
171
+ "downstream_intent": "Downstream approval engines \u0026 A-RE-ValuationBPS.",
172
+ "bps_sensitivity": "High"
173
+ },
174
+ {
175
+ "field_name": "validation_diagnostics",
176
+ "type": "Object",
177
+ "description": "Array of schema violations or \"Success\" state.",
178
+ "downstream_intent": "SRE Monitor \u0026 Sentinel Audit.",
179
+ "bps_sensitivity": "Medium"
180
+ },
181
+ {
182
+ "field_name": "routing_disposition",
183
+ "type": "String",
184
+ "description": "Final destination (e.g., \"PARTITION_K\", \"DEAD_LETTER\").",
185
+ "downstream_intent": "Logic Flow Orchestrator.",
186
+ "bps_sensitivity": "High"
187
+ },
188
+ {
189
+ "field_name": "source_integrity_hash",
190
+ "type": "String",
191
+ "description": "BLAKE3/SHA256 hash of the raw input for provenance.",
192
+ "downstream_intent": "Compliance/Audit Ledger.",
193
+ "bps_sensitivity": "Low"
194
+ }
195
+ ]
196
+ },
197
+ {
198
+ "id": 11,
199
+ "successBps": 9914,
200
+ "cid": "ar://SYNTH_ATOMIC_RE_VALUATIONBPS",
201
+ "costUsd": 1500,
202
+ "details": "# A-RE-ValuationBPS Technical Specification\n\n## 1. Core Logic Definition\n\n### 1.1 Breakdown Point Score (BPS) Formula\n\n```\nBPS = Σ(Wᵢ × Rᵢ × Sᵢ) / N\n\nWhere:\n Wᵢ = Weight factor for risk category i (0.0 - 1.0)\n Rᵢ = Risk probability coefficient (0.0 - 1.0)\n Sᵢ = Severity multiplier (1 - 10)\n N = Normalization constant = Σ(Wᵢ × 10)\n```\n\n### 1.2 Valuation Decay Function\n\n```\nV(t) = V₀ × e^(-λ × BPS × t)\n\nWhere:\n V(t) = Asset value at time t\n V₀ = Initial asset valuation\n λ = Decay constant (default: 0.023)\n BPS = Breakdown Point Score (0.0 - 1.0)\n t = Time in operational cycles\n```\n\n### 1.3 Operational Threshold Boundaries\n\n```\nBPS_critical = 0.75\nBPS_warning = 0.50\nBPS_nominal = 0.25\n\nState Machine:\n IF BPS ≥ BPS_critical THEN state = CRITICAL\n ELSE IF BPS ≥ BPS_warning THEN state = DEGRADED\n ELSE IF BPS ≥ BPS_nominal THEN state = NOMINAL\n ELSE state = OPTIMAL\n```\n\n---\n\n## 2. BPS Risk Matrix\n\n### 2.1 Operational Failure Risk Categories\n\n| Category ID | Risk Domain | Weight (Wᵢ) | Failure Mode | MTTR Target |\n|-------------|-------------|-------------|--------------|-------------|\n| RF-001 | Infrastructure Availability | 0.95 | Complete outage | ≤ 15 min |\n| RF-002 | Data Integrity | 0.90 | Corruption/Loss | ≤ 30 min |\n| RF-003 | Performance Degradation | 0.75 | Latency \u003e P99 SLO | ≤ 10 min |\n| RF-004 | Security Breach | 0.98 | Unauthorized access | ≤ 5 min |\n| RF-005 | Dependency Failure | 0.70 | Upstream/downstream | ≤ 20 min |\n| RF-006 | Configuration Drift | 0.60 | State mismatch | ≤ 45 min |\n| RF-007 | Capacity Exhaustion | 0.80 | Resource saturation | ≤ 25 min |\n| RF-008 | Observability Gap | 0.55 | Blind spot detection | ≤ 60 min |\n\n### 2.2 Severity Multiplier Matrix\n\n| Severity Level | Sᵢ Value | Impact Scope | Revenue Impact |\n|----------------|----------|--------------|----------------|\n| S1 - Catastrophic | 10 | Full system | \u003e $1M/hour |\n| S2 - Critical | 8 | Multi-region | $500K-$1M/hour |\n| S3 - Major | 6 | Single region | $100K-$500K/hour |\n| S4 - Moderate | 4 | Service cluster | $10K-$100K/hour |\n| S5 - Minor | 2 | Single instance | \u003c $10K/hour |\n| S6 - Negligible | 1 | No user impact | $0 |\n\n### 2.3 Risk Probability Coefficients\n\n```\nRᵢ = (incident_count_30d / operational_hours_30d) × availability_inverse\n\navailability_inverse = 1 / (1 - downtime_ratio)\n\nProbability Bands:\n R ∈ [0.00, 0.10] → LOW\n R ∈ [0.11, 0.35] → MODERATE \n R ∈ [0.36, 0.60] → HIGH\n R ∈ [0.61, 1.00] → CRITICAL\n```\n\n---\n\n## 3. JSON Schema Specification\n\n### 3.1 Input Validation Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-re-valuation-bps/v1\",\n \"title\": \"A-RE-ValuationBPS Input Schema\",\n \"type\": \"object\",\n \"required\": [\"asset_id\", \"valuation_context\", \"risk_factors\", \"temporal_params\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"asset_id\": {\n \"type\": \"string\",\n \"pattern\": \"^ARE-[A-Z]{2}-[0-9]{8}$\",\n \"description\": \"Unique asset identifier\"\n },\n \"valuation_context\": {\n \"type\": \"object\",\n \"required\": [\"initial_value\", \"currency\", \"valuation_date\"],\n \"properties\": {\n \"initial_value\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1e15,\n \"description\": \"V₀ in valuation formula\"\n },\n \"currency\": {\n \"type\": \"string\",\n \"enum\": [\"USD\", \"EUR\", \"GBP\", \"JPY\"],\n \"default\": \"USD\"\n },\n \"valuation_date\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"decay_constant\": {\n \"type\": \"number\",\n \"minimum\": 0.001,\n \"maximum\": 0.999,\n \"default\": 0.023,\n \"description\": \"λ decay constant\"\n }\n }\n },\n \"risk_factors\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"maxItems\": 50,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"category_id\", \"weight\", \"probability\", \"severity\"],\n \"properties\": {\n \"category_id\": {\n \"type\": \"string\",\n \"pattern\": \"^RF-[0-9]{3}$\"\n },\n \"weight\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n },\n \"probability\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n },\n \"severity\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 10\n },\n \"incident_metadata\": {\n \"type\": \"object\",\n \"properties\": {\n \"count_30d\": {\n \"type\": \"integer\",\n \"minimum\": 0\n },\n \"mttr_seconds\": {\n \"type\": \"integer\",\n \"minimum\": 0\n },\n \"last_occurrence\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n }\n }\n }\n }\n }\n },\n \"temporal_params\": {\n \"type\": \"object\",\n \"required\": [\"projection_cycles\", \"cycle_unit\"],\n \"properties\": {\n \"projection_cycles\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 365\n },\n \"cycle_unit\": {\n \"type\": \"string\",\n \"enum\": [\"HOUR\", \"DAY\", \"WEEK\", \"MONTH\"]\n },\n \"evaluation_window_hours\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 8760,\n \"default\": 720\n }\n }\n },\n \"slo_targets\": {\n \"type\": \"object\",\n \"properties\": {\n \"availability_target\": {\n \"type\": \"number\",\n \"minimum\": 0.9,\n \"maximum\": 0.99999\n },\n \"latency_p99_ms\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 30000\n },\n \"error_budget_remaining\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n }\n }\n }\n }\n}\n```\n\n### 3.2 Output Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-re-valuation-bps/v1/output\",\n \"title\": \"A-RE-ValuationBPS Output Schema\",\n \"type\": \"object\",\n \"required\": [\"asset_id\", \"bps_score\", \"valuation_projection\", \"operational_state\", \"computed_at\"],\n \"properties\": {\n \"asset_id\": {\n \"type\": \"string\"\n },\n \"bps_score\": {\n \"type\": \"object\",\n \"properties\": {\n \"composite\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n },\n \"category_breakdown\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"category_id\": { \"type\": \"string\" },\n \"contribution\": { \"type\": \"number\" }\n }\n }\n }\n }\n },\n \"valuation_projection\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"cycle\": { \"type\": \"integer\" },\n \"projected_value\": { \"type\": \"number\" },\n \"decay_rate\": { \"type\": \"number\" }\n }\n }\n },\n \"operational_state\": {\n \"type\": \"string\",\n \"enum\": [\"OPTIMAL\", \"NOMINAL\", \"DEGRADED\", \"CRITICAL\"]\n },\n \"computed_at\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n }\n }\n}\n```\n\n---\n\n## 4. SRE Metrics Specification\n\n### 4.1 Golden Signals Mapping\n\n| Signal | Metric Name | Unit | Collection Interval | Aggregation |\n|--------|-------------|------|---------------------|-------------|\n| Latency | `are_bps_computation_duration_seconds` | seconds | 10s | histogram |\n| Traffic | `are_bps_evaluations_total` | count | 10s | counter |\n| Errors | `are_bps_validation_failures_total` | count | 10s | counter |\n| Saturation | `are_bps_queue_depth` | count | 10s | gauge |\n\n### 4.2 SLI Definitions\n\n```yaml\nsli_specifications:\n availability:\n metric: |\n sum(rate(are_bps_requests_success_total[5m])) /\n sum(rate(are_bps_requests_total[5m]))\n target: 0.999\n \n latency_p99:\n metric: |\n histogram_quantile(0.99, \n sum(rate(are_bps_computation_duration_seconds_bucket[5m])) by (le))\n target_ms: 500\n \n correctness:\n metric: |\n 1 - (sum(rate(are_bps_calculation_errors_total[5m])) /\n sum(rate(are_bps_evaluations_total[5m])))\n target: 0.9999\n```\n\n### 4.3 Error Budget Calculation\n\n```\nError Budget (monthly) = (1 - SLO_target) × total_minutes_in_month\n\nFor 99.9% availability:\n EB = (1 - 0.999) × 43200 = 43.2 minutes/month\n\nBurn Rate:\n burn_rate = (error_rate_current / error_rate_budget) × time_window\n\nAlert Thresholds:\n burn_rate \u003e 14.4 → PAGE (2% budget in 1 hour)\n burn_rate \u003e 6.0 → PAGE (5% budget in 6 hours)\n burn_rate \u003e 1.0 → TICKET (10% budget in 3 days)\n```\n\n### 4.4 Operational Success Metrics\n\n| Metric | Formula | Target | Alert Threshold |\n|--------|---------|--------|-----------------|\n| MTTR | `avg(incident_resolution_time)` | ≤ 30 min | \u003e 45 min |\n| MTTD | `avg(detection_time - incident_start)` | ≤ 5 min | \u003e 10 min |\n| Change Failure Rate | `failed_changes / total_changes` | ≤ 15% | \u003e 25% |\n| BPS Accuracy | `1 - abs(predicted_bps - actual_bps) / actual_bps` | ≥ 95% | \u003c 90% |\n| Valuation Drift | `abs(V_projected - V_actual) / V_actual` | ≤ 5% | \u003e 10% |\n\n### 4.5 Prometheus Recording Rules\n\n```yaml\ngroups:\n - name: are_bps_recording_rules\n interval: 30s\n rules:\n - record: are:bps:composite_score\n expr: |\n sum by (asset_id) (\n are_bps_risk_weight * \n are_bps_risk_probability * \n are_bps_risk_severity\n ) / \n sum by (asset_id) (are_bps_risk_weight * 10)\n \n - record: are:valuation:decay_rate\n expr: |\n are_valuation_initial * \n exp(-0.023 * are:bps:composite_score * are_operational_cycles)\n \n - record: are:slo:error_budget_remaining\n expr: |\n 1 - (\n sum(increase(are_bps_errors_total[30d])) /\n (sum(increase(are_bps_requests_total[30d])) * 0.001)\n )\n```\n\n### 4.6 Alerting Rules\n\n```yaml\ngroups:\n - name: are_bps_alerts\n rules:\n - alert: AREBPSCriticalThreshold\n expr: are:bps:composite_score \u003e 0.75\n for: 5m\n labels:\n severity: critical\n annotations:\n summary: \"Asset {{ $labels.asset_id }} BPS exceeds critical threshold\"\n \n - alert: AREValuationRapidDecay\n expr: |\n (are_valuation_current / are_valuation_initial) \u003c 0.5 \n AND rate(are_valuation_current[1h]) \u003c -0.01\n for: 15m\n labels:\n severity: warning\n \n - alert: AREBPSCalculationLatency\n expr: |\n histogram_quantile(0.99, \n rate(are_bps_computation_duration_seconds_bucket[5m])) \u003e 0.5\n for: 10m\n labels:\n severity: warning\n```\n\n---\n\n## 5. Computation Pipeline Logic\n\n### 5.1 Processing Sequence\n\n```\n┌─────────────────┐\n│ Input Ingress │\n│ (JSON Payload) │\n└────────┬────────┘\n │\n ▼\n┌─────────────────┐\n│ Schema Validate │──── FAIL ───▶ [Error: VALIDATION_FAILED]\n│ (JSON Schema) │\n└────────┬────────┘\n │ PASS\n ▼\n┌─────────────────┐\n│ Risk Factor │\n│ Normalization │\n│ Wᵢ, Rᵢ, Sᵢ │\n└────────┬────────┘\n │\n ▼\n┌─────────────────\n```",
203
+ "outcome": "A-RE-ValuationBPS",
204
+ "rType": 0,
205
+ "persona": "RE",
206
+ "primary_model": "GPT-4o-Synthesis",
207
+ "privacy_tier": "Public",
208
+ "sybox_fee_split": {
209
+ "dev": 0.5,
210
+ "curation": 0.4,
211
+ "author": 0.1
212
+ },
213
+ "ticker": "SYNL",
214
+ "audit_cadence": "Weekly",
215
+ "lifecycle": "Genesis-Platinum",
216
+ "global_outputs": [
217
+ "synthesis_id",
218
+ "logic_id",
219
+ "bps_verified",
220
+ "model_stack",
221
+ "processing_ms",
222
+ "timestamp"
223
+ ],
224
+ "custom_outputs": [
225
+ {
226
+ "field_name": "Type",
227
+ "type": "Description",
228
+ "description": "Downstream Intent",
229
+ "downstream_intent": "BPS Sensitivity",
230
+ "bps_sensitivity": ""
231
+ },
232
+ {
233
+ "field_name": "composite_bps_score",
234
+ "type": "Float",
235
+ "description": "Final 0.0-1.0 score normalized against failure categories.",
236
+ "downstream_intent": "Portfolio Risk Aggregator.",
237
+ "bps_sensitivity": "High"
238
+ },
239
+ {
240
+ "field_name": "valuation_decay_curve",
241
+ "type": "Array",
242
+ "description": "36-month projection of asset value based on BPS.",
243
+ "downstream_intent": "CFO Persona / Investors.",
244
+ "bps_sensitivity": "High"
245
+ },
246
+ {
247
+ "field_name": "operational_state_verdict",
248
+ "type": "String",
249
+ "description": "Deterministic state: \"OPTIMAL\", \"NOMINAL\", \"DEGRADED\", \"CRITICAL\".",
250
+ "downstream_intent": "Circuit Breaker Logic.",
251
+ "bps_sensitivity": "High"
252
+ },
253
+ {
254
+ "field_name": "risk_contribution_map",
255
+ "type": "Object",
256
+ "description": "Breakdown of which `RF-ID` (e.g., RF-004 Security) is driving the BPS.",
257
+ "downstream_intent": "SRE Remediation Workflow.",
258
+ "bps_sensitivity": "Medium"
259
+ }
260
+ ]
261
+ },
262
+ {
263
+ "id": 13,
264
+ "successBps": 9636,
265
+ "cid": "ar://SYNTH_ATOMIC_EC_SKUSIFTER",
266
+ "costUsd": 1500,
267
+ "details": "# A-EC-SKUSifter Technical Logic Specification\n\n## 1. System Definition\n\nA-EC-SKUSifter is an automated SKU classification and routing engine designed to filter, validate, and distribute product SKUs across e-commerce fulfillment channels based on multi-dimensional attribute scoring.\n\n---\n\n## 2. Core Logic Architecture\n\n### 2.1 SKU Processing Pipeline\n\n```\nINPUT → VALIDATION → NORMALIZATION → SCORING → CLASSIFICATION → ROUTING → OUTPUT\n │ │ │ │ │ │ │\n ▼ ▼ ▼ ▼ ▼ ▼ ▼\n RAW SCHEMA_CHK ATTR_NORM BPS_CALC TIER_ASSIGN CH_SELECT EMIT\n```\n\n### 2.2 Mathematical Models\n\n#### 2.2.1 SKU Composite Score (SCS)\n\n$$SCS = \\sum_{i=1}^{n} w_i \\cdot A_i \\cdot D_i$$\n\nWhere:\n- $w_i$ = weight coefficient for attribute $i$ (normalized: $\\sum w_i = 1$)\n- $A_i$ = attribute value (normalized to [0,1])\n- $D_i$ = decay factor based on data freshness: $D_i = e^{-\\lambda t}$\n- $\\lambda$ = decay constant (default: 0.0001/hour)\n- $t$ = hours since last attribute update\n\n#### 2.2.2 Channel Affinity Score (CAS)\n\n$$CAS_{c} = \\frac{\\sum_{j=1}^{m} R_{cj} \\cdot SCS_j}{\\sum_{j=1}^{m} SCS_j} \\cdot \\Phi_c$$\n\nWhere:\n- $R_{cj}$ = routing coefficient for channel $c$ and SKU $j$\n- $\\Phi_c$ = channel capacity factor: $\\Phi_c = 1 - \\frac{Q_c}{Q_{max}}$\n- $Q_c$ = current queue depth for channel $c$\n\n#### 2.2.3 Sift Confidence Index (SCI)\n\n$$SCI = \\frac{1}{1 + e^{-k(SCS - \\theta)}} \\cdot \\prod_{v=1}^{V} P_v$$\n\nWhere:\n- $k$ = steepness factor (default: 10)\n- $\\theta$ = classification threshold (default: 0.5)\n- $P_v$ = validation pass probability for validator $v$\n\n---\n\n## 3. Breakdown Point Score (BPS) Matrix\n\n### 3.1 BPS Calculation Formula\n\n$$BPS = \\frac{F_{impact} \\cdot F_{probability} \\cdot F_{detection}}{M_{mitigation}}$$\n\n| Score Range | Risk Level | Action Required |\n|-------------|------------|-----------------|\n| 0.0 - 2.0 | LOW | Monitor |\n| 2.1 - 5.0 | MEDIUM | Alert + Review |\n| 5.1 - 8.0 | HIGH | Immediate Fix |\n| 8.1 - 10.0 | CRITICAL | System Halt |\n\n### 3.2 Operational Failure Risk Matrix\n\n| Failure Mode | Impact (1-10) | Probability (0-1) | Detection (1-10) | Mitigation (1-10) | BPS | Risk Level |\n|--------------|---------------|-------------------|------------------|-------------------|-----|------------|\n| Schema Validation Bypass | 9 | 0.05 | 3 | 7 | 0.19 | LOW |\n| Attribute Normalization Drift | 7 | 0.15 | 6 | 5 | 1.26 | LOW |\n| Score Calculation Overflow | 10 | 0.02 | 2 | 8 | 0.05 | LOW |\n| Channel Queue Saturation | 8 | 0.25 | 4 | 6 | 1.33 | LOW |\n| Stale Data Propagation | 6 | 0.30 | 7 | 4 | 3.15 | MEDIUM |\n| Classification Threshold Misconfiguration | 8 | 0.10 | 5 | 3 | 1.33 | LOW |\n| Routing Loop Detection Failure | 9 | 0.08 | 8 | 4 | 1.44 | LOW |\n| Database Connection Pool Exhaustion | 10 | 0.12 | 3 | 5 | 0.72 | LOW |\n| Memory Leak in Sift Engine | 8 | 0.20 | 6 | 3 | 3.20 | MEDIUM |\n| Concurrent Write Collision | 7 | 0.18 | 5 | 6 | 1.05 | LOW |\n| External API Timeout Cascade | 9 | 0.22 | 4 | 4 | 1.98 | LOW |\n| SKU Deduplication Failure | 6 | 0.15 | 7 | 5 | 1.26 | LOW |\n| Batch Processing Deadlock | 10 | 0.05 | 9 | 3 | 1.50 | LOW |\n| Metric Emission Backpressure | 5 | 0.25 | 3 | 7 | 0.54 | LOW |\n| Configuration Hot-Reload Race | 7 | 0.08 | 6 | 4 | 0.84 | LOW |\n\n### 3.3 Aggregate System BPS\n\n$$BPS_{system} = \\sqrt{\\sum_{i=1}^{n} BPS_i^2}$$\n\n**Current System BPS**: $\\sqrt{0.19^2 + 1.26^2 + ... + 0.84^2} = 5.47$ → **HIGH RISK**\n\n---\n\n## 4. JSON Schema for Input Validation\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-ec-skusifter/v1/sku-input.json\",\n \"title\": \"A-EC-SKUSifter Input Schema\",\n \"type\": \"object\",\n \"required\": [\"sku_id\", \"attributes\", \"metadata\", \"routing_hints\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"sku_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{2,4}-[0-9]{6,12}-[A-Z0-9]{2,4}$\",\n \"minLength\": 12,\n \"maxLength\": 24,\n \"description\": \"Unique SKU identifier following format: PREFIX-NUMERIC-SUFFIX\"\n },\n \"attributes\": {\n \"type\": \"object\",\n \"required\": [\"category\", \"weight\", \"dimensions\", \"price\", \"inventory_level\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"category\": {\n \"type\": \"object\",\n \"required\": [\"primary\", \"secondary\"],\n \"properties\": {\n \"primary\": {\n \"type\": \"string\",\n \"enum\": [\"ELECTRONICS\", \"APPAREL\", \"HOME\", \"CONSUMABLES\", \"INDUSTRIAL\", \"MEDIA\"]\n },\n \"secondary\": {\n \"type\": \"array\",\n \"items\": {\"type\": \"string\", \"maxLength\": 64},\n \"minItems\": 1,\n \"maxItems\": 5,\n \"uniqueItems\": true\n },\n \"taxonomy_version\": {\n \"type\": \"string\",\n \"pattern\": \"^v[0-9]+\\\\.[0-9]+$\",\n \"default\": \"v2.0\"\n }\n }\n },\n \"weight\": {\n \"type\": \"object\",\n \"required\": [\"value\", \"unit\"],\n \"properties\": {\n \"value\": {\"type\": \"number\", \"minimum\": 0.001, \"maximum\": 99999.999},\n \"unit\": {\"type\": \"string\", \"enum\": [\"kg\", \"lb\", \"g\", \"oz\"]}\n }\n },\n \"dimensions\": {\n \"type\": \"object\",\n \"required\": [\"length\", \"width\", \"height\", \"unit\"],\n \"properties\": {\n \"length\": {\"type\": \"number\", \"minimum\": 0.1, \"maximum\": 9999.9},\n \"width\": {\"type\": \"number\", \"minimum\": 0.1, \"maximum\": 9999.9},\n \"height\": {\"type\": \"number\", \"minimum\": 0.1, \"maximum\": 9999.9},\n \"unit\": {\"type\": \"string\", \"enum\": [\"cm\", \"in\", \"m\", \"ft\"]}\n }\n },\n \"price\": {\n \"type\": \"object\",\n \"required\": [\"base\", \"currency\"],\n \"properties\": {\n \"base\": {\"type\": \"number\", \"minimum\": 0.01, \"maximum\": 9999999.99},\n \"currency\": {\"type\": \"string\", \"pattern\": \"^[A-Z]{3}$\"},\n \"msrp\": {\"type\": \"number\", \"minimum\": 0.01},\n \"cost\": {\"type\": \"number\", \"minimum\": 0.00}\n }\n },\n \"inventory_level\": {\n \"type\": \"object\",\n \"required\": [\"available\", \"reserved\", \"warehouse_id\"],\n \"properties\": {\n \"available\": {\"type\": \"integer\", \"minimum\": 0, \"maximum\": 99999999},\n \"reserved\": {\"type\": \"integer\", \"minimum\": 0, \"maximum\": 99999999},\n \"warehouse_id\": {\"type\": \"string\", \"pattern\": \"^WH-[A-Z]{2}-[0-9]{4}$\"},\n \"reorder_point\": {\"type\": \"integer\", \"minimum\": 0},\n \"lead_time_days\": {\"type\": \"integer\", \"minimum\": 0, \"maximum\": 365}\n }\n },\n \"velocity_score\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0,\n \"description\": \"Sales velocity normalized score\"\n },\n \"hazmat_class\": {\n \"type\": [\"string\", \"null\"],\n \"enum\": [null, \"CLASS_1\", \"CLASS_2\", \"CLASS_3\", \"CLASS_4\", \"CLASS_5\", \"CLASS_6\", \"CLASS_7\", \"CLASS_8\", \"CLASS_9\"]\n },\n \"fragility_index\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 5,\n \"default\": 3\n }\n }\n },\n \"metadata\": {\n \"type\": \"object\",\n \"required\": [\"source_system\", \"ingestion_timestamp\", \"schema_version\"],\n \"properties\": {\n \"source_system\": {\n \"type\": \"string\",\n \"enum\": [\"ERP_PRIMARY\", \"ERP_SECONDARY\", \"PIM\", \"WMS\", \"MANUAL_ENTRY\", \"API_PARTNER\"]\n },\n \"ingestion_timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"schema_version\": {\n \"type\": \"string\",\n \"const\": \"1.0.0\"\n },\n \"correlation_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\"\n },\n \"batch_id\": {\n \"type\": [\"string\", \"null\"],\n \"pattern\": \"^BATCH-[0-9]{8}-[0-9]{6}$\"\n },\n \"checksum\": {\n \"type\": \"string\",\n \"pattern\": \"^sha256:[a-f0-9]{64}$\"\n }\n }\n },\n \"routing_hints\": {\n \"type\": \"object\",\n \"required\": [\"priority\", \"eligible_channels\"],\n \"properties\": {\n \"priority\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 10,\n \"description\": \"1=highest priority, 10=lowest\"\n },\n \"eligible_channels\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"enum\": [\"FBA\", \"FBM\", \"DROPSHIP\", \"WHOLESALE\", \"DTC\", \"MARKETPLACE_3P\", \"B2B_DIRECT\"]\n },\n \"minItems\": 1,\n \"uniqueItems\": true\n },\n \"exclusions\": {\n \"type\": \"array\",\n \"items\": {\"type\": \"string\"},\n \"default\": []\n },\n \"geo_restrictions\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{2}(-[A-Z]{2})?$\"\n }\n },\n \"sla_tier\": {\n \"type\": \"string\",\n \"enum\": [\"STANDARD\", \"EXPEDITED\", \"NEXT_DAY\", \"SAME_DAY\"],\n \"default\": \"STANDARD\"\n }\n }\n },\n \"custom_attributes\": {\n \"type\": \"object\",\n \"maxProperties\": 50,\n \"patternProperties\": {\n \"^[a-z][a-z0-9_]{2,31}$\": {\n \"oneOf\": [\n {\"type\": \"string\", \"maxLength\": 256},\n {\"type\": \"number\"},\n {\"type\": \"boolean\"},\n {\"type\": \"array\", \"items\": {\"type\": \"string\"}, \"maxItems\": 20}\n ]\n }\n },\n \"additionalProperties\": false\n }\n }\n}\n```\n\n---\n\n## 5. SRE Metrics Specification\n\n### 5.1 Service Level Indicators (SLIs)\n\n| Metric Name | Type | Unit | Collection Interval | Aggregation |\n|-------------|------|------|---------------------|-------------|\n| `skusifter_ingestion_latency_seconds` | Histogram | seconds | continuous | p50, p90, p99 |\n| `skusifter_validation_success_ratio` | Gauge | ratio | 10s | avg |\n| `skusifter_classification_throughput` | Counter | SKUs/sec | continuous | rate |\n| `skusifter_routing_decision_latency_ms` | Histogram | milliseconds | continuous | p50, p95, p99 |\n| `skusifter_channel_queue_depth` | Gauge | count | 5s | current |\n| `skusifter_error_rate` | Counter | errors/sec | continuous | rate |\n| `skusifter_scs_distribution` | Histogram | score | continuous | p25, p50, p75 |\n| `skusifter_stale_data_ratio` | Gauge | ratio | 30s | avg |\n| `skusifter_batch_processing_duration_seconds` | Histogram | seconds | per-batch | p50, p99 |\n| `skusifter_memory_utilization_bytes` | Gauge | bytes | 10s | current |\n| `skusifter_db_connection_pool_usage` | Gauge | ratio | 5s | current |\n| `skusifter_external_api_latency_seconds` | Histogram | seconds | continuous | p50, p99 |\n\n### 5.2 Service Level Objectives (SLOs)\n\n| SLO ID | Description | Target | Error Budget (30d) | Burn Rate Alert |\n|--------|-------------|--------|-------------------|-----------------|\n| SLO-001 | Ingestion Latency p99 \u003c 500ms | 99.5% | 3.6 hours | 14.4x (1h), 6x (6h) |\n| SLO-002 | Validation Success Rate | 99.9% | 43.2 minutes | 14.4x (5m), 6x (30m) |\n| SLO-003 | Classification Availability | 99.95% | 21.6 minutes | 14.4x (2m), 6x (15m) |\n| SLO-004 | Routing Decision p99 \u003c 100ms | 99.",
268
+ "outcome": "A-EC-SKUSifter",
269
+ "rType": 0,
270
+ "persona": "EC",
271
+ "primary_model": "GPT-4o-Synthesis",
272
+ "privacy_tier": "Public",
273
+ "sybox_fee_split": {
274
+ "dev": 0.5,
275
+ "curation": 0.4,
276
+ "author": 0.1
277
+ },
278
+ "ticker": "SYNL",
279
+ "audit_cadence": "Weekly",
280
+ "lifecycle": "Genesis-Platinum",
281
+ "global_outputs": [
282
+ "synthesis_id",
283
+ "logic_id",
284
+ "bps_verified",
285
+ "model_stack",
286
+ "processing_ms",
287
+ "timestamp"
288
+ ],
289
+ "custom_outputs": [
290
+ {
291
+ "field_name": "routing_decision",
292
+ "type": "String",
293
+ "description": "The primary fulfillment channel (e.g., \"FBA\", \"DTC\").",
294
+ "downstream_intent": "**A-EC-RestockSim** (to adjust inventory logic).",
295
+ "bps_sensitivity": "High"
296
+ },
297
+ {
298
+ "field_name": "sku_composite_object",
299
+ "type": "Object",
300
+ "description": "Nested signal containing `scs_value` and `confidence_index`.",
301
+ "downstream_intent": "**A-CEO-KPISiphon** (for executive health reporting).",
302
+ "bps_sensitivity": "Medium"
303
+ },
304
+ {
305
+ "field_name": "channel_affinity_map",
306
+ "type": "Array",
307
+ "description": "Objects mapping channels to `affinity_score` (0.0-1.0).",
308
+ "downstream_intent": "**A-EC-DynamicPrice** (to apply channel-specific markups).",
309
+ "bps_sensitivity": "Low"
310
+ },
311
+ {
312
+ "field_name": "operational_verdict",
313
+ "type": "String",
314
+ "description": "1-sentence deterministic action (e.g., \"ROUTE_EXPEDITED\").",
315
+ "downstream_intent": "**A-EC-MarginGuard** (to trigger cost-audit on expensive routes).",
316
+ "bps_sensitivity": "High"
317
+ }
318
+ ]
319
+ },
320
+ {
321
+ "id": 15,
322
+ "successBps": 9731,
323
+ "cid": "ar://SYNTH_ATOMIC_EC_DYNAMICPRICE",
324
+ "costUsd": 1500,
325
+ "details": "# A-EC-DynamicPrice Technical Specification\n\n## 1. Core Algorithm Logic\n\n### 1.1 Price Calculation Function\n\n```\nP_final = P_base × D_m × S_m × C_m × T_m × E_m\n\nWhere:\n├── P_base = Base product price (USD, float64)\n├── D_m = Demand multiplier ∈ [0.85, 2.50]\n├── S_m = Supply/inventory multiplier ∈ [0.90, 1.80]\n├── C_m = Competition multiplier ∈ [0.75, 1.25]\n├── T_m = Time-decay multiplier ∈ [0.70, 1.15]\n└── E_m = Elasticity multiplier ∈ [0.80, 1.40]\n```\n\n### 1.2 Demand Multiplier Derivation\n\n```\nD_m = 1 + (α × ln(Q_current / Q_baseline))\n\nWhere:\n├── α = Demand sensitivity coefficient = 0.23\n├── Q_current = Current demand velocity (units/hour)\n├── Q_baseline = Historical baseline demand (units/hour, 30-day rolling avg)\n\nBoundary conditions:\n├── IF Q_current / Q_baseline \u003c 0.1 THEN D_m = 0.85\n└── IF Q_current / Q_baseline \u003e 15.0 THEN D_m = 2.50\n```\n\n### 1.3 Supply Multiplier Derivation\n\n```\nS_m = 1 + β × (1 - (I_current / I_optimal))\n\nWhere:\n├── β = Supply sensitivity coefficient = 0.65\n├── I_current = Current inventory level (units)\n├── I_optimal = Optimal inventory threshold (units)\n\nBoundary conditions:\n├── IF I_current ≥ I_optimal × 2.0 THEN S_m = 0.90\n├── IF I_current ≤ I_optimal × 0.05 THEN S_m = 1.80\n└── IF I_current = 0 THEN trigger OUT_OF_STOCK state\n```\n\n### 1.4 Competition Multiplier Derivation\n\n```\nC_m = 1 - γ × ((P_competitor_avg - P_base) / P_base)\n\nWhere:\n├── γ = Competition response coefficient = 0.40\n├── P_competitor_avg = Weighted average competitor price\n\nClamping:\n├── C_m = MAX(0.75, MIN(1.25, C_m))\n```\n\n### 1.5 Time-Decay Multiplier\n\n```\nT_m = 1 - δ × (t_elapsed / t_shelf_life)\n\nWhere:\n├── δ = Time decay coefficient = 0.30\n├── t_elapsed = Time since product listing (hours)\n├── t_shelf_life = Maximum shelf life (hours)\n\nBoundary conditions:\n├── IF t_elapsed / t_shelf_life \u003e 0.95 THEN T_m = 0.70\n└── IF t_elapsed / t_shelf_life \u003c 0.10 THEN T_m = 1.15\n```\n\n### 1.6 Elasticity Multiplier\n\n```\nE_m = 1 + ε × (PED_observed - PED_baseline)\n\nWhere:\n├── ε = Elasticity adjustment factor = 0.18\n├── PED_observed = Observed price elasticity of demand\n├── PED_baseline = Category baseline elasticity\n\nPED_observed = (ΔQ/Q) / (ΔP/P)\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 Risk Scoring Formula\n\n```\nBPS_total = Σ(W_i × R_i × I_i)\n\nWhere:\n├── W_i = Weight factor for component i\n├── R_i = Risk probability [0.0, 1.0]\n├── I_i = Impact severity [1, 10]\n```\n\n### 2.2 Component BPS Matrix\n\n| Component ID | Component Name | Weight (W) | Risk Triggers | Impact (I) | BPS Threshold |\n|--------------|----------------|------------|---------------|------------|---------------|\n| BPS-001 | Price Calculation Engine | 0.25 | Latency \u003e 50ms, Error rate \u003e 0.1% | 10 | 2.50 |\n| BPS-002 | Demand Signal Ingestion | 0.20 | Lag \u003e 5s, Data staleness \u003e 60s | 9 | 1.80 |\n| BPS-003 | Inventory Sync Service | 0.18 | Sync delta \u003e 2%, Latency \u003e 200ms | 8 | 1.44 |\n| BPS-004 | Competitor Price Feed | 0.12 | Feed age \u003e 300s, Coverage \u003c 80% | 6 | 0.72 |\n| BPS-005 | ML Elasticity Model | 0.10 | Inference latency \u003e 100ms, Drift \u003e 15% | 7 | 0.70 |\n| BPS-006 | Price Validation Layer | 0.08 | Rejection rate \u003e 5%, False positive \u003e 2% | 8 | 0.64 |\n| BPS-007 | Cache Layer (Redis) | 0.05 | Hit rate \u003c 85%, Eviction rate \u003e 10%/min | 5 | 0.25 |\n| BPS-008 | Database (Price Store) | 0.02 | Query latency \u003e 20ms, Connection pool \u003e 80% | 9 | 0.18 |\n\n### 2.3 BPS Operational States\n\n```\nBPS_total ∈ [0.00, 2.00) → STATE: NOMINAL\nBPS_total ∈ [2.00, 4.00) → STATE: DEGRADED\nBPS_total ∈ [4.00, 6.00) → STATE: CRITICAL\nBPS_total ∈ [6.00, 8.21] → STATE: FAILURE\n\nAction Matrix:\n├── NOMINAL → Continue operations, standard monitoring\n├── DEGRADED → Alert L2, enable fallback pricing, increase sampling\n├── CRITICAL → Page on-call, activate circuit breakers, static pricing mode\n└── FAILURE → Full fallback to cached prices, incident declaration\n```\n\n### 2.4 Cascading Failure Probability\n\n```\nP_cascade = 1 - Π(1 - P_failure_i)^(dependency_depth_i)\n\nCritical Path Dependencies:\n├── Price Engine → Demand Signal → Inventory Sync (depth: 3)\n├── Price Engine → ML Model → Feature Store (depth: 3)\n└── Price Engine → Validation → Database (depth: 3)\n\nIF P_cascade \u003e 0.15 THEN trigger preemptive degradation\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://schemas.internal/a-ec-dynamicprice/v2.3.0/price-request\",\n \"title\": \"A-EC-DynamicPrice Request Schema\",\n \"type\": \"object\",\n \"required\": [\n \"request_id\",\n \"timestamp\",\n \"product\",\n \"demand_signals\",\n \"inventory_state\",\n \"pricing_context\"\n ],\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\",\n \"pattern\": \"^[0-9a-f]{8}-[0-9a-f]{4}-4[0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12}$\",\n \"description\": \"UUIDv4 request identifier\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 timestamp with timezone\"\n },\n \"product\": {\n \"type\": \"object\",\n \"required\": [\"sku\", \"base_price\", \"category_id\", \"listing_timestamp\"],\n \"properties\": {\n \"sku\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{2,4}-[0-9]{6,12}$\",\n \"minLength\": 9,\n \"maxLength\": 17\n },\n \"base_price\": {\n \"type\": \"number\",\n \"minimum\": 0.01,\n \"maximum\": 999999.99,\n \"multipleOf\": 0.01\n },\n \"category_id\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 99999\n },\n \"listing_timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"shelf_life_hours\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 87600,\n \"default\": 8760\n }\n },\n \"additionalProperties\": false\n },\n \"demand_signals\": {\n \"type\": \"object\",\n \"required\": [\"current_velocity\", \"baseline_velocity\"],\n \"properties\": {\n \"current_velocity\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1000000,\n \"description\": \"Units per hour, current\"\n },\n \"baseline_velocity\": {\n \"type\": \"number\",\n \"minimum\": 0.001,\n \"maximum\": 1000000,\n \"description\": \"Units per hour, 30-day rolling average\"\n },\n \"velocity_window_seconds\": {\n \"type\": \"integer\",\n \"minimum\": 60,\n \"maximum\": 3600,\n \"default\": 300\n },\n \"signal_confidence\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1,\n \"default\": 1.0\n }\n },\n \"additionalProperties\": false\n },\n \"inventory_state\": {\n \"type\": \"object\",\n \"required\": [\"current_units\", \"optimal_units\"],\n \"properties\": {\n \"current_units\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 2147483647\n },\n \"optimal_units\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 2147483647\n },\n \"warehouse_id\": {\n \"type\": \"string\",\n \"pattern\": \"^WH-[A-Z]{2}-[0-9]{4}$\"\n },\n \"last_sync_timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"sync_confidence\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1,\n \"default\": 1.0\n }\n },\n \"additionalProperties\": false\n },\n \"pricing_context\": {\n \"type\": \"object\",\n \"properties\": {\n \"competitor_prices\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"competitor_id\", \"price\", \"timestamp\"],\n \"properties\": {\n \"competitor_id\": {\n \"type\": \"string\",\n \"minLength\": 1,\n \"maxLength\": 64\n },\n \"price\": {\n \"type\": \"number\",\n \"minimum\": 0.01,\n \"maximum\": 999999.99\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"weight\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1,\n \"default\": 1.0\n }\n }\n },\n \"maxItems\": 50\n },\n \"elasticity_override\": {\n \"type\": \"object\",\n \"properties\": {\n \"ped_observed\": {\n \"type\": \"number\",\n \"minimum\": -10,\n \"maximum\": 0\n },\n \"ped_baseline\": {\n \"type\": \"number\",\n \"minimum\": -10,\n \"maximum\": 0\n }\n }\n },\n \"price_floor\": {\n \"type\": \"number\",\n \"minimum\": 0.01,\n \"maximum\": 999999.99\n },\n \"price_ceiling\": {\n \"type\": \"number\",\n \"minimum\": 0.01,\n \"maximum\": 999999.99\n },\n \"margin_floor_percent\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100,\n \"default\": 5.0\n }\n },\n \"additionalProperties\": false\n },\n \"metadata\": {\n \"type\": \"object\",\n \"properties\": {\n \"client_version\": {\n \"type\": \"string\",\n \"pattern\": \"^[0-9]+\\\\.[0-9]+\\\\.[0-9]+$\"\n },\n \"trace_id\": {\n \"type\": \"string\",\n \"maxLength\": 128\n },\n \"experiment_ids\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"pattern\": \"^EXP-[0-9]{6}$\"\n },\n \"maxItems\": 10\n }\n },\n \"additionalProperties\": true\n }\n },\n \"additionalProperties\": false,\n \"if\": {\n \"properties\": {\n \"pricing_context\": {\n \"properties\": {\n \"price_floor\": { \"type\": \"number\" },\n \"price_ceiling\": { \"type\": \"number\" }\n },\n \"required\": [\"price_floor\", \"price_ceiling\"]\n }\n }\n },\n \"then\": {\n \"properties\": {\n \"pricing_context\": {\n \"properties\": {\n \"price_ceiling\": {\n \"exclusiveMinimum\": { \"$data\": \"1/price_floor\" }\n }\n }\n }\n }\n }\n}\n```\n\n### 3.1 Response Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://schemas.internal/a-ec-dynamicprice/v2.3.0/price-response\",\n \"title\": \"A-EC-DynamicPrice Response Schema\",\n \"type\": \"object\",\n \"required\": [\n \"request_id\",\n \"computed_price\",\n \"multipliers\",\n \"computation_metadata\"\n ],\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\"\n },\n \"computed_price\": {\n \"type\": \"number\",\n \"minimum\": 0.01,\n \"maximum\": 999999.99\n },\n \"price_applied\": {\n \"type\": \"number\",\n \"minimum\": 0.01,\n \"maximum\": 999999.99,\n \"description\": \"Final price after floor/ceiling constraints\"\n },\n \"multipliers\": {\n \"type\": \"object\",\n \"required\": [\"demand\", \"supply\", \"competition\", \"time_decay\", \"elasticity\"],\n \"properties\": {\n \"demand\": { \"type\": \"number\", \"minimum\": 0.85, \"maximum\": 2.50 },\n \"supply\": { \"type\": \"number\", \"minimum\": 0.90, \"maximum\": 1.80 },\n \"competition\": { \"type\": \"number\", \"minimum\": 0.75, \"maximum\": 1.25 },\n \"time_decay\": { \"type\": \"number\", \"minimum\": 0.70, \"maximum\": 1.15 },\n \"elasticity\": { \"type\": \"number\", \"minimum\": 0.80, \"maximum\": 1.40 },\n \"composite\": { \"type\": \"number\" }\n }\n },\n \"constraints_applied\": {\n \"type\": \"\n```}}}]]]",
326
+ "outcome": "A-EC-DynamicPrice",
327
+ "rType": 0,
328
+ "persona": "EC",
329
+ "primary_model": "GPT-4o-Synthesis",
330
+ "privacy_tier": "Public",
331
+ "sybox_fee_split": {
332
+ "dev": 0.5,
333
+ "curation": 0.4,
334
+ "author": 0.1
335
+ },
336
+ "ticker": "SYNL",
337
+ "audit_cadence": "Weekly",
338
+ "lifecycle": "Genesis-Platinum",
339
+ "global_outputs": [
340
+ "synthesis_id",
341
+ "logic_id",
342
+ "bps_verified",
343
+ "model_stack",
344
+ "processing_ms",
345
+ "timestamp"
346
+ ],
347
+ "custom_outputs": [
348
+ {
349
+ "field_name": "price_applied",
350
+ "type": "Float",
351
+ "description": "The final deterministic price to be pushed to the store.",
352
+ "downstream_intent": "**Channel APIs / Storefronts**.",
353
+ "bps_sensitivity": "Critical"
354
+ },
355
+ {
356
+ "field_name": "multiplier_decomposition",
357
+ "type": "Object",
358
+ "description": "Nested values for `demand`, `supply`, and `elasticity`.",
359
+ "downstream_intent": "**A-EC-RestockSim** (to predict velocity shifts).",
360
+ "bps_sensitivity": "Medium"
361
+ },
362
+ {
363
+ "field_name": "constraint_flags",
364
+ "type": "Array",
365
+ "description": "List of bindings hit (e.g., \"MARGIN_FLOOR_TRIGGERED\").",
366
+ "downstream_intent": "**A-EC-MarginGuard** (to verify intervention success).",
367
+ "bps_sensitivity": "High"
368
+ },
369
+ {
370
+ "field_name": "price_validity_ttl",
371
+ "type": "Integer",
372
+ "description": "Seconds until the price must be recalculated.",
373
+ "downstream_intent": "**Synthesis Scheduler** (to queue next execution).",
374
+ "bps_sensitivity": "Low"
375
+ }
376
+ ]
377
+ },
378
+ {
379
+ "id": 16,
380
+ "successBps": 9752,
381
+ "cid": "ar://SYNTH_ATOMIC_EC_RESTOCKSIM",
382
+ "costUsd": 1500,
383
+ "details": "# A-EC-RestockSim Technical Logic Specification\n\n## 1. System Overview\n\nA-EC-RestockSim is an automated e-commerce inventory restocking simulation engine designed to model, predict, and optimize replenishment cycles under variable demand conditions.\n\n---\n\n## 2. Core Mathematical Models\n\n### 2.1 Demand Forecasting Function\n\n```\nD(t) = μ_d + σ_d · Z(t) + S(t) + T(t)\n\nWhere:\n D(t) = Demand at time t\n μ_d = Mean historical demand\n σ_d = Demand standard deviation\n Z(t) = Stochastic noise component (normal distribution)\n S(t) = Seasonal adjustment factor\n T(t) = Trend component\n```\n\n### 2.2 Economic Order Quantity (EOQ) with Safety Stock\n\n```\nEOQ = √((2 · D_annual · C_order) / C_hold)\n\nSS = Z_α · σ_d · √(L)\n\nROP = (D_avg · L) + SS\n\nWhere:\n C_order = Cost per order placement\n C_hold = Holding cost per unit per period\n SS = Safety stock\n Z_α = Service level z-score (α = 0.95 → Z = 1.645)\n L = Lead time in periods\n ROP = Reorder point\n```\n\n### 2.3 Inventory Position Function\n\n```\nIP(t) = OH(t) + OO(t) - BO(t)\n\nWhere:\n IP(t) = Inventory position at time t\n OH(t) = On-hand inventory\n OO(t) = On-order inventory\n BO(t) = Backorders\n```\n\n### 2.4 Service Level Calculation\n\n```\nSL = 1 - (Σ Stockout_Events / Σ Demand_Cycles)\n\nFill_Rate = Σ Units_Fulfilled / Σ Units_Demanded\n```\n\n---\n\n## 3. Breakdown Point Score (BPS) Matrix\n\n### 3.1 BPS Calculation Formula\n\n```\nBPS = Σ(W_i · R_i · I_i) / Σ W_i\n\nWhere:\n W_i = Weight factor for risk category i\n R_i = Risk probability (0.0 - 1.0)\n I_i = Impact severity (1 - 10)\n\nCritical Threshold: BPS ≥ 7.0\nWarning Threshold: BPS ≥ 4.5\nNormal: BPS \u003c 4.5\n```\n\n### 3.2 BPS Risk Category Matrix\n\n| Risk ID | Category | Weight (W) | Risk Indicators | Impact Range |\n|---------|----------|------------|-----------------|--------------|\n| BPS-001 | Supplier Failure | 0.25 | Lead time variance \u003e 2σ | 8-10 |\n| BPS-002 | Demand Spike | 0.20 | D(t) \u003e μ + 3σ | 6-9 |\n| BPS-003 | Inventory Depletion | 0.20 | OH(t) \u003c SS | 7-10 |\n| BPS-004 | System Latency | 0.10 | API response \u003e P99 | 4-7 |\n| BPS-005 | Data Integrity | 0.10 | Checksum failures \u003e 0.1% | 8-10 |\n| BPS-006 | Forecast Drift | 0.08 | MAPE \u003e 25% | 5-8 |\n| BPS-007 | Order Processing | 0.07 | Queue depth \u003e 10K | 3-6 |\n\n### 3.3 BPS Escalation Logic\n\n```python\ndef calculate_bps(risk_events: list[dict]) -\u003e float:\n total_weighted_score = 0.0\n total_weight = 0.0\n \n for event in risk_events:\n w = event[\"weight\"]\n r = event[\"probability\"]\n i = event[\"impact\"]\n total_weighted_score += w * r * i\n total_weight += w\n \n return total_weighted_score / total_weight if total_weight \u003e 0 else 0.0\n\ndef get_bps_status(bps: float) -\u003e str:\n if bps \u003e= 7.0:\n return \"CRITICAL\" # Trigger incident, halt simulation\n elif bps \u003e= 4.5:\n return \"WARNING\" # Alert on-call, increase monitoring\n else:\n return \"NORMAL\" # Continue operations\n```\n\n---\n\n## 4. JSON Schema for Input Validation\n\n### 4.1 Simulation Configuration Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://a-ec-restocksim/schemas/simulation-config.json\",\n \"title\": \"A-EC-RestockSim Configuration\",\n \"type\": \"object\",\n \"required\": [\"simulation_id\", \"time_horizon\", \"products\", \"suppliers\", \"parameters\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"simulation_id\": {\n \"type\": \"string\",\n \"pattern\": \"^SIM-[A-Z0-9]{8}-[0-9]{6}$\",\n \"description\": \"Unique simulation identifier\"\n },\n \"time_horizon\": {\n \"type\": \"object\",\n \"required\": [\"start_epoch\", \"end_epoch\", \"granularity_seconds\"],\n \"properties\": {\n \"start_epoch\": {\n \"type\": \"integer\",\n \"minimum\": 0\n },\n \"end_epoch\": {\n \"type\": \"integer\",\n \"minimum\": 1\n },\n \"granularity_seconds\": {\n \"type\": \"integer\",\n \"enum\": [3600, 86400, 604800],\n \"description\": \"Hourly, Daily, or Weekly\"\n }\n }\n },\n \"products\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"maxItems\": 10000,\n \"items\": {\n \"$ref\": \"#/$defs/product\"\n }\n },\n \"suppliers\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"maxItems\": 500,\n \"items\": {\n \"$ref\": \"#/$defs/supplier\"\n }\n },\n \"parameters\": {\n \"$ref\": \"#/$defs/simulation_parameters\"\n }\n },\n \"$defs\": {\n \"product\": {\n \"type\": \"object\",\n \"required\": [\"sku\", \"initial_stock\", \"unit_cost\", \"demand_profile\"],\n \"properties\": {\n \"sku\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{2,4}-[0-9]{6,10}$\"\n },\n \"initial_stock\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 10000000\n },\n \"unit_cost\": {\n \"type\": \"number\",\n \"minimum\": 0.01,\n \"maximum\": 1000000.00,\n \"multipleOf\": 0.01\n },\n \"demand_profile\": {\n \"type\": \"object\",\n \"required\": [\"mean\", \"std_dev\", \"seasonality_coefficients\"],\n \"properties\": {\n \"mean\": {\n \"type\": \"number\",\n \"minimum\": 0\n },\n \"std_dev\": {\n \"type\": \"number\",\n \"minimum\": 0\n },\n \"seasonality_coefficients\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 5\n },\n \"minItems\": 12,\n \"maxItems\": 12\n }\n }\n },\n \"reorder_policy\": {\n \"type\": \"string\",\n \"enum\": [\"EOQ\", \"FIXED_QUANTITY\", \"PERIODIC_REVIEW\", \"MIN_MAX\"]\n }\n }\n },\n \"supplier\": {\n \"type\": \"object\",\n \"required\": [\"supplier_id\", \"lead_time_days\", \"reliability_score\"],\n \"properties\": {\n \"supplier_id\": {\n \"type\": \"string\",\n \"pattern\": \"^SUP-[0-9]{5}$\"\n },\n \"lead_time_days\": {\n \"type\": \"object\",\n \"required\": [\"mean\", \"std_dev\"],\n \"properties\": {\n \"mean\": {\n \"type\": \"number\",\n \"minimum\": 0.5,\n \"maximum\": 180\n },\n \"std_dev\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 30\n }\n }\n },\n \"reliability_score\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n },\n \"order_cost\": {\n \"type\": \"number\",\n \"minimum\": 0\n },\n \"minimum_order_quantity\": {\n \"type\": \"integer\",\n \"minimum\": 1\n }\n }\n },\n \"simulation_parameters\": {\n \"type\": \"object\",\n \"required\": [\"service_level_target\", \"holding_cost_rate\", \"stockout_cost_rate\"],\n \"properties\": {\n \"service_level_target\": {\n \"type\": \"number\",\n \"minimum\": 0.80,\n \"maximum\": 0.9999\n },\n \"holding_cost_rate\": {\n \"type\": \"number\",\n \"minimum\": 0.001,\n \"maximum\": 1.0,\n \"description\": \"Annual holding cost as fraction of unit cost\"\n },\n \"stockout_cost_rate\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"description\": \"Cost per unit stockout\"\n },\n \"monte_carlo_iterations\": {\n \"type\": \"integer\",\n \"minimum\": 100,\n \"maximum\": 100000,\n \"default\": 1000\n },\n \"random_seed\": {\n \"type\": \"integer\",\n \"minimum\": 0\n }\n }\n }\n }\n}\n```\n\n### 4.2 Output Event Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://a-ec-restocksim/schemas/simulation-event.json\",\n \"title\": \"Simulation Event Output\",\n \"type\": \"object\",\n \"required\": [\"event_id\", \"timestamp\", \"event_type\", \"payload\"],\n \"properties\": {\n \"event_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"event_type\": {\n \"type\": \"string\",\n \"enum\": [\n \"REORDER_TRIGGERED\",\n \"STOCK_RECEIVED\",\n \"STOCKOUT_OCCURRED\",\n \"DEMAND_FULFILLED\",\n \"SIMULATION_TICK\",\n \"BPS_THRESHOLD_BREACH\"\n ]\n },\n \"payload\": {\n \"type\": \"object\"\n },\n \"bps_snapshot\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 10\n }\n }\n}\n```\n\n---\n\n## 5. SRE Metrics Specification\n\n### 5.1 Service Level Objectives (SLOs)\n\n| Metric | Target | Measurement Window | Burn Rate Alert |\n|--------|--------|-------------------|-----------------|\n| Simulation Availability | 99.9% | 30-day rolling | 14.4x (1h), 6x (6h) |\n| API Latency P50 | ≤ 50ms | 5-minute | N/A |\n| API Latency P95 | ≤ 200ms | 5-minute | N/A |\n| API Latency P99 | ≤ 500ms | 5-minute | 2x threshold |\n| Simulation Accuracy | MAPE ≤ 15% | Per simulation run | N/A |\n| Data Consistency | 99.99% | Continuous | Any violation |\n\n### 5.2 Service Level Indicators (SLIs)\n\n```yaml\nslis:\n availability:\n formula: \"(successful_requests / total_requests) * 100\"\n good_event: \"response_code \u003c 500 AND response_time \u003c 30s\"\n \n latency:\n formula: \"histogram_quantile(0.99, request_duration_seconds)\"\n buckets: [0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10.0]\n \n simulation_throughput:\n formula: \"rate(simulation_ticks_total[5m])\"\n target: \"\u003e= 1000 ticks/second per instance\"\n \n error_rate:\n formula: \"rate(simulation_errors_total[5m]) / rate(simulation_ticks_total[5m])\"\n threshold: \"\u003c 0.001\"\n```\n\n### 5.3 Key Performance Indicators (KPIs)\n\n```\n┌─────────────────────────────────────────────────────────────────┐\n│ OPERATIONAL KPIs │\n├─────────────────────────┬───────────────┬───────────────────────┤\n│ Metric │ Target │ Critical Threshold │\n├─────────────────────────┼───────────────┼───────────────────────┤\n│ Mean Time to Detect │ ≤ 5 min │ \u003e 15 min │\n│ Mean Time to Resolve │ ≤ 30 min │ \u003e 2 hours │\n│ Change Failure Rate │ ≤ 5% │ \u003e 15% │\n│ Deployment Frequency │ ≥ 1/day │ \u003c 1/week │\n│ Error Budget Remaining │ ≥ 50% │ \u003c 10% │\n└─────────────────────────┴───────────────┴───────────────────────┘\n```\n\n### 5.4 Prometheus Metrics Definition\n\n```promql\n# Simulation Core Metrics\nsimulation_ticks_total{simulation_id, status}\nsimulation_duration_seconds{simulation_id, quantile}\ninventory_position_units{sku, warehouse}\nreorder_events_total{sku, supplier_id, trigger_type}\nstockout_events_total{sku, warehouse}\ndemand_fulfilled_units_total{sku}\ndemand_requested_units_total{sku}\n\n# BPS Metrics\nbps_current_score{simulation_id}\nbps_risk_category_score{simulation_id, risk_id}\nbps_threshold_breaches_total{simulation_id, severity}\n\n# System Health Metrics\nsimulation_queue_depth{priority}\nsimulation_worker_utilization{worker_id}\napi_request_duration_seconds{endpoint, method, status}\ndatabase_query_duration_seconds{query_type}\ncache_hit_ratio{cache_name}\n```\n\n### 5.5 Alerting Rules\n\n```yaml\ngroups:\n - name: a-ec-restocksim-critical\n rules:\n - alert: BPSCriticalThreshold\n expr: bps_current_score \u003e= 7.0\n for: 1m\n labels:\n severity: critical\n annotations:\n summary: \"BPS score critical: {{ $value }}\"\n \n - alert: SimulationAvailabilityBreach\n expr: |\n (\n sum(rate(simulation_ticks_total{status=\"success\"}[5m]))\n /\n sum(rate(simulation_ticks_total[5m]))\n ) \u003c 0.999\n for: 5m\n labels:\n severity\n```",
384
+ "outcome": "A-EC-RestockSim",
385
+ "rType": 0,
386
+ "persona": "EC",
387
+ "primary_model": "GPT-4o-Synthesis",
388
+ "privacy_tier": "Public",
389
+ "sybox_fee_split": {
390
+ "dev": 0.5,
391
+ "curation": 0.4,
392
+ "author": 0.1
393
+ },
394
+ "ticker": "SYNL",
395
+ "audit_cadence": "Weekly",
396
+ "lifecycle": "Genesis-Platinum",
397
+ "global_outputs": [
398
+ "synthesis_id",
399
+ "logic_id",
400
+ "bps_verified",
401
+ "model_stack",
402
+ "processing_ms",
403
+ "timestamp"
404
+ ],
405
+ "custom_outputs": [
406
+ {
407
+ "field_name": "replenishment_triggers",
408
+ "type": "Array",
409
+ "description": "List of SKU-Supplier pairs requiring immediate orders.",
410
+ "downstream_intent": "**ERP/WMS Integration Ports**.",
411
+ "bps_sensitivity": "High"
412
+ },
413
+ {
414
+ "field_name": "service_level_forecast",
415
+ "type": "Float",
416
+ "description": "Predicted fill rate (0.0-1.0) for the next horizon.",
417
+ "downstream_intent": "**A-CEO-KPISiphon** (Customer Satisfaction KPI).",
418
+ "bps_sensitivity": "Medium"
419
+ },
420
+ {
421
+ "field_name": "inventory_tail_risk",
422
+ "type": "Object",
423
+ "description": "Hierarchical data on stockout probability and lead-time variance.",
424
+ "downstream_intent": "**A-EC-DynamicPrice** (to increase prices on low stock).",
425
+ "bps_sensitivity": "High"
426
+ },
427
+ {
428
+ "field_name": "sim_diagnostic_verdict",
429
+ "type": "String",
430
+ "description": "\"NORMAL\", \"WARNING\", or \"CRITICAL_HALT\".",
431
+ "downstream_intent": "**Sentinel Audit System**.",
432
+ "bps_sensitivity": "Critical"
433
+ }
434
+ ]
435
+ },
436
+ {
437
+ "id": 17,
438
+ "successBps": 9635,
439
+ "cid": "ar://SYNTH_ATOMIC_HR_OUTCOMEEXTRACT",
440
+ "costUsd": 1500,
441
+ "details": "# A-HR-OutcomeExtract Technical Specification\n\n## System Overview\n\nA-HR-OutcomeExtract is an automated pipeline for extracting, validating, and scoring HR outcome data from heterogeneous source systems with deterministic failure handling.\n\n---\n\n## Core Logic Block\n\n### 1. Input Validation JSON Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"a-hr-outcome-extract-input-v1\",\n \"type\": \"object\",\n \"required\": [\"extraction_id\", \"source_system\", \"timestamp\", \"payload\"],\n \"properties\": {\n \"extraction_id\": {\n \"type\": \"string\",\n \"pattern\": \"^EXT-[A-Z]{2}-[0-9]{8}-[A-F0-9]{12}$\"\n },\n \"source_system\": {\n \"type\": \"string\",\n \"enum\": [\"WORKDAY\", \"SAP_HCM\", \"ORACLE_HCM\", \"ADP\", \"CUSTOM_HRIS\"]\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"payload\": {\n \"type\": \"object\",\n \"required\": [\"employee_records\", \"outcome_type\", \"period\"],\n \"properties\": {\n \"employee_records\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"maxItems\": 100000,\n \"items\": {\n \"$ref\": \"#/$defs/employee_outcome\"\n }\n },\n \"outcome_type\": {\n \"type\": \"string\",\n \"enum\": [\"PERFORMANCE\", \"COMPENSATION\", \"TERMINATION\", \"PROMOTION\", \"TRANSFER\", \"ONBOARDING\"]\n },\n \"period\": {\n \"type\": \"object\",\n \"required\": [\"start\", \"end\"],\n \"properties\": {\n \"start\": {\"type\": \"string\", \"format\": \"date\"},\n \"end\": {\"type\": \"string\", \"format\": \"date\"}\n }\n }\n }\n },\n \"metadata\": {\n \"type\": \"object\",\n \"properties\": {\n \"retry_count\": {\"type\": \"integer\", \"minimum\": 0, \"maximum\": 5},\n \"priority\": {\"type\": \"integer\", \"minimum\": 1, \"maximum\": 10},\n \"checksum\": {\"type\": \"string\", \"pattern\": \"^[a-f0-9]{64}$\"}\n }\n }\n },\n \"$defs\": {\n \"employee_outcome\": {\n \"type\": \"object\",\n \"required\": [\"employee_id\", \"outcome_value\", \"effective_date\"],\n \"properties\": {\n \"employee_id\": {\n \"type\": \"string\",\n \"pattern\": \"^EMP[0-9]{9}$\"\n },\n \"outcome_value\": {\n \"oneOf\": [\n {\"type\": \"number\"},\n {\"type\": \"string\", \"maxLength\": 500},\n {\"type\": \"object\"}\n ]\n },\n \"effective_date\": {\n \"type\": \"string\",\n \"format\": \"date\"\n },\n \"confidence_score\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n }\n }\n }\n }\n}\n```\n\n---\n\n### 2. Breakdown Point Score (BPS) Matrix\n\n#### 2.1 BPS Calculation Formula\n\n```\nBPS = Σ(Wi × Fi × Si) / N\n\nWhere:\n Wi = Weight factor for failure category i (0.1 - 1.0)\n Fi = Frequency coefficient (occurrences per 10,000 operations)\n Si = Severity multiplier (1 = low, 5 = critical)\n N = Normalization constant (sum of all weights)\n```\n\n#### 2.2 Operational Failure Risk Matrix\n\n| Failure Category | Code | Weight (Wi) | Base Frequency (Fi) | Severity (Si) | BPS Contribution | Threshold |\n|-----------------|------|-------------|---------------------|---------------|------------------|-----------|\n| Schema Validation Failure | SVF-001 | 0.85 | 12.5 | 3 | 31.875 | ≤ 50 |\n| Source Connection Timeout | SCT-002 | 0.95 | 8.2 | 4 | 31.16 | ≤ 40 |\n| Data Integrity Violation | DIV-003 | 1.00 | 3.1 | 5 | 15.50 | ≤ 20 |\n| Transformation Logic Error | TLE-004 | 0.90 | 5.7 | 4 | 20.52 | ≤ 30 |\n| Downstream Write Failure | DWF-005 | 0.80 | 2.3 | 5 | 9.20 | ≤ 15 |\n| Authentication Expiry | AEX-006 | 0.70 | 15.8 | 2 | 22.12 | ≤ 35 |\n| Rate Limit Exceeded | RLE-007 | 0.60 | 22.4 | 2 | 26.88 | ≤ 40 |\n| Memory Exhaustion | MEX-008 | 0.95 | 1.2 | 5 | 5.70 | ≤ 10 |\n| Checksum Mismatch | CSM-009 | 1.00 | 0.8 | 5 | 4.00 | ≤ 5 |\n| Partial Extraction | PEX-010 | 0.75 | 6.9 | 3 | 15.525 | ≤ 25 |\n\n#### 2.3 Aggregate BPS Scoring\n\n```\nTotal_BPS = Σ(BPS_i) for all active failure categories\n\nRisk Classification:\n 0-50: NOMINAL (Green)\n 51-100: ELEVATED (Yellow)\n 101-150: DEGRADED (Orange)\n 151-200: CRITICAL (Red)\n \u003e200: BREAKDOWN (Black) → Circuit breaker activation\n```\n\n#### 2.4 BPS Decay Function\n\n```python\ndef calculate_bps_decay(initial_bps: float, time_since_incident_hours: float) -\u003e float:\n \"\"\"\n Exponential decay of BPS contribution over time\n Half-life: 24 hours for non-critical, 72 hours for critical\n \"\"\"\n lambda_decay = 0.693 / (72 if initial_bps \u003e 15 else 24)\n return initial_bps * math.exp(-lambda_decay * time_since_incident_hours)\n```\n\n---\n\n### 3. Extraction Logic State Machine\n\n```\n┌─────────────┐\n│ IDLE │\n└──────┬──────┘\n │ trigger_extraction()\n ▼\n┌─────────────┐ validation_failed\n│ VALIDATING │────────────────────────┐\n└──────┬──────┘ │\n │ schema_valid │\n ▼ ▼\n┌─────────────┐ ┌─────────────┐\n│ CONNECTING │ │ REJECTED │\n└──────┬──────┘ └─────────────┘\n │ connection_established\n ▼\n┌─────────────┐ extraction_error\n│ EXTRACTING │────────────────────────┐\n└──────┬──────┘ │\n │ data_received │\n ▼ ▼\n┌─────────────┐ ┌─────────────┐\n│ TRANSFORMING│ │ FAILED │\n└──────┬──────┘ └──────┬──────┘\n │ transform_complete │ retry_eligible\n ▼ ▼\n┌─────────────┐ ┌─────────────┐\n│ LOADING │ │ RETRYING │──┐\n└──────┬──────┘ └─────────────┘ │\n │ load_complete ▲ │\n ▼ └─────────┘\n┌─────────────┐\n│ COMPLETE │\n└─────────────┘\n```\n\n---\n\n### 4. SRE Metrics Specification\n\n#### 4.1 Service Level Indicators (SLIs)\n\n| Metric Name | Type | Formula | Unit |\n|-------------|------|---------|------|\n| `extraction_latency_p50` | Latency | percentile(extraction_duration, 0.50) | ms |\n| `extraction_latency_p95` | Latency | percentile(extraction_duration, 0.95) | ms |\n| `extraction_latency_p99` | Latency | percentile(extraction_duration, 0.99) | ms |\n| `extraction_success_rate` | Availability | successful_extractions / total_extractions | ratio |\n| `record_throughput` | Throughput | records_processed / time_window | records/s |\n| `data_freshness` | Freshness | now() - max(record_timestamp) | seconds |\n| `validation_pass_rate` | Quality | valid_records / total_records | ratio |\n| `error_budget_remaining` | Budget | 1 - (errors / allowed_errors) | ratio |\n\n#### 4.2 Service Level Objectives (SLOs)\n\n```yaml\nslos:\n availability:\n target: 99.95\n window: 30d\n burn_rate_alerts:\n - severity: critical\n burn_rate: 14.4\n window: 1h\n - severity: warning\n burn_rate: 6.0\n window: 6h\n \n latency:\n p50_target_ms: 500\n p95_target_ms: 2000\n p99_target_ms: 5000\n \n throughput:\n minimum_records_per_second: 1000\n burst_capacity_multiplier: 3.0\n \n data_quality:\n validation_pass_rate: 99.9\n checksum_match_rate: 100.0\n \n freshness:\n max_staleness_seconds: 300\n alerting_threshold_seconds: 180\n```\n\n#### 4.3 Prometheus Metrics Export\n\n```prometheus\n# HELP a_hr_outcome_extract_duration_seconds Time spent extracting HR outcomes\n# TYPE a_hr_outcome_extract_duration_seconds histogram\na_hr_outcome_extract_duration_seconds_bucket{source=\"WORKDAY\",outcome_type=\"PERFORMANCE\",le=\"0.5\"} 2341\na_hr_outcome_extract_duration_seconds_bucket{source=\"WORKDAY\",outcome_type=\"PERFORMANCE\",le=\"1.0\"} 4521\na_hr_outcome_extract_duration_seconds_bucket{source=\"WORKDAY\",outcome_type=\"PERFORMANCE\",le=\"2.0\"} 4892\na_hr_outcome_extract_duration_seconds_bucket{source=\"WORKDAY\",outcome_type=\"PERFORMANCE\",le=\"5.0\"} 4978\na_hr_outcome_extract_duration_seconds_bucket{source=\"WORKDAY\",outcome_type=\"PERFORMANCE\",le=\"+Inf\"} 5000\na_hr_outcome_extract_duration_seconds_sum{source=\"WORKDAY\",outcome_type=\"PERFORMANCE\"} 3421.5\na_hr_outcome_extract_duration_seconds_count{source=\"WORKDAY\",outcome_type=\"PERFORMANCE\"} 5000\n\n# HELP a_hr_outcome_extract_records_total Total records processed\n# TYPE a_hr_outcome_extract_records_total counter\na_hr_outcome_extract_records_total{source=\"WORKDAY\",status=\"success\"} 4987234\na_hr_outcome_extract_records_total{source=\"WORKDAY\",status=\"failed\"} 1523\na_hr_outcome_extract_records_total{source=\"WORKDAY\",status=\"skipped\"} 892\n\n# HELP a_hr_outcome_extract_bps_score Current Breakdown Point Score\n# TYPE a_hr_outcome_extract_bps_score gauge\na_hr_outcome_extract_bps_score{failure_category=\"SVF-001\"} 12.5\na_hr_outcome_extract_bps_score{failure_category=\"SCT-002\"} 8.2\na_hr_outcome_extract_bps_score{failure_category=\"total\"} 87.3\n\n# HELP a_hr_outcome_extract_error_budget_remaining Remaining error budget ratio\n# TYPE a_hr_outcome_extract_error_budget_remaining gauge\na_hr_outcome_extract_error_budget_remaining{slo=\"availability\"} 0.73\na_hr_outcome_extract_error_budget_remaining{slo=\"latency\"} 0.91\n```\n\n#### 4.4 Alerting Rules\n\n```yaml\ngroups:\n - name: a-hr-outcome-extract\n rules:\n - alert: HighBPSScore\n expr: a_hr_outcome_extract_bps_score{failure_category=\"total\"} \u003e 150\n for: 5m\n labels:\n severity: critical\n annotations:\n summary: \"BPS score critical: {{ $value }}\"\n \n - alert: ErrorBudgetBurnRate\n expr: |\n (\n sum(rate(a_hr_outcome_extract_records_total{status=\"failed\"}[1h]))\n /\n sum(rate(a_hr_outcome_extract_records_total[1h]))\n ) \u003e (14.4 * 0.0005)\n for: 2m\n labels:\n severity: critical\n \n - alert: ExtractionLatencyHigh\n expr: |\n histogram_quantile(0.99, \n rate(a_hr_outcome_extract_duration_seconds_bucket[5m])\n ) \u003e 5\n for: 10m\n labels:\n severity: warning\n \n - alert: DataStaleness\n expr: a_hr_outcome_extract_data_freshness_seconds \u003e 300\n for: 5m\n labels:\n severity: warning\n```\n\n---\n\n### 5. Circuit Breaker Logic\n\n```python\nclass CircuitBreaker:\n CLOSED = \"CLOSED\"\n OPEN = \"OPEN\"\n HALF_OPEN = \"HALF_OPEN\"\n \n def __init__(self):\n self.state = self.CLOSED\n self.failure_count = 0\n self.success_count = 0\n self.last_failure_time = None\n \n # Thresholds\n self.failure_threshold = 5\n self.success_threshold = 3\n self.timeout_seconds = 60\n self.bps_threshold = 200\n \n def evaluate(self, bps_score: float, operation_result: bool) -\u003e str:\n if bps_score \u003e self.bps_threshold:\n self._trip()\n return self.OPEN\n \n if self.state == self.CLOSED:\n if not operation_result:\n self.failure_count += 1\n if self.failure_count \u003e= self.failure_threshold:\n self._trip()\n else:\n self.failure_count = 0\n \n elif self.state == self.OPEN:\n if self._timeout_elapsed():\n self.state = self.HALF_OPEN\n self.success_count = 0\n \n elif self.state == self.HALF_OPEN:\n if operation_result:\n self.success_count += 1\n if self.success_count \u003e= self.success_threshold:\n self._reset()\n else:\n self._trip()\n \n return self.state\n \n def _trip(self):\n self.state = self.OPEN\n self.last_failure_time = time.time()\n self.failure_count = 0\n \n def _reset(self):\n self.state = self.CLOSED\n self.failure_count = 0\n self.\n```",
442
+ "outcome": "A-HR-OutcomeExtract",
443
+ "rType": 0,
444
+ "persona": "HR",
445
+ "primary_model": "GPT-4o-Synthesis",
446
+ "privacy_tier": "Public",
447
+ "sybox_fee_split": {
448
+ "dev": 0.5,
449
+ "curation": 0.4,
450
+ "author": 0.1
451
+ },
452
+ "ticker": "SYNL",
453
+ "audit_cadence": "Weekly",
454
+ "lifecycle": "Genesis-Platinum",
455
+ "global_outputs": [
456
+ "synthesis_id",
457
+ "logic_id",
458
+ "bps_verified",
459
+ "model_stack",
460
+ "processing_ms",
461
+ "timestamp"
462
+ ],
463
+ "custom_outputs": [
464
+ {
465
+ "field_name": "extraction_summary",
466
+ "type": "Object",
467
+ "description": "High-level counters of records processed, validated, and loaded.",
468
+ "downstream_intent": "A-CEO-KPISiphon",
469
+ "bps_sensitivity": "Yes"
470
+ },
471
+ {
472
+ "field_name": "outcome_payload_pointer",
473
+ "type": "String",
474
+ "description": "Data_source_id for the normalized record set in the warehouse.",
475
+ "downstream_intent": "A-COO-WorkflowMapper",
476
+ "bps_sensitivity": "No"
477
+ },
478
+ {
479
+ "field_name": "integrity_receipt",
480
+ "type": "Object",
481
+ "description": "Contains `checksum_match` (Boolean) and `validation_pass_rate` (Float).",
482
+ "downstream_intent": "Compliance Auditor",
483
+ "bps_sensitivity": "Yes"
484
+ },
485
+ {
486
+ "field_name": "operational_sli_metrics",
487
+ "type": "Object",
488
+ "description": "Latency p95, throughput (records/s), and circuit breaker state.",
489
+ "downstream_intent": "SRE / Infrastructure",
490
+ "bps_sensitivity": "No"
491
+ }
492
+ ]
493
+ },
494
+ {
495
+ "id": 18,
496
+ "successBps": 9917,
497
+ "cid": "ar://SYNTH_ATOMIC_HR_BIASGUARD",
498
+ "costUsd": 1500,
499
+ "details": "# A-HR-BiasGuard Technical Logic Specification\n\n## 1. System Architecture Overview\n\n```\n┌─────────────────────────────────────────────────────────────────────┐\n│ A-HR-BiasGuard Core Engine │\n├─────────────────────────────────────────────────────────────────────┤\n│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │\n│ │ Ingestion │──│ Bias │──│ Fairness │──│ Decision │ │\n│ │ Layer │ │ Detection │ │ Scoring │ │ Gateway │ │\n│ └─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘ │\n│ │ │ │ │ │\n│ ▼ ▼ ▼ ▼ │\n│ ┌─────────────────────────────────────────────────────────────────┐│\n│ │ Audit \u0026 Observability Layer ││\n│ └─────────────────────────────────────────────────────────────────┘│\n└─────────────────────────────────────────────────────────────────────┘\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 BPS Calculation Formula\n\n```\nBPS = Σ(Wᵢ × Rᵢ × Iᵢ) / N\n\nWhere:\n Wᵢ = Weight factor for component i (0.0 - 1.0)\n Rᵢ = Risk probability for component i (0.0 - 1.0)\n Iᵢ = Impact severity for component i (1 - 10)\n N = Normalization constant = Σ(Wᵢ × 10)\n```\n\n### 2.2 Component Risk Matrix\n\n| Component ID | Component Name | Weight (Wᵢ) | Risk Threshold | Impact (Iᵢ) | BPS Contribution |\n|--------------|----------------|-------------|----------------|-------------|------------------|\n| C-001 | Data Ingestion Pipeline | 0.85 | R ≥ 0.15 | 9 | `0.85 × R × 9` |\n| C-002 | Feature Extraction Engine | 0.90 | R ≥ 0.10 | 10 | `0.90 × R × 10` |\n| C-003 | Bias Detection Model | 0.95 | R ≥ 0.05 | 10 | `0.95 × R × 10` |\n| C-004 | Fairness Scoring Module | 0.92 | R ≥ 0.08 | 9 | `0.92 × R × 9` |\n| C-005 | Decision Gateway | 0.88 | R ≥ 0.12 | 8 | `0.88 × R × 8` |\n| C-006 | Audit Logger | 0.75 | R ≥ 0.20 | 7 | `0.75 × R × 7` |\n| C-007 | Model Drift Detector | 0.80 | R ≥ 0.18 | 8 | `0.80 × R × 8` |\n| C-008 | Protected Class Validator | 0.93 | R ≥ 0.07 | 10 | `0.93 × R × 10` |\n\n### 2.3 BPS Severity Classification\n\n```\nBPS_SEVERITY = {\n \"NOMINAL\": BPS \u003c 0.15,\n \"ELEVATED\": 0.15 ≤ BPS \u003c 0.35,\n \"WARNING\": 0.35 ≤ BPS \u003c 0.55,\n \"CRITICAL\": 0.55 ≤ BPS \u003c 0.75,\n \"BREAKDOWN\": BPS ≥ 0.75\n}\n```\n\n### 2.4 Failure Mode Analysis\n\n```python\nFAILURE_MODES = {\n \"FM-001\": {\n \"name\": \"Disparate Impact Threshold Breach\",\n \"trigger\": \"DI_ratio \u003c 0.80 OR DI_ratio \u003e 1.25\",\n \"bps_impact\": 0.45,\n \"mttr_target_minutes\": 15,\n \"escalation_path\": [\"L2-SRE\", \"ML-Ethics-Team\", \"Legal\"]\n },\n \"FM-002\": {\n \"name\": \"Protected Attribute Leakage\",\n \"trigger\": \"feature_importance(protected_attr) \u003e 0.05\",\n \"bps_impact\": 0.65,\n \"mttr_target_minutes\": 5,\n \"escalation_path\": [\"L3-SRE\", \"CISO\", \"Legal\"]\n },\n \"FM-003\": {\n \"name\": \"Model Drift Beyond Tolerance\",\n \"trigger\": \"PSI \u003e 0.25 OR KL_divergence \u003e 0.10\",\n \"bps_impact\": 0.35,\n \"mttr_target_minutes\": 30,\n \"escalation_path\": [\"L2-SRE\", \"ML-Ops\"]\n },\n \"FM-004\": {\n \"name\": \"Audit Trail Discontinuity\",\n \"trigger\": \"audit_gap_seconds \u003e 300\",\n \"bps_impact\": 0.40,\n \"mttr_target_minutes\": 10,\n \"escalation_path\": [\"L2-SRE\", \"Compliance\"]\n },\n \"FM-005\": {\n \"name\": \"Fairness Score Degradation\",\n \"trigger\": \"Δfairness_score \u003e 0.15 over 24h\",\n \"bps_impact\": 0.50,\n \"mttr_target_minutes\": 60,\n \"escalation_path\": [\"L2-SRE\", \"ML-Ethics-Team\"]\n }\n}\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n### 3.1 Candidate Evaluation Request Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://a-hr-biasguard.internal/schemas/candidate-evaluation-request.json\",\n \"title\": \"CandidateEvaluationRequest\",\n \"type\": \"object\",\n \"required\": [\n \"request_id\",\n \"timestamp\",\n \"candidate_data\",\n \"evaluation_context\",\n \"audit_metadata\"\n ],\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\",\n \"description\": \"Unique identifier for request tracing\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 timestamp of request initiation\"\n },\n \"schema_version\": {\n \"type\": \"string\",\n \"pattern\": \"^[0-9]+\\\\.[0-9]+\\\\.[0-9]+$\",\n \"default\": \"2.1.0\"\n },\n \"candidate_data\": {\n \"type\": \"object\",\n \"required\": [\"candidate_id\", \"features\"],\n \"properties\": {\n \"candidate_id\": {\n \"type\": \"string\",\n \"minLength\": 8,\n \"maxLength\": 64,\n \"pattern\": \"^[A-Za-z0-9-_]+$\"\n },\n \"features\": {\n \"type\": \"object\",\n \"required\": [\"experience_years\", \"education_level\", \"skills\"],\n \"properties\": {\n \"experience_years\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 60\n },\n \"education_level\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 8,\n \"description\": \"1=None, 2=HS, 3=Associate, 4=Bachelor, 5=Master, 6=PhD, 7=PostDoc, 8=Other\"\n },\n \"skills\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"skill_id\", \"proficiency\"],\n \"properties\": {\n \"skill_id\": {\n \"type\": \"string\",\n \"pattern\": \"^SKL-[0-9]{6}$\"\n },\n \"proficiency\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n },\n \"years_experience\": {\n \"type\": \"number\",\n \"minimum\": 0\n },\n \"verified\": {\n \"type\": \"boolean\",\n \"default\": false\n }\n }\n },\n \"minItems\": 1,\n \"maxItems\": 100\n },\n \"certifications\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"cert_id\": {\"type\": \"string\"},\n \"issue_date\": {\"type\": \"string\", \"format\": \"date\"},\n \"expiry_date\": {\"type\": \"string\", \"format\": \"date\"},\n \"verified\": {\"type\": \"boolean\"}\n }\n }\n }\n },\n \"additionalProperties\": false\n },\n \"protected_attributes_hash\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{64}$\",\n \"description\": \"SHA-256 hash for audit without exposure\"\n }\n },\n \"additionalProperties\": false\n },\n \"evaluation_context\": {\n \"type\": \"object\",\n \"required\": [\"job_requisition_id\", \"evaluation_stage\"],\n \"properties\": {\n \"job_requisition_id\": {\n \"type\": \"string\",\n \"pattern\": \"^REQ-[0-9]{4}-[0-9]{6}$\"\n },\n \"evaluation_stage\": {\n \"type\": \"string\",\n \"enum\": [\n \"RESUME_SCREEN\",\n \"INITIAL_ASSESSMENT\",\n \"TECHNICAL_EVALUATION\",\n \"BEHAVIORAL_ASSESSMENT\",\n \"FINAL_REVIEW\",\n \"OFFER_DECISION\"\n ]\n },\n \"evaluator_id\": {\n \"type\": \"string\",\n \"pattern\": \"^EMP-[0-9]{8}$\"\n },\n \"department_code\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{2,5}-[0-9]{3}$\"\n },\n \"urgency_level\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 5,\n \"default\": 3\n }\n }\n },\n \"audit_metadata\": {\n \"type\": \"object\",\n \"required\": [\"source_system\", \"correlation_id\"],\n \"properties\": {\n \"source_system\": {\n \"type\": \"string\",\n \"enum\": [\"ATS_PRIMARY\", \"ATS_SECONDARY\", \"MANUAL_ENTRY\", \"API_INTEGRATION\"]\n },\n \"correlation_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\"\n },\n \"session_id\": {\n \"type\": \"string\"\n },\n \"client_ip_hash\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{64}$\"\n },\n \"consent_token\": {\n \"type\": \"string\",\n \"minLength\": 32\n }\n }\n },\n \"bias_check_config\": {\n \"type\": \"object\",\n \"properties\": {\n \"enabled_checks\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"enum\": [\n \"DISPARATE_IMPACT\",\n \"DEMOGRAPHIC_PARITY\",\n \"EQUALIZED_ODDS\",\n \"CALIBRATION\",\n \"INDIVIDUAL_FAIRNESS\",\n \"COUNTERFACTUAL_FAIRNESS\"\n ]\n },\n \"default\": [\"DISPARATE_IMPACT\", \"DEMOGRAPHIC_PARITY\", \"EQUALIZED_ODDS\"]\n },\n \"threshold_overrides\": {\n \"type\": \"object\",\n \"additionalProperties\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n }\n },\n \"strict_mode\": {\n \"type\": \"boolean\",\n \"default\": true\n }\n }\n }\n },\n \"additionalProperties\": false\n}\n```\n\n### 3.2 Bias Detection Response Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://a-hr-biasguard.internal/schemas/bias-detection-response.json\",\n \"title\": \"BiasDetectionResponse\",\n \"type\": \"object\",\n \"required\": [\n \"response_id\",\n \"request_id\",\n \"timestamp\",\n \"processing_time_ms\",\n \"bias_analysis\",\n \"decision\",\n \"audit_record\"\n ],\n \"properties\": {\n \"response_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\"\n },\n \"request_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"processing_time_ms\": {\n \"type\": \"integer\",\n \"minimum\": 0\n },\n \"bias_analysis\": {\n \"type\": \"object\",\n \"required\": [\"overall_fairness_score\", \"metrics\", \"flags\"],\n \"properties\": {\n \"overall_fairness_score\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n },\n \"confidence_interval\": {\n \"type\": \"object\",\n \"properties\": {\n \"lower\": {\"type\": \"number\"},\n \"upper\": {\"type\": \"number\"},\n \"confidence_level\": {\"type\": \"number\"}\n }\n },\n \"metrics\": {\n \"type\": \"object\",\n \"properties\": {\n \"disparate_impact_ratio\": {\n \"type\": \"number\",\n \"minimum\": 0.0\n },\n \"demographic_parity_difference\": {\n \"type\": \"number\"\n },\n \"equalized_odds_difference\": {\n \"type\": \"number\"\n },\n \"calibration_error\": {\n \"type\": \"number\",\n \"minimum\": 0.0\n },\n \"individual_fairness_score\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n }\n }\n },\n \"flags\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"flag_code\", \"severity\", \"description\"],\n \"properties\": {\n \"flag_code\": {\n \"type\": \"string\",\n \"pattern\": \"^BF-[0-9]{4}$\"\n },\n \"severity\": {\n \"type\": \"string\",\n \"enum\": [\"INFO\", \"WARNING\", \"CRITICAL\", \"BLOCKING\"]\n },\n \"description\": {\n \"type\": \"string\"\n },\n \"affected_groups\": {\n \"type\": \"array\",\n \"items\": {\"type\": \"string\"}\n },\n \"remediation_hint\": {\n \"type\": \"string\"\n }\n }\n }\n },\n \"feature_attribution\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n```}}}}}}",
500
+ "outcome": "A-HR-BiasGuard",
501
+ "rType": 0,
502
+ "persona": "HR",
503
+ "primary_model": "GPT-4o-Synthesis",
504
+ "privacy_tier": "Public",
505
+ "sybox_fee_split": {
506
+ "dev": 0.5,
507
+ "curation": 0.4,
508
+ "author": 0.1
509
+ },
510
+ "ticker": "SYNL",
511
+ "audit_cadence": "Weekly",
512
+ "lifecycle": "Genesis-Platinum",
513
+ "global_outputs": [
514
+ "synthesis_id",
515
+ "logic_id",
516
+ "bps_verified",
517
+ "model_stack",
518
+ "processing_ms",
519
+ "timestamp"
520
+ ],
521
+ "custom_outputs": [
522
+ {
523
+ "field_name": "fairness_verdict",
524
+ "type": "String",
525
+ "description": "Enum: `[\"APPROVED\", \"CONDITIONAL_APPROVAL\", \"BLOCKED\"]`.",
526
+ "downstream_intent": "A-CEO-KPISiphon",
527
+ "bps_sensitivity": "Yes"
528
+ },
529
+ {
530
+ "field_name": "disparate_impact_ratios",
531
+ "type": "Object",
532
+ "description": "Key metrics (DI ratio, demographic parity diff) for protected groups.",
533
+ "downstream_intent": "Legal / Ethics Persona",
534
+ "bps_sensitivity": "Yes"
535
+ },
536
+ {
537
+ "field_name": "remediation_strategy",
538
+ "type": "String",
539
+ "description": "One-sentence deterministic hint if fairness score is \u003c threshold.",
540
+ "downstream_intent": "HR Recruiter",
541
+ "bps_sensitivity": "No"
542
+ },
543
+ {
544
+ "field_name": "feature_attribution_map",
545
+ "type": "Array",
546
+ "description": "Top 4 features and their impact on the fairness score.",
547
+ "downstream_intent": "ML-Ops / Data Science",
548
+ "bps_sensitivity": "No"
549
+ }
550
+ ]
551
+ },
552
+ {
553
+ "id": 20,
554
+ "successBps": 9615,
555
+ "cid": "ar://SYNTH_ATOMIC_HR_NEURALFIT",
556
+ "costUsd": 1500,
557
+ "details": "# A-HR-NeuralFit Technical Logic Specification\n\n## System Overview\n\nA-HR-NeuralFit is an algorithmic human resources neural fitness assessment system designed to evaluate candidate-role alignment through multi-dimensional scoring vectors.\n\n---\n\n## 1. Core Algorithmic Logic\n\n### 1.1 Neural Fit Score (NFS) Calculation\n\n```\nNFS = Σ(wᵢ × Dᵢ × Cᵢ) / √(Σwᵢ²) × R_factor\n\nWhere:\n- wᵢ = weight coefficient for dimension i (0.0 - 1.0)\n- Dᵢ = dimensional score for attribute i (0 - 100)\n- Cᵢ = confidence interval multiplier (0.7 - 1.0)\n- R_factor = role alignment factor (0.5 - 1.5)\n```\n\n### 1.2 Dimensional Scoring Vectors\n\n| Dimension ID | Dimension Name | Weight Range | Decay Function |\n|--------------|----------------|--------------|----------------|\n| D001 | Technical Competency | 0.15 - 0.35 | Linear: `f(t) = 1 - 0.02t` |\n| D002 | Cultural Alignment | 0.10 - 0.25 | Exponential: `f(t) = e^(-0.05t)` |\n| D003 | Cognitive Adaptability | 0.12 - 0.28 | Logarithmic: `f(t) = 1 - 0.1ln(t+1)` |\n| D004 | Leadership Potential | 0.08 - 0.22 | Step: `f(t) = 1 if t\u003c24 else 0.8` |\n| D005 | Collaboration Index | 0.10 - 0.20 | Linear: `f(t) = 1 - 0.015t` |\n| D006 | Domain Expertise | 0.15 - 0.30 | Sigmoid: `f(t) = 2/(1+e^(0.1t))` |\n\n### 1.3 Composite Fit Algorithm\n\n```python\ndef calculate_neural_fit(candidate_vector, role_vector, temporal_offset=0):\n \"\"\"\n Primary fit calculation with temporal decay adjustment\n \"\"\"\n euclidean_distance = sqrt(sum((c - r)² for c, r in zip(candidate_vector, role_vector)))\n cosine_similarity = dot(candidate_vector, role_vector) / (norm(candidate_vector) * norm(role_vector))\n \n # Hybrid similarity metric\n hybrid_score = (0.6 * (1 - euclidean_distance/max_distance) + 0.4 * cosine_similarity) * 100\n \n # Apply temporal decay\n decay_multiplier = exp(-0.008 * temporal_offset)\n \n return hybrid_score * decay_multiplier\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 Risk Classification Schema\n\n```\nBPS = (P_failure × I_severity × D_detection⁻¹) / M_mitigation\n\nWhere:\n- P_failure = Probability of failure (0.0 - 1.0)\n- I_severity = Impact severity coefficient (1 - 10)\n- D_detection = Detection capability score (1 - 10)\n- M_mitigation = Mitigation effectiveness (0.1 - 1.0)\n```\n\n### 2.2 Operational Failure Risk Matrix\n\n| Risk ID | Failure Mode | P_failure | I_severity | D_detection | M_mitigation | BPS | Priority |\n|---------|--------------|-----------|------------|-------------|--------------|-----|----------|\n| BPS-001 | Data Pipeline Corruption | 0.08 | 9 | 7 | 0.85 | 0.121 | P1 |\n| BPS-002 | Model Drift Degradation | 0.22 | 7 | 4 | 0.70 | 0.550 | P0 |\n| BPS-003 | Input Validation Bypass | 0.05 | 10 | 8 | 0.90 | 0.069 | P2 |\n| BPS-004 | Scoring Engine Timeout | 0.15 | 6 | 9 | 0.80 | 0.125 | P1 |\n| BPS-005 | Weight Calibration Failure | 0.12 | 8 | 5 | 0.75 | 0.256 | P1 |\n| BPS-006 | Bias Amplification Event | 0.18 | 10 | 3 | 0.60 | 1.000 | P0 |\n| BPS-007 | Cache Invalidation Race | 0.10 | 4 | 6 | 0.85 | 0.078 | P2 |\n| BPS-008 | Feature Store Desync | 0.14 | 7 | 5 | 0.72 | 0.272 | P1 |\n| BPS-009 | Inference Latency Spike | 0.25 | 5 | 8 | 0.88 | 0.178 | P1 |\n| BPS-010 | Compliance Audit Failure | 0.06 | 10 | 2 | 0.50 | 0.600 | P0 |\n\n### 2.3 BPS Threshold Classifications\n\n```\nBPS ∈ [0.000, 0.100) → NOMINAL → Standard monitoring\nBPS ∈ [0.100, 0.300) → ELEVATED → Enhanced alerting + weekly review\nBPS ∈ [0.300, 0.600) → CRITICAL → Immediate escalation + daily review\nBPS ∈ [0.600, 1.000] → CATASTROPHIC → Incident declaration + remediation sprint\n```\n\n### 2.4 Cascading Failure Probability Model\n\n```\nP_cascade(n) = 1 - ∏(1 - BPSᵢ × Cᵢⱼ) for all connected nodes j\n\nCorrelation Matrix Cᵢⱼ:\n BPS-001 BPS-002 BPS-003 BPS-004 BPS-005 BPS-006\nBPS-001 1.00 0.35 0.20 0.15 0.40 0.25\nBPS-002 0.35 1.00 0.10 0.05 0.65 0.70\nBPS-003 0.20 0.10 1.00 0.08 0.15 0.30\nBPS-004 0.15 0.05 0.08 1.00 0.12 0.05\nBPS-005 0.40 0.65 0.15 0.12 1.00 0.55\nBPS-006 0.25 0.70 0.30 0.05 0.55 1.00\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n### 3.1 Candidate Assessment Request Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://a-hr-neuralfit.internal/schemas/candidate-assessment-request.json\",\n \"title\": \"CandidateAssessmentRequest\",\n \"type\": \"object\",\n \"required\": [\"request_id\", \"timestamp\", \"candidate\", \"role\", \"assessment_config\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{3}-[0-9]{8}-[A-F0-9]{12}$\",\n \"description\": \"Unique request identifier: PREFIX-YYYYMMDD-UUID12\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 timestamp with timezone\"\n },\n \"api_version\": {\n \"type\": \"string\",\n \"enum\": [\"v2.3.0\", \"v2.4.0\", \"v3.0.0-beta\"],\n \"default\": \"v2.4.0\"\n },\n \"candidate\": {\n \"type\": \"object\",\n \"required\": [\"candidate_id\", \"profile_vector\", \"metadata\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"candidate_id\": {\n \"type\": \"string\",\n \"pattern\": \"^CND-[0-9]{10}$\",\n \"minLength\": 14,\n \"maxLength\": 14\n },\n \"profile_vector\": {\n \"type\": \"object\",\n \"required\": [\"dimensions\", \"confidence_scores\", \"temporal_markers\"],\n \"properties\": {\n \"dimensions\": {\n \"type\": \"array\",\n \"minItems\": 6,\n \"maxItems\": 6,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"dimension_id\", \"raw_score\", \"normalized_score\"],\n \"properties\": {\n \"dimension_id\": {\n \"type\": \"string\",\n \"pattern\": \"^D[0-9]{3}$\"\n },\n \"raw_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1000,\n \"multipleOf\": 0.01\n },\n \"normalized_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100,\n \"multipleOf\": 0.001\n },\n \"assessment_source\": {\n \"type\": \"string\",\n \"enum\": [\"PSYCHOMETRIC\", \"TECHNICAL_EVAL\", \"BEHAVIORAL\", \"REFERENCE\", \"SELF_REPORT\", \"ML_INFERRED\"]\n },\n \"source_reliability\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n }\n }\n }\n },\n \"confidence_scores\": {\n \"type\": \"array\",\n \"minItems\": 6,\n \"maxItems\": 6,\n \"items\": {\n \"type\": \"number\",\n \"minimum\": 0.70,\n \"maximum\": 1.00\n }\n },\n \"temporal_markers\": {\n \"type\": \"object\",\n \"required\": [\"data_freshness_days\", \"last_assessment_date\"],\n \"properties\": {\n \"data_freshness_days\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 730\n },\n \"last_assessment_date\": {\n \"type\": \"string\",\n \"format\": \"date\"\n },\n \"decay_applied\": {\n \"type\": \"boolean\",\n \"default\": true\n }\n }\n }\n }\n },\n \"metadata\": {\n \"type\": \"object\",\n \"required\": [\"consent_timestamp\", \"data_classification\"],\n \"properties\": {\n \"consent_timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"data_classification\": {\n \"type\": \"string\",\n \"enum\": [\"PII_LEVEL_1\", \"PII_LEVEL_2\", \"PII_LEVEL_3\", \"ANONYMIZED\"]\n },\n \"jurisdiction\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{2}(-[A-Z]{2})?$\"\n },\n \"retention_policy_id\": {\n \"type\": \"string\",\n \"pattern\": \"^RET-[0-9]{4}$\"\n }\n }\n }\n }\n },\n \"role\": {\n \"type\": \"object\",\n \"required\": [\"role_id\", \"requirement_vector\", \"weight_profile\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"role_id\": {\n \"type\": \"string\",\n \"pattern\": \"^ROLE-[A-Z]{2}-[0-9]{6}$\"\n },\n \"requirement_vector\": {\n \"type\": \"array\",\n \"minItems\": 6,\n \"maxItems\": 6,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"dimension_id\", \"minimum_threshold\", \"optimal_score\", \"criticality\"],\n \"properties\": {\n \"dimension_id\": {\n \"type\": \"string\",\n \"pattern\": \"^D[0-9]{3}$\"\n },\n \"minimum_threshold\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100\n },\n \"optimal_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100\n },\n \"criticality\": {\n \"type\": \"string\",\n \"enum\": [\"MANDATORY\", \"PREFERRED\", \"OPTIONAL\"]\n },\n \"knockout_enabled\": {\n \"type\": \"boolean\",\n \"default\": false\n }\n }\n }\n },\n \"weight_profile\": {\n \"type\": \"object\",\n \"required\": [\"profile_id\", \"weights\"],\n \"properties\": {\n \"profile_id\": {\n \"type\": \"string\",\n \"pattern\": \"^WGT-[0-9]{4}$\"\n },\n \"weights\": {\n \"type\": \"array\",\n \"minItems\": 6,\n \"maxItems\": 6,\n \"items\": {\n \"type\": \"number\",\n \"minimum\": 0.05,\n \"maximum\": 0.40\n }\n },\n \"weight_sum_validation\": {\n \"type\": \"number\",\n \"const\": 1.0\n }\n }\n },\n \"role_alignment_factor\": {\n \"type\": \"number\",\n \"minimum\": 0.5,\n \"maximum\": 1.5,\n \"default\": 1.0\n }\n }\n },\n \"assessment_config\": {\n \"type\": \"object\",\n \"required\": [\"algorithm_version\", \"output_format\"],\n \"properties\": {\n \"algorithm_version\": {\n \"type\": \"string\",\n \"pattern\": \"^ALG-[0-9]{2}\\\\.[0-9]{2}\\\\.[0-9]{3}$\"\n },\n \"output_format\": {\n \"type\": \"string\",\n \"enum\": [\"FULL\", \"SUMMARY\", \"SCORE_ONLY\", \"COMPLIANCE_AUDIT\"]\n },\n \"bias_mitigation\": {\n \"type\": \"object\",\n \"properties\": {\n \"enabled\": {\n \"type\": \"boolean\",\n \"default\": true\n },\n \"protected_attributes\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"enum\": [\"AGE\", \"GENDER\", \"ETHNICITY\", \"DISABILITY\", \"VETERAN_STATUS\"]\n }\n },\n \"fairness_threshold\": {\n \"type\": \"number\",\n \"minimum\": 0.80,\n \"maximum\": 1.00,\n \"default\": 0.90\n }\n }\n },\n \"explainability\": {\n \"type\": \"object\",\n \"properties\": {\n \"generate_shap_values\": {\n \"type\": \"boolean\",\n \"default\": false\n },\n \"feature_importance_depth\": {\n \"type\": \"integer\",\n \"minimum\": 3,\n \"maximum\": 20,\n \"default\": 10\n }\n }\n },\n \"timeout_ms\": {\n \"type\": \"integer\",\n \"minimum\": 100,\n \"maximum\": 30000,\n \"default\": 5000\n }\n }\n }\n }\n}\n```\n\n### 3.2 Assessment Response Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n```}]]]",
558
+ "outcome": "A-HR-NeuralFit",
559
+ "rType": 0,
560
+ "persona": "HR",
561
+ "primary_model": "GPT-4o-Synthesis",
562
+ "privacy_tier": "Public",
563
+ "sybox_fee_split": {
564
+ "dev": 0.5,
565
+ "curation": 0.4,
566
+ "author": 0.1
567
+ },
568
+ "ticker": "SYNL",
569
+ "audit_cadence": "Weekly",
570
+ "lifecycle": "Genesis-Platinum",
571
+ "global_outputs": [
572
+ "synthesis_id",
573
+ "logic_id",
574
+ "bps_verified",
575
+ "model_stack",
576
+ "processing_ms",
577
+ "timestamp"
578
+ ],
579
+ "custom_outputs": [
580
+ {
581
+ "field_name": "neural_fit_score_adjusted",
582
+ "type": "Float",
583
+ "description": "The final score (0-100) after temporal decay and role alignment.",
584
+ "downstream_intent": "A-COO-WorkflowMapper",
585
+ "bps_sensitivity": "Yes"
586
+ },
587
+ {
588
+ "field_name": "knockout_gate_status",
589
+ "type": "Boolean",
590
+ "description": "Final result of mandatory dimension checks.",
591
+ "downstream_intent": "HR Recruiter",
592
+ "bps_sensitivity": "Yes"
593
+ },
594
+ {
595
+ "field_name": "dimensional_gap_analysis",
596
+ "type": "Array",
597
+ "description": "Object list of specific dimensions where candidate \u003c optimal.",
598
+ "downstream_intent": "Hiring Manager",
599
+ "bps_sensitivity": "No"
600
+ },
601
+ {
602
+ "field_name": "risk_cascade_probability",
603
+ "type": "Float",
604
+ "description": "Probability of score failure based on current model drift (BPS-002).",
605
+ "downstream_intent": "ML-Ops Persona",
606
+ "bps_sensitivity": "Yes"
607
+ }
608
+ ]
609
+ },
610
+ {
611
+ "id": 23,
612
+ "successBps": 9999,
613
+ "cid": "ar://SYNTH_ATOMIC_PA_MODELALIGN",
614
+ "costUsd": 1500,
615
+ "details": "# A-PA-ModelAlign Technical Specification\n\n## 1. Core Logic Definition\n\n### 1.1 Alignment Function\n\n```\nA-PA-ModelAlign := f(M, P, A) → S\n\nWhere:\n M = Model behavior vector ∈ ℝⁿ\n P = Policy constraint matrix ∈ ℝᵐˣⁿ\n A = Alignment target tensor ∈ ℝᵏˣᵐˣⁿ\n S = Alignment score ∈ [0, 1]\n```\n\n### 1.2 Alignment Score Computation\n\n```\nS = Σᵢ₌₁ᵏ (wᵢ · σ(Aᵢ · P · Mᵀ)) / Σᵢ₌₁ᵏ wᵢ\n\nWhere:\n wᵢ = weight coefficient for alignment dimension i\n σ = sigmoid normalization function\n k = number of alignment dimensions\n```\n\n### 1.3 Divergence Detection\n\n```\nD(t) = ||M(t) - M(t-1)||₂ / ||M(t-1)||₂\n\nDrift Alert Condition: D(t) \u003e θ_drift\nWhere θ_drift = 0.05 (5% deviation threshold)\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 BPS Calculation Formula\n\n```\nBPS(c) = (1 - R(c)) × I(c) × P(c)\n\nWhere:\n c = component identifier\n R(c) = resilience factor ∈ [0, 1]\n I(c) = impact severity ∈ [1, 10]\n P(c) = probability of failure ∈ [0, 1]\n\nRisk Classification:\n BPS ∈ [0, 2) → LOW\n BPS ∈ [2, 5) → MEDIUM\n BPS ∈ [5, 7) → HIGH\n BPS ∈ [7, 10] → CRITICAL\n```\n\n### 2.2 Component BPS Matrix\n\n| Component ID | Component Name | R(c) | I(c) | P(c) | BPS | Risk Level |\n|--------------|----------------|------|------|------|-----|------------|\n| C-001 | Input Validator | 0.92 | 8 | 0.03 | 0.019 | LOW |\n| C-002 | Policy Engine | 0.85 | 9 | 0.08 | 1.08 | LOW |\n| C-003 | Alignment Scorer | 0.78 | 10 | 0.12 | 2.64 | MEDIUM |\n| C-004 | Drift Detector | 0.88 | 7 | 0.06 | 0.504 | LOW |\n| C-005 | Feedback Loop | 0.72 | 8 | 0.15 | 3.36 | MEDIUM |\n| C-006 | Model State Cache | 0.65 | 9 | 0.18 | 5.67 | HIGH |\n| C-007 | Constraint Resolver | 0.70 | 10 | 0.22 | 6.60 | HIGH |\n| C-008 | Output Sanitizer | 0.90 | 8 | 0.04 | 0.32 | LOW |\n| C-009 | Audit Logger | 0.95 | 6 | 0.02 | 0.06 | LOW |\n| C-010 | Failover Controller | 0.60 | 10 | 0.25 | 10.0 | CRITICAL |\n\n### 2.3 Aggregate System BPS\n\n```\nBPS_system = max(BPS(cᵢ)) × (1 + 0.1 × count(BPS(cᵢ) \u003e 5))\n\nCurrent: BPS_system = 10.0 × (1 + 0.1 × 3) = 13.0\n\nSystem Status: CRITICAL - Immediate remediation required\n```\n\n---\n\n## 3. Input Validation JSON Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-pa-modelalign/v1.0.0\",\n \"title\": \"A-PA-ModelAlign Input Schema\",\n \"type\": \"object\",\n \"required\": [\"request_id\", \"timestamp\", \"model_state\", \"policy_set\", \"alignment_config\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$\",\n \"description\": \"UUID v4 request identifier\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 timestamp with timezone\"\n },\n \"model_state\": {\n \"type\": \"object\",\n \"required\": [\"model_id\", \"version\", \"behavior_vector\", \"checksum\"],\n \"properties\": {\n \"model_id\": {\n \"type\": \"string\",\n \"minLength\": 8,\n \"maxLength\": 64,\n \"pattern\": \"^[A-Z]{2,4}-[0-9]{4,8}-[A-Z0-9]{4}$\"\n },\n \"version\": {\n \"type\": \"string\",\n \"pattern\": \"^(0|[1-9]\\\\d*)\\\\.(0|[1-9]\\\\d*)\\\\.(0|[1-9]\\\\d*)$\"\n },\n \"behavior_vector\": {\n \"type\": \"array\",\n \"minItems\": 128,\n \"maxItems\": 4096,\n \"items\": {\n \"type\": \"number\",\n \"minimum\": -1.0,\n \"maximum\": 1.0\n }\n },\n \"checksum\": {\n \"type\": \"string\",\n \"pattern\": \"^sha256:[a-f0-9]{64}$\"\n }\n }\n },\n \"policy_set\": {\n \"type\": \"object\",\n \"required\": [\"policy_version\", \"constraints\", \"priority_weights\"],\n \"properties\": {\n \"policy_version\": {\n \"type\": \"string\",\n \"pattern\": \"^P-[0-9]{4}\\\\.[0-9]{2}$\"\n },\n \"constraints\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"maxItems\": 256,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"constraint_id\", \"type\", \"threshold\", \"enforcement\"],\n \"properties\": {\n \"constraint_id\": {\n \"type\": \"string\",\n \"pattern\": \"^CON-[0-9]{6}$\"\n },\n \"type\": {\n \"type\": \"string\",\n \"enum\": [\"HARD\", \"SOFT\", \"ADVISORY\"]\n },\n \"threshold\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"enforcement\": {\n \"type\": \"string\",\n \"enum\": [\"BLOCK\", \"WARN\", \"LOG\", \"ADJUST\"]\n }\n }\n }\n },\n \"priority_weights\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"items\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n }\n }\n }\n },\n \"alignment_config\": {\n \"type\": \"object\",\n \"required\": [\"dimensions\", \"tolerance\", \"iteration_limit\"],\n \"properties\": {\n \"dimensions\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"maxItems\": 32,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"name\", \"weight\", \"target_range\"],\n \"properties\": {\n \"name\": {\n \"type\": \"string\",\n \"enum\": [\"SAFETY\", \"HELPFULNESS\", \"HONESTY\", \"HARMLESSNESS\", \"COHERENCE\", \"RELEVANCE\", \"FACTUALITY\", \"ETHICS\"]\n },\n \"weight\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"target_range\": {\n \"type\": \"object\",\n \"required\": [\"min\", \"max\"],\n \"properties\": {\n \"min\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"max\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 }\n }\n }\n }\n }\n },\n \"tolerance\": {\n \"type\": \"number\",\n \"minimum\": 0.001,\n \"maximum\": 0.1\n },\n \"iteration_limit\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 10000\n }\n }\n },\n \"metadata\": {\n \"type\": \"object\",\n \"properties\": {\n \"source_system\": {\n \"type\": \"string\",\n \"maxLength\": 128\n },\n \"correlation_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{32}$\"\n },\n \"trace_context\": {\n \"type\": \"object\",\n \"properties\": {\n \"trace_id\": { \"type\": \"string\", \"pattern\": \"^[a-f0-9]{32}$\" },\n \"span_id\": { \"type\": \"string\", \"pattern\": \"^[a-f0-9]{16}$\" },\n \"parent_span_id\": { \"type\": \"string\", \"pattern\": \"^[a-f0-9]{16}$\" }\n }\n }\n }\n }\n }\n}\n```\n\n---\n\n## 4. SRE Operational Metrics\n\n### 4.1 Service Level Objectives (SLOs)\n\n| Metric ID | Metric Name | Target | Warning | Critical | Measurement Window |\n|-----------|-------------|--------|---------|----------|-------------------|\n| SLO-001 | Alignment Accuracy | ≥ 99.5% | \u003c 99.5% | \u003c 98.0% | 30-day rolling |\n| SLO-002 | Request Latency P50 | ≤ 50ms | \u003e 50ms | \u003e 100ms | 5-minute |\n| SLO-003 | Request Latency P99 | ≤ 200ms | \u003e 200ms | \u003e 500ms | 5-minute |\n| SLO-004 | Availability | ≥ 99.95% | \u003c 99.95% | \u003c 99.5% | 30-day rolling |\n| SLO-005 | Error Rate | ≤ 0.1% | \u003e 0.1% | \u003e 1.0% | 15-minute |\n| SLO-006 | Drift Detection Latency | ≤ 5s | \u003e 5s | \u003e 30s | Real-time |\n| SLO-007 | Policy Sync Freshness | ≤ 60s | \u003e 60s | \u003e 300s | Continuous |\n\n### 4.2 Service Level Indicators (SLIs)\n\n```\nSLI_availability = (total_requests - failed_requests) / total_requests\n\nSLI_latency_p99 = percentile(request_duration, 99)\n\nSLI_alignment_accuracy = count(S ≥ θ_target) / count(total_evaluations)\n Where θ_target = 0.85\n\nSLI_error_rate = count(status_code ∈ [500, 599]) / count(total_requests)\n\nSLI_drift_detection = time(drift_detected) - time(drift_occurred)\n```\n\n### 4.3 Error Budget Calculation\n\n```\nError Budget (monthly) = 1 - SLO_target\n\nFor SLO-004 (99.95% availability):\n Error Budget = 1 - 0.9995 = 0.0005\n Monthly Downtime Allowed = 0.0005 × 43200 min = 21.6 minutes\n\nBurn Rate = (1 - SLI_current) / (1 - SLO_target)\n\nAlert Thresholds:\n Burn Rate \u003e 14.4 → Page (1-hour budget consumption)\n Burn Rate \u003e 6.0 → Page (6-hour budget consumption)\n Burn Rate \u003e 1.0 → Ticket (budget depletion trajectory)\n```\n\n### 4.4 Operational Metrics Dashboard Queries\n\n```promql\n# Alignment Score Distribution\nhistogram_quantile(0.95, \n sum(rate(modelalign_score_bucket[5m])) by (le, dimension)\n)\n\n# Request Error Rate\nsum(rate(modelalign_requests_total{status=\"error\"}[5m])) \n/ sum(rate(modelalign_requests_total[5m]))\n\n# Policy Constraint Violations\nsum by (constraint_type, enforcement) (\n increase(modelalign_constraint_violations_total[1h])\n)\n\n# Drift Detection Events\nsum(increase(modelalign_drift_detected_total[24h])) by (severity)\n\n# Component Health Score\n1 - (\n sum(modelalign_component_failures_total) \n / sum(modelalign_component_checks_total)\n)\n```\n\n### 4.5 Alerting Rules\n\n```yaml\ngroups:\n - name: a-pa-modelalign-critical\n rules:\n - alert: AlignmentScoreDegradation\n expr: avg(modelalign_score) \u003c 0.80\n for: 5m\n labels:\n severity: critical\n annotations:\n summary: \"Alignment score below critical threshold\"\n \n - alert: HighErrorBurnRate\n expr: |\n (\n sum(rate(modelalign_requests_total{status=\"error\"}[1h]))\n / sum(rate(modelalign_requests_total[1h]))\n ) / 0.001 \u003e 14.4\n for: 2m\n labels:\n severity: critical\n \n - alert: DriftDetectionFailure\n expr: |\n time() - modelalign_last_drift_check_timestamp \u003e 300\n for: 1m\n labels:\n severity: critical\n \n - alert: PolicySyncStale\n expr: |\n time() - modelalign_policy_last_sync_timestamp \u003e 300\n for: 1m\n labels:\n severity: high\n```\n\n---\n\n## 5. State Machine Logic\n\n```\nStates: {INIT, VALIDATING, ALIGNING, SCORING, ADJUSTING, COMPLETE, FAILED}\n\nTransitions:\n INIT → VALIDATING : on(request_received)\n VALIDATING → ALIGNING : on(validation_passed)\n VALIDATING → FAILED : on(validation_failed)\n ALIGNING → SCORING : on(alignment_computed)\n ALIGNING → FAILED : on(timeout | constraint_violation)\n SCORING → ADJUSTING : on(score \u003c θ_target ∧ iterations \u003c limit)\n SCORING → COMPLETE : on(score ≥ θ_target)\n SCORING → FAILED : on(iterations ≥ limit ∧ score \u003c θ_min)\n ADJUSTING → ALIGNING : on(adjustment_applied)\n ADJUSTING → FAILED : on(adjustment_rejected)\n FAILED → INIT : on(retry ∧ retry_count \u003c max_retries)\n\nInvariants:\n ∀ state ∈ States: timeout(state) ≤ 30s\n ∀ transition: log(transition\n```]]]\n\n## 3. Resilience Layer\n- **Noise_Tolerance**: 0.15\n- **Confidence_Threshold**: 0.85\n- **Logic_Smoothing**: Bayesian",
616
+ "outcome": "A-PA-ModelAlign",
617
+ "rType": 0,
618
+ "persona": "PA",
619
+ "primary_model": "GPT-4o-Synthesis",
620
+ "privacy_tier": "Public",
621
+ "sybox_fee_split": {
622
+ "dev": 0.5,
623
+ "curation": 0.4,
624
+ "author": 0.1
625
+ },
626
+ "ticker": "SYNL",
627
+ "audit_cadence": "Weekly",
628
+ "lifecycle": "Genesis-Platinum",
629
+ "global_outputs": [
630
+ "synthesis_id",
631
+ "logic_id",
632
+ "bps_verified",
633
+ "model_stack",
634
+ "processing_ms",
635
+ "timestamp"
636
+ ],
637
+ "custom_outputs": [
638
+ {
639
+ "field_name": "alignment_verdict",
640
+ "type": "String",
641
+ "description": "Enum: `PASS`, `ADJUST`, `BLOCK`, `CRITICAL_DRIFT`.",
642
+ "downstream_intent": "Gateway Controller",
643
+ "bps_sensitivity": "High"
644
+ },
645
+ {
646
+ "field_name": "dimension_weighted_scores",
647
+ "type": "Object",
648
+ "description": "Map of safety/helpfulness/honesty vs. target ranges.",
649
+ "downstream_intent": "Compliance Auditor",
650
+ "bps_sensitivity": "High"
651
+ },
652
+ {
653
+ "field_name": "behavioral_divergence",
654
+ "type": "Float",
655
+ "description": "Euclidean distance from the baseline model vector.",
656
+ "downstream_intent": "Model Training Pipeline",
657
+ "bps_sensitivity": "High"
658
+ },
659
+ {
660
+ "field_name": "adjustment_iterations",
661
+ "type": "Integer",
662
+ "description": "Number of cycles required to reach .",
663
+ "downstream_intent": "Latency Optimizer",
664
+ "bps_sensitivity": "Low"
665
+ },
666
+ {
667
+ "field_name": "active_constraint_violations",
668
+ "type": "Array",
669
+ "description": "List of `constraint_id` currently in breach.",
670
+ "downstream_intent": "SRE On-call (ALT-001)",
671
+ "bps_sensitivity": "High"
672
+ }
673
+ ]
674
+ },
675
+ {
676
+ "id": 24,
677
+ "successBps": 9952,
678
+ "cid": "ar://SYNTH_ATOMIC_PA_FORGEDID",
679
+ "costUsd": 1500,
680
+ "details": "# A-PA-ForgedID Technical Logic Specification\n\n## 1. System Definition\n\n**A-PA-ForgedID**: Authentication Pathway Analyzer for Forged Identity Detection\n\n### 1.1 Core Detection Logic\n\n```\nForgedID_Score = Σ(Wi × Ai) / Σ(Wi)\n\nWhere:\n- Wi = Weight factor for attribute i\n- Ai = Anomaly score for attribute i ∈ [0, 1]\n- Detection threshold θ = 0.73\n```\n\n### 1.2 Attribute Vector Components\n\n| Attribute ID | Description | Weight (Wi) | Detection Method |\n|--------------|-------------|-------------|------------------|\n| A01 | Token signature deviation | 0.95 | HMAC-SHA256 validation |\n| A02 | Temporal claim drift | 0.88 | NTP sync delta analysis |\n| A03 | Issuer chain integrity | 0.92 | X.509 path validation |\n| A04 | Behavioral fingerprint | 0.76 | ML classifier output |\n| A05 | Geographic impossibility | 0.84 | Velocity check algorithm |\n| A06 | Session binding violation | 0.91 | CSRF token correlation |\n| A07 | Credential age anomaly | 0.67 | Issuance timestamp analysis |\n| A08 | Multi-factor bypass pattern | 0.97 | MFA state machine audit |\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 BPS Calculation Formula\n\n```\nBPS(component) = (P_failure × I_severity × D_detection) / R_recovery\n\nWhere:\n- P_failure = Probability of failure [0, 1]\n- I_severity = Impact severity [1-10]\n- D_detection = Detection difficulty [1-10] \n- R_recovery = Recovery capability [1-10]\n\nRisk Classification:\n- BPS \u003c 2.0 → LOW\n- BPS 2.0-5.0 → MEDIUM\n- BPS 5.0-8.0 → HIGH\n- BPS \u003e 8.0 → CRITICAL\n```\n\n### 2.2 Component BPS Matrix\n\n| Component | P_failure | I_severity | D_detection | R_recovery | BPS | Risk Level |\n|-----------|-----------|------------|-------------|------------|-----|------------|\n| Token Validator | 0.02 | 9 | 3 | 7 | 0.077 | LOW |\n| Signature Engine | 0.01 | 10 | 2 | 8 | 0.025 | LOW |\n| Session Store (Redis) | 0.08 | 8 | 4 | 6 | 0.427 | LOW |\n| ML Inference Pipeline | 0.15 | 6 | 7 | 4 | 1.575 | LOW |\n| Certificate Authority Link | 0.05 | 10 | 5 | 3 | 0.833 | LOW |\n| Geo-IP Resolution | 0.12 | 5 | 6 | 8 | 0.450 | LOW |\n| MFA State Machine | 0.03 | 10 | 8 | 5 | 0.480 | LOW |\n| Audit Log Pipeline | 0.07 | 7 | 9 | 6 | 0.735 | LOW |\n| Rate Limiter | 0.04 | 8 | 3 | 9 | 0.107 | LOW |\n| Database Connection Pool | 0.06 | 9 | 4 | 4 | 0.540 | LOW |\n| External IdP Federation | 0.18 | 8 | 6 | 3 | 2.880 | MEDIUM |\n| Key Management Service | 0.02 | 10 | 9 | 2 | 0.900 | LOW |\n| Network Egress Filter | 0.09 | 7 | 8 | 5 | 1.008 | LOW |\n| Cascading Auth Failure | 0.11 | 10 | 7 | 2 | 3.850 | MEDIUM |\n| Cold Start Latency Spike | 0.22 | 4 | 2 | 9 | 0.196 | LOW |\n\n### 2.3 Aggregate System BPS\n\n```\nSystem_BPS = √(Σ(BPSi²) / n) = √(14.083 / 15) = 0.969\n\nSystem Risk Classification: LOW-MEDIUM boundary\nCritical Path BPS: max(BPS_critical_path) = 3.850\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-pa-forgedid/v1\",\n \"title\": \"A-PA-ForgedID Authentication Request\",\n \"type\": \"object\",\n \"required\": [\n \"request_id\",\n \"timestamp\",\n \"identity_claim\",\n \"authentication_context\",\n \"client_metadata\"\n ],\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\",\n \"description\": \"Unique request identifier (UUIDv4)\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 timestamp with timezone\"\n },\n \"identity_claim\": {\n \"type\": \"object\",\n \"required\": [\"token\", \"token_type\", \"issuer\"],\n \"properties\": {\n \"token\": {\n \"type\": \"string\",\n \"minLength\": 32,\n \"maxLength\": 8192,\n \"pattern\": \"^[A-Za-z0-9_-]+\\\\.[A-Za-z0-9_-]+\\\\.[A-Za-z0-9_-]*$\"\n },\n \"token_type\": {\n \"type\": \"string\",\n \"enum\": [\"JWT\", \"SAML\", \"OIDC\", \"PASETO\", \"CUSTOM\"]\n },\n \"issuer\": {\n \"type\": \"string\",\n \"format\": \"uri\",\n \"maxLength\": 2048\n },\n \"subject\": {\n \"type\": \"string\",\n \"maxLength\": 256\n },\n \"audience\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"format\": \"uri\"\n },\n \"minItems\": 1,\n \"maxItems\": 10\n },\n \"issued_at\": {\n \"type\": \"integer\",\n \"minimum\": 0\n },\n \"expires_at\": {\n \"type\": \"integer\",\n \"minimum\": 0\n },\n \"not_before\": {\n \"type\": \"integer\",\n \"minimum\": 0\n }\n },\n \"additionalProperties\": false\n },\n \"authentication_context\": {\n \"type\": \"object\",\n \"required\": [\"auth_method\", \"auth_level\"],\n \"properties\": {\n \"auth_method\": {\n \"type\": \"string\",\n \"enum\": [\n \"password\",\n \"mfa_totp\",\n \"mfa_sms\",\n \"mfa_push\",\n \"webauthn\",\n \"certificate\",\n \"federated\",\n \"api_key\"\n ]\n },\n \"auth_level\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 4,\n \"description\": \"AAL level per NIST SP 800-63B\"\n },\n \"mfa_verified\": {\n \"type\": \"boolean\"\n },\n \"session_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{64}$\"\n },\n \"previous_auth_timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"step_up_required\": {\n \"type\": \"boolean\",\n \"default\": false\n }\n },\n \"additionalProperties\": false\n },\n \"client_metadata\": {\n \"type\": \"object\",\n \"required\": [\"ip_address\", \"user_agent\"],\n \"properties\": {\n \"ip_address\": {\n \"type\": \"string\",\n \"oneOf\": [\n {\"format\": \"ipv4\"},\n {\"format\": \"ipv6\"}\n ]\n },\n \"user_agent\": {\n \"type\": \"string\",\n \"maxLength\": 1024\n },\n \"device_fingerprint\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{64}$\"\n },\n \"geo_location\": {\n \"type\": \"object\",\n \"properties\": {\n \"country_code\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{2}$\"\n },\n \"region\": {\n \"type\": \"string\",\n \"maxLength\": 128\n },\n \"latitude\": {\n \"type\": \"number\",\n \"minimum\": -90,\n \"maximum\": 90\n },\n \"longitude\": {\n \"type\": \"number\",\n \"minimum\": -180,\n \"maximum\": 180\n },\n \"accuracy_radius_km\": {\n \"type\": \"number\",\n \"minimum\": 0\n }\n }\n },\n \"tls_fingerprint\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{32}$\"\n },\n \"request_headers_hash\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{64}$\"\n }\n },\n \"additionalProperties\": false\n },\n \"risk_signals\": {\n \"type\": \"object\",\n \"properties\": {\n \"velocity_check_passed\": {\n \"type\": \"boolean\"\n },\n \"known_device\": {\n \"type\": \"boolean\"\n },\n \"behavioral_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"threat_intel_flags\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"enum\": [\n \"tor_exit_node\",\n \"vpn_detected\",\n \"proxy_detected\",\n \"datacenter_ip\",\n \"known_bad_actor\",\n \"credential_stuffing_pattern\",\n \"bot_signature\"\n ]\n }\n }\n },\n \"additionalProperties\": false\n }\n },\n \"additionalProperties\": false\n}\n```\n\n---\n\n## 4. SRE Metrics Specification\n\n### 4.1 Service Level Indicators (SLIs)\n\n| Metric ID | Metric Name | Calculation | Unit |\n|-----------|-------------|-------------|------|\n| SLI-001 | Request Latency P50 | `histogram_quantile(0.50, rate(forgedid_request_duration_seconds_bucket[5m]))` | seconds |\n| SLI-002 | Request Latency P99 | `histogram_quantile(0.99, rate(forgedid_request_duration_seconds_bucket[5m]))` | seconds |\n| SLI-003 | Availability | `1 - (sum(forgedid_errors_total) / sum(forgedid_requests_total))` | ratio |\n| SLI-004 | Detection Accuracy | `forgedid_true_positives / (forgedid_true_positives + forgedid_false_positives)` | ratio |\n| SLI-005 | False Negative Rate | `forgedid_false_negatives / (forgedid_true_positives + forgedid_false_negatives)` | ratio |\n| SLI-006 | Throughput | `rate(forgedid_requests_total[1m])` | req/s |\n\n### 4.2 Service Level Objectives (SLOs)\n\n| SLO ID | Target | Error Budget (30d) | Burn Rate Alert |\n|--------|--------|-------------------|-----------------|\n| SLO-LATENCY-P50 | ≤ 15ms | 43,200 minutes | 14.4x (1h), 6x (6h) |\n| SLO-LATENCY-P99 | ≤ 150ms | 43,200 minutes | 14.4x (1h), 6x (6h) |\n| SLO-AVAILABILITY | ≥ 99.95% | 21.6 minutes | 14.4x (1h), 6x (6h) |\n| SLO-DETECTION-ACCURACY | ≥ 99.7% | 129.6 minutes | 10x (1h), 4x (6h) |\n| SLO-FALSE-NEGATIVE | ≤ 0.01% | 4.32 minutes | 20x (15m), 10x (1h) |\n\n### 4.3 Operational Metrics Dashboard\n\n```yaml\nmetrics:\n # Counter Metrics\n - name: forgedid_requests_total\n type: counter\n labels: [endpoint, token_type, auth_method, result]\n \n - name: forgedid_detections_total\n type: counter\n labels: [detection_type, severity, action_taken]\n \n - name: forgedid_validation_errors_total\n type: counter\n labels: [error_type, attribute_id]\n\n # Histogram Metrics\n - name: forgedid_request_duration_seconds\n type: histogram\n buckets: [0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0]\n labels: [endpoint, token_type]\n \n - name: forgedid_ml_inference_duration_seconds\n type: histogram\n buckets: [0.001, 0.005, 0.01, 0.025, 0.05, 0.1]\n labels: [model_version]\n\n # Gauge Metrics\n - name: forgedid_active_sessions\n type: gauge\n labels: [auth_level]\n \n - name: forgedid_circuit_breaker_state\n type: gauge\n labels: [component]\n values: {closed: 0, half_open: 1, open: 2}\n \n - name: forgedid_cache_hit_ratio\n type: gauge\n labels: [cache_type]\n\n # Summary Metrics\n - name: forgedid_score_distribution\n type: summary\n quantiles: [0.5, 0.9, 0.95, 0.99]\n labels: [outcome]\n```\n\n### 4.4 Alert Definitions\n\n```yaml\nalerts:\n - name: ForgedIDHighLatency\n expr: |\n histogram_quantile(0.99, \n rate(forgedid_request_duration_seconds_bucket[5m])\n ) \u003e 0.15\n for: 5m\n severity: warning\n \n - name: ForgedIDErrorBudgetBurn\n expr: |\n (\n 1 - (\n sum(rate(forgedid_requests_total{result=\"success\"}[1h])) /\n sum(rate(forgedid_requests_total[1h]))\n )\n ) \u003e (14.4 * 0.0005)\n for: 5m\n severity: critical\n \n - name: ForgedIDFalseNegativeSpike\n expr: |\n rate(forgedid_detections_total{detection_type=\"false_negative\"}[15m]) /\n rate(forgedid_requests_total[15m]) \u003e 0.0001\n for: 5m\n severity: critical\n \n - name: ForgedIDCircuitBreakerOpen\n expr: forgedid_circuit_breaker_state == 2\n for: 1m\n severity: warning\n \n - name: ForgedIDMLModelDrift\n expr: |\n abs(\n avg\n```\n\n## 3. Resilience Layer\n- **Noise_Tolerance**: 0.15\n- **Confidence_Threshold**: 0.85\n- **Logic_Smoothing**: Bayesian",
681
+ "outcome": "A-PA-ForgedID",
682
+ "rType": 0,
683
+ "persona": "PA",
684
+ "primary_model": "GPT-4o-Synthesis",
685
+ "privacy_tier": "Public",
686
+ "sybox_fee_split": {
687
+ "dev": 0.5,
688
+ "curation": 0.4,
689
+ "author": 0.1
690
+ },
691
+ "ticker": "SYNL",
692
+ "audit_cadence": "Weekly",
693
+ "lifecycle": "Genesis-Platinum",
694
+ "global_outputs": [
695
+ "synthesis_id",
696
+ "logic_id",
697
+ "bps_verified",
698
+ "model_stack",
699
+ "processing_ms",
700
+ "timestamp"
701
+ ],
702
+ "custom_outputs": [
703
+ {
704
+ "field_name": "identity_risk_score",
705
+ "type": "Float",
706
+ "description": "Final normalized ForgedID_Score (0.0–1.0).",
707
+ "downstream_intent": "Auth Service Provider",
708
+ "bps_sensitivity": "High"
709
+ },
710
+ {
711
+ "field_name": "anomaly_vector_summary",
712
+ "type": "Array",
713
+ "description": "Top 3 attributes contributing most to risk (e.g., A05, A08).",
714
+ "downstream_intent": "Fraud Analyst Persona",
715
+ "bps_sensitivity": "Medium"
716
+ },
717
+ {
718
+ "field_name": "trust_confidence_level",
719
+ "type": "Float",
720
+ "description": "Statistical confidence in the \u0027ALLOW\u0027/\u0027DENY\u0027 decision.",
721
+ "downstream_intent": "Risk Management Unit",
722
+ "bps_sensitivity": "High"
723
+ },
724
+ {
725
+ "field_name": "geospatial_velocity_delta",
726
+ "type": "Object",
727
+ "description": "Time/Distance feasibility calculation between sessions.",
728
+ "downstream_intent": "Geo-Fence Logic",
729
+ "bps_sensitivity": "Medium"
730
+ },
731
+ {
732
+ "field_name": "mfa_state_integrity",
733
+ "type": "Boolean",
734
+ "description": "Verification that MFA state machine was not bypassed.",
735
+ "downstream_intent": "Security Policy Engine",
736
+ "bps_sensitivity": "High"
737
+ },
738
+ {
739
+ "field_name": "session_correlation_id",
740
+ "type": "String",
741
+ "description": "UUID binding the current auth attempt to a verified device.",
742
+ "downstream_intent": "Session Manager",
743
+ "bps_sensitivity": "Low"
744
+ }
745
+ ]
746
+ },
747
+ {
748
+ "id": 25,
749
+ "successBps": 9747,
750
+ "cid": "ar://SYNTH_ATOMIC_CS_TRUTHDISTILL",
751
+ "costUsd": 1500,
752
+ "details": "# A-CS-TruthDistill Technical Specification\n\n## 1. Core Logic Definition\n\n### 1.1 Truth Distillation Function\n\n```\nTruthDistill(S) = argmax_T [ P(T|S) × C(T) × V(T) ]\n\nWhere:\n S = Source signal set {s₁, s₂, ..., sₙ}\n T = Truth candidate\n P(T|S) = Posterior probability of T given S\n C(T) = Coherence score across sources\n V(T) = Verification weight\n```\n\n### 1.2 Coherence Calculation\n\n```\nC(T) = 1 - (σ(S_T) / μ(S_T))\n\nWhere:\n S_T = Subset of sources supporting T\n σ = Standard deviation of confidence scores\n μ = Mean confidence score\n \nConstraint: C(T) ∈ [0, 1]\n```\n\n### 1.3 Verification Weight Matrix\n\n```\nV(T) = Σᵢ (wᵢ × vᵢ) / Σᵢ wᵢ\n\nVerification Factors:\n v₁ = Primary source corroboration [w₁ = 0.35]\n v₂ = Temporal consistency [w₂ = 0.25]\n v₃ = Logical entailment validity [w₃ = 0.20]\n v₄ = Cross-domain alignment [w₄ = 0.15]\n v₅ = Adversarial resistance [w₅ = 0.05]\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 Risk Classification\n\n| Risk ID | Failure Mode | BPS Threshold | Severity | MTTR Target |\n|---------|--------------|---------------|----------|-------------|\n| BPS-001 | Source Poisoning | 0.15 | CRITICAL | ≤ 5 min |\n| BPS-002 | Coherence Collapse | 0.25 | HIGH | ≤ 15 min |\n| BPS-003 | Verification Bypass | 0.10 | CRITICAL | ≤ 3 min |\n| BPS-004 | Confidence Inflation | 0.30 | MEDIUM | ≤ 30 min |\n| BPS-005 | Temporal Drift | 0.40 | LOW | ≤ 60 min |\n| BPS-006 | Cascade Propagation | 0.08 | CRITICAL | ≤ 2 min |\n| BPS-007 | Schema Violation | 0.20 | HIGH | ≤ 10 min |\n| BPS-008 | Quorum Loss | 0.33 | HIGH | ≤ 20 min |\n\n### 2.2 BPS Calculation Formula\n\n```\nBPS(failure_mode) = (1 - R(t)) × I × (1 / D)\n\nWhere:\n R(t) = Reliability function at time t\n I = Impact coefficient [1-10]\n D = Detection latency (seconds)\n \nCritical Threshold: BPS ≥ 0.7 triggers automatic circuit breaker\n```\n\n### 2.3 Composite System BPS\n\n```\nBPS_system = 1 - Πᵢ(1 - BPSᵢ × Pᵢ)\n\nWhere:\n BPSᵢ = Individual component BPS\n Pᵢ = Probability of failure mode i occurring\n \nOperational Limit: BPS_system \u003c 0.15\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-cs-truthdistill/v1\",\n \"title\": \"A-CS-TruthDistill Input Schema\",\n \"type\": \"object\",\n \"required\": [\"request_id\", \"sources\", \"distillation_params\", \"metadata\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"pattern\": \"^TD-[0-9]{8}-[A-F0-9]{12}$\",\n \"description\": \"Unique request identifier\"\n },\n \"sources\": {\n \"type\": \"array\",\n \"minItems\": 2,\n \"maxItems\": 256,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"source_id\", \"content\", \"confidence\", \"timestamp\"],\n \"properties\": {\n \"source_id\": {\n \"type\": \"string\",\n \"pattern\": \"^SRC-[A-Z0-9]{8}$\"\n },\n \"content\": {\n \"type\": \"string\",\n \"minLength\": 1,\n \"maxLength\": 65536\n },\n \"confidence\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0,\n \"multipleOf\": 0.001\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"provenance\": {\n \"type\": \"object\",\n \"properties\": {\n \"origin\": { \"type\": \"string\", \"maxLength\": 256 },\n \"chain_hash\": { \n \"type\": \"string\", \n \"pattern\": \"^[a-f0-9]{64}$\" \n },\n \"verification_level\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 5\n }\n }\n }\n }\n }\n },\n \"distillation_params\": {\n \"type\": \"object\",\n \"required\": [\"mode\", \"threshold\", \"quorum\"],\n \"properties\": {\n \"mode\": {\n \"type\": \"string\",\n \"enum\": [\"strict\", \"balanced\", \"permissive\"]\n },\n \"threshold\": {\n \"type\": \"number\",\n \"minimum\": 0.5,\n \"maximum\": 0.99\n },\n \"quorum\": {\n \"type\": \"integer\",\n \"minimum\": 2,\n \"maximum\": 128\n },\n \"temporal_window_ms\": {\n \"type\": \"integer\",\n \"minimum\": 100,\n \"maximum\": 86400000,\n \"default\": 300000\n },\n \"conflict_resolution\": {\n \"type\": \"string\",\n \"enum\": [\"highest_confidence\", \"majority_vote\", \"weighted_consensus\", \"reject\"]\n },\n \"max_iterations\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 1000,\n \"default\": 100\n }\n }\n },\n \"metadata\": {\n \"type\": \"object\",\n \"required\": [\"client_id\", \"priority\", \"ttl_ms\"],\n \"properties\": {\n \"client_id\": {\n \"type\": \"string\",\n \"pattern\": \"^CL-[0-9A-Z]{16}$\"\n },\n \"priority\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 10\n },\n \"ttl_ms\": {\n \"type\": \"integer\",\n \"minimum\": 1000,\n \"maximum\": 3600000\n },\n \"trace_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[0-9a-f]{32}$\"\n },\n \"idempotency_key\": {\n \"type\": \"string\",\n \"maxLength\": 128\n }\n }\n }\n }\n}\n```\n\n---\n\n## 4. SRE Operational Metrics\n\n### 4.1 Service Level Objectives (SLOs)\n\n| Metric | Target | Error Budget (30d) | Measurement |\n|--------|--------|-------------------|-------------|\n| Availability | 99.95% | 21.6 min | `uptime / total_time` |\n| Latency P50 | ≤ 45ms | N/A | Histogram bucket |\n| Latency P99 | ≤ 200ms | 0.1% violations | Histogram bucket |\n| Latency P99.9 | ≤ 500ms | 0.01% violations | Histogram bucket |\n| Truth Accuracy | ≥ 98.5% | 1.5% false positives | `correct_distillations / total` |\n| Throughput | ≥ 10K RPS | N/A | Sustained capacity |\n\n### 4.2 Service Level Indicators (SLIs)\n\n```yaml\nslis:\n availability:\n formula: \"sum(successful_requests) / sum(total_requests)\"\n good_events: \"http_status \u003c 500 AND processing_complete = true\"\n valid_events: \"all_requests - health_checks\"\n \n latency:\n formula: \"histogram_quantile(0.99, request_duration_seconds)\"\n buckets: [0.01, 0.025, 0.05, 0.1, 0.2, 0.5, 1.0, 2.5]\n \n correctness:\n formula: \"sum(verified_truths) / sum(distillation_attempts)\"\n verification_method: \"cross_validation_sampling\"\n sample_rate: 0.05\n \n freshness:\n formula: \"time_since_last_successful_distillation \u003c threshold\"\n threshold_seconds: 60\n```\n\n### 4.3 Alerting Thresholds\n\n```yaml\nalerts:\n - name: TruthDistillHighErrorRate\n expr: |\n sum(rate(distill_errors_total[5m])) \n / sum(rate(distill_requests_total[5m])) \u003e 0.01\n severity: critical\n runbook: \"https://runbooks.internal/td/high-error-rate\"\n \n - name: TruthDistillLatencyDegraded\n expr: |\n histogram_quantile(0.99, \n sum(rate(distill_duration_seconds_bucket[5m])) by (le)\n ) \u003e 0.2\n severity: warning\n \n - name: TruthDistillCoherenceCollapse\n expr: |\n avg(coherence_score) \u003c 0.3 \n AND rate(distill_requests_total[1m]) \u003e 100\n severity: critical\n \n - name: TruthDistillQuorumFailure\n expr: |\n sum(quorum_failures_total) \n / sum(quorum_attempts_total) \u003e 0.05\n severity: high\n \n - name: TruthDistillBPSCritical\n expr: |\n max(bps_score) by (failure_mode) \u003e= 0.7\n severity: critical\n auto_action: circuit_breaker_engage\n```\n\n### 4.4 Operational Dashboards Metrics\n\n```\n# Core Performance\ndistill_requests_total{status, mode, priority}\ndistill_duration_seconds{quantile}\ndistill_source_count{bucket}\ndistill_iterations{bucket}\n\n# Quality Metrics\ncoherence_score{request_id}\nverification_weight{factor}\ntruth_confidence_output{bucket}\nconflict_resolution_events{strategy, outcome}\n\n# Reliability Metrics\nbps_score{failure_mode}\ncircuit_breaker_state{component}\nquorum_health{status}\nsource_poisoning_detected_total\n\n# Capacity Metrics\nactive_distillations\nqueue_depth{priority}\nmemory_usage_bytes\ncpu_utilization_ratio\n```\n\n### 4.5 Capacity Planning Formula\n\n```\nRequired_Capacity = (Peak_RPS × Safety_Factor × Avg_Latency) / (1 - Target_Utilization)\n\nWhere:\n Peak_RPS = P99 of hourly request rate\n Safety_Factor = 1.5 (standard) | 2.0 (critical)\n Avg_Latency = P50 latency in seconds\n Target_Utilization = 0.7\n\nScaling Trigger:\n IF current_utilization \u003e 0.65 FOR 5m THEN scale_up(ceil(current_capacity × 1.25))\n IF current_utilization \u003c 0.35 FOR 15m THEN scale_down(floor(current_capacity × 0.8))\n```\n\n---\n\n## 5. State Machine Definition\n\n```\nStates: {INIT, COLLECTING, VALIDATING, DISTILLING, VERIFYING, COMPLETE, FAILED}\n\nTransitions:\n INIT → COLLECTING: on(request_received) ∧ schema_valid\n INIT → FAILED: on(schema_violation)\n COLLECTING → VALIDATING: on(sources_count ≥ quorum)\n COLLECTING → FAILED: on(timeout) ∨ on(sources_count \u003c min_sources)\n VALIDATING → DISTILLING: on(all_sources_valid)\n VALIDATING → COLLECTING: on(invalid_sources_removed) ∧ (remaining ≥ quorum)\n VALIDATING → FAILED: on(remaining \u003c quorum)\n DISTILLING → VERIFYING: on(convergence) ∨ on(max_iterations)\n DISTILLING → FAILED: on(coherence_collapse)\n VERIFYING → COMPLETE: on(V(T) ≥ threshold)\n VERIFYING → FAILED: on(V(T) \u003c threshold)\n \nInvariants:\n ∀ state ∈ States: elapsed_time \u003c ttl_ms\n ∀ transition: emit(metric, trace_id)\n```\n\n---\n\n## 6. Failure Recovery Procedures\n\n```python\n# Pseudocode for recovery logic\ndef recovery_handler(failure_mode, context):\n match failure_mode:\n case \"BPS-001\": # Source Poisoning\n quarantine_sources(context.flagged_sources)\n trigger_revalidation(context.request_id)\n emit_security_alert(severity=\"CRITICAL\")\n \n case \"BPS-002\": # Coherence Collapse\n reduce_source_set(strategy=\"highest_confidence_subset\")\n retry_distillation(max_attempts=3)\n \n case \"BPS-003\": # Verification Bypass\n engage_circuit_breaker()\n require_manual_verification()\n \n case \"BPS-006\": # Cascade Propagation\n isolate_affected_components()\n initiate_graceful_degradation()\n \n log_recovery_action(failure_mode, context, outcome)\n```",
753
+ "outcome": "A-CS-TruthDistill",
754
+ "rType": 0,
755
+ "persona": "CS",
756
+ "primary_model": "GPT-4o-Synthesis",
757
+ "privacy_tier": "Public",
758
+ "sybox_fee_split": {
759
+ "dev": 0.5,
760
+ "curation": 0.4,
761
+ "author": 0.1
762
+ },
763
+ "ticker": "SYNL",
764
+ "audit_cadence": "Weekly",
765
+ "lifecycle": "Genesis-Platinum",
766
+ "global_outputs": [
767
+ "synthesis_id",
768
+ "logic_id",
769
+ "bps_verified",
770
+ "model_stack",
771
+ "processing_ms",
772
+ "timestamp"
773
+ ],
774
+ "custom_outputs": [
775
+ {
776
+ "field_name": "distilled_narrative",
777
+ "type": "String",
778
+ "description": "The singular, high-fidelity conclusion (max 3 sentences).",
779
+ "downstream_intent": "CEO/CMO for decision making.",
780
+ "bps_sensitivity": "High"
781
+ }
782
+ ]
783
+ },
784
+ {
785
+ "id": 26,
786
+ "successBps": 9934,
787
+ "cid": "ar://SYNTH_ATOMIC_CS_PROMPTSYNTH",
788
+ "costUsd": 1500,
789
+ "details": "# A-CS-PromptSynth Technical Logic Specification\n\n## 1. System Architecture Logic\n\n```\n┌─────────────────────────────────────────────────────────────────────┐\n│ A-CS-PromptSynth Core Engine │\n├─────────────────────────────────────────────────────────────────────┤\n│ INPUT_LAYER → VALIDATION_GATE → SYNTHESIS_CORE → OUTPUT_FORMATTER │\n│ ↓ ↓ ↓ ↓ │\n│ [Raw Prompt] [Schema Check] [Token Analysis] [Structured Out] │\n│ ↓ ↓ ↓ ↓ │\n│ TELEMETRY ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← │\n└─────────────────────────────────────────────────────────────────────┘\n```\n\n## 2. Core Processing Logic\n\n### 2.1 Prompt Decomposition Algorithm\n\n```python\ndef decompose_prompt(P):\n \"\"\"\n P = raw prompt string\n Returns: structured intent vector V_i\n \n Logic:\n V_i = Σ(w_k * T_k) for k in [1, n]\n where:\n w_k = semantic weight of token k\n T_k = token embedding vector\n n = total token count\n \"\"\"\n \n # Complexity Score (CS)\n CS = (unique_tokens / total_tokens) * log2(total_tokens + 1)\n \n # Ambiguity Index (AI)\n AI = 1 - (explicit_constraints / total_clauses)\n \n # Synthesis Difficulty (SD)\n SD = CS * (1 + AI) * depth_factor\n \n return {\n \"intent_vector\": V_i,\n \"complexity_score\": CS,\n \"ambiguity_index\": AI,\n \"synthesis_difficulty\": SD\n }\n```\n\n### 2.2 Synthesis Core Logic\n\n```\nSYNTHESIS_FUNCTION(input_vector):\n \n 1. PARSE:\n tokens[] = tokenize(input)\n intent = classify(tokens)\n \n 2. VALIDATE:\n IF schema_match(input) == FALSE:\n RETURN error_state(E_SCHEMA_MISMATCH)\n IF token_count \u003e MAX_TOKENS:\n RETURN error_state(E_TOKEN_OVERFLOW)\n \n 3. TRANSFORM:\n context_window = build_context(tokens, history_depth=5)\n synthesis_output = generate(\n context_window,\n temperature=0.7,\n top_p=0.95,\n max_output_tokens=4096\n )\n \n 4. VALIDATE_OUTPUT:\n coherence_score = measure_coherence(synthesis_output)\n IF coherence_score \u003c THRESHOLD_COHERENCE:\n RETRY with adjusted_params\n \n 5. RETURN structured_response\n```\n\n---\n\n## 3. Breakdown Point Score (BPS) Matrix\n\n### 3.1 BPS Calculation Formula\n\n```\nBPS = Σ(R_i * S_i * P_i) / N\n\nwhere:\n R_i = Risk magnitude (1-10)\n S_i = Severity multiplier (1-5)\n P_i = Probability of occurrence (0.0-1.0)\n N = Normalization factor (total risk categories)\n\nCritical Threshold: BPS \u003e 7.5\nWarning Threshold: BPS \u003e 5.0\nNominal: BPS ≤ 5.0\n```\n\n### 3.2 BPS Risk Matrix\n\n| Failure Mode | Risk (R) | Severity (S) | Probability (P) | BPS Component | Mitigation |\n|--------------|----------|--------------|-----------------|---------------|------------|\n| Token Overflow | 8 | 4 | 0.15 | 4.80 | Hard limit enforcement |\n| Schema Violation | 7 | 3 | 0.25 | 5.25 | Pre-validation gate |\n| Context Corruption | 9 | 5 | 0.08 | 3.60 | Checksum verification |\n| Synthesis Timeout | 6 | 3 | 0.20 | 3.60 | Circuit breaker pattern |\n| Output Incoherence | 7 | 4 | 0.12 | 3.36 | Coherence scoring |\n| Memory Exhaustion | 9 | 5 | 0.05 | 2.25 | Resource pooling |\n| Cascade Failure | 10 | 5 | 0.03 | 1.50 | Bulkhead isolation |\n| Rate Limit Breach | 5 | 2 | 0.30 | 3.00 | Token bucket algorithm |\n| Prompt Injection | 8 | 5 | 0.10 | 4.00 | Input sanitization |\n| State Desync | 7 | 4 | 0.07 | 1.96 | Idempotency keys |\n\n### 3.3 Aggregate BPS Calculation\n\n```\nTotal_BPS = (4.80 + 5.25 + 3.60 + 3.60 + 3.36 + 2.25 + 1.50 + 3.00 + 4.00 + 1.96) / 10\nTotal_BPS = 33.32 / 10\nTotal_BPS = 3.332\n\nSTATUS: NOMINAL (BPS ≤ 5.0)\n```\n\n### 3.4 BPS Escalation Logic\n\n```\nIF BPS \u003e 7.5:\n TRIGGER incident_response(SEV1)\n ENABLE circuit_breaker(ALL_ENDPOINTS)\n NOTIFY on_call_primary\n \nELIF BPS \u003e 5.0:\n TRIGGER alert(SEV2)\n ENABLE rate_limiting(AGGRESSIVE)\n LOG detailed_telemetry\n \nELSE:\n MAINTAIN normal_operations\n LOG standard_metrics\n```\n\n---\n\n## 4. JSON Schema for Input Validation\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://a-cs-promptsynth.internal/schema/v1/input\",\n \"title\": \"A-CS-PromptSynth Input Schema\",\n \"type\": \"object\",\n \"required\": [\"request_id\", \"prompt\", \"config\"],\n \"additionalProperties\": false,\n \n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$\",\n \"description\": \"UUIDv4 request identifier\"\n },\n \n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 timestamp\"\n },\n \n \"prompt\": {\n \"type\": \"object\",\n \"required\": [\"content\", \"type\"],\n \"properties\": {\n \"content\": {\n \"type\": \"string\",\n \"minLength\": 1,\n \"maxLength\": 32768,\n \"description\": \"Raw prompt content\"\n },\n \"type\": {\n \"type\": \"string\",\n \"enum\": [\"synthesis\", \"analysis\", \"transformation\", \"generation\"],\n \"description\": \"Prompt operation type\"\n },\n \"context\": {\n \"type\": \"array\",\n \"maxItems\": 10,\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"role\": {\n \"type\": \"string\",\n \"enum\": [\"system\", \"user\", \"assistant\"]\n },\n \"content\": {\n \"type\": \"string\",\n \"maxLength\": 16384\n }\n },\n \"required\": [\"role\", \"content\"]\n }\n },\n \"constraints\": {\n \"type\": \"object\",\n \"properties\": {\n \"max_tokens\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 8192,\n \"default\": 4096\n },\n \"format\": {\n \"type\": \"string\",\n \"enum\": [\"text\", \"json\", \"markdown\", \"code\"]\n },\n \"language\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-z]{2}(-[A-Z]{2})?$\"\n }\n }\n }\n }\n },\n \n \"config\": {\n \"type\": \"object\",\n \"required\": [\"model_params\"],\n \"properties\": {\n \"model_params\": {\n \"type\": \"object\",\n \"properties\": {\n \"temperature\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 2.0,\n \"default\": 0.7\n },\n \"top_p\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0,\n \"default\": 0.95\n },\n \"top_k\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 100,\n \"default\": 40\n },\n \"frequency_penalty\": {\n \"type\": \"number\",\n \"minimum\": -2.0,\n \"maximum\": 2.0,\n \"default\": 0.0\n },\n \"presence_penalty\": {\n \"type\": \"number\",\n \"minimum\": -2.0,\n \"maximum\": 2.0,\n \"default\": 0.0\n }\n }\n },\n \"timeout_ms\": {\n \"type\": \"integer\",\n \"minimum\": 1000,\n \"maximum\": 300000,\n \"default\": 30000\n },\n \"retry_policy\": {\n \"type\": \"object\",\n \"properties\": {\n \"max_retries\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 5,\n \"default\": 3\n },\n \"backoff_multiplier\": {\n \"type\": \"number\",\n \"minimum\": 1.0,\n \"maximum\": 5.0,\n \"default\": 2.0\n },\n \"initial_delay_ms\": {\n \"type\": \"integer\",\n \"minimum\": 100,\n \"maximum\": 10000,\n \"default\": 1000\n }\n }\n }\n }\n },\n \n \"metadata\": {\n \"type\": \"object\",\n \"properties\": {\n \"client_id\": {\n \"type\": \"string\",\n \"maxLength\": 64\n },\n \"trace_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{32}$\"\n },\n \"span_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{16}$\"\n },\n \"priority\": {\n \"type\": \"string\",\n \"enum\": [\"low\", \"normal\", \"high\", \"critical\"],\n \"default\": \"normal\"\n }\n }\n }\n }\n}\n```\n\n---\n\n## 5. SRE Metrics Specification\n\n### 5.1 Service Level Indicators (SLIs)\n\n| Metric | Type | Formula | Target |\n|--------|------|---------|--------|\n| Availability | Gauge | `(successful_requests / total_requests) * 100` | ≥ 99.9% |\n| Latency P50 | Histogram | `percentile(request_duration, 0.50)` | ≤ 200ms |\n| Latency P95 | Histogram | `percentile(request_duration, 0.95)` | ≤ 800ms |\n| Latency P99 | Histogram | `percentile(request_duration, 0.99)` | ≤ 2000ms |\n| Error Rate | Counter | `(error_count / total_requests) * 100` | ≤ 0.1% |\n| Throughput | Counter | `requests_per_second` | ≥ 1000 RPS |\n| Saturation | Gauge | `(active_connections / max_connections) * 100` | ≤ 80% |\n\n### 5.2 Service Level Objectives (SLOs)\n\n```yaml\nslos:\n - name: \"synthesis_availability\"\n target: 99.9\n window: \"30d\"\n indicator:\n metric: \"promptsynth_request_success_total\"\n good_events: \"status=~\u00272..\u0027\"\n total_events: \"status=~\u0027.+\u0027\"\n error_budget:\n monthly_minutes: 43.2\n burn_rate_alert_threshold: 14.4\n\n - name: \"synthesis_latency\"\n target: 99.0\n window: \"30d\"\n indicator:\n metric: \"promptsynth_request_duration_seconds\"\n threshold: 0.8\n percentile: 95\n error_budget:\n monthly_minutes: 432\n\n - name: \"synthesis_correctness\"\n target: 99.5\n window: \"7d\"\n indicator:\n metric: \"promptsynth_coherence_score\"\n threshold: 0.85\n```\n\n### 5.3 Prometheus Metrics Definition\n\n```prometheus\n# HELP promptsynth_requests_total Total number of synthesis requests\n# TYPE promptsynth_requests_total counter\npromptsynth_requests_total{status=\"success|failure|timeout\", type=\"synthesis|analysis|transformation|generation\"}\n\n# HELP promptsynth_request_duration_seconds Request latency in seconds\n# TYPE promptsynth_request_duration_seconds histogram\npromptsynth_request_duration_seconds_bucket{le=\"0.1|0.25|0.5|1|2.5|5|10\"}\npromptsynth_request_duration_seconds_sum\npromptsynth_request_duration_seconds_count\n\n# HELP promptsynth_tokens_processed_total Total tokens processed\n# TYPE promptsynth_tokens_processed_total counter\npromptsynth_tokens_processed_total{direction=\"input|output\"}\n\n# HELP promptsynth_active_requests Current number of in-flight requests\n# TYPE promptsynth_active_requests gauge\npromptsynth_active_requests\n\n# HELP promptsynth_coherence_score Output coherence score\n# TYPE promptsynth_coherence_score histogram\npromptsynth_coherence_score_bucket{le=\"0.5|0.6|0.7|0.8|0.9|0.95|1.0\"}\n\n# HELP promptsynth_bps_score Current Breakdown Point Score\n# TYPE promptsynth_bps_score gauge\npromptsynth_bps_score{failure_mode=\"token_overflow|schema_violation|context_corruption|...\"}\n\n# HELP promptsynth_circuit_breaker_state Circuit breaker state\n# TYPE promptsynth_circuit_breaker_state gauge\npromptsynth_circuit_breaker_state{state=\"closed|open|half_open\"}\n\n# HELP promptsynth_error_budget_remaining Remaining error budget percentage\n# TYPE promptsynth_error_budget_remaining gauge\npromptsynth_error_budget_remaining{slo=\"availability|latency|correctness\"}\n```\n\n### 5.4 Alert Rules\n\n```yaml\ngroups:\n - name: promptsynth_alerts\n rules:\n - alert: HighErrorRate\n expr: |\n (\n sum(rate(promptsynth_requests_total{status=\"failure\"}[5m]))\n /\n sum(rate(promptsynth_requests_total[5m]))\n ) \u003e 0.01\n for: 2m\n labels:\n severity: critical\n annotations:\n summary: \"Error rate exceeds 1%\"\n \n - alert: HighLatencyP95\n expr: |\n histogram_quantile(0.95, \n sum\n```",
790
+ "outcome": "A-CS-PromptSynth",
791
+ "rType": 0,
792
+ "persona": "CS",
793
+ "primary_model": "GPT-4o-Synthesis",
794
+ "privacy_tier": "Public",
795
+ "sybox_fee_split": {
796
+ "dev": 0.5,
797
+ "curation": 0.4,
798
+ "author": 0.1
799
+ },
800
+ "ticker": "SYNL",
801
+ "audit_cadence": "Weekly",
802
+ "lifecycle": "Genesis-Platinum",
803
+ "global_outputs": [
804
+ "synthesis_id",
805
+ "logic_id",
806
+ "bps_verified",
807
+ "model_stack",
808
+ "processing_ms",
809
+ "timestamp"
810
+ ],
811
+ "custom_outputs": [
812
+ {
813
+ "field_name": "blueprint_artifact",
814
+ "type": "Object",
815
+ "description": "Hierarchical object containing pseudocode, proofs, and steps.",
816
+ "downstream_intent": "Engineering/Dev personas.",
817
+ "bps_sensitivity": "High"
818
+ }
819
+ ]
820
+ },
821
+ {
822
+ "id": 27,
823
+ "successBps": 9788,
824
+ "cid": "ar://SYNTH_ATOMIC_CS_OMNITUNER",
825
+ "costUsd": 1500,
826
+ "details": "# A-CS-OmniTuner Technical Specification\n\n## 1. System Architecture Logic\n\n```\n┌─────────────────────────────────────────────────────────────────────┐\n│ A-CS-OmniTuner Core Engine │\n├─────────────────────────────────────────────────────────────────────┤\n│ Input Layer → Validation Layer → Processing Layer → Output Layer │\n│ ↓ ↓ ↓ ↓ │\n│ [Schema Check] [BPS Calc] [Tuning Algorithm] [Metric Emission] │\n└─────────────────────────────────────────────────────────────────────┘\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 BPS Calculation Formula\n\n```\nBPS = Σ(Wᵢ × Rᵢ × Iᵢ) / N\n\nWhere:\n Wᵢ = Weight factor for failure domain i (0.0 - 1.0)\n Rᵢ = Risk probability for domain i (0.0 - 1.0)\n Iᵢ = Impact severity for domain i (1 - 10)\n N = Normalization constant = 10\n```\n\n### 2.2 Failure Domain Matrix\n\n| Domain ID | Failure Domain | Weight (W) | Risk Threshold | Impact Multiplier | Recovery SLO |\n|-----------|----------------|------------|----------------|-------------------|--------------|\n| FD-001 | Configuration Drift | 0.85 | R \u003e 0.3 | 8 | 15 min |\n| FD-002 | Resource Exhaustion | 0.95 | R \u003e 0.2 | 9 | 5 min |\n| FD-003 | Dependency Cascade | 0.90 | R \u003e 0.25 | 10 | 10 min |\n| FD-004 | State Corruption | 0.80 | R \u003e 0.15 | 10 | 30 min |\n| FD-005 | Latency Degradation | 0.70 | R \u003e 0.4 | 6 | 2 min |\n| FD-006 | Throughput Collapse | 0.75 | R \u003e 0.35 | 7 | 5 min |\n| FD-007 | Authentication Failure | 0.95 | R \u003e 0.1 | 9 | 1 min |\n| FD-008 | Data Inconsistency | 0.85 | R \u003e 0.2 | 8 | 20 min |\n\n### 2.3 BPS Severity Classification\n\n```\nBPS Range | Classification | Action Required\n─────────────────┼────────────────┼─────────────────────────────\n0.00 - 0.20 | NOMINAL | Continue monitoring\n0.21 - 0.40 | ELEVATED | Increase observation frequency\n0.41 - 0.60 | WARNING | Initiate preventive tuning\n0.61 - 0.80 | CRITICAL | Execute immediate remediation\n0.81 - 1.00 | BREAKDOWN | Trigger circuit breaker + escalation\n```\n\n### 2.4 Composite BPS Calculation\n\n```python\ndef calculate_composite_bps(failure_domains: list) -\u003e float:\n \"\"\"\n Composite BPS with temporal decay and correlation adjustment\n \"\"\"\n base_bps = sum(fd.weight * fd.risk * fd.impact for fd in failure_domains) / 10\n \n # Correlation penalty: overlapping failures compound risk\n correlation_factor = 1 + (0.15 * count_correlated_domains(failure_domains))\n \n # Temporal decay: recent incidents weight higher\n temporal_weight = exp(-λ * time_since_last_incident) # λ = 0.1\n \n composite_bps = min(1.0, base_bps * correlation_factor * (0.7 + 0.3 * temporal_weight))\n \n return round(composite_bps, 4)\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n### 3.1 Primary Configuration Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-cs-omnituner/v1\",\n \"title\": \"A-CS-OmniTuner Configuration\",\n \"type\": \"object\",\n \"required\": [\"metadata\", \"targets\", \"tuning_parameters\", \"constraints\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"metadata\": {\n \"type\": \"object\",\n \"required\": [\"version\", \"environment\", \"timestamp\", \"correlation_id\"],\n \"properties\": {\n \"version\": {\n \"type\": \"string\",\n \"pattern\": \"^[0-9]+\\\\.[0-9]+\\\\.[0-9]+$\"\n },\n \"environment\": {\n \"type\": \"string\",\n \"enum\": [\"development\", \"staging\", \"production\", \"disaster-recovery\"]\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"correlation_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\"\n },\n \"operator\": {\n \"type\": \"string\",\n \"minLength\": 3,\n \"maxLength\": 64\n }\n }\n },\n \"targets\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"maxItems\": 100,\n \"items\": {\n \"$ref\": \"#/$defs/target\"\n }\n },\n \"tuning_parameters\": {\n \"$ref\": \"#/$defs/tuning_parameters\"\n },\n \"constraints\": {\n \"$ref\": \"#/$defs/constraints\"\n },\n \"rollback_policy\": {\n \"$ref\": \"#/$defs/rollback_policy\"\n }\n },\n \"$defs\": {\n \"target\": {\n \"type\": \"object\",\n \"required\": [\"target_id\", \"target_type\", \"endpoint\", \"health_check\"],\n \"properties\": {\n \"target_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-z0-9-]{3,64}$\"\n },\n \"target_type\": {\n \"type\": \"string\",\n \"enum\": [\"compute\", \"storage\", \"network\", \"database\", \"cache\", \"queue\", \"api-gateway\"]\n },\n \"endpoint\": {\n \"type\": \"string\",\n \"format\": \"uri\"\n },\n \"health_check\": {\n \"type\": \"object\",\n \"required\": [\"path\", \"interval_seconds\", \"timeout_seconds\"],\n \"properties\": {\n \"path\": { \"type\": \"string\" },\n \"interval_seconds\": { \n \"type\": \"integer\", \n \"minimum\": 5, \n \"maximum\": 300 \n },\n \"timeout_seconds\": { \n \"type\": \"integer\", \n \"minimum\": 1, \n \"maximum\": 30 \n },\n \"healthy_threshold\": { \n \"type\": \"integer\", \n \"minimum\": 1, \n \"maximum\": 10,\n \"default\": 2\n },\n \"unhealthy_threshold\": { \n \"type\": \"integer\", \n \"minimum\": 1, \n \"maximum\": 10,\n \"default\": 3\n }\n }\n },\n \"priority\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 10,\n \"default\": 5\n },\n \"tags\": {\n \"type\": \"object\",\n \"additionalProperties\": { \"type\": \"string\" }\n }\n }\n },\n \"tuning_parameters\": {\n \"type\": \"object\",\n \"required\": [\"mode\", \"optimization_target\"],\n \"properties\": {\n \"mode\": {\n \"type\": \"string\",\n \"enum\": [\"conservative\", \"balanced\", \"aggressive\", \"custom\"]\n },\n \"optimization_target\": {\n \"type\": \"string\",\n \"enum\": [\"latency\", \"throughput\", \"cost\", \"reliability\", \"multi-objective\"]\n },\n \"resource_limits\": {\n \"type\": \"object\",\n \"properties\": {\n \"cpu_cores_max\": { \"type\": \"number\", \"minimum\": 0.1 },\n \"memory_gb_max\": { \"type\": \"number\", \"minimum\": 0.128 },\n \"iops_max\": { \"type\": \"integer\", \"minimum\": 100 },\n \"bandwidth_mbps_max\": { \"type\": \"integer\", \"minimum\": 1 }\n }\n },\n \"scaling\": {\n \"type\": \"object\",\n \"properties\": {\n \"min_replicas\": { \"type\": \"integer\", \"minimum\": 0 },\n \"max_replicas\": { \"type\": \"integer\", \"minimum\": 1 },\n \"scale_up_threshold\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"scale_down_threshold\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"cooldown_seconds\": { \"type\": \"integer\", \"minimum\": 30 }\n }\n },\n \"custom_weights\": {\n \"type\": \"object\",\n \"properties\": {\n \"latency_weight\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"throughput_weight\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"cost_weight\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"reliability_weight\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 }\n }\n }\n }\n },\n \"constraints\": {\n \"type\": \"object\",\n \"required\": [\"slo_targets\"],\n \"properties\": {\n \"slo_targets\": {\n \"type\": \"object\",\n \"properties\": {\n \"availability_percent\": { \n \"type\": \"number\", \n \"minimum\": 90, \n \"maximum\": 99.999 \n },\n \"latency_p50_ms\": { \"type\": \"number\", \"minimum\": 0 },\n \"latency_p95_ms\": { \"type\": \"number\", \"minimum\": 0 },\n \"latency_p99_ms\": { \"type\": \"number\", \"minimum\": 0 },\n \"error_rate_percent\": { \n \"type\": \"number\", \n \"minimum\": 0, \n \"maximum\": 100 \n }\n }\n },\n \"maintenance_windows\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"start\": { \"type\": \"string\", \"format\": \"date-time\" },\n \"end\": { \"type\": \"string\", \"format\": \"date-time\" },\n \"recurrence\": { \"type\": \"string\" }\n }\n }\n },\n \"blackout_periods\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"start\": { \"type\": \"string\", \"format\": \"date-time\" },\n \"end\": { \"type\": \"string\", \"format\": \"date-time\" },\n \"reason\": { \"type\": \"string\" }\n }\n }\n }\n }\n },\n \"rollback_policy\": {\n \"type\": \"object\",\n \"properties\": {\n \"enabled\": { \"type\": \"boolean\", \"default\": true },\n \"trigger_conditions\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"metric\": { \"type\": \"string\" },\n \"operator\": { \"type\": \"string\", \"enum\": [\"gt\", \"lt\", \"gte\", \"lte\", \"eq\"] },\n \"threshold\": { \"type\": \"number\" },\n \"duration_seconds\": { \"type\": \"integer\" }\n }\n }\n },\n \"max_rollback_attempts\": { \"type\": \"integer\", \"minimum\": 1, \"maximum\": 5 },\n \"notification_channels\": {\n \"type\": \"array\",\n \"items\": { \"type\": \"string\" }\n }\n }\n }\n }\n}\n```\n\n### 3.2 Validation Response Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-cs-omnituner/validation-response/v1\",\n \"type\": \"object\",\n \"required\": [\"valid\", \"timestamp\", \"validation_id\"],\n \"properties\": {\n \"valid\": { \"type\": \"boolean\" },\n \"timestamp\": { \"type\": \"string\", \"format\": \"date-time\" },\n \"validation_id\": { \"type\": \"string\", \"format\": \"uuid\" },\n \"errors\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"path\": { \"type\": \"string\" },\n \"code\": { \"type\": \"string\" },\n \"message\": { \"type\": \"string\" },\n \"severity\": { \"type\": \"string\", \"enum\": [\"error\", \"warning\"] }\n }\n }\n },\n \"computed_bps\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"risk_assessment\": {\n \"type\": \"object\",\n \"properties\": {\n \"classification\": { \"type\": \"string\" },\n \"recommended_action\": { \"type\": \"string\" }\n }\n }\n }\n}\n```\n\n---\n\n## 4. SRE Metrics Specification\n\n### 4.1 Golden Signals Metrics\n\n| Metric Name | Type | Unit | Labels | Description |\n|-------------|------|------|--------|-------------|\n| `omnituner_request_latency_seconds` | Histogram | seconds | `target_id`, `operation`, `status` | Tuning operation latency distribution |\n| `omnituner_request_total` | Counter | count | `target_id`, `operation`, `status` | Total tuning requests |\n| `omnituner_error_total` | Counter | count | `target_id`, `error_type`, `severity` | Total errors by type |\n| `omnituner_saturation_ratio` | Gauge | ratio | `resource_type`, `target_id` | Resource utilization ratio |\n\n### 4.2 Operational Health Metrics\n\n```yaml\nmetrics:\n # Tuning Effectiveness\n - name: omnituner_tuning_effectiveness_score\n type: gauge\n description: \"Effectiveness score of last tuning operation (0-1)\"\n labels: [target_id, optimization_target]\n \n - name: omnituner_config_drift_detected_total\n type: counter\n description: \"Number of configuration drift events detected\"\n labels: [target_id, drift_type]\n \n - name: omnituner_auto_remediation_total\n type: counter\n description: \"Automatic remediation actions executed\"\n labels: [target_id, action_type, result]\n\n # BPS Metrics\n - name: omnituner_bps_current\n type: gauge\n description: \"Current Breakdown Point Score\"\n labels: [target_id, failure_domain]\n \n - name: omnituner_bps_threshold_exceeded_total\n type: counter\n description: \"BPS threshold breach events\"\n labels: [target_id, severity]\n\n # Rollback Metrics\n - name: omnituner_rollback_total\n type: counter\n description: \"Total rollback operations\"\n labels: [target_id, trigger_reason, success]\n \n - name: omnituner_rollback_duration_seconds\n type: histogram\n description: \"Time to complete rollback\"\n labels: [target_id]\n buckets: [1,\n```]",
827
+ "outcome": "A-CS-OmniTuner",
828
+ "rType": 0,
829
+ "persona": "CS",
830
+ "primary_model": "GPT-4o-Synthesis",
831
+ "privacy_tier": "Public",
832
+ "sybox_fee_split": {
833
+ "dev": 0.5,
834
+ "curation": 0.4,
835
+ "author": 0.1
836
+ },
837
+ "ticker": "SYNL",
838
+ "audit_cadence": "Weekly",
839
+ "lifecycle": "Genesis-Platinum",
840
+ "global_outputs": [
841
+ "synthesis_id",
842
+ "logic_id",
843
+ "bps_verified",
844
+ "model_stack",
845
+ "processing_ms",
846
+ "timestamp"
847
+ ],
848
+ "custom_outputs": [
849
+ {
850
+ "field_name": "tuning_directives",
851
+ "type": "Array",
852
+ "description": "Objects containing `target_id` and `action` (e.g., SCALE_UP).",
853
+ "downstream_intent": "Auto-Scaling / Cloud Controllers.",
854
+ "bps_sensitivity": "Critical"
855
+ },
856
+ {
857
+ "field_name": "risk_classification",
858
+ "type": "String",
859
+ "description": "Outcome state: \"NOMINAL\", \"ELEVATED\", \"CRITICAL\", \"BREAKDOWN\".",
860
+ "downstream_intent": "System-wide Alerting / Dashboards.",
861
+ "bps_sensitivity": "High"
862
+ }
863
+ ]
864
+ },
865
+ {
866
+ "id": 28,
867
+ "successBps": 9901,
868
+ "cid": "ar://SYNTH_ATOMIC_CS_RESONBPS",
869
+ "costUsd": 1500,
870
+ "details": "# A-CS-ResonBPS Technical Specification\n\n## 1. Core Logic Definition\n\n### 1.1 Resonance Breakdown Point Score (BPS) Formula\n\n```\nBPS = Σ(Wᵢ × Fᵢ × Dᵢ) / (R × T)\n\nWhere:\n Wᵢ = Weight factor for failure domain i (0.0 - 1.0)\n Fᵢ = Failure frequency coefficient (events/hour)\n Dᵢ = Duration impact multiplier (minutes)\n R = Resilience factor (0.1 - 1.0, higher = more resilient)\n T = Time window normalization constant (60 minutes)\n```\n\n### 1.2 Composite Score Calculation\n\n```\nA-CS-ResonBPS = (BPS_infra × 0.35) + (BPS_app × 0.30) + (BPS_data × 0.25) + (BPS_network × 0.10)\n\nCritical Threshold: A-CS-ResonBPS ≥ 0.75\nWarning Threshold: A-CS-ResonBPS ≥ 0.50\nNominal: A-CS-ResonBPS \u003c 0.50\n```\n\n---\n\n## 2. BPS Matrix - Operational Failure Risks\n\n### 2.1 Infrastructure Domain (BPS_infra)\n\n| Risk Category | Weight (W) | Frequency Baseline (F) | Duration Multiplier (D) | Trigger Condition |\n|---------------|------------|------------------------|-------------------------|-------------------|\n| CPU Saturation | 0.25 | 0.15/hr | 1.5 | CPU \u003e 85% for 5min |\n| Memory Exhaustion | 0.30 | 0.08/hr | 2.0 | Memory \u003e 90% for 3min |\n| Disk I/O Bottleneck | 0.20 | 0.12/hr | 1.8 | IOPS latency \u003e 50ms |\n| Node Failure | 0.25 | 0.02/hr | 4.0 | Node unreachable \u003e 30s |\n\n### 2.2 Application Domain (BPS_app)\n\n| Risk Category | Weight (W) | Frequency Baseline (F) | Duration Multiplier (D) | Trigger Condition |\n|---------------|------------|------------------------|-------------------------|-------------------|\n| Error Rate Spike | 0.35 | 0.20/hr | 1.2 | 5xx \u003e 1% of requests |\n| Latency Degradation | 0.25 | 0.25/hr | 1.0 | P99 \u003e 2× baseline |\n| Thread Pool Exhaustion | 0.20 | 0.10/hr | 2.5 | Active threads \u003e 95% |\n| Dependency Timeout | 0.20 | 0.18/hr | 1.8 | Upstream timeout \u003e 5s |\n\n### 2.3 Data Domain (BPS_data)\n\n| Risk Category | Weight (W) | Frequency Baseline (F) | Duration Multiplier (D) | Trigger Condition |\n|---------------|------------|------------------------|-------------------------|-------------------|\n| Replication Lag | 0.30 | 0.05/hr | 3.0 | Lag \u003e 30s |\n| Connection Pool Saturation | 0.25 | 0.15/hr | 2.0 | Connections \u003e 90% |\n| Query Timeout | 0.25 | 0.12/hr | 1.5 | Query time \u003e 10s |\n| Data Corruption Signal | 0.20 | 0.01/hr | 5.0 | Checksum mismatch |\n\n### 2.4 Network Domain (BPS_network)\n\n| Risk Category | Weight (W) | Frequency Baseline (F) | Duration Multiplier (D) | Trigger Condition |\n|---------------|------------|------------------------|-------------------------|-------------------|\n| Packet Loss | 0.35 | 0.08/hr | 2.0 | Loss \u003e 0.5% |\n| DNS Resolution Failure | 0.25 | 0.03/hr | 3.5 | Resolution \u003e 500ms |\n| TLS Handshake Failure | 0.20 | 0.05/hr | 2.5 | Handshake timeout |\n| Load Balancer Saturation | 0.20 | 0.06/hr | 2.2 | Queue depth \u003e 1000 |\n\n---\n\n## 3. JSON Schema - Input Validation\n\n```json\n{\n \"$schema\": \"http://json-schema.org/draft-07/schema#\",\n \"$id\": \"https://sre.internal/schemas/a-cs-resonbps/v1\",\n \"title\": \"A-CS-ResonBPS Input Schema\",\n \"type\": \"object\",\n \"required\": [\"timestamp\", \"source_id\", \"domains\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 UTC timestamp\"\n },\n \"source_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-z0-9-]{3,64}$\",\n \"description\": \"Unique identifier for reporting source\"\n },\n \"resilience_factor\": {\n \"type\": \"number\",\n \"minimum\": 0.1,\n \"maximum\": 1.0,\n \"default\": 0.5\n },\n \"time_window_minutes\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 1440,\n \"default\": 60\n },\n \"domains\": {\n \"type\": \"object\",\n \"required\": [\"infrastructure\", \"application\", \"data\", \"network\"],\n \"properties\": {\n \"infrastructure\": {\n \"$ref\": \"#/definitions/domainMetrics\"\n },\n \"application\": {\n \"$ref\": \"#/definitions/domainMetrics\"\n },\n \"data\": {\n \"$ref\": \"#/definitions/domainMetrics\"\n },\n \"network\": {\n \"$ref\": \"#/definitions/domainMetrics\"\n }\n }\n },\n \"metadata\": {\n \"type\": \"object\",\n \"properties\": {\n \"environment\": {\n \"type\": \"string\",\n \"enum\": [\"production\", \"staging\", \"development\"]\n },\n \"region\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-z]{2}-[a-z]+-[0-9]$\"\n },\n \"cluster_id\": {\n \"type\": \"string\"\n }\n }\n }\n },\n \"definitions\": {\n \"domainMetrics\": {\n \"type\": \"object\",\n \"required\": [\"metrics\"],\n \"properties\": {\n \"weight_override\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n },\n \"metrics\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"items\": {\n \"$ref\": \"#/definitions/metricEntry\"\n }\n }\n }\n },\n \"metricEntry\": {\n \"type\": \"object\",\n \"required\": [\"category\", \"weight\", \"frequency\", \"duration_multiplier\", \"current_value\", \"threshold\"],\n \"properties\": {\n \"category\": {\n \"type\": \"string\",\n \"minLength\": 1,\n \"maxLength\": 64\n },\n \"weight\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n },\n \"frequency\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"description\": \"Events per hour\"\n },\n \"duration_multiplier\": {\n \"type\": \"number\",\n \"minimum\": 0.1,\n \"maximum\": 10.0\n },\n \"current_value\": {\n \"type\": \"number\"\n },\n \"threshold\": {\n \"type\": \"number\"\n },\n \"triggered\": {\n \"type\": \"boolean\",\n \"default\": false\n }\n }\n }\n }\n}\n```\n\n---\n\n## 4. SRE Metrics - Operational Success Criteria\n\n### 4.1 Service Level Indicators (SLIs)\n\n| Metric | Formula | Target | Measurement Interval |\n|--------|---------|--------|---------------------|\n| BPS Calculation Latency | P99(calculation_time_ms) | ≤ 50ms | 1 minute |\n| Input Validation Success Rate | valid_inputs / total_inputs × 100 | ≥ 99.9% | 5 minutes |\n| Alert Delivery Latency | P95(alert_dispatch_time_ms) | ≤ 200ms | 1 minute |\n| Score Accuracy | |calculated - expected| / expected | ≤ 0.01 | Per calculation |\n\n### 4.2 Service Level Objectives (SLOs)\n\n```yaml\nslos:\n availability:\n target: 99.95%\n window: 30d\n error_budget_burn_rate_alert:\n fast: 14.4 # 2% budget in 1 hour\n slow: 6.0 # 5% budget in 6 hours\n\n latency:\n p50_target_ms: 10\n p99_target_ms: 50\n window: 7d\n\n correctness:\n target: 99.99%\n validation: checksum_verification\n window: 30d\n\n freshness:\n max_staleness_seconds: 60\n target: 99.9%\n window: 7d\n```\n\n### 4.3 Operational Metrics\n\n```\n# Prometheus metric definitions\n\n# Counter: Total BPS calculations performed\na_cs_resonbps_calculations_total{domain, status}\n\n# Histogram: Calculation duration\na_cs_resonbps_calculation_duration_seconds{domain}\n buckets: [0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25]\n\n# Gauge: Current composite BPS score\na_cs_resonbps_score_current{environment, region, cluster}\n\n# Counter: Threshold breaches\na_cs_resonbps_threshold_breaches_total{severity, domain}\n\n# Gauge: Error budget remaining\na_cs_resonbps_error_budget_remaining_ratio{slo_name}\n\n# Counter: Input validation failures\na_cs_resonbps_validation_failures_total{error_type, field}\n```\n\n### 4.4 Alert Thresholds\n\n```yaml\nalerts:\n - name: BPSCriticalThreshold\n condition: a_cs_resonbps_score_current \u003e= 0.75\n duration: 2m\n severity: critical\n runbook: /runbooks/bps-critical\n\n - name: BPSWarningThreshold\n condition: a_cs_resonbps_score_current \u003e= 0.50\n duration: 5m\n severity: warning\n runbook: /runbooks/bps-warning\n\n - name: BPSCalculationLatencyHigh\n condition: histogram_quantile(0.99, a_cs_resonbps_calculation_duration_seconds) \u003e 0.05\n duration: 5m\n severity: warning\n\n - name: BPSErrorBudgetBurnRateFast\n condition: |\n (\n 1 - (sum(rate(a_cs_resonbps_calculations_total{status=\"success\"}[1h])) \n / sum(rate(a_cs_resonbps_calculations_total[1h])))\n ) \u003e (14.4 * 0.0005)\n duration: 2m\n severity: critical\n\n - name: BPSInputValidationDegraded\n condition: |\n sum(rate(a_cs_resonbps_validation_failures_total[5m])) \n / sum(rate(a_cs_resonbps_calculations_total[5m])) \u003e 0.001\n duration: 5m\n severity: warning\n```\n\n---\n\n## 5. Calculation Engine Logic\n\n```python\ndef calculate_domain_bps(metrics: list, resilience: float, time_window: int) -\u003e float:\n \"\"\"\n Calculate BPS for a single domain.\n \n Returns: float in range [0.0, ∞) - normalized score\n \"\"\"\n if not metrics or resilience \u003c= 0 or time_window \u003c= 0:\n raise ValueError(\"Invalid input parameters\")\n \n weighted_sum = 0.0\n for m in metrics:\n if m.triggered:\n weighted_sum += m.weight * m.frequency * m.duration_multiplier\n \n return weighted_sum / (resilience * time_window)\n\n\ndef calculate_composite_bps(domains: dict, weights: dict = None) -\u003e float:\n \"\"\"\n Calculate A-CS-ResonBPS composite score.\n \n Default weights:\n infrastructure: 0.35\n application: 0.30\n data: 0.25\n network: 0.10\n \"\"\"\n default_weights = {\n \"infrastructure\": 0.35,\n \"application\": 0.30,\n \"data\": 0.25,\n \"network\": 0.10\n }\n \n w = weights or default_weights\n \n composite = (\n domains[\"infrastructure\"] * w[\"infrastructure\"] +\n domains[\"application\"] * w[\"application\"] +\n domains[\"data\"] * w[\"data\"] +\n domains[\"network\"] * w[\"network\"]\n )\n \n return min(composite, 1.0) # Cap at 1.0 for normalization\n\n\ndef evaluate_threshold(score: float) -\u003e str:\n \"\"\"\n Evaluate score against operational thresholds.\n \n Returns: \u0027critical\u0027 | \u0027warning\u0027 | \u0027nominal\u0027\n \"\"\"\n if score \u003e= 0.75:\n return \"critical\"\n elif score \u003e= 0.50:\n return \"warning\"\n return \"nominal\"\n```\n\n---\n\n## 6. State Machine - Operational States\n\n```\n┌─────────────────────────────────────────────────────────────────┐\n│ │\n│ ┌──────────┐ BPS ≥ 0.50 ┌──────────┐ │\n│ │ │ ─────────────────▶ │ │ │\n│ │ NOMINAL │ │ WARNING │ │\n│ │ (GREEN) │ ◀───────────────── │ (YELLOW) │ │\n│ │ │ BPS \u003c 0.50 │ │ │\n│ └──────────┘ for 5min └──────────┘ │\n│ │ │ │\n│ │ │ BPS ≥ 0.75 │\n│ │ ▼ │\n│ │ ┌──────────┐ │\n│ │ BPS ≥ 0.75 │ │ │\n│ └────────────────────────▶ │ CRITICAL │ │\n│ │ (RED) │ │\n│ BPS \u003c 0.50 │ │ │\n│ ◀──────────────────────────┴──────────┘ │\n│ for 10min │\n│ │\n└─────────────────────────────────────────────────────────────────┘\n\nState Transition Hysteresis:\n NOMINAL → WARNING: Immediate on threshold breach\n WARNING → CRITICAL: Immediate on threshold breach \n CRITICAL → WARNING: Requires BPS \u003c 0.75 for 3 minutes\n WARNING → NOMINAL: Requires BPS \u003c 0.50 for 5 minutes\n CRITICAL → NOMINAL: Requires BPS \u003c 0.50 for 10 minutes\n```]",
871
+ "outcome": "A-CS-ResonBPS",
872
+ "rType": 0,
873
+ "persona": "CS",
874
+ "primary_model": "GPT-4o-Synthesis",
875
+ "privacy_tier": "Public",
876
+ "sybox_fee_split": {
877
+ "dev": 0.5,
878
+ "curation": 0.4,
879
+ "author": 0.1
880
+ },
881
+ "ticker": "SYNL",
882
+ "audit_cadence": "Weekly",
883
+ "lifecycle": "Genesis-Platinum",
884
+ "global_outputs": [
885
+ "synthesis_id",
886
+ "logic_id",
887
+ "bps_verified",
888
+ "model_stack",
889
+ "processing_ms",
890
+ "timestamp"
891
+ ],
892
+ "custom_outputs": [
893
+ {
894
+ "field_name": "composite_reson_score",
895
+ "type": "Float",
896
+ "description": "Normalized 0-1 score representing total system BPS.",
897
+ "downstream_intent": "Circuit Breaker (Global Control).",
898
+ "bps_sensitivity": "Critical"
899
+ },
900
+ {
901
+ "field_name": "domain_contribution",
902
+ "type": "Object",
903
+ "description": "Percentage of total risk from Infra, App, Data, and Network.",
904
+ "downstream_intent": "SRE/DevOps prioritizing fixes.",
905
+ "bps_sensitivity": "High"
906
+ },
907
+ {
908
+ "field_name": "breach_magnitude_set",
909
+ "type": "Array",
910
+ "description": "Critical categories that exceeded threshold + their delta.",
911
+ "downstream_intent": "Notification Dispatchers (PagerDuty).",
912
+ "bps_sensitivity": "Medium"
913
+ },
914
+ {
915
+ "field_name": "hysteresis_state",
916
+ "type": "String",
917
+ "description": "Current color-coded state (GREEN, YELLOW, RED) with decay info.",
918
+ "downstream_intent": "Front-end status UI.",
919
+ "bps_sensitivity": "Medium"
920
+ }
921
+ ]
922
+ },
923
+ {
924
+ "id": 29,
925
+ "successBps": 9841,
926
+ "cid": "ar://SYNTH_ATOMIC_GAM_WORLDSEED",
927
+ "costUsd": 1500,
928
+ "details": "# A-GAM-WorldSeed Logic Module\n\n## Technical Documentation v2.4.1\n\n---\n\n## Module Overview\n\n| Attribute | Value |\n|-----------|-------|\n| **Module ID** | `A-GAM-WorldSeed` |\n| **Classification** | Procedural Generation Core |\n| **Priority Level** | P0 - Critical Path |\n| **Dependencies** | `A-GAM-NoiseGen`, `A-GAM-BiomeMapper`, `A-SYS-RNG` |\n\n---\n\n## Functional Description\n\nThe A-GAM-WorldSeed module serves as the deterministic initialization layer for procedural world generation. It transforms a seed integer into a reproducible pseudo-random state vector that governs terrain topology, resource distribution, and biome placement.\n\n---\n\n## Core Algorithms\n\n### 1. Seed Hashing Function\n\n**Algorithm:** Modified MurmurHash3 with avalanche mixing\n\n```\nH(s) = ((s × 0xcc9e2d51) ⊕ (s \u003e\u003e 16)) × 0x1b873593\n```\n\n**Time Complexity:** O(1) \n**Space Complexity:** O(1)\n\n### 2. Octave Noise Generation\n\nMulti-frequency Perlin noise summation:\n\n$$\nN(x, y) = \\sum_{i=0}^{n-1} \\frac{1}{2^i} \\cdot \\text{noise}\\left(2^i \\cdot x, 2^i \\cdot y\\right)\n$$\n\nWhere:\n- $n$ = octave count (default: 8)\n- Persistence factor $p = 0.5$\n- Lacunarity $\\lambda = 2.0$\n\n**Time Complexity:** O(n) per coordinate \n**Space Complexity:** O(n) for gradient cache\n\n### 3. Chunk Generation Pipeline\n\n$$\nT_{chunk} = T_{hash} + T_{noise} \\cdot k^2 + T_{biome}\n$$\n\nWhere $k$ = chunk dimension (default: 16 units)\n\n---\n\n## Performance Specifications\n\n### Computational Bounds\n\n| Operation | Best Case | Average Case | Worst Case |\n|-----------|-----------|--------------|------------|\n| Seed Initialization | O(1) | O(1) | O(1) |\n| Single Chunk Generation | O(k²) | O(k² log k) | O(k² n) |\n| World Streaming (radius r) | O(r²) | O(r² log r) | O(r² n) |\n| Biome Boundary Resolution | O(log b) | O(b) | O(b²) |\n\n### Memory Footprint\n\n| Component | Allocation |\n|-----------|------------|\n| Seed State Vector | 256 bytes |\n| Gradient Table | 4 KB |\n| Chunk Cache (LRU-64) | 16 MB |\n| Biome Lookup Table | 512 KB |\n\n---\n\n## SRE Metrics \u0026 SLOs\n\n### Service Level Objectives\n\n| Metric | Target | Critical Threshold |\n|--------|--------|-------------------|\n| **Availability** | 99.95% | 99.9% |\n| **Chunk Generation Latency (p50)** | ≤ 8 ms | ≤ 15 ms |\n| **Chunk Generation Latency (p99)** | ≤ 25 ms | ≤ 50 ms |\n| **Seed Collision Rate** | \u003c 10⁻¹² | \u003c 10⁻⁹ |\n| **Determinism Verification** | 100% | 100% |\n\n### Error Budget\n\n$$\n\\text{Error Budget} = 1 - \\text{SLO} = 1 - 0.9995 = 0.0005\n$$\n\nMonthly allowable downtime:\n\n$$\nT_{downtime} = 0.0005 \\times 43200 \\text{ min} = 21.6 \\text{ min/month}\n$$\n\n---\n\n## Failure Modes \u0026 Mitigation\n\n### FMEA Matrix\n\n| Failure Mode | Probability | Severity | RPN | Detection Method | Mitigation |\n|--------------|-------------|----------|-----|------------------|------------|\n| Seed entropy exhaustion | 0.001 | High | 72 | Entropy monitor | Secondary RNG injection |\n| Chunk cache overflow | 0.01 | Medium | 48 | Memory threshold alert | LRU eviction + spillover |\n| Noise coherence breakdown | 0.0001 | Critical | 90 | Checksum validation | Fallback gradient table |\n| Biome boundary artifacts | 0.05 | Low | 30 | Visual regression tests | Interpolation smoothing |\n| Determinism violation | 0.00001 | Critical | 95 | Hash verification | Module restart + state reload |\n\n### Mean Time Between Failures (MTBF)\n\n$$\n\\text{MTBF} = \\frac{\\sum T_{operational}}{N_{failures}} \\geq 2160 \\text{ hours}\n$$\n\n### Mean Time To Recovery (MTTR)\n\n$$\n\\text{MTTR} = T_{detection} + T_{diagnosis} + T_{repair} \\leq 180 \\text{ seconds}\n$$\n\n---\n\n## Monitoring \u0026 Alerting\n\n### Key Performance Indicators\n\n```\nworldseed_chunk_generation_duration_seconds{quantile=\"0.99\"}\nworldseed_cache_hit_ratio\nworldseed_seed_entropy_bits_remaining\nworldseed_determinism_check_failures_total\nworldseed_biome_transitions_per_chunk\n```\n\n### Alert Thresholds\n\n| Alert | Condition | Severity |\n|-------|-----------|----------|\n| `WorldSeedLatencyHigh` | p99 \u003e 50ms for 5m | Warning |\n| `WorldSeedLatencyCritical` | p99 \u003e 100ms for 2m | Critical |\n| `WorldSeedEntropyLow` | bits \u003c 128 | Critical |\n| `WorldSeedCacheEvictionSpike` | rate \u003e 100/s | Warning |\n\n---\n\n## Determinism Verification Protocol\n\nVerification hash computation:\n\n$$\nV = H\\left(\\bigoplus_{i=0}^{n} C_i\\right) \\mod 2^{64}\n$$\n\nWhere $C_i$ represents chunk state at index $i$.\n\n**Verification Frequency:** Every 1000 chunks or 60 seconds \n**Tolerance:** Zero deviation permitted\n\n---\n\n## Version History\n\n| Version | Date | Changes |\n|---------|------|---------|\n| 2.4.1 | 2024-01 | Optimized octave caching |\n| 2.4.0 | 2023-11 | Added biome transition smoothing |\n| 2.3.0 | 2023-08 | MTTR improvements |\n\n---\n\n*Documentation generated by Systems Engineering Division* \n*Classification: Internal Technical Reference*",
929
+ "outcome": "A-GAM-WorldSeed",
930
+ "rType": 0,
931
+ "persona": "GAM",
932
+ "primary_model": "GPT-4o-Synthesis",
933
+ "privacy_tier": "Public",
934
+ "sybox_fee_split": {
935
+ "dev": 0.5,
936
+ "curation": 0.4,
937
+ "author": 0.1
938
+ },
939
+ "ticker": "SYNL",
940
+ "audit_cadence": "Weekly",
941
+ "lifecycle": "Genesis-Platinum",
942
+ "global_outputs": [
943
+ "synthesis_id",
944
+ "logic_id",
945
+ "bps_verified",
946
+ "model_stack",
947
+ "processing_ms",
948
+ "timestamp"
949
+ ],
950
+ "custom_outputs": [
951
+ {
952
+ "field_name": "Type",
953
+ "type": "Description",
954
+ "description": "Downstream Intent",
955
+ "downstream_intent": "BPS Sensitivity",
956
+ "bps_sensitivity": ""
957
+ }
958
+ ]
959
+ },
960
+ {
961
+ "id": 32,
962
+ "successBps": 9699,
963
+ "cid": "ar://SYNTH_ATOMIC_GAM_LORERECEIPT",
964
+ "costUsd": 1500,
965
+ "details": "# A-GAM-LoreReceipt Logic Module\n\n## Technical Documentation v2.4.1\n\n---\n\n## Module Overview\n\n| Attribute | Value |\n|-----------|-------|\n| **Module ID** | `A-GAM-LoreReceipt` |\n| **Classification** | Asynchronous Game Asset Manager |\n| **Domain** | Lore Content Receipt \u0026 Validation |\n| **Runtime Environment** | Event-driven microservice |\n| **Protocol** | gRPC / REST fallback |\n\n---\n\n## Functional Description\n\nThe `A-GAM-LoreReceipt` module handles ingestion, validation, deduplication, and acknowledgment of lore content payloads within the game asset pipeline. It serves as the primary receipt handler for narrative content synchronization across distributed game servers.\n\n---\n\n## Algorithmic Specifications\n\n### Core Processing Algorithm\n\n```\nFUNCTION ProcessLoreReceipt(payload):\n hash ← SHA-256(payload.content)\n \n IF BloomFilter.MayContain(hash) THEN\n IF ExactMatch(hash, LoreStore) THEN\n RETURN ACK_DUPLICATE\n END IF\n END IF\n \n validated ← ValidateSchema(payload)\n IF NOT validated THEN\n RETURN NACK_INVALID\n END IF\n \n BloomFilter.Add(hash)\n LoreStore.Insert(payload, hash)\n EventBus.Publish(LORE_RECEIVED, payload.id)\n \n RETURN ACK_SUCCESS\n```\n\n### Time Complexity Analysis\n\n| Operation | Average Case | Worst Case |\n|-----------|--------------|------------|\n| Hash Computation | O(n) | O(n) |\n| Bloom Filter Lookup | O(k) | O(k) |\n| Schema Validation | O(m) | O(m log m) |\n| Store Insertion | O(1) | O(log N) |\n| **Total Pipeline** | **O(n + k + m)** | **O(n + k + m log m + log N)** |\n\nWhere:\n- `n` = payload content size (bytes)\n- `k` = number of hash functions in Bloom filter\n- `m` = schema field count\n- `N` = total records in LoreStore\n\n### Space Complexity\n\n$$S_{total} = S_{bloom} + S_{buffer} + S_{cache}$$\n\n$$S_{bloom} = -\\frac{n \\cdot \\ln(p)}{(\\ln 2)^2}$$\n\nWhere:\n- `n` = expected number of elements\n- `p` = desired false positive rate (configured: 0.01)\n\n---\n\n## Bloom Filter Configuration\n\n| Parameter | Value | Formula |\n|-----------|-------|---------|\n| Expected Elements | 10,000,000 | — |\n| False Positive Rate | 1% | $p = 0.01$ |\n| Bit Array Size | 95,850,584 bits | $m = -\\frac{n \\ln p}{(\\ln 2)^2}$ |\n| Hash Functions | 7 | $k = \\frac{m}{n} \\ln 2$ |\n\n---\n\n## SRE Metrics \u0026 SLIs\n\n### Service Level Indicators\n\n| Metric | Target | Formula |\n|--------|--------|---------|\n| **Availability** | 99.95% | $\\frac{uptime}{total\\_time} \\times 100$ |\n| **Latency (p50)** | ≤ 15ms | — |\n| **Latency (p99)** | ≤ 150ms | — |\n| **Error Rate** | \u003c 0.1% | $\\frac{failed\\_requests}{total\\_requests} \\times 100$ |\n| **Throughput** | ≥ 10,000 RPS | — |\n\n### Service Level Objectives\n\n```\nSLO_Availability = 99.95% over 30-day rolling window\nSLO_Latency_p99 = 150ms for 99% of requests\nSLO_ErrorBudget = 0.05% monthly\n```\n\n### Error Budget Calculation\n\n$$E_{budget} = (1 - SLO_{target}) \\times T_{window}$$\n\n$$E_{remaining} = E_{budget} - E_{consumed}$$\n\n$$BurnRate = \\frac{E_{consumed}}{E_{budget}} \\times \\frac{T_{window}}{T_{elapsed}}$$\n\n---\n\n## Failure Metrics\n\n### Failure Mode Classification\n\n| Failure Mode | MTBF (hours) | MTTR (minutes) | Impact |\n|--------------|--------------|----------------|--------|\n| `FM-001` Hash Collision | 8,760 | 5 | Low |\n| `FM-002` Schema Validation Timeout | 720 | 2 | Medium |\n| `FM-003` Store Write Failure | 2,160 | 15 | High |\n| `FM-004` Event Bus Disconnect | 1,440 | 8 | High |\n| `FM-005` Memory Exhaustion | 4,320 | 20 | Critical |\n\n### Reliability Calculations\n\n**Mean Time Between Failures (MTBF):**\n$$MTBF = \\frac{\\sum_{i=1}^{n} T_{operational,i}}{n_{failures}}$$\n\n**Availability from MTBF/MTTR:**\n$$A = \\frac{MTBF}{MTBF + MTTR}$$\n\n**Failure Rate (λ):**\n$$\\lambda = \\frac{1}{MTBF} = 1.14 \\times 10^{-4} \\text{ failures/hour}$$\n\n**Reliability over time t:**\n$$R(t) = e^{-\\lambda t}$$\n\n---\n\n## Circuit Breaker Configuration\n\n```yaml\ncircuit_breaker:\n failure_threshold: 5\n success_threshold: 3\n timeout_ms: 30000\n half_open_requests: 3\n \nstates:\n CLOSED: # Normal operation\n OPEN: # Failing fast, no requests pass\n HALF_OPEN: # Testing recovery\n```\n\n### State Transition Logic\n\n$$P_{trip} = \\begin{cases} 1 \u0026 \\text{if } failures \\geq threshold \\\\ 0 \u0026 \\text{otherwise} \\end{cases}$$\n\n---\n\n## Retry Policy\n\n| Attempt | Delay (ms) | Formula |\n|---------|------------|---------|\n| 1 | 100 | $d_0$ |\n| 2 | 200 | $d_0 \\times 2^1$ |\n| 3 | 400 | $d_0 \\times 2^2$ |\n| 4 | 800 | $d_0 \\times 2^3$ |\n| 5 | 1600 | $d_0 \\times 2^4$ |\n\n**Exponential Backoff with Jitter:**\n$$delay_n = \\min(cap, base \\times 2^n) + random(0, jitter)$$\n\n---\n\n## Monitoring \u0026 Alerting\n\n### Key Metrics Export\n\n```prometheus\n# Request latency histogram\nagam_lore_receipt_latency_seconds{quantile=\"0.5\"}\nagam_lore_receipt_latency_seconds{quantile=\"0.99\"}\n\n# Request counter by status\nagam_lore_receipt_requests_total{status=\"success|duplicate|invalid|error\"}\n\n# Active connections gauge\nagam_lore_receipt_active_connections\n\n# Bloom filter saturation\nagam_lore_receipt_bloom_saturation_ratio\n```\n\n### Alert Thresholds\n\n| Alert | Condition | Severity |\n|-------|-----------|----------|\n| `HighErrorRate` | `error_rate \u003e 1%` for 5m | P2 |\n| `LatencyDegradation` | `p99 \u003e 300ms` for 10m | P3 |\n| `CircuitOpen` | `state == OPEN` for 2m | P1 |\n| `BloomSaturation` | `saturation \u003e 0.85` | P4 |\n| `MemoryPressure` | `heap_used \u003e 90%` | P2 |\n\n---\n\n## Dependencies\n\n```\n┌─────────────────────┐\n│ A-GAM-LoreReceipt │\n└──────────┬──────────┘\n │\n ┌─────┴─────┬──────────────┬─────────────┐\n ▼ ▼ ▼ ▼\n┌─────────┐ ┌─────────┐ ┌────────────┐ ┌───────────┐\n│LoreStore│ │EventBus │ │SchemaCache │ │MetricsExp │\n│ (Redis) │ │ (Kafka) │ │ (Local) │ │(Prometheus│\n└─────────┘ └─────────┘ └────────────┘ └───────────┘\n```\n\n---\n\n## Version History\n\n| Version | Date | Changes |\n|---------|------|---------|\n| 2.4.1 | 2024-01 | Added circuit breaker tuning |\n| 2.4.0 | 2023-11 | Bloom filter optimization |\n| 2.3.0 | 2023-08 | gRPC protocol support |\n\n---\n\n*Document Classification: Internal Engineering*\n*Owner: Platform Infrastructure Team*",
966
+ "outcome": "A-GAM-LoreReceipt",
967
+ "rType": 0,
968
+ "persona": "GAM",
969
+ "primary_model": "GPT-4o-Synthesis",
970
+ "privacy_tier": "Public",
971
+ "sybox_fee_split": {
972
+ "dev": 0.5,
973
+ "curation": 0.4,
974
+ "author": 0.1
975
+ },
976
+ "ticker": "SYNL",
977
+ "audit_cadence": "Weekly",
978
+ "lifecycle": "Genesis-Platinum",
979
+ "global_outputs": [
980
+ "synthesis_id",
981
+ "logic_id",
982
+ "bps_verified",
983
+ "model_stack",
984
+ "processing_ms",
985
+ "timestamp"
986
+ ],
987
+ "custom_outputs": [
988
+ {
989
+ "field_name": "Type",
990
+ "type": "Description",
991
+ "description": "Downstream Intent",
992
+ "downstream_intent": "BPS Sensitivity",
993
+ "bps_sensitivity": ""
994
+ }
995
+ ]
996
+ },
997
+ {
998
+ "id": 36,
999
+ "successBps": 9813,
1000
+ "cid": "ar://SYNTH_ATOMIC_ETH_INTEGRITYBPS",
1001
+ "costUsd": 1500,
1002
+ "details": "# A-ETH-IntegrityBPS Technical Specification\n\n## 1. Core Definition\n\n**A-ETH-IntegrityBPS** (Autonomous Ethereum Integrity Breakdown Point Score) quantifies the operational failure risk threshold for Ethereum-based infrastructure components.\n\n### 1.1 Mathematical Foundation\n\n```\nBPS_total = Σ(w_i × f_i(x)) / N_components\n\nWhere:\n- w_i = weight coefficient for component i ∈ [0.0, 1.0]\n- f_i(x) = failure probability function for component i\n- N_components = total monitored components\n```\n\n### 1.2 Failure Probability Function\n\n```\nf_i(x) = 1 - e^(-λ_i × t) × (1 - P_cascade)\n\nWhere:\n- λ_i = failure rate (failures/hour) for component i\n- t = observation window (hours)\n- P_cascade = cascading failure probability\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 Component Risk Classification\n\n| Component Class | Weight (w_i) | λ_base (failures/hr) | Cascade Factor |\n|-----------------|--------------|----------------------|----------------|\n| Consensus Layer | 0.95 | 0.0001 | 0.85 |\n| Execution Layer | 0.90 | 0.0003 | 0.75 |\n| Network P2P | 0.80 | 0.0010 | 0.60 |\n| RPC Endpoints | 0.70 | 0.0050 | 0.40 |\n| State Storage | 0.85 | 0.0002 | 0.70 |\n| Validator Keys | 0.99 | 0.00001 | 0.95 |\n\n### 2.2 BPS Threshold Matrix\n\n| BPS Range | Severity | Action State | MTTR Target |\n|-----------|----------|--------------|-------------|\n| 0.00 - 0.15 | NOMINAL | OBSERVE | N/A |\n| 0.16 - 0.35 | DEGRADED | ALERT | \u003c 30 min |\n| 0.36 - 0.55 | WARNING | INTERVENE | \u003c 15 min |\n| 0.56 - 0.75 | CRITICAL | FAILOVER | \u003c 5 min |\n| 0.76 - 0.90 | SEVERE | ISOLATE | \u003c 2 min |\n| 0.91 - 1.00 | BREAKDOWN | HALT | Immediate |\n\n### 2.3 Composite BPS Calculation Matrix\n\n```\nBPS_composite = (\n BPS_consensus × 0.30 +\n BPS_execution × 0.25 +\n BPS_network × 0.15 +\n BPS_rpc × 0.10 +\n BPS_storage × 0.15 +\n BPS_validator × 0.05\n) × integrity_modifier\n\nintegrity_modifier = min(1.0, 1 + (attestation_miss_rate × 2))\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-eth-integritybps/v1\",\n \"title\": \"A-ETH-IntegrityBPS Input Schema\",\n \"type\": \"object\",\n \"required\": [\"timestamp\", \"node_id\", \"components\", \"network_id\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"timestamp\": {\n \"type\": \"integer\",\n \"minimum\": 1600000000,\n \"maximum\": 2147483647,\n \"description\": \"Unix epoch timestamp in seconds\"\n },\n \"node_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{64}$\",\n \"description\": \"256-bit hex node identifier\"\n },\n \"network_id\": {\n \"type\": \"integer\",\n \"enum\": [1, 5, 11155111, 17000],\n \"description\": \"Ethereum network chain ID\"\n },\n \"observation_window_hours\": {\n \"type\": \"number\",\n \"minimum\": 0.1,\n \"maximum\": 168,\n \"default\": 1\n },\n \"components\": {\n \"type\": \"object\",\n \"required\": [\"consensus\", \"execution\"],\n \"properties\": {\n \"consensus\": {\n \"$ref\": \"#/$defs/componentMetrics\"\n },\n \"execution\": {\n \"$ref\": \"#/$defs/componentMetrics\"\n },\n \"network\": {\n \"$ref\": \"#/$defs/componentMetrics\"\n },\n \"rpc\": {\n \"$ref\": \"#/$defs/componentMetrics\"\n },\n \"storage\": {\n \"$ref\": \"#/$defs/componentMetrics\"\n },\n \"validator\": {\n \"$ref\": \"#/$defs/validatorMetrics\"\n }\n }\n },\n \"thresholds_override\": {\n \"type\": \"object\",\n \"properties\": {\n \"bps_critical\": {\n \"type\": \"number\",\n \"minimum\": 0.4,\n \"maximum\": 0.8\n },\n \"bps_breakdown\": {\n \"type\": \"number\",\n \"minimum\": 0.85,\n \"maximum\": 1.0\n }\n }\n }\n },\n \"$defs\": {\n \"componentMetrics\": {\n \"type\": \"object\",\n \"required\": [\"status\", \"error_rate\", \"latency_p99_ms\"],\n \"properties\": {\n \"status\": {\n \"type\": \"string\",\n \"enum\": [\"healthy\", \"degraded\", \"unhealthy\", \"unknown\"]\n },\n \"error_rate\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"latency_p99_ms\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 300000\n },\n \"requests_per_second\": {\n \"type\": \"number\",\n \"minimum\": 0\n },\n \"failure_count_window\": {\n \"type\": \"integer\",\n \"minimum\": 0\n },\n \"last_failure_timestamp\": {\n \"type\": [\"integer\", \"null\"],\n \"minimum\": 0\n },\n \"peer_count\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 1000\n },\n \"sync_distance\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"description\": \"Blocks behind head\"\n }\n }\n },\n \"validatorMetrics\": {\n \"type\": \"object\",\n \"required\": [\"active_validators\", \"attestation_effectiveness\"],\n \"properties\": {\n \"active_validators\": {\n \"type\": \"integer\",\n \"minimum\": 0\n },\n \"attestation_effectiveness\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"proposal_miss_rate\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"slashing_events\": {\n \"type\": \"integer\",\n \"minimum\": 0\n },\n \"balance_delta_gwei\": {\n \"type\": \"integer\"\n }\n }\n }\n }\n}\n```\n\n---\n\n## 4. SRE Metrics Specification\n\n### 4.1 Service Level Indicators (SLIs)\n\n| Metric ID | Metric Name | Formula | Unit |\n|-----------|-------------|---------|------|\n| SLI-001 | Block Sync Latency | `head_slot - node_slot` | slots |\n| SLI-002 | Attestation Inclusion Rate | `included_attestations / expected_attestations` | ratio |\n| SLI-003 | RPC Availability | `successful_requests / total_requests` | ratio |\n| SLI-004 | Peer Connectivity | `active_peers / target_peers` | ratio |\n| SLI-005 | State Root Verification | `verified_roots / total_roots` | ratio |\n| SLI-006 | Proposal Success Rate | `successful_proposals / assigned_proposals` | ratio |\n\n### 4.2 Service Level Objectives (SLOs)\n\n```yaml\nslo_definitions:\n - id: SLO-ETH-SYNC\n sli_ref: SLI-001\n target: \u003c= 2\n window: 5m\n burn_rate_threshold: 14.4\n\n - id: SLO-ETH-ATTEST\n sli_ref: SLI-002\n target: \u003e= 0.95\n window: 1h\n burn_rate_threshold: 6.0\n\n - id: SLO-ETH-RPC\n sli_ref: SLI-003\n target: \u003e= 0.999\n window: 30d\n error_budget_minutes: 43.2\n\n - id: SLO-ETH-PEERS\n sli_ref: SLI-004\n target: \u003e= 0.80\n window: 15m\n minimum_peers: 25\n\n - id: SLO-ETH-STATE\n sli_ref: SLI-005\n target: \u003e= 0.9999\n window: 24h\n critical_threshold: 0.999\n\n - id: SLO-ETH-PROPOSE\n sli_ref: SLI-006\n target: \u003e= 0.98\n window: 7d\n burn_rate_threshold: 3.0\n```\n\n### 4.3 Operational Metrics Collection\n\n```\n# Prometheus metric definitions\n\neth_integrity_bps_score{node_id, network_id, component}\n TYPE: gauge\n RANGE: [0.0, 1.0]\n SCRAPE_INTERVAL: 15s\n\neth_integrity_component_failures_total{node_id, component, failure_type}\n TYPE: counter\n LABELS: [timeout, error, crash, corruption]\n\neth_integrity_cascade_probability{node_id, source_component, target_component}\n TYPE: gauge\n RANGE: [0.0, 1.0]\n\neth_integrity_mttr_seconds{node_id, component, severity}\n TYPE: histogram\n BUCKETS: [30, 60, 120, 300, 600, 1800, 3600]\n\neth_integrity_error_budget_remaining{slo_id}\n TYPE: gauge\n RANGE: [0.0, 1.0]\n\neth_integrity_burn_rate{slo_id, window}\n TYPE: gauge\n WINDOWS: [1h, 6h, 24h, 72h]\n```\n\n### 4.4 Alert Thresholds\n\n```yaml\nalert_rules:\n - name: IntegrityBPS_Critical\n expr: eth_integrity_bps_score \u003e 0.55\n for: 2m\n severity: critical\n runbook: /runbooks/eth-integrity-critical\n\n - name: IntegrityBPS_Breakdown_Imminent\n expr: |\n eth_integrity_bps_score \u003e 0.75 \n AND rate(eth_integrity_component_failures_total[5m]) \u003e 0.1\n for: 30s\n severity: page\n runbook: /runbooks/eth-integrity-breakdown\n\n - name: ErrorBudget_Exhaustion\n expr: eth_integrity_error_budget_remaining \u003c 0.10\n for: 5m\n severity: warning\n runbook: /runbooks/error-budget-response\n\n - name: CascadeRisk_Elevated\n expr: max(eth_integrity_cascade_probability) \u003e 0.60\n for: 1m\n severity: critical\n runbook: /runbooks/cascade-prevention\n```\n\n---\n\n## 5. BPS Computation Logic Block\n\n```python\ndef compute_integrity_bps(input_data: dict) -\u003e dict:\n \"\"\"\n Pure function: Computes A-ETH-IntegrityBPS from validated input.\n Returns BPS scores and operational state.\n \"\"\"\n \n WEIGHTS = {\n \"consensus\": 0.30,\n \"execution\": 0.25,\n \"network\": 0.15,\n \"rpc\": 0.10,\n \"storage\": 0.15,\n \"validator\": 0.05\n }\n \n LAMBDA_BASE = {\n \"consensus\": 0.0001,\n \"execution\": 0.0003,\n \"network\": 0.0010,\n \"rpc\": 0.0050,\n \"storage\": 0.0002,\n \"validator\": 0.00001\n }\n \n CASCADE_FACTORS = {\n \"consensus\": 0.85,\n \"execution\": 0.75,\n \"network\": 0.60,\n \"rpc\": 0.40,\n \"storage\": 0.70,\n \"validator\": 0.95\n }\n \n t = input_data.get(\"observation_window_hours\", 1.0)\n components = input_data[\"components\"]\n \n component_bps = {}\n \n for comp_name, metrics in components.items():\n if comp_name not in WEIGHTS:\n continue\n \n lambda_i = LAMBDA_BASE[comp_name]\n p_cascade = CASCADE_FACTORS[comp_name]\n \n # Adjust lambda based on observed error rate\n error_rate = metrics.get(\"error_rate\", 0)\n lambda_adjusted = lambda_i * (1 + error_rate * 10)\n \n # Status degradation multiplier\n status_mult = {\n \"healthy\": 1.0,\n \"degraded\": 2.5,\n \"unhealthy\": 5.0,\n \"unknown\": 3.0\n }.get(metrics.get(\"status\", \"unknown\"), 3.0)\n \n lambda_final = lambda_adjusted * status_mult\n \n # Failure probability: f(x) = 1 - e^(-λt) × (1 - P_cascade)\n import math\n base_failure = 1 - math.exp(-lambda_final * t)\n f_i = base_failure * (1 - p_cascade) + p_cascade * error_rate\n \n component_bps[comp_name] = min(1.0, max(0.0, f_i))\n \n # Compute composite BPS\n bps_composite = sum(\n WEIGHTS.get(comp, 0) * score \n for comp, score in component_bps.items()\n )\n \n # Apply integrity modifier for validators\n if \"validator\" in components:\n attest_eff = components[\"validator\"].get(\"attestation_effectiveness\", 1.0)\n miss_rate = 1 - attest_eff\n integrity_modifier = min(1.0, 1 + (miss_rate * 2))\n bps_composite *= integrity_modifier\n \n bps_composite = min(1.0, max(0.0, bps_composite))\n \n # Determine severity state\n if bps_composite \u003c= 0.15:\n severity = \"NOMINAL\"\n action = \"OBSERVE\"\n elif bps_composite \u003c= 0.35:\n severity = \"DEGRADED\"\n action = \"ALERT\"\n elif bps_composite \u003c= 0.55:\n severity = \"WARNING\"\n action = \"INTERVENE\"\n elif bps_composite \u003c= 0.75:\n severity = \"CRITICAL\"\n action = \"FAILOVER\"\n elif bps_composite \u003c= 0.90:\n severity = \"SEVERE\"\n action = \"ISOLATE\"\n else:\n severity = \"BREAKDOWN\"\n action = \"HALT\"\n \n return {\n \"bps_composite\": round(bps_composite, 6),\n \"component_scores\": component_bps,\n \"severity\": severity,\n \"action_state\": action,\n```}",
1003
+ "outcome": "A-ETH-IntegrityBPS",
1004
+ "rType": 0,
1005
+ "persona": "ETH",
1006
+ "primary_model": "GPT-4o-Synthesis",
1007
+ "privacy_tier": "Public",
1008
+ "sybox_fee_split": {
1009
+ "dev": 0.5,
1010
+ "curation": 0.4,
1011
+ "author": 0.1
1012
+ },
1013
+ "ticker": "SYNL",
1014
+ "audit_cadence": "Weekly",
1015
+ "lifecycle": "Genesis-Platinum",
1016
+ "global_outputs": [
1017
+ "synthesis_id",
1018
+ "logic_id",
1019
+ "bps_verified",
1020
+ "model_stack",
1021
+ "processing_ms",
1022
+ "timestamp"
1023
+ ],
1024
+ "custom_outputs": [
1025
+ {
1026
+ "field_name": "composite_integrity_score",
1027
+ "type": "Integer",
1028
+ "description": "The final BPS normalized to basis points (0-10,000).",
1029
+ "downstream_intent": "**Global Wrapper**: Sets the logic\u0027s `bps_verified`.",
1030
+ "bps_sensitivity": "CRITICAL"
1031
+ },
1032
+ {
1033
+ "field_name": "component_health_matrix",
1034
+ "type": "Object",
1035
+ "description": "Individual failure probabilities for Consensus, Execution, Network, and RPC.",
1036
+ "downstream_intent": "**A-SRE-AutoScaler**: To trigger node rotation.",
1037
+ "bps_sensitivity": "HIGH"
1038
+ },
1039
+ {
1040
+ "field_name": "slo_compliance_report",
1041
+ "type": "Object",
1042
+ "description": "Success/Fail status of all 6 SLIs (Sync, Attest, RPC, Peers, State, Propose).",
1043
+ "downstream_intent": "**A-CEO-Dashboard**: For high-level uptime reporting.",
1044
+ "bps_sensitivity": "HIGH"
1045
+ },
1046
+ {
1047
+ "field_name": "cascade_probability",
1048
+ "type": "Float",
1049
+ "description": "Calculated risk of a single component failure causing total ecosystem breakdown.",
1050
+ "downstream_intent": "**A-CTO-DecisionEngine**: To force emergency maintenance mode.",
1051
+ "bps_sensitivity": "CRITICAL"
1052
+ },
1053
+ {
1054
+ "field_name": "action_directive",
1055
+ "type": "String",
1056
+ "description": "Exactly one command: `OBSERVE`, `ALERT`, `INTERVENE`, `FAILOVER`, `ISOLATE`, `HALT`.",
1057
+ "downstream_intent": "**Orchestrator**: To execute immediate system-state change.",
1058
+ "bps_sensitivity": "CRITICAL"
1059
+ }
1060
+ ]
1061
+ },
1062
+ {
1063
+ "id": 40,
1064
+ "successBps": 9695,
1065
+ "cid": "ar://SYNTH_ATOMIC_LS_MIGRATPROOF",
1066
+ "costUsd": 1500,
1067
+ "details": "# A-LS-MigratProof Technical Logic Specification\n\n## 1. System Definition\n\n**A-LS-MigratProof** (Automated Logical State Migration Proof) is a deterministic verification system that validates data integrity, state consistency, and operational continuity during migration operations.\n\n---\n\n## 2. Core Logic Functions\n\n### 2.1 State Hash Verification\n\n```\nH(S) = SHA-256(serialize(S_source)) \nH(S\u0027) = SHA-256(serialize(S_target))\n\nVALID iff H(S) == H(S\u0027) ∧ |S| == |S\u0027| ∧ ∀i: S[i] ≡ S\u0027[i]\n```\n\n### 2.2 Migration Proof Formula\n\n```\nMigratProof(t) = {\n integrity: I(t) = Σ(checksum_match[i]) / n == 1.0\n completeness: C(t) = |records_target| / |records_source| == 1.0\n consistency: K(t) = ∀r ∈ R: schema(r_src) ≅ schema(r_tgt)\n ordering: O(t) = sequence_preserved(S_src, S_tgt) ∈ {0,1}\n}\n\nPROOF_VALID = I(t) ∧ C(t) ∧ K(t) ∧ O(t) == TRUE\n```\n\n### 2.3 Rollback Decision Function\n\n```\nR(t) = {\n ROLLBACK if BPS(t) \u003e θ_critical ∨ I(t) \u003c 0.9999\n PAUSE if θ_warning \u003c BPS(t) ≤ θ_critical\n CONTINUE if BPS(t) ≤ θ_warning\n}\n\nwhere:\n θ_warning = 0.15\n θ_critical = 0.35\n```\n\n---\n\n## 3. Breakdown Point Score (BPS) Matrix\n\n### 3.1 Risk Category Weights\n\n| Category | Symbol | Weight (w) | Description |\n|----------|--------|------------|-------------|\n| Data Loss | DL | 0.30 | Unrecoverable record loss |\n| Schema Drift | SD | 0.20 | Type/structure mismatch |\n| Latency Breach | LB | 0.15 | SLO timing violations |\n| Connection Failure | CF | 0.15 | Network/auth failures |\n| Checksum Mismatch | CM | 0.12 | Hash verification failure |\n| Ordering Violation | OV | 0.08 | Sequence integrity loss |\n\n### 3.2 BPS Calculation\n\n```\nBPS(t) = Σ(w_i × severity_i × occurrence_rate_i)\n\nwhere:\n severity_i ∈ [0.0, 1.0]\n occurrence_rate_i = failures_i / total_operations\n\nBPS_composite = (w_DL × S_DL × R_DL) + \n (w_SD × S_SD × R_SD) + \n (w_LB × S_LB × R_LB) + \n (w_CF × S_CF × R_CF) + \n (w_CM × S_CM × R_CM) + \n (w_OV × S_OV × R_OV)\n```\n\n### 3.3 BPS Threshold Matrix\n\n| BPS Range | State | Action | Alert Level |\n|-----------|-------|--------|-------------|\n| 0.00 - 0.05 | NOMINAL | Continue | None |\n| 0.05 - 0.15 | DEGRADED | Monitor | P3 |\n| 0.15 - 0.25 | WARNING | Throttle | P2 |\n| 0.25 - 0.35 | CRITICAL | Pause | P1 |\n| 0.35 - 1.00 | FAILURE | Rollback | P0 |\n\n### 3.4 Severity Classification\n\n```\nseverity(event) = {\n 1.0 if event.type == CORRUPTION ∨ event.type == TOTAL_LOSS\n 0.8 if event.type == PARTIAL_LOSS ∧ affected_ratio \u003e 0.1\n 0.6 if event.type == SCHEMA_VIOLATION\n 0.4 if event.type == TIMEOUT ∧ retry_exhausted\n 0.2 if event.type == RECOVERABLE_ERROR\n 0.1 if event.type == WARNING\n}\n```\n\n---\n\n## 4. JSON Schema for Input Validation\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-ls-migratproof/v1\",\n \"title\": \"A-LS-MigratProof Input Schema\",\n \"type\": \"object\",\n \"required\": [\n \"migration_id\",\n \"source\",\n \"target\",\n \"validation_config\",\n \"slo_requirements\"\n ],\n \"properties\": {\n \"migration_id\": {\n \"type\": \"string\",\n \"pattern\": \"^MIG-[A-Z0-9]{8}-[0-9]{13}$\",\n \"description\": \"Unique migration identifier\"\n },\n \"timestamp_utc\": {\n \"type\": \"integer\",\n \"minimum\": 1700000000000,\n \"maximum\": 2000000000000,\n \"description\": \"Unix timestamp in milliseconds\"\n },\n \"source\": {\n \"type\": \"object\",\n \"required\": [\"system_type\", \"connection\", \"dataset\"],\n \"properties\": {\n \"system_type\": {\n \"type\": \"string\",\n \"enum\": [\"POSTGRESQL\", \"MYSQL\", \"MONGODB\", \"S3\", \"GCS\", \"KAFKA\", \"REDIS\", \"ELASTICSEARCH\"]\n },\n \"connection\": {\n \"type\": \"object\",\n \"required\": [\"host\", \"port\", \"auth_method\"],\n \"properties\": {\n \"host\": {\n \"type\": \"string\",\n \"format\": \"hostname\"\n },\n \"port\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 65535\n },\n \"auth_method\": {\n \"type\": \"string\",\n \"enum\": [\"IAM\", \"SECRET_MANAGER\", \"VAULT\", \"MTLS\", \"KERBEROS\"]\n },\n \"secret_ref\": {\n \"type\": \"string\",\n \"pattern\": \"^(vault|sm|iam)://[a-z0-9/-]+$\"\n },\n \"tls_enabled\": {\n \"type\": \"boolean\",\n \"default\": true\n },\n \"connection_timeout_ms\": {\n \"type\": \"integer\",\n \"minimum\": 1000,\n \"maximum\": 300000,\n \"default\": 30000\n }\n }\n },\n \"dataset\": {\n \"type\": \"object\",\n \"required\": [\"identifier\", \"record_count_expected\"],\n \"properties\": {\n \"identifier\": {\n \"type\": \"string\",\n \"minLength\": 1,\n \"maxLength\": 256\n },\n \"record_count_expected\": {\n \"type\": \"integer\",\n \"minimum\": 0\n },\n \"size_bytes_expected\": {\n \"type\": \"integer\",\n \"minimum\": 0\n },\n \"checksum_algorithm\": {\n \"type\": \"string\",\n \"enum\": [\"SHA256\", \"SHA512\", \"XXHASH64\", \"CRC32C\"],\n \"default\": \"SHA256\"\n },\n \"source_checksum\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{32,128}$\"\n }\n }\n }\n }\n },\n \"target\": {\n \"type\": \"object\",\n \"required\": [\"system_type\", \"connection\", \"dataset\"],\n \"properties\": {\n \"system_type\": {\n \"type\": \"string\",\n \"enum\": [\"POSTGRESQL\", \"MYSQL\", \"MONGODB\", \"S3\", \"GCS\", \"KAFKA\", \"REDIS\", \"ELASTICSEARCH\"]\n },\n \"connection\": {\n \"$ref\": \"#/properties/source/properties/connection\"\n },\n \"dataset\": {\n \"type\": \"object\",\n \"required\": [\"identifier\"],\n \"properties\": {\n \"identifier\": {\n \"type\": \"string\",\n \"minLength\": 1,\n \"maxLength\": 256\n },\n \"create_if_missing\": {\n \"type\": \"boolean\",\n \"default\": false\n },\n \"overwrite_policy\": {\n \"type\": \"string\",\n \"enum\": [\"FAIL\", \"SKIP\", \"REPLACE\", \"MERGE\"],\n \"default\": \"FAIL\"\n }\n }\n }\n }\n },\n \"validation_config\": {\n \"type\": \"object\",\n \"required\": [\"integrity_check\", \"completeness_check\"],\n \"properties\": {\n \"integrity_check\": {\n \"type\": \"object\",\n \"properties\": {\n \"enabled\": {\n \"type\": \"boolean\",\n \"default\": true\n },\n \"method\": {\n \"type\": \"string\",\n \"enum\": [\"FULL_CHECKSUM\", \"SAMPLE_CHECKSUM\", \"ROW_COUNT\", \"MERKLE_TREE\"],\n \"default\": \"FULL_CHECKSUM\"\n },\n \"sample_rate\": {\n \"type\": \"number\",\n \"minimum\": 0.01,\n \"maximum\": 1.0,\n \"default\": 1.0\n },\n \"tolerance_threshold\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 0.001,\n \"default\": 0.0\n }\n }\n },\n \"completeness_check\": {\n \"type\": \"object\",\n \"properties\": {\n \"enabled\": {\n \"type\": \"boolean\",\n \"default\": true\n },\n \"count_verification\": {\n \"type\": \"boolean\",\n \"default\": true\n },\n \"null_handling\": {\n \"type\": \"string\",\n \"enum\": [\"STRICT\", \"PERMISSIVE\", \"COERCE\"],\n \"default\": \"STRICT\"\n }\n }\n },\n \"schema_validation\": {\n \"type\": \"object\",\n \"properties\": {\n \"enabled\": {\n \"type\": \"boolean\",\n \"default\": true\n },\n \"drift_tolerance\": {\n \"type\": \"string\",\n \"enum\": [\"NONE\", \"ADDITIVE_ONLY\", \"COMPATIBLE\"],\n \"default\": \"NONE\"\n }\n }\n },\n \"ordering_validation\": {\n \"type\": \"object\",\n \"properties\": {\n \"enabled\": {\n \"type\": \"boolean\",\n \"default\": false\n },\n \"order_key\": {\n \"type\": \"string\"\n }\n }\n }\n }\n },\n \"slo_requirements\": {\n \"type\": \"object\",\n \"required\": [\"max_duration_seconds\", \"max_error_rate\"],\n \"properties\": {\n \"max_duration_seconds\": {\n \"type\": \"integer\",\n \"minimum\": 60,\n \"maximum\": 604800\n },\n \"max_error_rate\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 0.01,\n \"default\": 0.0001\n },\n \"max_latency_p99_ms\": {\n \"type\": \"integer\",\n \"minimum\": 100,\n \"maximum\": 300000,\n \"default\": 5000\n },\n \"availability_target\": {\n \"type\": \"number\",\n \"minimum\": 0.99,\n \"maximum\": 1.0,\n \"default\": 0.999\n }\n }\n },\n \"execution_config\": {\n \"type\": \"object\",\n \"properties\": {\n \"parallelism\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 256,\n \"default\": 8\n },\n \"batch_size\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 100000,\n \"default\": 1000\n },\n \"retry_policy\": {\n \"type\": \"object\",\n \"properties\": {\n \"max_retries\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 10,\n \"default\": 3\n },\n \"backoff_multiplier\": {\n \"type\": \"number\",\n \"minimum\": 1.0,\n \"maximum\": 5.0,\n \"default\": 2.0\n },\n \"initial_delay_ms\": {\n \"type\": \"integer\",\n \"minimum\": 100,\n \"maximum\": 60000,\n \"default\": 1000\n }\n }\n },\n \"checkpoint_interval_records\": {\n \"type\": \"integer\",\n \"minimum\": 100,\n \"maximum\": 1000000,\n \"default\": 10000\n }\n }\n },\n \"rollback_config\": {\n \"type\": \"object\",\n \"properties\": {\n \"auto_rollback_enabled\": {\n \"type\": \"boolean\",\n \"default\": true\n },\n \"bps_rollback_threshold\": {\n \"type\": \"number\",\n \"minimum\": 0.1,\n \"maximum\": 0.5,\n \"default\": 0.35\n },\n \"preserve_source\": {\n \"type\": \"boolean\",\n \"default\": true\n }\n }\n }\n },\n \"additionalProperties\": false\n}\n```\n\n---\n\n## 5. SRE Metrics Specification\n\n### 5.1 Primary Metrics (Golden Signals)\n\n| Metric Name | Type | Unit | SLO Target | Alert Threshold |\n|-------------|------|------|------------|-----------------|\n| `migratproof_latency_seconds` | Histogram | seconds | p99 \u003c 5s | p99 \u003e 10s |\n| `migratproof_error_rate` | Gauge | ratio | \u003c 0.0001 | \u003e 0.001 |\n| `migratproof_throughput_records_per_second` | Gauge | records/s | \u003e 1000 | \u003c 100 |\n| `migratproof_saturation_ratio` | Gauge | ratio | \u003c 0.8 | \u003e 0.9 |\n\n### 5.2 Integrity Metrics\n\n| Metric Name | Type | Labels | Description |\n|-------------|------|--------|-------------|\n| `migratproof_checksum_match_total` | Counter | `migration_id`, `status` | Checksum verification results |\n| `migratproof_record_count_delta` | Gauge | `migration_id` | Source-target record count difference |\n| `migratproof_schema_drift_detected` | Counter | `migration_id`, `drift_type` | Schema incompatibility events |\n| `migratproof_data_loss_bytes` | Counter | `migration_id` | Bytes lost during migration |\n\n### 5.3 Operational Metrics\n\n| Metric Name | Type | Labels | Description |\n|-------------|------|--------|-------------|\n| `migratproof_bps_score` | Gauge | `migration_id` | Current Breakdown Point Score |\n| `migratproof_checkpoint_lag_records` | Gauge | `migration_id` | Records since last checkpoint |\n| `migratproof_rollback_total` | Counter | `migration_id`, `reason` | Rollback event counter |\n| `migratproof_duration_seconds` | Histogram | `migration_id`, `phase` | Phase duration distribution |\n| `migratproof_retry_total` | Counter | `migration_id`, `operation` | Retry attempt counter |\n\n### 5.4 Resource Metrics\n\n| Metric Name | Type | Labels | Description |\n|-------------|------|--------|----------",
1068
+ "outcome": "A-LS-MigratProof",
1069
+ "rType": 0,
1070
+ "persona": "LS",
1071
+ "primary_model": "GPT-4o-Synthesis",
1072
+ "privacy_tier": "Public",
1073
+ "sybox_fee_split": {
1074
+ "dev": 0.5,
1075
+ "curation": 0.4,
1076
+ "author": 0.1
1077
+ },
1078
+ "ticker": "SYNL",
1079
+ "audit_cadence": "Weekly",
1080
+ "lifecycle": "Genesis-Platinum",
1081
+ "global_outputs": [
1082
+ "synthesis_id",
1083
+ "logic_id",
1084
+ "bps_verified",
1085
+ "model_stack",
1086
+ "processing_ms",
1087
+ "timestamp"
1088
+ ],
1089
+ "custom_outputs": [
1090
+ {
1091
+ "field_name": "proof_certificate",
1092
+ "type": "Object",
1093
+ "description": "Final validation states for `integrity`, `completeness`, `consistency`, and `ordering`.",
1094
+ "downstream_intent": "**A-COO-WorkflowMapper**: To signal the \"Go/No-Go\" for production cutover.",
1095
+ "bps_sensitivity": "YES"
1096
+ },
1097
+ {
1098
+ "field_name": "drift_analysis_report",
1099
+ "type": "Array",
1100
+ "description": "Specific field-level mismatches or schema deviations detected during migration.",
1101
+ "downstream_intent": "**DBA Persona**: To perform manual schema remediation if drift tolerance is exceeded.",
1102
+ "bps_sensitivity": "YES"
1103
+ },
1104
+ {
1105
+ "field_name": "rollback_verdict",
1106
+ "type": "Boolean",
1107
+ "description": "Deterministic flag based on the BPS critical threshold (True = Rollback initiated).",
1108
+ "downstream_intent": "**System Ledger**: To automatically trigger state-restoration protocols.",
1109
+ "bps_sensitivity": "YES"
1110
+ },
1111
+ {
1112
+ "field_name": "performance_slo_compliance",
1113
+ "type": "Object",
1114
+ "description": "Actual vs. Target metrics for latency, error rate, and throughput.",
1115
+ "downstream_intent": "**SRE Persona**: To update historical performance baselines for future runs.",
1116
+ "bps_sensitivity": "NO"
1117
+ }
1118
+ ]
1119
+ },
1120
+ {
1121
+ "id": 41,
1122
+ "successBps": 9726,
1123
+ "cid": "ar://SYNTH_ATOMIC_DFI_POOLSIFTER",
1124
+ "costUsd": 1500,
1125
+ "details": "# A-DFI-PoolSifter Technical Specification\n\n## 1. System Overview\n\nA-DFI-PoolSifter is a DeFi liquidity pool analysis and filtering engine designed to evaluate, rank, and select optimal liquidity pools based on risk-adjusted returns, operational stability, and protocol health metrics.\n\n---\n\n## 2. Core Logic Architecture\n\n### 2.1 Pool Evaluation Function\n\n```\nPoolScore(p) = Σ(wᵢ × Mᵢ(p)) × RiskPenalty(p) × StabilityCoefficient(p)\n\nWhere:\n- p = pool instance\n- wᵢ = weight coefficient for metric i\n- Mᵢ = normalized metric function [0,1]\n- RiskPenalty ∈ (0,1]\n- StabilityCoefficient ∈ (0,1]\n```\n\n### 2.2 Metric Functions\n\n```\nM_yield(p) = min(1, APY(p) / APY_max)\n\nM_liquidity(p) = 1 - e^(-TVL(p) / TVL_threshold)\n\nM_volume(p) = tanh(Vol_24h(p) / Vol_baseline)\n\nM_age(p) = 1 - e^(-days_active(p) / 180)\n\nM_utilization(p) = 1 - |U(p) - U_optimal|² \n where U_optimal = 0.80\n\nM_impermanent_loss(p) = max(0, 1 - IL_realized(p) / IL_tolerance)\n```\n\n### 2.3 Risk Penalty Calculation\n\n```\nRiskPenalty(p) = ∏(1 - Rⱼ(p) × Sⱼ)\n\nWhere:\n- Rⱼ = risk factor j ∈ {smart_contract, oracle, governance, liquidity}\n- Sⱼ = severity multiplier for factor j\n\nRisk Factors:\nR_contract(p) = (1 - audit_score(p)) × complexity_factor(p)\nR_oracle(p) = oracle_deviation_30d(p) / max_acceptable_deviation\nR_governance(p) = centralization_index(p) × admin_key_risk(p)\nR_liquidity(p) = max(0, 1 - (TVL(p) / min_TVL_threshold))\n```\n\n### 2.4 Stability Coefficient\n\n```\nStabilityCoefficient(p) = e^(-λ × Volatility_Index(p))\n\nVolatility_Index(p) = √(Var(returns_30d(p))) × √(Var(TVL_30d(p)))\n\nλ = 2.5 (decay constant)\n```\n\n---\n\n## 3. Breakdown Point Score (BPS) Matrix\n\n### 3.1 BPS Calculation Formula\n\n```\nBPS(component) = Σ(Impact_i × Probability_i × Detection_Difficulty_i) / 1000\n\nScale: 0-100 (Critical threshold: BPS ≥ 75)\n```\n\n### 3.2 Operational Failure Risk Matrix\n\n| Component | Failure Mode | Impact (1-10) | Probability (1-10) | Detection (1-10) | BPS |\n|-----------|--------------|---------------|-------------------|------------------|-----|\n| **Data Ingestion** | RPC endpoint failure | 9 | 6 | 3 | 16.2 |\n| **Data Ingestion** | Stale price data | 10 | 5 | 7 | 35.0 |\n| **Data Ingestion** | Rate limiting | 6 | 8 | 2 | 9.6 |\n| **Pool Scanner** | Missing pool detection | 8 | 4 | 8 | 25.6 |\n| **Pool Scanner** | Duplicate entries | 5 | 3 | 4 | 6.0 |\n| **Pool Scanner** | Chain reorg handling | 9 | 3 | 9 | 24.3 |\n| **Risk Engine** | Model drift | 8 | 6 | 9 | 43.2 |\n| **Risk Engine** | Calculation overflow | 10 | 2 | 5 | 10.0 |\n| **Risk Engine** | Weight misconfiguration | 7 | 4 | 6 | 16.8 |\n| **Ranking System** | Score normalization error | 7 | 3 | 5 | 10.5 |\n| **Ranking System** | Tie-breaking failure | 4 | 5 | 3 | 6.0 |\n| **Output Handler** | Serialization failure | 6 | 2 | 2 | 2.4 |\n| **Output Handler** | Timeout on large sets | 5 | 4 | 3 | 6.0 |\n| **Oracle Integration** | Price manipulation | 10 | 4 | 8 | 32.0 |\n| **Oracle Integration** | Latency spike | 7 | 7 | 4 | 19.6 |\n| **State Management** | Cache invalidation | 6 | 5 | 6 | 18.0 |\n| **State Management** | Memory exhaustion | 8 | 3 | 4 | 9.6 |\n\n### 3.3 Aggregate BPS by Subsystem\n\n```\nBPS_aggregate(subsystem) = max(BPS_components) + 0.3 × mean(BPS_components)\n\nSubsystem BPS Scores:\n├── Data Ingestion: 35.0 + 0.3(20.27) = 41.08\n├── Pool Scanner: 25.6 + 0.3(18.63) = 31.19\n├── Risk Engine: 43.2 + 0.3(23.33) = 50.20 [ELEVATED]\n├── Ranking System: 10.5 + 0.3(8.25) = 12.98\n├── Output Handler: 6.0 + 0.3(4.20) = 7.26\n├── Oracle Integration: 32.0 + 0.3(25.80) = 39.74\n└── State Management: 18.0 + 0.3(13.80) = 22.14\n\nSystem Total BPS: 50.20 (Highest subsystem)\n```\n\n### 3.4 BPS Threshold Actions\n\n| BPS Range | Status | Required Action |\n|-----------|--------|-----------------|\n| 0-25 | GREEN | Standard monitoring |\n| 26-50 | YELLOW | Enhanced alerting, weekly review |\n| 51-75 | ORANGE | Immediate mitigation plan, daily review |\n| 76-100 | RED | System halt, incident response |\n\n---\n\n## 4. Input Validation JSON Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://a-dfi.io/schemas/poolsifter/v1/input.json\",\n \"title\": \"A-DFI-PoolSifter Input Schema\",\n \"type\": \"object\",\n \"required\": [\"request_id\", \"timestamp\", \"chain_config\", \"filter_criteria\", \"ranking_params\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$\",\n \"description\": \"UUID v4 request identifier\"\n },\n \"timestamp\": {\n \"type\": \"integer\",\n \"minimum\": 1600000000,\n \"maximum\": 2000000000,\n \"description\": \"Unix timestamp in seconds\"\n },\n \"chain_config\": {\n \"type\": \"object\",\n \"required\": [\"chain_id\", \"rpc_endpoints\"],\n \"properties\": {\n \"chain_id\": {\n \"type\": \"integer\",\n \"enum\": [1, 10, 56, 137, 250, 42161, 43114],\n \"description\": \"EVM chain identifier\"\n },\n \"rpc_endpoints\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"maxItems\": 5,\n \"items\": {\n \"type\": \"string\",\n \"format\": \"uri\",\n \"pattern\": \"^https?://\"\n }\n },\n \"block_confirmations\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 256,\n \"default\": 12\n }\n }\n },\n \"filter_criteria\": {\n \"type\": \"object\",\n \"required\": [\"min_tvl\", \"min_age_days\"],\n \"properties\": {\n \"min_tvl\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1000000000000,\n \"description\": \"Minimum TVL in USD\"\n },\n \"max_tvl\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1000000000000\n },\n \"min_age_days\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 3650\n },\n \"min_apy\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100000,\n \"description\": \"Minimum APY as percentage\"\n },\n \"max_apy\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100000\n },\n \"protocol_whitelist\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"pattern\": \"^0x[a-fA-F0-9]{40}$\"\n },\n \"maxItems\": 100\n },\n \"protocol_blacklist\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"pattern\": \"^0x[a-fA-F0-9]{40}$\"\n },\n \"maxItems\": 100\n },\n \"token_requirements\": {\n \"type\": \"object\",\n \"properties\": {\n \"must_include\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"pattern\": \"^0x[a-fA-F0-9]{40}$\"\n }\n },\n \"must_exclude\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"pattern\": \"^0x[a-fA-F0-9]{40}$\"\n }\n }\n }\n },\n \"pool_types\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"enum\": [\"CONSTANT_PRODUCT\", \"STABLE_SWAP\", \"CONCENTRATED\", \"WEIGHTED\", \"METAPOOL\"]\n }\n },\n \"audit_required\": {\n \"type\": \"boolean\",\n \"default\": true\n },\n \"max_impermanent_loss_30d\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100,\n \"description\": \"Maximum IL percentage over 30 days\"\n }\n }\n },\n \"ranking_params\": {\n \"type\": \"object\",\n \"required\": [\"weights\", \"result_limit\"],\n \"properties\": {\n \"weights\": {\n \"type\": \"object\",\n \"required\": [\"yield\", \"liquidity\", \"volume\", \"age\", \"utilization\", \"impermanent_loss\"],\n \"properties\": {\n \"yield\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"liquidity\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"volume\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"age\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"utilization\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"impermanent_loss\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 }\n },\n \"additionalProperties\": false\n },\n \"result_limit\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 1000\n },\n \"sort_order\": {\n \"type\": \"string\",\n \"enum\": [\"DESC\", \"ASC\"],\n \"default\": \"DESC\"\n },\n \"tie_breaker\": {\n \"type\": \"string\",\n \"enum\": [\"TVL\", \"AGE\", \"VOLUME\", \"APY\"],\n \"default\": \"TVL\"\n }\n }\n },\n \"risk_tolerance\": {\n \"type\": \"object\",\n \"properties\": {\n \"max_contract_risk\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1,\n \"default\": 0.3\n },\n \"max_oracle_risk\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1,\n \"default\": 0.2\n },\n \"max_governance_risk\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1,\n \"default\": 0.4\n },\n \"max_liquidity_risk\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1,\n \"default\": 0.25\n }\n }\n },\n \"execution_config\": {\n \"type\": \"object\",\n \"properties\": {\n \"timeout_ms\": {\n \"type\": \"integer\",\n \"minimum\": 1000,\n \"maximum\": 300000,\n \"default\": 30000\n },\n \"cache_ttl_seconds\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 3600,\n \"default\": 300\n },\n \"parallel_workers\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 32,\n \"default\": 8\n },\n \"retry_policy\": {\n \"type\": \"object\",\n \"properties\": {\n \"max_retries\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 10,\n \"default\": 3\n },\n \"backoff_multiplier\": {\n \"type\": \"number\",\n \"minimum\": 1,\n \"maximum\": 5,\n \"default\": 2\n },\n \"initial_delay_ms\": {\n \"type\": \"integer\",\n \"minimum\": 100,\n \"maximum\": 10000,\n \"default\": 1000\n }\n }\n }\n }\n }\n },\n \"allOf\": [\n {\n \"if\": {\n \"properties\": {\n \"filter_criteria\": {\n \"properties\": {\n \"min_tvl\": { \"type\": \"number\" },\n \"max_tvl\": { \"type\": \"number\" }\n },\n \"required\": [\"min_tvl\", \"max_tvl\"]\n }\n }\n },\n \"then\": {\n \"properties\": {\n \"filter_criteria\": {\n \"properties\": {\n \"max_tvl\": {\n \"exclusiveMinimum\": { \"$data\": \"1/min_tvl\" }\n }\n }\n }\n }\n }\n }\n ]\n}\n```\n\n### 4.1 Weight Normalization Constraint\n\n```\nValidation Rule: Σ(weights) = 1.0 ± 0.001\n\nImplementation:\nif |Σ(w) - 1.0| \u003e 0.001:\n raise ValidationError(\"WEIGHT_SUM_INVALID\", sum=Σ(w))\n```",
1126
+ "outcome": "A-DFI-PoolSifter",
1127
+ "rType": 0,
1128
+ "persona": "DFI",
1129
+ "primary_model": "Grok-3-Extraction",
1130
+ "privacy_tier": "Public",
1131
+ "sybox_fee_split": {
1132
+ "dev": 0.5,
1133
+ "curation": 0.4,
1134
+ "author": 0.1
1135
+ },
1136
+ "ticker": "SYNL",
1137
+ "audit_cadence": "Daily",
1138
+ "lifecycle": "Genesis-Platinum",
1139
+ "global_outputs": [
1140
+ "synthesis_id",
1141
+ "logic_id",
1142
+ "bps_verified",
1143
+ "model_stack",
1144
+ "processing_ms",
1145
+ "timestamp"
1146
+ ],
1147
+ "custom_outputs": [
1148
+ {
1149
+ "field_name": "Type",
1150
+ "type": "Description",
1151
+ "description": "Downstream Intent",
1152
+ "downstream_intent": "BPS Sensitivity",
1153
+ "bps_sensitivity": ""
1154
+ }
1155
+ ]
1156
+ },
1157
+ {
1158
+ "id": 47,
1159
+ "successBps": 9824,
1160
+ "cid": "ar://SYNTH_ATOMIC_SEC_JAILSHIELD",
1161
+ "costUsd": 1500,
1162
+ "details": "# A-SEC-JailShield Technical Specification\n\n## 1. System Architecture Logic\n\n```\n┌─────────────────────────────────────────────────────────────────┐\n│ A-SEC-JailShield Core │\n├─────────────────────────────────────────────────────────────────┤\n│ L1: Input Sanitization Layer │\n│ L2: Semantic Analysis Engine │\n│ L3: Pattern Recognition Matrix │\n│ L4: Behavioral Anomaly Detector │\n│ L5: Response Validation Gateway │\n└─────────────────────────────────────────────────────────────────┘\n```\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 Risk Category Definitions\n\n| Category ID | Risk Domain | Weight (ω) | Threshold (τ) |\n|-------------|-------------|------------|---------------|\n| BPS-001 | Prompt Injection | 0.25 | 0.15 |\n| BPS-002 | Context Manipulation | 0.20 | 0.20 |\n| BPS-003 | Role Confusion Attack | 0.18 | 0.18 |\n| BPS-004 | Encoding Obfuscation | 0.15 | 0.12 |\n| BPS-005 | Multi-turn Exploitation | 0.12 | 0.25 |\n| BPS-006 | Semantic Drift | 0.10 | 0.30 |\n\n### 2.2 BPS Calculation Formula\n\n```\nBPS_total = Σ(ωᵢ × Rᵢ × Dᵢ) / Σωᵢ\n\nWhere:\n Rᵢ = Raw risk score for category i ∈ [0, 1]\n Dᵢ = Detection confidence for category i ∈ [0, 1]\n ωᵢ = Weight coefficient for category i\n```\n\n### 2.3 Operational Failure Risk Matrix\n\n```\n┌────────────┬─────────────┬─────────────┬─────────────┬─────────────┐\n│ BPS Range │ Risk Level │ Action │ Alert Level │ SLA Impact │\n├────────────┼─────────────┼─────────────┼─────────────┼─────────────┤\n│ 0.00-0.15 │ NOMINAL │ PASS │ NONE │ 0% │\n│ 0.16-0.35 │ ELEVATED │ LOG+PASS │ P3 │ 0% │\n│ 0.36-0.55 │ HIGH │ CHALLENGE │ P2 │ 5% │\n│ 0.56-0.75 │ CRITICAL │ BLOCK+LOG │ P1 │ 15% │\n│ 0.76-1.00 │ SEVERE │ BLOCK+ALERT │ P0 │ 25% │\n└────────────┴─────────────┴─────────────┴─────────────┴─────────────┘\n```\n\n### 2.4 Compound Risk Scoring\n\n```python\ndef calculate_compound_bps(vectors: list[RiskVector]) -\u003e float:\n \"\"\"\n Compound BPS with temporal decay and correlation adjustment\n \"\"\"\n base_score = sum(v.weight * v.raw_score * v.confidence for v in vectors)\n normalization_factor = sum(v.weight for v in vectors)\n \n # Correlation matrix adjustment\n correlation_penalty = calculate_correlation_matrix(vectors)\n \n # Temporal decay factor (λ = 0.693 for 1-hour half-life)\n λ = 0.693\n temporal_factor = exp(-λ * time_since_last_incident_hours)\n \n compound_score = (base_score / normalization_factor) * (1 + correlation_penalty) * temporal_factor\n \n return min(1.0, max(0.0, compound_score))\n```\n\n## 3. JSON Schema for Input Validation\n\n### 3.1 Request Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://a-sec.internal/jailshield/request/v2\",\n \"title\": \"JailShield Request Validation Schema\",\n \"type\": \"object\",\n \"required\": [\"request_id\", \"timestamp\", \"payload\", \"metadata\"],\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$\",\n \"description\": \"UUIDv4 request identifier\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 timestamp with timezone\"\n },\n \"payload\": {\n \"type\": \"object\",\n \"required\": [\"content\", \"content_type\"],\n \"properties\": {\n \"content\": {\n \"type\": \"string\",\n \"minLength\": 1,\n \"maxLength\": 131072,\n \"description\": \"Raw input content\"\n },\n \"content_type\": {\n \"type\": \"string\",\n \"enum\": [\"text/plain\", \"text/markdown\", \"application/json\"],\n \"default\": \"text/plain\"\n },\n \"encoding\": {\n \"type\": \"string\",\n \"enum\": [\"utf-8\", \"ascii\", \"base64\"],\n \"default\": \"utf-8\"\n },\n \"context_window\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"role\": {\"type\": \"string\", \"enum\": [\"user\", \"assistant\", \"system\"]},\n \"content\": {\"type\": \"string\", \"maxLength\": 65536},\n \"turn_id\": {\"type\": \"integer\", \"minimum\": 0}\n }\n },\n \"maxItems\": 100\n }\n }\n },\n \"metadata\": {\n \"type\": \"object\",\n \"required\": [\"source_ip_hash\", \"session_id\", \"client_version\"],\n \"properties\": {\n \"source_ip_hash\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{64}$\",\n \"description\": \"SHA-256 hash of source IP\"\n },\n \"session_id\": {\n \"type\": \"string\",\n \"pattern\": \"^sess_[a-zA-Z0-9]{32}$\"\n },\n \"client_version\": {\n \"type\": \"string\",\n \"pattern\": \"^\\\\d+\\\\.\\\\d+\\\\.\\\\d+$\"\n },\n \"user_tier\": {\n \"type\": \"string\",\n \"enum\": [\"free\", \"pro\", \"enterprise\", \"internal\"],\n \"default\": \"free\"\n },\n \"rate_limit_bucket\": {\n \"type\": \"string\",\n \"pattern\": \"^rl_[a-z0-9_]{8,32}$\"\n }\n }\n },\n \"security_context\": {\n \"type\": \"object\",\n \"properties\": {\n \"auth_method\": {\n \"type\": \"string\",\n \"enum\": [\"api_key\", \"oauth2\", \"jwt\", \"mtls\"]\n },\n \"permissions\": {\n \"type\": \"array\",\n \"items\": {\"type\": \"string\"},\n \"uniqueItems\": true\n },\n \"trust_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n }\n }\n }\n },\n \"additionalProperties\": false\n}\n```\n\n### 3.2 Response Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://a-sec.internal/jailshield/response/v2\",\n \"title\": \"JailShield Response Schema\",\n \"type\": \"object\",\n \"required\": [\"request_id\", \"verdict\", \"bps_score\", \"processing_time_ms\"],\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$\"\n },\n \"verdict\": {\n \"type\": \"object\",\n \"required\": [\"action\", \"confidence\", \"category\"],\n \"properties\": {\n \"action\": {\n \"type\": \"string\",\n \"enum\": [\"ALLOW\", \"ALLOW_WITH_LOG\", \"CHALLENGE\", \"BLOCK\", \"BLOCK_WITH_ALERT\"]\n },\n \"confidence\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"category\": {\n \"type\": \"string\",\n \"enum\": [\"CLEAN\", \"SUSPICIOUS\", \"MALICIOUS\", \"UNKNOWN\"]\n },\n \"reason_codes\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{2,4}-[0-9]{3,5}$\"\n }\n }\n }\n },\n \"bps_score\": {\n \"type\": \"object\",\n \"required\": [\"total\", \"breakdown\"],\n \"properties\": {\n \"total\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"breakdown\": {\n \"type\": \"object\",\n \"patternProperties\": {\n \"^BPS-[0-9]{3}$\": {\n \"type\": \"object\",\n \"properties\": {\n \"raw_score\": {\"type\": \"number\", \"minimum\": 0, \"maximum\": 1},\n \"weighted_score\": {\"type\": \"number\", \"minimum\": 0, \"maximum\": 1},\n \"confidence\": {\"type\": \"number\", \"minimum\": 0, \"maximum\": 1},\n \"triggered_patterns\": {\"type\": \"array\", \"items\": {\"type\": \"string\"}}\n }\n }\n }\n }\n }\n },\n \"processing_time_ms\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 30000\n },\n \"trace_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{32}$\"\n },\n \"cache_status\": {\n \"type\": \"string\",\n \"enum\": [\"HIT\", \"MISS\", \"BYPASS\", \"STALE\"]\n }\n }\n}\n```\n\n## 4. SRE Metrics Specification\n\n### 4.1 Service Level Objectives (SLOs)\n\n| Metric | Target | Measurement Window | Burn Rate Alert |\n|--------|--------|-------------------|-----------------|\n| Availability | 99.95% | 30-day rolling | 14.4x (1h), 6x (6h) |\n| Latency P50 | ≤ 15ms | 5-minute rolling | N/A |\n| Latency P95 | ≤ 50ms | 5-minute rolling | 2x threshold |\n| Latency P99 | ≤ 150ms | 5-minute rolling | 1.5x threshold |\n| Error Rate | ≤ 0.1% | 1-hour rolling | 10x baseline |\n| False Positive Rate | ≤ 0.5% | 24-hour rolling | 2x baseline |\n| False Negative Rate | ≤ 0.01% | 24-hour rolling | 5x baseline |\n\n### 4.2 Key Performance Indicators (KPIs)\n\n```yaml\nmetrics:\n # Throughput Metrics\n - name: jailshield_requests_total\n type: counter\n labels: [verdict, category, client_tier]\n description: \"Total requests processed\"\n \n - name: jailshield_requests_per_second\n type: gauge\n labels: [region, instance]\n description: \"Current request rate\"\n target: \"\u003e= 10000 RPS per instance\"\n\n # Latency Metrics\n - name: jailshield_processing_duration_seconds\n type: histogram\n buckets: [0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0]\n labels: [layer, verdict]\n description: \"Request processing duration\"\n\n - name: jailshield_layer_latency_seconds\n type: histogram\n buckets: [0.001, 0.005, 0.01, 0.025, 0.05]\n labels: [layer_id]\n description: \"Per-layer processing latency\"\n\n # Accuracy Metrics\n - name: jailshield_detection_accuracy\n type: gauge\n labels: [category, model_version]\n description: \"Detection accuracy by category\"\n \n - name: jailshield_false_positive_rate\n type: gauge\n labels: [category]\n description: \"False positive rate\"\n alert_threshold: 0.005\n\n - name: jailshield_false_negative_rate\n type: gauge\n labels: [category]\n description: \"False negative rate\"\n alert_threshold: 0.0001\n\n # Resource Metrics\n - name: jailshield_memory_usage_bytes\n type: gauge\n labels: [component]\n description: \"Memory consumption\"\n \n - name: jailshield_cpu_utilization_ratio\n type: gauge\n labels: [instance]\n description: \"CPU utilization\"\n alert_threshold: 0.80\n\n # BPS Metrics\n - name: jailshield_bps_score_distribution\n type: histogram\n buckets: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]\n labels: [category]\n description: \"BPS score distribution\"\n\n - name: jailshield_bps_threshold_breaches_total\n type: counter\n labels: [category, severity]\n description: \"BPS threshold breach count\"\n```\n\n### 4.3 Error Budget Calculation\n\n```\nError Budget (monthly) = (1 - SLO_target) × total_minutes_in_month\n\nFor 99.95% availability:\n Error Budget = (1 - 0.9995) × 43200 = 21.6 minutes/month\n\nBurn Rate = (errors_in_window / total_requests_in_window) / (1 - SLO_target)\n\nAlert Thresholds:\n - P0 (Page): Burn Rate \u003e 14.4 sustained for 1 hour\n - P1 (Page): Burn Rate \u003e 6.0 sustained for 6 hours \n - P2 (Ticket): Burn Rate \u003e 3.0 sustained for 24 hours\n - P3 (Review): Burn Rate \u003e 1.0 sustained for 72 hours\n```\n\n### 4.4 Operational Runbook Triggers\n\n```yaml\nrunbook_triggers:\n - condition: \"bps_score_p99 \u003e 0.7 for 5m\"\n runbook: \"RB-JS-001: High BPS Score Investigation\"\n severity: P1\n \n - condition: \"false_negative_rate \u003e 0.001 for 15m\"\n runbook: \"RB-JS-002: Detection Accuracy Degradation\"\n severity: P0\n \n - condition: \"processing_latency_p95 \u003e 100ms for 10m\"\n runbook: \"R\n```\n\n## 3. Resilience Layer\n- **Noise_Tolerance**: 0.15\n- **Confidence_Threshold**: 0.85\n- **Logic_Smoothing**: Bayesian",
1163
+ "outcome": "A-SEC-JailShield",
1164
+ "rType": 0,
1165
+ "persona": "SEC",
1166
+ "primary_model": "Grok-3-Extraction",
1167
+ "privacy_tier": "Public",
1168
+ "sybox_fee_split": {
1169
+ "dev": 0.5,
1170
+ "curation": 0.4,
1171
+ "author": 0.1
1172
+ },
1173
+ "ticker": "SYNL",
1174
+ "audit_cadence": "Daily",
1175
+ "lifecycle": "Genesis-Platinum",
1176
+ "global_outputs": [
1177
+ "synthesis_id",
1178
+ "logic_id",
1179
+ "bps_verified",
1180
+ "model_stack",
1181
+ "processing_ms",
1182
+ "timestamp"
1183
+ ],
1184
+ "custom_outputs": [
1185
+ {
1186
+ "field_name": "security_gate_action",
1187
+ "type": "String",
1188
+ "description": "Exact deterministic state: \"ALLOW\", \"CHALLENGE\", or \"BLOCK\".",
1189
+ "downstream_intent": "`A-AI-AgentWrapper` (In-flight control)",
1190
+ "bps_sensitivity": "Yes"
1191
+ },
1192
+ {
1193
+ "field_name": "risk_vector_decomposition",
1194
+ "type": "Object",
1195
+ "description": "Nested BPS breakdown for Prompt Injection, Obfuscation, and Multi-turn logic.",
1196
+ "downstream_intent": "`A-SEC-ThreatHunter` (Forensics)",
1197
+ "bps_sensitivity": "Yes"
1198
+ },
1199
+ {
1200
+ "field_name": "attack_vector_primary",
1201
+ "type": "String",
1202
+ "description": "Semantic classification of the attempt (e.g., \"CONTEXT_MANIPULATION\").",
1203
+ "downstream_intent": "`SEC-Persona` (Audit log)",
1204
+ "bps_sensitivity": "No"
1205
+ },
1206
+ {
1207
+ "field_name": "roi_displacement_ms",
1208
+ "type": "Integer",
1209
+ "description": "Calculated manual displacement (manual review time saved per run).",
1210
+ "downstream_intent": "`A-CEO-FinMonitor` (ROI tracking)",
1211
+ "bps_sensitivity": "No"
1212
+ },
1213
+ {
1214
+ "field_name": "mitigation_strategy_id",
1215
+ "type": "String",
1216
+ "description": "Reference pointer to the specific \"Sentinel Audit\" trigger for high-risk users.",
1217
+ "downstream_intent": "`A-SEC-UserBehaviorProfiler`",
1218
+ "bps_sensitivity": "Yes"
1219
+ }
1220
+ ]
1221
+ },
1222
+ {
1223
+ "id": 70,
1224
+ "successBps": 9842,
1225
+ "cid": "ar://SYNTH_ATOMIC_OSI_ARTIFACTAUDIT",
1226
+ "costUsd": 1500,
1227
+ "details": "# A-OSI-ArtifactAudit Technical Specification\n\n## 1. Core Logic Definition\n\n### 1.1 Artifact Audit State Machine\n\n```\nStates: {PENDING, SCANNING, VALIDATING, AUDITED, FAILED, QUARANTINED}\n\nTransitions:\n PENDING → SCANNING : trigger(audit_request) ∧ resource_available\n SCANNING → VALIDATING : scan_complete ∧ ¬critical_violation\n SCANNING → QUARANTINED : critical_violation_detected\n VALIDATING → AUDITED : validation_pass ∧ signature_valid\n VALIDATING → FAILED : validation_fail ∨ signature_invalid\n FAILED → PENDING : retry_count \u003c max_retries\n FAILED → QUARANTINED : retry_count ≥ max_retries\n```\n\n### 1.2 Audit Decision Function\n\n```\nf(artifact) = {\n PASS if Σ(weight_i × check_i) ≥ θ_pass ∧ critical_checks = ∅\n WARN if Σ(weight_i × check_i) ≥ θ_warn ∧ critical_checks = ∅\n FAIL if Σ(weight_i × check_i) \u003c θ_warn ∨ |critical_checks| \u003e 0\n}\n\nWhere:\n θ_pass = 0.95\n θ_warn = 0.80\n weight_i ∈ [0.0, 1.0]\n check_i ∈ {0, 1}\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 Risk Category Definitions\n\n| Risk ID | Category | Description | Weight |\n|---------|----------|-------------|--------|\n| R001 | Integrity | Checksum/signature mismatch | 1.0 |\n| R002 | Provenance | Unknown or untrusted source | 0.9 |\n| R003 | Compliance | Policy violation detected | 0.85 |\n| R004 | Vulnerability | CVE presence in artifact | 0.95 |\n| R005 | Staleness | Artifact age exceeds TTL | 0.6 |\n| R006 | Size Anomaly | Deviation from baseline \u003e3σ | 0.7 |\n| R007 | Dependency | Unresolved/circular deps | 0.75 |\n| R008 | Metadata | Missing required fields | 0.5 |\n\n### 2.2 BPS Calculation Formula\n\n```\nBPS = 100 × (1 - Π(1 - (P_i × I_i × W_i)))\n\nWhere:\n P_i = Probability of failure mode i occurring [0.0, 1.0]\n I_i = Impact severity of failure mode i [0.0, 1.0]\n W_i = Weight factor from risk category [0.0, 1.0]\n\nThresholds:\n BPS \u003c 15 : LOW_RISK → Auto-approve\n BPS 15-40 : MEDIUM_RISK → Manual review queue\n BPS 40-70 : HIGH_RISK → Senior approval required\n BPS \u003e 70 : CRITICAL_RISK → Auto-reject + incident\n```\n\n### 2.3 BPS Operational Matrix\n\n```\n┌─────────────────┬────────┬────────┬────────┬──────────┐\n│ Failure Mode │ P(low) │ P(med) │ P(high)│ Max BPS │\n├─────────────────┼────────┼────────┼────────┼──────────┤\n│ Checksum Fail │ 0.01 │ 0.05 │ 0.15 │ 15.0 │\n│ Sig Invalid │ 0.02 │ 0.08 │ 0.20 │ 20.0 │\n│ CVE Critical │ 0.05 │ 0.15 │ 0.35 │ 33.25 │\n│ CVE High │ 0.10 │ 0.25 │ 0.45 │ 38.475 │\n│ Source Untrust │ 0.03 │ 0.10 │ 0.25 │ 22.5 │\n│ Policy Violate │ 0.08 │ 0.20 │ 0.40 │ 34.0 │\n│ Dep Resolution │ 0.15 │ 0.30 │ 0.50 │ 37.5 │\n│ Metadata Miss │ 0.20 │ 0.35 │ 0.55 │ 27.5 │\n└─────────────────┴────────┴────────┴────────┴──────────┘\n\nCompound BPS (worst case all high):\nBPS_max = 100 × (1 - (0.85 × 0.80 × 0.65 × 0.615 × 0.775 × 0.66 × 0.625 × 0.725))\nBPS_max = 100 × (1 - 0.0847) = 91.53\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-osi-artifact-audit/v1\",\n \"title\": \"A-OSI-ArtifactAudit Input Schema\",\n \"type\": \"object\",\n \"required\": [\n \"artifact_id\",\n \"artifact_type\",\n \"source\",\n \"checksums\",\n \"metadata\",\n \"audit_config\"\n ],\n \"properties\": {\n \"artifact_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{64}$\",\n \"description\": \"SHA-256 unique identifier\"\n },\n \"artifact_type\": {\n \"type\": \"string\",\n \"enum\": [\n \"container_image\",\n \"binary\",\n \"library\",\n \"config\",\n \"helm_chart\",\n \"terraform_module\",\n \"source_archive\"\n ]\n },\n \"source\": {\n \"type\": \"object\",\n \"required\": [\"registry\", \"repository\", \"tag\", \"digest\"],\n \"properties\": {\n \"registry\": {\n \"type\": \"string\",\n \"format\": \"hostname\"\n },\n \"repository\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-z0-9]+(?:[._-][a-z0-9]+)*(?:/[a-z0-9]+(?:[._-][a-z0-9]+)*)*$\"\n },\n \"tag\": {\n \"type\": \"string\",\n \"maxLength\": 128\n },\n \"digest\": {\n \"type\": \"string\",\n \"pattern\": \"^sha256:[a-f0-9]{64}$\"\n }\n }\n },\n \"checksums\": {\n \"type\": \"object\",\n \"required\": [\"sha256\"],\n \"properties\": {\n \"sha256\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{64}$\"\n },\n \"sha512\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{128}$\"\n },\n \"md5\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{32}$\",\n \"deprecated\": true\n }\n }\n },\n \"signature\": {\n \"type\": \"object\",\n \"properties\": {\n \"type\": {\n \"type\": \"string\",\n \"enum\": [\"cosign\", \"gpg\", \"sigstore\", \"notary\"]\n },\n \"value\": {\n \"type\": \"string\",\n \"minLength\": 1\n },\n \"key_id\": {\n \"type\": \"string\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n }\n }\n },\n \"metadata\": {\n \"type\": \"object\",\n \"required\": [\"created_at\", \"size_bytes\", \"labels\"],\n \"properties\": {\n \"created_at\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"size_bytes\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 107374182400\n },\n \"labels\": {\n \"type\": \"object\",\n \"required\": [\"maintainer\", \"version\"],\n \"properties\": {\n \"maintainer\": {\n \"type\": \"string\",\n \"format\": \"email\"\n },\n \"version\": {\n \"type\": \"string\",\n \"pattern\": \"^v?\\\\d+\\\\.\\\\d+\\\\.\\\\d+(-[a-zA-Z0-9]+)?$\"\n },\n \"build_id\": {\n \"type\": \"string\"\n },\n \"commit_sha\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{40}$\"\n }\n }\n },\n \"layers\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"digest\", \"size\"],\n \"properties\": {\n \"digest\": {\n \"type\": \"string\",\n \"pattern\": \"^sha256:[a-f0-9]{64}$\"\n },\n \"size\": {\n \"type\": \"integer\",\n \"minimum\": 0\n }\n }\n }\n }\n }\n },\n \"audit_config\": {\n \"type\": \"object\",\n \"required\": [\"policy_set\", \"severity_threshold\"],\n \"properties\": {\n \"policy_set\": {\n \"type\": \"string\",\n \"enum\": [\"strict\", \"standard\", \"permissive\", \"custom\"]\n },\n \"severity_threshold\": {\n \"type\": \"string\",\n \"enum\": [\"critical\", \"high\", \"medium\", \"low\", \"info\"]\n },\n \"max_cve_age_days\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 365,\n \"default\": 30\n },\n \"require_signature\": {\n \"type\": \"boolean\",\n \"default\": true\n },\n \"allowed_registries\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"format\": \"hostname\"\n },\n \"minItems\": 1\n },\n \"blocked_packages\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\"\n }\n },\n \"custom_checks\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"name\", \"rego_policy\"],\n \"properties\": {\n \"name\": {\n \"type\": \"string\"\n },\n \"rego_policy\": {\n \"type\": \"string\"\n },\n \"weight\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n }\n }\n }\n }\n }\n },\n \"scan_results\": {\n \"type\": \"object\",\n \"properties\": {\n \"vulnerabilities\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"cve_id\", \"severity\", \"package\"],\n \"properties\": {\n \"cve_id\": {\n \"type\": \"string\",\n \"pattern\": \"^CVE-\\\\d{4}-\\\\d{4,}$\"\n },\n \"severity\": {\n \"type\": \"string\",\n \"enum\": [\"critical\", \"high\", \"medium\", \"low\", \"unknown\"]\n },\n \"cvss_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 10\n },\n \"package\": {\n \"type\": \"string\"\n },\n \"fixed_version\": {\n \"type\": [\"string\", \"null\"]\n }\n }\n }\n },\n \"sbom\": {\n \"type\": \"object\",\n \"properties\": {\n \"format\": {\n \"type\": \"string\",\n \"enum\": [\"spdx\", \"cyclonedx\"]\n },\n \"location\": {\n \"type\": \"string\",\n \"format\": \"uri\"\n }\n }\n }\n }\n }\n },\n \"additionalProperties\": false\n}\n```\n\n---\n\n## 4. SRE Metrics Specification\n\n### 4.1 Service Level Indicators (SLIs)\n\n```yaml\nslis:\n audit_latency:\n description: \"Time from audit request to completion\"\n type: histogram\n unit: seconds\n buckets: [0.5, 1, 2.5, 5, 10, 30, 60, 120, 300]\n labels: [artifact_type, policy_set, result]\n \n audit_availability:\n description: \"Successful audit completions / total requests\"\n type: ratio\n numerator: audit_requests_successful_total\n denominator: audit_requests_total\n \n audit_throughput:\n description: \"Audits processed per second\"\n type: gauge\n unit: audits/second\n \n scan_accuracy:\n description: \"True positives / (True positives + False positives)\"\n type: ratio\n window: 7d\n \n false_negative_rate:\n description: \"Missed vulnerabilities discovered post-deployment\"\n type: counter\n alert_threshold: 0.001\n```\n\n### 4.2 Service Level Objectives (SLOs)\n\n```yaml\nslos:\n - name: audit_latency_p99\n sli: audit_latency\n target: 0.999\n threshold: 30s\n window: 30d\n burn_rate_alerts:\n - severity: critical\n short_window: 5m\n long_window: 1h\n burn_rate: 14.4\n - severity: warning\n short_window: 30m\n long_window: 6h\n burn_rate: 6\n \n - name: audit_availability\n sli: audit_availability\n target: 0.9995\n window: 30d\n error_budget: 21.6m\n \n - name: critical_cve_detection\n sli: scan_accuracy\n target: 0.9999\n window: 90d\n scope: severity=critical\n```\n\n### 4.3 Operational Metrics\n\n```\n# Counter Metrics\nartifact_audit_total{result, artifact_type, policy_set}\nartifact_audit_errors_total{error_type, stage}\nartifact_quarantine_total{reason}\nsignature_verification_total{result, sig_type}\npolicy_evaluation_total{policy_name, result}\ncve_detected_total{severity, fixable}\n\n# Histogram Metrics\nartifact_audit_duration_seconds{stage}\nartifact_scan_duration_seconds{scanner}\nartifact_size_bytes{artifact_type}\nvulnerability_count{severity}\n\n# Gauge Metrics\naudit_queue_depth\naudit_workers_active\naudit_workers_available\ncache_hit_ratio\npolicy_cache_entries\n```\n\n### 4.4 Alert Definitions\n\n```yaml\nalerts:\n - name: AuditLatencyBudgetBurn\n expr: |\n (\n sum(rate(artifact_audit_duration_seconds_count{result=\"success\"}[5m]))\n -\n sum(rate(artifact_audit_duration_seconds_bucket{le=\"30\",result=\"success\"}[5m]))\n )\n /\n sum(rate(artifact_audit_duration_seconds_count{result=\"success\"}[5m]))\n \u003e 0.001 * 14.4\n for: 2m\n```\n\n## 3. Resilience Layer\n- **Noise_Tolerance**: 0.15\n- **Confidence_Threshold**: 0.85\n- **Logic_Smoothing**: Bayesian",
1228
+ "outcome": "A-OSI-ArtifactAudit",
1229
+ "rType": 0,
1230
+ "persona": "OSI",
1231
+ "primary_model": "GPT-4o-Synthesis",
1232
+ "privacy_tier": "Public",
1233
+ "sybox_fee_split": {
1234
+ "dev": 0.5,
1235
+ "curation": 0.4,
1236
+ "author": 0.1
1237
+ },
1238
+ "ticker": "SYNL",
1239
+ "audit_cadence": "Weekly",
1240
+ "lifecycle": "Genesis-Platinum",
1241
+ "global_outputs": [
1242
+ "synthesis_id",
1243
+ "logic_id",
1244
+ "bps_verified",
1245
+ "model_stack",
1246
+ "processing_ms",
1247
+ "timestamp"
1248
+ ],
1249
+ "custom_outputs": [
1250
+ {
1251
+ "field_name": "audit_verdict",
1252
+ "type": "String",
1253
+ "description": "Enum: `PASS`, `WARN`, `FAIL`. The final compliance state.",
1254
+ "downstream_intent": "A-CEO-KPISiphon",
1255
+ "bps_sensitivity": "Critical"
1256
+ },
1257
+ {
1258
+ "field_name": "vulnerability_profile",
1259
+ "type": "Object",
1260
+ "description": "Nested counts of CVEs categorized by severity (Critical, High, Medium, Low).",
1261
+ "downstream_intent": "Security-Ops",
1262
+ "bps_sensitivity": "High"
1263
+ },
1264
+ {
1265
+ "field_name": "compliance_score",
1266
+ "type": "Float",
1267
+ "description": "Weighted evaluation (0.0-1.0) based on Rego policy checks.",
1268
+ "downstream_intent": "A-OSI-TruthBPS",
1269
+ "bps_sensitivity": "High"
1270
+ },
1271
+ {
1272
+ "field_name": "quarantine_status",
1273
+ "type": "Boolean",
1274
+ "description": "True if a critical violation triggered the state machine isolation.",
1275
+ "downstream_intent": "Infrastructure-Auto",
1276
+ "bps_sensitivity": "Critical"
1277
+ },
1278
+ {
1279
+ "field_name": "provenance_chain",
1280
+ "type": "Array",
1281
+ "description": "Sequence of validated hashes and signatures (Cosign/GPG).",
1282
+ "downstream_intent": "A-OSI-NexusLinker",
1283
+ "bps_sensitivity": "Medium"
1284
+ }
1285
+ ]
1286
+ },
1287
+ {
1288
+ "id": 71,
1289
+ "successBps": 9806,
1290
+ "cid": "ar://SYNTH_ATOMIC_OSI_NEXUSLINKER",
1291
+ "costUsd": 1500,
1292
+ "details": "# A-OSI-NexusLinker Technical Specification\n\n## 1. System Architecture Logic\n\n### 1.1 Core Function Definition\n\n```\nNexusLinker(packet) → {\n L = OSI_Layer_Classification(packet)\n N = Node_Topology_Map(source, destination)\n R = Route_Optimization(L, N, constraints)\n return Execute_Link(R, QoS_params)\n}\n```\n\n### 1.2 OSI Layer Binding Matrix\n\n| Layer | Binding Function | Latency Budget (ms) | Failure Domain |\n|-------|------------------|---------------------|----------------|\n| L7 | `app_protocol_handler()` | ≤50 | Application |\n| L6 | `data_transform()` | ≤10 | Presentation |\n| L5 | `session_state_machine()` | ≤15 | Session |\n| L4 | `transport_mux()` | ≤5 | Transport |\n| L3 | `route_compute()` | ≤3 | Network |\n| L2 | `frame_switch()` | ≤1 | Data Link |\n| L1 | `signal_encode()` | ≤0.1 | Physical |\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 BPS Calculation Formula\n\n```\nBPS = Σ(Wi × Fi × Ci) / Σ(Wi)\n\nWhere:\n Wi = Weight factor for failure category i\n Fi = Frequency coefficient (incidents/hour)\n Ci = Criticality multiplier (1-10 scale)\n```\n\n### 2.2 Operational Failure Risk Matrix\n\n| Failure Category | Code | Weight (Wi) | Base Frequency (Fi) | Criticality (Ci) | BPS Contribution |\n|------------------|------|-------------|---------------------|------------------|------------------|\n| Link Saturation | LS-001 | 0.25 | 0.015 | 7 | 0.02625 |\n| Route Oscillation | RO-002 | 0.20 | 0.008 | 9 | 0.01440 |\n| Session Exhaustion | SE-003 | 0.15 | 0.022 | 6 | 0.01980 |\n| MTU Mismatch | MM-004 | 0.10 | 0.005 | 4 | 0.00200 |\n| Protocol Deadlock | PD-005 | 0.12 | 0.003 | 10 | 0.00360 |\n| Nexus Partition | NP-006 | 0.18 | 0.001 | 10 | 0.00180 |\n\n### 2.3 BPS Threshold Classification\n\n```\nBPS_CRITICAL = BPS \u003e 0.75 → Immediate intervention required\nBPS_HIGH = 0.50 \u003c BPS ≤ 0.75 → Escalation to on-call\nBPS_MODERATE = 0.25 \u003c BPS ≤ 0.50 → Automated remediation\nBPS_LOW = BPS ≤ 0.25 → Standard monitoring\n```\n\n### 2.4 Cascading Failure Probability\n\n```\nP(cascade) = 1 - ∏(1 - BPSi)^(connectivity_degree_i)\n\nThreshold: P(cascade) \u003e 0.15 triggers isolation protocol\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-osi-nexuslinker/v1\",\n \"title\": \"A-OSI-NexusLinker Input Schema\",\n \"type\": \"object\",\n \"required\": [\"nexus_id\", \"link_request\", \"qos_profile\", \"timestamp\"],\n \"properties\": {\n \"nexus_id\": {\n \"type\": \"string\",\n \"pattern\": \"^NX-[A-Z]{2}-[0-9]{6}$\",\n \"description\": \"Unique nexus identifier\"\n },\n \"link_request\": {\n \"type\": \"object\",\n \"required\": [\"source\", \"destination\", \"osi_layers\"],\n \"properties\": {\n \"source\": {\n \"type\": \"object\",\n \"required\": [\"node_id\", \"interface\", \"address\"],\n \"properties\": {\n \"node_id\": {\n \"type\": \"string\",\n \"pattern\": \"^NODE-[0-9A-F]{8}$\"\n },\n \"interface\": {\n \"type\": \"string\",\n \"enum\": [\"eth0\", \"eth1\", \"bond0\", \"lo\", \"vxlan0\"]\n },\n \"address\": {\n \"type\": \"object\",\n \"properties\": {\n \"ipv4\": {\n \"type\": \"string\",\n \"format\": \"ipv4\"\n },\n \"ipv6\": {\n \"type\": \"string\",\n \"format\": \"ipv6\"\n },\n \"mac\": {\n \"type\": \"string\",\n \"pattern\": \"^([0-9A-Fa-f]{2}:){5}[0-9A-Fa-f]{2}$\"\n }\n },\n \"anyOf\": [\n {\"required\": [\"ipv4\"]},\n {\"required\": [\"ipv6\"]}\n ]\n }\n }\n },\n \"destination\": {\n \"$ref\": \"#/properties/link_request/properties/source\"\n },\n \"osi_layers\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"layer\", \"protocol\", \"config\"],\n \"properties\": {\n \"layer\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 7\n },\n \"protocol\": {\n \"type\": \"string\",\n \"enum\": [\n \"ethernet\", \"ppp\", \"hdlc\",\n \"ipv4\", \"ipv6\", \"icmp\", \"ipsec\",\n \"tcp\", \"udp\", \"sctp\", \"quic\",\n \"tls\", \"rpc\",\n \"ascii\", \"jpeg\", \"mpeg\",\n \"http\", \"grpc\", \"dns\", \"ntp\"\n ]\n },\n \"config\": {\n \"type\": \"object\",\n \"additionalProperties\": true\n }\n }\n },\n \"minItems\": 1,\n \"maxItems\": 7\n }\n }\n },\n \"qos_profile\": {\n \"type\": \"object\",\n \"required\": [\"priority\", \"bandwidth\", \"latency_slo\"],\n \"properties\": {\n \"priority\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 7,\n \"description\": \"802.1p priority class\"\n },\n \"bandwidth\": {\n \"type\": \"object\",\n \"required\": [\"guaranteed_mbps\", \"burst_mbps\"],\n \"properties\": {\n \"guaranteed_mbps\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100000\n },\n \"burst_mbps\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 400000\n }\n }\n },\n \"latency_slo\": {\n \"type\": \"object\",\n \"required\": [\"p50_ms\", \"p99_ms\", \"p999_ms\"],\n \"properties\": {\n \"p50_ms\": {\"type\": \"number\", \"minimum\": 0},\n \"p99_ms\": {\"type\": \"number\", \"minimum\": 0},\n \"p999_ms\": {\"type\": \"number\", \"minimum\": 0}\n }\n },\n \"jitter_tolerance_ms\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"default\": 5\n },\n \"packet_loss_threshold\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1,\n \"default\": 0.001\n }\n }\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"ttl_seconds\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 86400,\n \"default\": 3600\n },\n \"metadata\": {\n \"type\": \"object\",\n \"properties\": {\n \"trace_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[0-9a-f]{32}$\"\n },\n \"span_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[0-9a-f]{16}$\"\n },\n \"environment\": {\n \"type\": \"string\",\n \"enum\": [\"production\", \"staging\", \"development\"]\n }\n }\n }\n },\n \"additionalProperties\": false\n}\n```\n\n---\n\n## 4. SRE Metrics for Operational Success\n\n### 4.1 Service Level Indicators (SLIs)\n\n| Metric Name | Formula | Collection Interval |\n|-------------|---------|---------------------|\n| `nexus_link_availability` | `(successful_links / total_link_attempts) × 100` | 10s |\n| `nexus_latency_p99` | `percentile(link_establishment_time, 99)` | 10s |\n| `nexus_throughput_ratio` | `actual_throughput / provisioned_throughput` | 30s |\n| `nexus_error_rate` | `error_count / total_requests` | 10s |\n| `nexus_saturation` | `active_links / max_link_capacity` | 5s |\n\n### 4.2 Service Level Objectives (SLOs)\n\n```yaml\nslos:\n availability:\n target: 99.95%\n window: 30d\n burn_rate_alert:\n fast: 14.4 # 2% budget in 1h\n slow: 6.0 # 5% budget in 6h\n \n latency:\n p50_target_ms: 15\n p99_target_ms: 100\n p999_target_ms: 500\n window: 30d\n \n error_budget:\n monthly_minutes: 21.6 # (1 - 0.9995) × 43200\n current_burn_rate: calculated_realtime\n```\n\n### 4.3 Golden Signals Mapping\n\n```\n┌─────────────────────────────────────────────────────────────┐\n│ GOLDEN SIGNALS │\n├─────────────┬───────────────────────────────────────────────┤\n│ LATENCY │ nexus_link_establishment_duration_seconds │\n│ │ nexus_packet_transit_time_seconds │\n│ │ nexus_osi_layer_processing_seconds{layer=\"N\"} │\n├─────────────┼───────────────────────────────────────────────┤\n│ TRAFFIC │ nexus_bytes_transmitted_total │\n│ │ nexus_packets_per_second │\n│ │ nexus_active_sessions_count │\n├─────────────┼───────────────────────────────────────────────┤\n│ ERRORS │ nexus_link_failures_total{reason=\"...\"} │\n│ │ nexus_protocol_errors_total{layer=\"N\"} │\n│ │ nexus_timeout_total │\n├─────────────┼───────────────────────────────────────────────┤\n│ SATURATION │ nexus_link_table_utilization_ratio │\n│ │ nexus_buffer_queue_depth │\n│ │ nexus_cpu_cycles_per_packet │\n└─────────────┴───────────────────────────────────────────────┘\n```\n\n### 4.4 Prometheus Metric Definitions\n\n```promql\n# Link Availability (5m window)\nnexus_availability_5m = \n sum(rate(nexus_link_success_total[5m])) /\n sum(rate(nexus_link_attempts_total[5m]))\n\n# Error Budget Consumption Rate\nnexus_error_budget_burn_rate =\n (1 - nexus_availability_5m) / (1 - 0.9995)\n\n# Saturation Prediction (linear regression)\nnexus_saturation_forecast_1h =\n predict_linear(nexus_link_table_utilization_ratio[30m], 3600)\n\n# Multi-layer Latency Aggregation\nnexus_total_stack_latency_p99 =\n histogram_quantile(0.99,\n sum(rate(nexus_osi_layer_processing_seconds_bucket[5m])) by (le)\n )\n```\n\n### 4.5 Alert Definitions\n\n```yaml\ngroups:\n - name: nexuslinker_critical\n rules:\n - alert: NexusLinkAvailabilityBreach\n expr: nexus_availability_5m \u003c 0.9995\n for: 2m\n labels:\n severity: critical\n team: network-sre\n annotations:\n summary: \"NexusLinker availability below SLO\"\n runbook: \"https://runbooks.internal/nexus/availability\"\n \n - alert: NexusBPSCritical\n expr: nexus_bps_score \u003e 0.75\n for: 1m\n labels:\n severity: critical\n annotations:\n summary: \"Breakdown Point Score critical threshold exceeded\"\n \n - alert: NexusSaturationImminent\n expr: nexus_saturation_forecast_1h \u003e 0.90\n for: 5m\n labels:\n severity: warning\n annotations:\n summary: \"Link table saturation predicted within 1 hour\"\n \n - alert: NexusCascadeRisk\n expr: nexus_cascade_probability \u003e 0.15\n for: 30s\n labels:\n severity: critical\n annotations:\n summary: \"Cascading failure probability exceeds threshold\"\n```\n\n### 4.6 Operational Health Score (OHS)\n\n```\nOHS = (w1 × A) + (w2 × (1 - L_norm)) + (w3 × (1 - E)) + (w4 × (1 - S))\n\nWhere:\n A = Availability ratio [0,1]\n L_norm = Normalized latency = actual_p99 / slo_p99 (capped at 1)\n E = Error rate [0,1]\n S = Saturation ratio [0,1]\n \nWeights:\n w1 = 0.35 (availability)\n w2 = 0.25 (latency)\n w3 = 0.25 (errors)\n w4 = 0.15 (saturation)\n\nThresholds:\n OHS ≥ 0.95 → Healthy\n 0.85 ≤ OHS \u003c 0.95 → Degraded\n OHS \u003c 0.85 → Critical\n```\n\n---\n\n## 5. State Machine Logic\n\n```\n┌──────────────────────────────────────────────────────────────┐\n│ NEXUSLINKER STATE MACHINE │\n└──────────────────────────────────────────────────────────────┘\n\nStates: {INIT, VALIDATING, ROUTING, LINKING, ACTIVE, DEGRADED, FAILED, TERMINATED}\n\nTransitions:\n INIT → VALIDATING : on_request_received\n VALIDATING → ROUTING : schema_valid ∧ auth_passed\n VALIDATING → FAILED : schema_invalid ∨ auth_failed\n ROUTING → LINKING : route_computed ∧ resources_available\n ROUTING → FAILED : no_route ∨ timeout\n LINKING → ACTIVE : handshake_complete\n```\n\n## 3. Resilience Layer\n- **Noise_Tolerance**: 0.15\n- **Confidence_Threshold**: 0.85\n- **Logic_Smoothing**: Bayesian",
1293
+ "outcome": "A-OSI-NexusLinker",
1294
+ "rType": 0,
1295
+ "persona": "OSI",
1296
+ "primary_model": "GPT-4o-Synthesis",
1297
+ "privacy_tier": "Public",
1298
+ "sybox_fee_split": {
1299
+ "dev": 0.5,
1300
+ "curation": 0.4,
1301
+ "author": 0.1
1302
+ },
1303
+ "ticker": "SYNL",
1304
+ "audit_cadence": "Weekly",
1305
+ "lifecycle": "Genesis-Platinum",
1306
+ "global_outputs": [
1307
+ "synthesis_id",
1308
+ "logic_id",
1309
+ "bps_verified",
1310
+ "model_stack",
1311
+ "processing_ms",
1312
+ "timestamp"
1313
+ ],
1314
+ "custom_outputs": [
1315
+ {
1316
+ "field_name": "link_state",
1317
+ "type": "String",
1318
+ "description": "Enum: `ACTIVE`, `DEGRADED`, `ISOLATED`. Current operational health.",
1319
+ "downstream_intent": "A-CEO-KPISiphon",
1320
+ "bps_sensitivity": "Critical"
1321
+ },
1322
+ {
1323
+ "field_name": "cascade_probability",
1324
+ "type": "Float",
1325
+ "description": "Probability (0.0-1.0) of current failures triggering neighbor node collapse.",
1326
+ "downstream_intent": "SRE-Monitor",
1327
+ "bps_sensitivity": "Critical"
1328
+ },
1329
+ {
1330
+ "field_name": "latency_slo_compliance",
1331
+ "type": "Boolean",
1332
+ "description": "True if p99 and p999 remain within the defined QoS profile.",
1333
+ "downstream_intent": "A-COO-WorkflowMapper",
1334
+ "bps_sensitivity": "High"
1335
+ },
1336
+ {
1337
+ "field_name": "resource_saturation",
1338
+ "type": "Object",
1339
+ "description": "Utilization ratios for buffer queues, CPU, and link tables.",
1340
+ "downstream_intent": "Infrastructure-Auto",
1341
+ "bps_sensitivity": "High"
1342
+ },
1343
+ {
1344
+ "field_name": "path_redundancy_map",
1345
+ "type": "Object",
1346
+ "description": "Pointers to active and standby routes verified across layers 1-3.",
1347
+ "downstream_intent": "A-OSI-FootHarvester",
1348
+ "bps_sensitivity": "Medium"
1349
+ }
1350
+ ]
1351
+ },
1352
+ {
1353
+ "id": 72,
1354
+ "successBps": 9851,
1355
+ "cid": "ar://SYNTH_ATOMIC_OSI_TRUTHBPS",
1356
+ "costUsd": 1500,
1357
+ "details": "# A-OSI-TruthBPS Technical Specification\n\n## 1. Core Logic Definition\n\n### 1.1 Truth Verification Function\n\n```\nT(x) = Σᵢ₌₁ⁿ [wᵢ × V(xᵢ)] / Σᵢ₌₁ⁿ wᵢ\n\nWhere:\n- T(x) ∈ [0, 1] = Truth confidence score\n- V(xᵢ) = Verification function for claim component i\n- wᵢ = Weight coefficient for source reliability\n- n = Total verification vectors\n```\n\n### 1.2 Breakdown Point Score (BPS) Formula\n\n```\nBPS = 1 - ∏ᵢ₌₁ᵐ (1 - Pᵢ × Iᵢ)\n\nWhere:\n- BPS ∈ [0, 1] = System breakdown probability\n- Pᵢ = Probability of failure mode i\n- Iᵢ = Impact coefficient of failure mode i\n- m = Total failure modes identified\n```\n\n### 1.3 Operational State Machine\n\n```\nStates: {NOMINAL, DEGRADED, CRITICAL, BREAKDOWN}\n\nTransitions:\n NOMINAL → DEGRADED : BPS \u003e 0.25\n DEGRADED → CRITICAL : BPS \u003e 0.50\n CRITICAL → BREAKDOWN : BPS \u003e 0.75\n ANY → NOMINAL : BPS \u003c 0.20 ∧ T(x) \u003e 0.85\n```\n\n---\n\n## 2. BPS Failure Risk Matrix\n\n### 2.1 Layer-Mapped Failure Modes (OSI-Aligned)\n\n| Layer | Failure Mode | P(failure) | Impact (I) | BPS Contribution | MTTR Target |\n|-------|--------------|------------|------------|------------------|-------------|\n| L7-Application | Truth assertion corruption | 0.08 | 0.95 | 0.076 | 15min |\n| L7-Application | Schema validation bypass | 0.05 | 0.90 | 0.045 | 10min |\n| L6-Presentation | Encoding/format mismatch | 0.12 | 0.60 | 0.072 | 20min |\n| L6-Presentation | Serialization failure | 0.07 | 0.70 | 0.049 | 15min |\n| L5-Session | Context state loss | 0.15 | 0.80 | 0.120 | 25min |\n| L5-Session | Session hijack/corruption | 0.03 | 0.98 | 0.029 | 5min |\n| L4-Transport | Packet integrity failure | 0.04 | 0.85 | 0.034 | 10min |\n| L4-Transport | Flow control breakdown | 0.06 | 0.75 | 0.045 | 15min |\n| L3-Network | Routing table corruption | 0.09 | 0.88 | 0.079 | 30min |\n| L3-Network | Path verification failure | 0.11 | 0.82 | 0.090 | 20min |\n| L2-Data Link | Frame validation error | 0.10 | 0.65 | 0.065 | 12min |\n| L2-Data Link | MAC address spoofing | 0.02 | 0.92 | 0.018 | 8min |\n| L1-Physical | Signal degradation | 0.14 | 0.55 | 0.077 | 45min |\n| L1-Physical | Hardware failure | 0.06 | 0.99 | 0.059 | 60min |\n\n### 2.2 Composite BPS Calculation\n\n```\nBPS_composite = 1 - ∏(1 - BPSᵢ)\n = 1 - (0.924 × 0.955 × 0.928 × 0.951 × 0.880 × 0.971 × \n 0.966 × 0.955 × 0.921 × 0.910 × 0.935 × 0.982 × \n 0.923 × 0.941)\n ≈ 0.612\n```\n\n### 2.3 Risk Severity Classification\n\n```\nSEVERITY_MATRIX = {\n \"SEV1\": BPS \u003e 0.75 ∨ (P \u003e 0.10 ∧ I \u003e 0.90),\n \"SEV2\": BPS ∈ (0.50, 0.75] ∨ (P \u003e 0.15 ∧ I \u003e 0.75),\n \"SEV3\": BPS ∈ (0.25, 0.50] ∨ (P \u003e 0.20 ∧ I \u003e 0.60),\n \"SEV4\": BPS ≤ 0.25 ∧ P ≤ 0.20 ∧ I ≤ 0.60\n}\n```\n\n---\n\n## 3. JSON Schema Specification\n\n### 3.1 Input Validation Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"urn:a-osi-truthbps:input:v1.0.0\",\n \"title\": \"A-OSI-TruthBPS Input Payload\",\n \"type\": \"object\",\n \"required\": [\"header\", \"assertion\", \"verification_context\", \"bps_params\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"header\": {\n \"type\": \"object\",\n \"required\": [\"version\", \"timestamp\", \"request_id\", \"source_identity\"],\n \"properties\": {\n \"version\": {\n \"type\": \"string\",\n \"pattern\": \"^[0-9]+\\\\.[0-9]+\\\\.[0-9]+$\",\n \"description\": \"Semantic version of schema\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 UTC timestamp\"\n },\n \"request_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\",\n \"description\": \"Unique request identifier\"\n },\n \"source_identity\": {\n \"type\": \"object\",\n \"required\": [\"system_id\", \"trust_level\"],\n \"properties\": {\n \"system_id\": {\n \"type\": \"string\",\n \"minLength\": 8,\n \"maxLength\": 64\n },\n \"trust_level\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1,\n \"multipleOf\": 0.01\n },\n \"certificate_hash\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{64}$\"\n }\n }\n }\n }\n },\n \"assertion\": {\n \"type\": \"object\",\n \"required\": [\"claim_type\", \"claim_data\", \"confidence_declared\"],\n \"properties\": {\n \"claim_type\": {\n \"type\": \"string\",\n \"enum\": [\"FACTUAL\", \"DERIVED\", \"INFERRED\", \"COMPOSITE\", \"EXTERNAL\"]\n },\n \"claim_data\": {\n \"type\": \"object\",\n \"required\": [\"statement\", \"evidence_refs\"],\n \"properties\": {\n \"statement\": {\n \"type\": \"string\",\n \"minLength\": 1,\n \"maxLength\": 4096\n },\n \"evidence_refs\": {\n \"type\": \"array\",\n \"minItems\": 0,\n \"maxItems\": 100,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"ref_id\", \"ref_type\", \"weight\"],\n \"properties\": {\n \"ref_id\": {\n \"type\": \"string\",\n \"format\": \"uri\"\n },\n \"ref_type\": {\n \"type\": \"string\",\n \"enum\": [\"PRIMARY\", \"SECONDARY\", \"TERTIARY\", \"DERIVED\"]\n },\n \"weight\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"verification_hash\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{64}$\"\n }\n }\n }\n }\n }\n },\n \"confidence_declared\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1,\n \"multipleOf\": 0.001\n }\n }\n },\n \"verification_context\": {\n \"type\": \"object\",\n \"required\": [\"osi_layer_scope\", \"verification_depth\"],\n \"properties\": {\n \"osi_layer_scope\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"maxItems\": 7,\n \"items\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 7\n },\n \"uniqueItems\": true\n },\n \"verification_depth\": {\n \"type\": \"string\",\n \"enum\": [\"SHALLOW\", \"STANDARD\", \"DEEP\", \"EXHAUSTIVE\"]\n },\n \"timeout_ms\": {\n \"type\": \"integer\",\n \"minimum\": 100,\n \"maximum\": 300000,\n \"default\": 30000\n },\n \"retry_policy\": {\n \"type\": \"object\",\n \"properties\": {\n \"max_attempts\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 10,\n \"default\": 3\n },\n \"backoff_multiplier\": {\n \"type\": \"number\",\n \"minimum\": 1.0,\n \"maximum\": 5.0,\n \"default\": 2.0\n },\n \"initial_delay_ms\": {\n \"type\": \"integer\",\n \"minimum\": 10,\n \"maximum\": 5000,\n \"default\": 100\n }\n }\n }\n }\n },\n \"bps_params\": {\n \"type\": \"object\",\n \"required\": [\"threshold_config\", \"failure_modes_enabled\"],\n \"properties\": {\n \"threshold_config\": {\n \"type\": \"object\",\n \"required\": [\"nominal_max\", \"degraded_max\", \"critical_max\"],\n \"properties\": {\n \"nominal_max\": {\n \"type\": \"number\",\n \"minimum\": 0.1,\n \"maximum\": 0.3,\n \"default\": 0.25\n },\n \"degraded_max\": {\n \"type\": \"number\",\n \"minimum\": 0.3,\n \"maximum\": 0.6,\n \"default\": 0.50\n },\n \"critical_max\": {\n \"type\": \"number\",\n \"minimum\": 0.6,\n \"maximum\": 0.9,\n \"default\": 0.75\n }\n }\n },\n \"failure_modes_enabled\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"enum\": [\n \"TRUTH_CORRUPTION\",\n \"SCHEMA_BYPASS\",\n \"ENCODING_MISMATCH\",\n \"SERIALIZATION_FAIL\",\n \"CONTEXT_LOSS\",\n \"SESSION_HIJACK\",\n \"PACKET_INTEGRITY\",\n \"FLOW_CONTROL\",\n \"ROUTING_CORRUPTION\",\n \"PATH_VERIFICATION\",\n \"FRAME_VALIDATION\",\n \"MAC_SPOOFING\",\n \"SIGNAL_DEGRADATION\",\n \"HARDWARE_FAILURE\"\n ]\n },\n \"uniqueItems\": true\n },\n \"custom_weights\": {\n \"type\": \"object\",\n \"additionalProperties\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 2\n }\n }\n }\n }\n }\n}\n```\n\n### 3.2 Output Response Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"urn:a-osi-truthbps:output:v1.0.0\",\n \"title\": \"A-OSI-TruthBPS Output Response\",\n \"type\": \"object\",\n \"required\": [\"response_header\", \"truth_result\", \"bps_analysis\", \"sre_metrics\"],\n \"properties\": {\n \"response_header\": {\n \"type\": \"object\",\n \"required\": [\"request_id\", \"processing_time_ms\", \"status\"],\n \"properties\": {\n \"request_id\": {\"type\": \"string\", \"format\": \"uuid\"},\n \"processing_time_ms\": {\"type\": \"integer\", \"minimum\": 0},\n \"status\": {\"type\": \"string\", \"enum\": [\"SUCCESS\", \"PARTIAL\", \"FAILED\"]}\n }\n },\n \"truth_result\": {\n \"type\": \"object\",\n \"required\": [\"score\", \"confidence_interval\", \"verdict\"],\n \"properties\": {\n \"score\": {\"type\": \"number\", \"minimum\": 0, \"maximum\": 1},\n \"confidence_interval\": {\n \"type\": \"object\",\n \"properties\": {\n \"lower\": {\"type\": \"number\"},\n \"upper\": {\"type\": \"number\"},\n \"confidence_level\": {\"type\": \"number\"}\n }\n },\n \"verdict\": {\n \"type\": \"string\",\n \"enum\": [\"VERIFIED\", \"LIKELY_TRUE\", \"UNCERTAIN\", \"LIKELY_FALSE\", \"REFUTED\"]\n }\n }\n },\n \"bps_analysis\": {\n \"type\": \"object\",\n \"required\": [\"composite_bps\", \"operational_state\", \"layer_breakdown\"],\n \"properties\": {\n \"composite_bps\": {\"type\": \"number\", \"minimum\": 0, \"maximum\": 1},\n \"operational_state\": {\n \"type\": \"string\",\n \"enum\": [\"NOMINAL\", \"DEGRADED\", \"CRITICAL\", \"BREAKDOWN\"]\n },\n \"layer_breakdown\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"layer\": {\"type\": \"integer\", \"minimum\": 1, \"maximum\": 7},\n \"bps_contribution\": {\"type\": \"number\"},\n \"active_risks\": {\"type\": \"array\", \"items\": {\"type\": \"string\"}}\n }\n }\n }\n }\n },\n \"sre_metrics\": {\n \"type\": \"object\",\n \"$ref\": \"#/$defs/sre_metrics_block\"\n }\n }\n}\n```\n\n---\n\n## 4. SRE Metrics Specification\n\n### 4.1 Service Level Objectives (SLOs)\n\n| Metric | Target | Warning | Critical | Measurement Window |\n|--------|--------|---------|----------|-------------------|\n| Availability | ≥ 99.95% | \u003c 99.9% | \u003c 99.5% | 30-day rolling |\n| Truth Score Accuracy | ≥ 97.5% | \u003c 95% | \u003c 90% | 7-day rolling |\n| BPS Calculation Latency (p50) | ≤ 50ms | \u003e 75ms | \u003e 150ms | 1-hour rolling |\n| BPS Calculation Latency (p99) | ≤ 200ms | \u003e 350ms | \u003e 500ms | 1-hour rolling |\n| Schema Validation Rate | 100% | \u003c 99.9% | \u003c 99% | Per request |\n| Error Budget Burn Rate | ≤ 1.0 | \u003e 2.0 | \u003e 10.0 | 1-hour window |\n\n### 4.2 Service Level Indicators (SLIs)\n\n```\nSLI_availability = (successful_requests / total_requests) × 100\n\nSLI_latency_p99 = percentile(request_duration_ms, 99\n```\n\n## 3. Resilience Layer\n- **Noise_Tolerance**: 0.15\n- **Confidence_Threshold**: 0.85\n- **Logic_Smoothing**: Bayesian",
1358
+ "outcome": "A-OSI-TruthBPS",
1359
+ "rType": 0,
1360
+ "persona": "OSI",
1361
+ "primary_model": "GPT-4o-Synthesis",
1362
+ "privacy_tier": "Public",
1363
+ "sybox_fee_split": {
1364
+ "dev": 0.5,
1365
+ "curation": 0.4,
1366
+ "author": 0.1
1367
+ },
1368
+ "ticker": "SYNL",
1369
+ "audit_cadence": "Weekly",
1370
+ "lifecycle": "Genesis-Platinum",
1371
+ "global_outputs": [
1372
+ "synthesis_id",
1373
+ "logic_id",
1374
+ "bps_verified",
1375
+ "model_stack",
1376
+ "processing_ms",
1377
+ "timestamp"
1378
+ ],
1379
+ "custom_outputs": [
1380
+ {
1381
+ "field_name": "truth_confidence",
1382
+ "type": "Float",
1383
+ "description": "The final score (0.0-1.0) representing claim/state accuracy.",
1384
+ "downstream_intent": "A-CEO-KPISiphon",
1385
+ "bps_sensitivity": "Critical"
1386
+ },
1387
+ {
1388
+ "field_name": "operational_status",
1389
+ "type": "String",
1390
+ "description": "Enum: `NOMINAL`, `DEGRADED`, `CRITICAL`, `BREAKDOWN`.",
1391
+ "downstream_intent": "Global-Registry",
1392
+ "bps_sensitivity": "Critical"
1393
+ },
1394
+ {
1395
+ "field_name": "layer_bps_distribution",
1396
+ "type": "Array",
1397
+ "description": "BPS contribution breakdown by specific OSI layer (1-7).",
1398
+ "downstream_intent": "SRE-Monitor",
1399
+ "bps_sensitivity": "High"
1400
+ },
1401
+ {
1402
+ "field_name": "verification_verdict",
1403
+ "type": "String",
1404
+ "description": "Enum: `VERIFIED`, `UNCERTAIN`, `REFUTED`. The semantic finality.",
1405
+ "downstream_intent": "A-COO-WorkflowMapper",
1406
+ "bps_sensitivity": "High"
1407
+ },
1408
+ {
1409
+ "field_name": "certification_hash",
1410
+ "type": "String",
1411
+ "description": "SHA-256 immutable proof of the BPS calculation audit trail.",
1412
+ "downstream_intent": "A-OSI-ArtifactAudit",
1413
+ "bps_sensitivity": "Medium"
1414
+ }
1415
+ ]
1416
+ },
1417
+ {
1418
+ "id": 73,
1419
+ "successBps": 9642,
1420
+ "cid": "ar://SYNTH_ATOMIC_GH_BURSTDETECT",
1421
+ "costUsd": 1500,
1422
+ "details": "# A-GH-BurstDetect Technical Specification\n\n## System Overview\nAnomaly-Guided Heuristic Burst Detection module for identifying traffic/event burst patterns in streaming data pipelines.\n\n---\n\n## JSON Schema Definitions\n\n### Input Event Schema\n```json\n{\n \"$schema\": \"http://json-schema.org/draft-07/schema#\",\n \"$id\": \"agh-burstdetect-input-v1\",\n \"type\": \"object\",\n \"required\": [\"event_id\", \"timestamp\", \"source_id\", \"value\"],\n \"properties\": {\n \"event_id\": { \"type\": \"string\", \"format\": \"uuid\" },\n \"timestamp\": { \"type\": \"integer\", \"minimum\": 0, \"description\": \"Unix epoch ms\" },\n \"source_id\": { \"type\": \"string\", \"maxLength\": 64 },\n \"value\": { \"type\": \"number\" },\n \"dimensions\": {\n \"type\": \"object\",\n \"additionalProperties\": { \"type\": \"string\" }\n },\n \"priority\": { \"type\": \"integer\", \"minimum\": 0, \"maximum\": 10, \"default\": 5 }\n }\n}\n```\n\n### Burst Detection Output Schema\n```json\n{\n \"$schema\": \"http://json-schema.org/draft-07/schema#\",\n \"$id\": \"agh-burstdetect-output-v1\",\n \"type\": \"object\",\n \"required\": [\"burst_id\", \"detected_at\", \"severity\", \"metrics\"],\n \"properties\": {\n \"burst_id\": { \"type\": \"string\", \"format\": \"uuid\" },\n \"detected_at\": { \"type\": \"integer\" },\n \"window_start\": { \"type\": \"integer\" },\n \"window_end\": { \"type\": \"integer\" },\n \"severity\": { \"enum\": [\"LOW\", \"MEDIUM\", \"HIGH\", \"CRITICAL\"] },\n \"confidence\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"affected_sources\": { \"type\": \"array\", \"items\": { \"type\": \"string\" } },\n \"metrics\": {\n \"type\": \"object\",\n \"properties\": {\n \"baseline_rate\": { \"type\": \"number\" },\n \"burst_rate\": { \"type\": \"number\" },\n \"deviation_factor\": { \"type\": \"number\" },\n \"z_score\": { \"type\": \"number\" },\n \"event_count\": { \"type\": \"integer\" }\n }\n },\n \"heuristic_flags\": {\n \"type\": \"array\",\n \"items\": { \"enum\": [\"SUDDEN_SPIKE\", \"SUSTAINED_ELEVATION\", \"OSCILLATION\", \"CASCADE\", \"ANOMALY_CLUSTER\"] }\n }\n }\n}\n```\n\n### Configuration Schema\n```json\n{\n \"$id\": \"agh-burstdetect-config-v1\",\n \"type\": \"object\",\n \"properties\": {\n \"window_size_ms\": { \"type\": \"integer\", \"default\": 60000 },\n \"slide_interval_ms\": { \"type\": \"integer\", \"default\": 5000 },\n \"baseline_window_count\": { \"type\": \"integer\", \"default\": 10 },\n \"z_threshold\": { \"type\": \"number\", \"default\": 3.0 },\n \"min_event_threshold\": { \"type\": \"integer\", \"default\": 100 },\n \"ewma_alpha\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1, \"default\": 0.3 },\n \"severity_thresholds\": {\n \"type\": \"object\",\n \"properties\": {\n \"low\": { \"type\": \"number\", \"default\": 2.0 },\n \"medium\": { \"type\": \"number\", \"default\": 3.0 },\n \"high\": { \"type\": \"number\", \"default\": 4.5 },\n \"critical\": { \"type\": \"number\", \"default\": 6.0 }\n }\n }\n }\n}\n```\n\n---\n\n## Core Detection Logic\n\n### Statistical Formulas\n\n**Baseline Rate Calculation (EWMA):**\n```\nμ_t = α × r_t + (1 - α) × μ_{t-1}\n```\n\n**Variance Tracking:**\n```\nσ²_t = α × (r_t - μ_t)² + (1 - α) × σ²_{t-1}\n```\n\n**Z-Score Computation:**\n```\nZ = (r_current - μ_baseline) / σ_baseline\n```\n\n**Burst Confidence Score:**\n```\nC = min(1, (Z - Z_threshold) / Z_threshold) × (1 - e^{-n/n_min})\n\nwhere:\n n = event count in window\n n_min = min_event_threshold\n```\n\n**Deviation Factor:**\n```\nD = r_current / max(μ_baseline, ε)\n\nwhere ε = 1e-10 (floor value)\n```\n\n### Heuristic Classification Logic\n\n```\nSUDDEN_SPIKE: Z \u003e Z_crit AND Δr/Δt \u003e 2σ/window_size\nSUSTAINED_ELEVATION: Z \u003e Z_high FOR consecutive_windows \u003e= 3\nOSCILLATION: |Z_t - Z_{t-1}| \u003e 2σ FOR alternating_count \u003e= 4\nCASCADE: affected_source_count \u003e source_threshold AND temporal_spread \u003c cascade_window\nANOMALY_CLUSTER: spatial_density(anomalies) \u003e cluster_threshold\n```\n\n### Severity Mapping Function\n```\nS(Z) = \n CRITICAL if Z \u003e= 6.0\n HIGH if Z \u003e= 4.5\n MEDIUM if Z \u003e= 3.0\n LOW if Z \u003e= 2.0\n NONE otherwise\n```\n\n---\n\n## SRE Metrics \u0026 Observability\n\n### Golden Signals\n\n| Metric | Type | Labels | Description |\n|--------|------|--------|-------------|\n| `agh_burstdetect_events_processed_total` | Counter | `source_id`, `status` | Total events ingested |\n| `agh_burstdetect_bursts_detected_total` | Counter | `severity`, `heuristic_type` | Burst detections by class |\n| `agh_burstdetect_processing_latency_seconds` | Histogram | `quantile` | End-to-end detection latency |\n| `agh_burstdetect_window_saturation_ratio` | Gauge | `window_id` | Buffer utilization per window |\n| `agh_burstdetect_baseline_drift` | Gauge | `source_id` | μ_t deviation from long-term mean |\n| `agh_burstdetect_false_positive_rate` | Gauge | — | FP rate from feedback loop |\n\n### SLI/SLO Definitions\n\n| SLI | Target SLO | Burn Rate Alert |\n|-----|------------|-----------------|\n| Detection Latency P99 | \u003c 500ms | 2% budget/hr |\n| Event Processing Success Rate | 99.95% | 0.1% budget/hr |\n| Burst Detection Recall | \u003e 98% | N/A (offline eval) |\n| False Positive Rate | \u003c 5% | 1% budget/day |\n\n### Alert Rules (PromQL)\n\n```promql\n# High latency\nhistogram_quantile(0.99, rate(agh_burstdetect_processing_latency_seconds_bucket[5m])) \u003e 0.5\n\n# Elevated error rate\nsum(rate(agh_burstdetect_events_processed_total{status=\"error\"}[5m])) \n/ sum(rate(agh_burstdetect_events_processed_total[5m])) \u003e 0.001\n\n# Burst storm (meta-detection)\nsum(rate(agh_burstdetect_bursts_detected_total{severity=~\"HIGH|CRITICAL\"}[5m])) \u003e 10\n\n# Baseline instability\nabs(delta(agh_burstdetect_baseline_drift[10m])) \u003e 0.5\n```\n\n---\n\n## State Machine\n\n```\nStates: INITIALIZING → BASELINE_LEARNING → ACTIVE → BURST_DETECTED → COOLDOWN → ACTIVE\n\nTransitions:\n INITIALIZING → BASELINE_LEARNING: config_loaded ∧ stream_connected\n BASELINE_LEARNING → ACTIVE: window_count \u003e= baseline_window_count\n ACTIVE → BURST_DETECTED: Z \u003e= Z_threshold ∧ n \u003e= n_min\n BURST_DETECTED → COOLDOWN: burst_emitted\n COOLDOWN → ACTIVE: cooldown_timer_expired ∨ Z \u003c Z_threshold - hysteresis\n```\n\n---\n\n## Data Flow DAG\n\n```\n[Ingress] → [Partitioner] → [Window Aggregator] → [Baseline Engine]\n ↓ ↓\n [Z-Score Calculator] ← [μ, σ Provider]\n ↓\n [Heuristic Classifier]\n ↓\n [Severity Mapper] → [Output Emitter] → [Downstream]\n ↓\n [Metrics Exporter]\n```\n\n---\n\n## Resource Constraints\n\n| Parameter | Value | Rationale |\n|-----------|-------|-----------|\n| Max Memory per Partition | 256 MB | Window buffer bounds |\n| Max Window Cardinality | 10,000 sources | Hash map sizing |\n| Checkpoint Interval | 30s | Recovery point objective |\n| Backpressure Threshold | 80% buffer | Flow control trigger |\n| Max Event Lag | 5 × window_size | Late arrival tolerance |",
1423
+ "outcome": "A-GH-BurstDetect",
1424
+ "rType": 0,
1425
+ "persona": "GH",
1426
+ "primary_model": "Grok-3-Extraction",
1427
+ "privacy_tier": "Public",
1428
+ "sybox_fee_split": {
1429
+ "dev": 0.5,
1430
+ "curation": 0.4,
1431
+ "author": 0.1
1432
+ },
1433
+ "ticker": "SYNL",
1434
+ "audit_cadence": "Weekly",
1435
+ "lifecycle": "Genesis-Platinum",
1436
+ "global_outputs": [
1437
+ "synthesis_id",
1438
+ "logic_id",
1439
+ "bps_verified",
1440
+ "model_stack",
1441
+ "processing_ms",
1442
+ "timestamp"
1443
+ ],
1444
+ "custom_outputs": [
1445
+ {
1446
+ "field_name": "Type",
1447
+ "type": "Description",
1448
+ "description": "Downstream Intent",
1449
+ "downstream_intent": "BPS Sensitivity",
1450
+ "bps_sensitivity": ""
1451
+ },
1452
+ {
1453
+ "field_name": "burst_morphology",
1454
+ "type": "Object",
1455
+ "description": "Nested signal containing `z_score`, `deviation_factor`, and `heuristic_flags`.",
1456
+ "downstream_intent": "**A-CEO-KPISiphon** for high-level status; **SRE-AutoScaler** for resource triggers.",
1457
+ "bps_sensitivity": "High"
1458
+ },
1459
+ {
1460
+ "field_name": "affected_infrastructure",
1461
+ "type": "Array",
1462
+ "description": "List of IDs for sources, services, and geographic regions impacted.",
1463
+ "downstream_intent": "**Network-Orchestrator** for localized routing adjustments.",
1464
+ "bps_sensitivity": "Medium"
1465
+ },
1466
+ {
1467
+ "field_name": "customer_impact_projection",
1468
+ "type": "Object",
1469
+ "description": "Quantitative estimates of affected users and transaction failure rates.",
1470
+ "downstream_intent": "**Customer-Success-Agent** for automated status page updates.",
1471
+ "bps_sensitivity": "High"
1472
+ },
1473
+ {
1474
+ "field_name": "remediation_payload",
1475
+ "type": "Array",
1476
+ "description": "Deterministic action strings (e.g., \"Scale +40%\").",
1477
+ "downstream_intent": "**Cloud-Provisioning-Unit** for immediate execution.",
1478
+ "bps_sensitivity": "Low"
1479
+ },
1480
+ {
1481
+ "field_name": "anomaly_persistence",
1482
+ "type": "Object",
1483
+ "description": "Duration tracking and hysteresis data for cooldown management.",
1484
+ "downstream_intent": "**Alert-Manager** to prevent notification storms.",
1485
+ "bps_sensitivity": "Medium"
1486
+ }
1487
+ ]
1488
+ },
1489
+ {
1490
+ "id": 74,
1491
+ "successBps": 9806,
1492
+ "cid": "ar://SYNTH_ATOMIC_GH_CONTRASTIDEA",
1493
+ "costUsd": 1500,
1494
+ "details": "# A-GH-ContrastIdea Technical Specification\n\n## 1. Core Logic Definition\n\n**A-GH-ContrastIdea** is an analytical framework for evaluating competing architectural decisions through quantified contrast scoring, enabling data-driven selection between mutually exclusive implementation paths.\n\n### 1.1 Contrast Function\n\n```\nC(A, B) = Σᵢ₌₁ⁿ wᵢ × |δᵢ(A) - δᵢ(B)| / max(δᵢ(A), δᵢ(B))\n```\n\nWhere:\n- `C(A, B)` = Contrast score between ideas A and B\n- `wᵢ` = Weight coefficient for dimension i (Σwᵢ = 1)\n- `δᵢ(X)` = Normalized score of idea X on dimension i\n- `n` = Number of evaluation dimensions\n\n### 1.2 Decision Threshold Logic\n\n```\nIF C(A, B) ≥ τ_decisive (0.65):\n SELECT max(Σ(wᵢ × δᵢ))\nELIF C(A, B) ≥ τ_marginal (0.35):\n ESCALATE to architectural review\nELSE:\n APPLY cost_minimization_selector()\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 BPS Calculation Formula\n\n```\nBPS(component) = (P_failure × I_severity × D_detection) / M_mitigation\n\nWhere:\n- P_failure ∈ [0.0, 1.0] (Probability of failure)\n- I_severity ∈ [1, 10] (Impact severity)\n- D_detection ∈ [1, 10] (Detection difficulty, inverse scale)\n- M_mitigation ∈ [1, 10] (Mitigation effectiveness)\n```\n\n### 2.2 BPS Risk Classification\n\n| BPS Range | Risk Level | Action Required |\n|-----------|------------|-----------------|\n| 0.00 - 0.25 | LOW | Monitor only |\n| 0.26 - 0.50 | MODERATE | Implement alerting |\n| 0.51 - 0.75 | HIGH | Require redundancy |\n| 0.76 - 1.00 | CRITICAL | Block deployment |\n\n### 2.3 Operational Failure Risk Matrix\n\n| Failure Mode | P_failure | I_severity | D_detection | M_mitigation | **BPS** |\n|--------------|-----------|------------|-------------|--------------|---------|\n| Input Schema Violation | 0.15 | 4 | 2 | 8 | **0.015** |\n| Contrast Calculation Overflow | 0.05 | 7 | 3 | 6 | **0.018** |\n| Weight Normalization Drift | 0.20 | 6 | 7 | 5 | **0.168** |\n| Decision Threshold Misconfiguration | 0.10 | 9 | 5 | 4 | **0.113** |\n| Dimension Score Staleness | 0.30 | 5 | 6 | 7 | **0.129** |\n| Concurrent Evaluation Race | 0.08 | 8 | 8 | 3 | **0.171** |\n| Persistence Layer Failure | 0.03 | 10 | 2 | 9 | **0.007** |\n| Escalation Path Unavailable | 0.12 | 7 | 4 | 6 | **0.056** |\n\n### 2.4 Aggregate System BPS\n\n```\nBPS_system = 1 - Πᵢ(1 - BPSᵢ)\nBPS_system = 1 - (0.985 × 0.982 × 0.832 × 0.887 × 0.871 × 0.829 × 0.993 × 0.944)\nBPS_system = 0.482 [MODERATE RISK]\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-gh-contrast-idea/v1\",\n \"title\": \"A-GH-ContrastIdea Input Schema\",\n \"type\": \"object\",\n \"required\": [\"evaluation_id\", \"ideas\", \"dimensions\", \"thresholds\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"evaluation_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{2}-[0-9]{8}-[a-f0-9]{12}$\",\n \"description\": \"Unique evaluation identifier\"\n },\n \"timestamp_utc\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"ideas\": {\n \"type\": \"array\",\n \"minItems\": 2,\n \"maxItems\": 10,\n \"items\": {\n \"$ref\": \"#/$defs/idea\"\n }\n },\n \"dimensions\": {\n \"type\": \"array\",\n \"minItems\": 3,\n \"maxItems\": 20,\n \"items\": {\n \"$ref\": \"#/$defs/dimension\"\n }\n },\n \"thresholds\": {\n \"$ref\": \"#/$defs/thresholds\"\n },\n \"metadata\": {\n \"type\": \"object\",\n \"properties\": {\n \"requester\": {\n \"type\": \"string\",\n \"minLength\": 1,\n \"maxLength\": 128\n },\n \"context\": {\n \"type\": \"string\",\n \"maxLength\": 2048\n },\n \"ttl_seconds\": {\n \"type\": \"integer\",\n \"minimum\": 300,\n \"maximum\": 604800,\n \"default\": 86400\n }\n }\n }\n },\n \"$defs\": {\n \"idea\": {\n \"type\": \"object\",\n \"required\": [\"idea_id\", \"name\", \"scores\"],\n \"properties\": {\n \"idea_id\": {\n \"type\": \"string\",\n \"pattern\": \"^IDEA-[A-Z0-9]{6}$\"\n },\n \"name\": {\n \"type\": \"string\",\n \"minLength\": 1,\n \"maxLength\": 256\n },\n \"scores\": {\n \"type\": \"object\",\n \"additionalProperties\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n },\n \"minProperties\": 3\n }\n }\n },\n \"dimension\": {\n \"type\": \"object\",\n \"required\": [\"dimension_id\", \"weight\"],\n \"properties\": {\n \"dimension_id\": {\n \"type\": \"string\",\n \"pattern\": \"^DIM-[a-z_]{3,32}$\"\n },\n \"weight\": {\n \"type\": \"number\",\n \"minimum\": 0.01,\n \"maximum\": 1.0\n },\n \"invert_preference\": {\n \"type\": \"boolean\",\n \"default\": false\n }\n }\n },\n \"thresholds\": {\n \"type\": \"object\",\n \"required\": [\"decisive\", \"marginal\"],\n \"properties\": {\n \"decisive\": {\n \"type\": \"number\",\n \"minimum\": 0.5,\n \"maximum\": 0.95,\n \"default\": 0.65\n },\n \"marginal\": {\n \"type\": \"number\",\n \"minimum\": 0.1,\n \"maximum\": 0.5,\n \"default\": 0.35\n }\n }\n }\n }\n}\n```\n\n### 3.1 Validation Rules Engine\n\n```\nRULE weight_sum_constraint:\n Σ(dimensions[*].weight) ∈ [0.99, 1.01]\n VIOLATION: REJECT with ERR_WEIGHT_NORMALIZATION\n\nRULE score_dimension_alignment:\n ∀ idea ∈ ideas:\n keys(idea.scores) ⊇ {d.dimension_id : d ∈ dimensions}\n VIOLATION: REJECT with ERR_DIMENSION_MISMATCH\n\nRULE threshold_ordering:\n thresholds.decisive \u003e thresholds.marginal\n VIOLATION: REJECT with ERR_THRESHOLD_INVERSION\n\nRULE idea_uniqueness:\n |{i.idea_id : i ∈ ideas}| = |ideas|\n VIOLATION: REJECT with ERR_DUPLICATE_IDEA\n```\n\n---\n\n## 4. SRE Metrics Specification\n\n### 4.1 Service Level Indicators (SLIs)\n\n| Metric Name | Type | Formula | Unit |\n|-------------|------|---------|------|\n| `contrast_calculation_latency_p99` | Latency | P99(t_complete - t_request) | ms |\n| `schema_validation_success_rate` | Availability | valid_requests / total_requests | ratio |\n| `decision_output_accuracy` | Quality | correct_decisions / total_decisions | ratio |\n| `evaluation_throughput` | Throughput | evaluations_completed / time_window | req/s |\n| `escalation_response_rate` | Reliability | escalations_acknowledged / escalations_triggered | ratio |\n\n### 4.2 Service Level Objectives (SLOs)\n\n```yaml\nslos:\n - name: contrast_calculation_latency\n target: 0.99\n threshold: 200ms\n window: 30d\n burn_rate_alerts:\n - severity: critical\n short_window: 5m\n long_window: 1h\n factor: 14.4\n - severity: warning\n short_window: 30m\n long_window: 6h\n factor: 6.0\n\n - name: schema_validation_availability\n target: 0.999\n window: 30d\n error_budget: 43.2m\n\n - name: decision_accuracy\n target: 0.95\n window: 7d\n measurement: weekly_audit_sample\n\n - name: escalation_acknowledgment\n target: 0.98\n threshold: 300s\n window: 30d\n```\n\n### 4.3 Operational Metrics Dashboard Queries\n\n```promql\n# Contrast Calculation Latency P99\nhistogram_quantile(0.99,\n sum(rate(contrast_calc_duration_seconds_bucket{service=\"a-gh-contrast-idea\"}[5m])) by (le)\n)\n\n# Schema Validation Error Rate\nsum(rate(schema_validation_total{status=\"failed\"}[5m])) /\nsum(rate(schema_validation_total[5m]))\n\n# Decision Distribution\nsum by (decision_type) (\n increase(contrast_decisions_total{service=\"a-gh-contrast-idea\"}[1h])\n)\n\n# BPS Threshold Violations\ncount(bps_score{service=\"a-gh-contrast-idea\"} \u003e 0.75)\n\n# Error Budget Remaining\n1 - (\n sum(increase(contrast_errors_total[30d])) /\n (sum(increase(contrast_requests_total[30d])) * (1 - 0.999))\n)\n```\n\n### 4.4 Alert Definitions\n\n```yaml\nalerts:\n - name: ContrastCalcLatencyBudgetBurn\n expr: |\n (\n sum(rate(contrast_calc_duration_seconds_count{status=\"success\"}[1h]))\n -\n sum(rate(contrast_calc_duration_seconds_bucket{le=\"0.2\"}[1h]))\n ) / sum(rate(contrast_calc_duration_seconds_count[1h])) \u003e 0.01\n for: 5m\n severity: critical\n runbook: /runbooks/contrast-latency-degradation\n\n - name: BPSCriticalThresholdBreach\n expr: bps_score{service=\"a-gh-contrast-idea\"} \u003e 0.75\n for: 0m\n severity: critical\n runbook: /runbooks/bps-critical-response\n\n - name: WeightNormalizationDrift\n expr: |\n abs(sum(dimension_weight{service=\"a-gh-contrast-idea\"}) - 1.0) \u003e 0.01\n for: 1m\n severity: warning\n runbook: /runbooks/weight-calibration\n\n - name: EscalationPathFailure\n expr: |\n increase(escalation_failures_total[5m]) \u003e 0\n for: 0m\n severity: critical\n runbook: /runbooks/escalation-recovery\n```\n\n---\n\n## 5. Operational State Machine\n\n```\n ┌─────────────┐\n │ IDLE │\n └──────┬──────┘\n │ receive_request\n ▼\n ┌─────────────┐\n ┌─────│ VALIDATING │─────┐\n │ └──────┬──────┘ │\n invalid│ │valid │timeout\n ▼ ▼ ▼\n ┌──────────┐ ┌───────────┐ ┌──────────┐\n │ REJECTED │ │ COMPUTING │ │ TIMEOUT │\n └──────────┘ └─────┬─────┘ └──────────┘\n │\n ┌────────────┼────────────┐\n │ │ │\n C≥τ_decisive τ_marginal≤C\u003cτ_decisive C\u003cτ_marginal\n │ │ │\n ▼ ▼ ▼\n ┌──────────┐ ┌───────────┐ ┌──────────┐\n │ DECISIVE │ │ ESCALATED │ │ COST_OPT │\n └────┬─────┘ └─────┬─────┘ └────┬─────┘\n │ │ │\n └─────────────┼────────────┘\n ▼\n ┌─────────────┐\n │ COMPLETE │\n └─────────────┘\n```\n\n---\n\n## 6. Failure Recovery Procedures\n\n| Failure State | Detection Method | Recovery Action | RTO |\n|---------------|------------------|-----------------|-----|\n| Schema Validation Failure | Synchronous rejection | Return ERR_SCHEMA with field path | 0ms |\n| Calculation Timeout | Circuit breaker trip | Retry with exponential backoff (max 3) | 30s |\n| Weight Drift | Continuous monitoring | Auto-normalize + alert | 5s |\n| Escalation Path Down | Health check failure | Fallback to async queue | 60s |\n| Persistence Failure | Write acknowledgment timeout | Write-ahead log replay | 120s |",
1495
+ "outcome": "A-GH-ContrastIdea",
1496
+ "rType": 0,
1497
+ "persona": "GH",
1498
+ "primary_model": "Grok-3-Extraction",
1499
+ "privacy_tier": "Public",
1500
+ "sybox_fee_split": {
1501
+ "dev": 0.5,
1502
+ "curation": 0.4,
1503
+ "author": 0.1
1504
+ },
1505
+ "ticker": "SYNL",
1506
+ "audit_cadence": "Weekly",
1507
+ "lifecycle": "Genesis-Platinum",
1508
+ "global_outputs": [
1509
+ "synthesis_id",
1510
+ "logic_id",
1511
+ "bps_verified",
1512
+ "model_stack",
1513
+ "processing_ms",
1514
+ "timestamp"
1515
+ ],
1516
+ "custom_outputs": [
1517
+ {
1518
+ "field_name": "Type",
1519
+ "type": "Description",
1520
+ "description": "Downstream Intent",
1521
+ "downstream_intent": "BPS Sensitivity",
1522
+ "bps_sensitivity": ""
1523
+ },
1524
+ {
1525
+ "field_name": "comparison_verdict",
1526
+ "type": "Object",
1527
+ "description": "The winning `idea_id`, `confidence_score`, and `contrast_classification`.",
1528
+ "downstream_intent": "**A-CTO-RoadmapMapper** for technical direction lock-in.",
1529
+ "bps_sensitivity": "High"
1530
+ },
1531
+ {
1532
+ "field_name": "dimension_variance_map",
1533
+ "type": "Object",
1534
+ "description": "Key-value pairs of dimensions where ideas diverged most sharply.",
1535
+ "downstream_intent": "**Stakeholder-Review-Bot** for targeted human-in-the-loop (HITL) gates.",
1536
+ "bps_sensitivity": "Medium"
1537
+ },
1538
+ {
1539
+ "field_name": "escalation_triggers",
1540
+ "type": "Array",
1541
+ "description": "Objects defining specific conditions that require human architectural review.",
1542
+ "downstream_intent": "**Project-Manager-Agent** for scheduling review sessions.",
1543
+ "bps_sensitivity": "High"
1544
+ },
1545
+ {
1546
+ "field_name": "risk_mitigation_strategy",
1547
+ "type": "String",
1548
+ "description": "A deterministic summary of required actions to offset the winner\u0027s weaknesses.",
1549
+ "downstream_intent": "**Compliance-Audit-Engine** for pre-deployment checklists.",
1550
+ "bps_sensitivity": "Low"
1551
+ }
1552
+ ]
1553
+ },
1554
+ {
1555
+ "id": 75,
1556
+ "successBps": 9672,
1557
+ "cid": "ar://SYNTH_ATOMIC_GH_ALGOOPTIMIZER",
1558
+ "costUsd": 1500,
1559
+ "details": "# A-GH-AlgoOptimizer Technical Specification\n\n## 1. Core Algorithm Logic\n\n### 1.1 Optimization Function\n\n```\nf(x) = argmin[Σᵢ₌₁ⁿ (wᵢ · Cᵢ(x)) + λ · R(x)]\n\nWhere:\n- x ∈ ℝᵈ : parameter vector\n- Cᵢ(x) : cost function for component i\n- wᵢ : weight coefficient, Σwᵢ = 1\n- R(x) : regularization term\n- λ : regularization coefficient [0.001, 0.1]\n```\n\n### 1.2 Gradient Descent Implementation\n\n```\nθₜ₊₁ = θₜ - η · ∇L(θₜ) + μ · (θₜ - θₜ₋₁)\n\nLearning Rate Decay:\nη(t) = η₀ / (1 + δ · t)\n\nConvergence Criterion:\n|L(θₜ₊₁) - L(θₜ)| \u003c ε, where ε = 1e-6\n```\n\n### 1.3 Adaptive Threshold Calculation\n\n```\nT_adaptive = μ + k · σ · √(1 + 1/n + (x - x̄)²/Σ(xᵢ - x̄)²)\n\nWhere:\n- μ : rolling mean (window = 300s)\n- σ : rolling standard deviation\n- k : sensitivity factor [2.0, 3.5]\n- n : sample size\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 BPS Calculation Formula\n\n```\nBPS = Σⱼ₌₁ᵐ (Iⱼ · Pⱼ · Sⱼ) / m\n\nWhere:\n- Iⱼ : Impact score [1-10]\n- Pⱼ : Probability of occurrence [0-1]\n- Sⱼ : Severity multiplier [1-5]\n- m : total failure modes\n```\n\n### 2.2 Operational Failure Risk Matrix\n\n| Failure Mode | Impact (I) | Probability (P) | Severity (S) | BPS | Threshold |\n|--------------|------------|-----------------|--------------|-----|-----------|\n| Memory Exhaustion | 9 | 0.15 | 4 | 5.40 | \u003e4.0 CRITICAL |\n| CPU Saturation | 8 | 0.20 | 3 | 4.80 | \u003e4.0 CRITICAL |\n| Network Partition | 10 | 0.05 | 5 | 2.50 | \u003e2.0 HIGH |\n| Disk I/O Bottleneck | 7 | 0.25 | 3 | 5.25 | \u003e4.0 CRITICAL |\n| Algorithm Divergence | 10 | 0.08 | 5 | 4.00 | \u003e4.0 CRITICAL |\n| State Corruption | 10 | 0.03 | 5 | 1.50 | \u003e1.0 MEDIUM |\n| Dependency Timeout | 6 | 0.30 | 2 | 3.60 | \u003e3.0 HIGH |\n| Config Drift | 5 | 0.35 | 2 | 3.50 | \u003e3.0 HIGH |\n| Queue Overflow | 8 | 0.12 | 4 | 3.84 | \u003e3.0 HIGH |\n| Checkpoint Failure | 9 | 0.07 | 4 | 2.52 | \u003e2.0 HIGH |\n\n### 2.3 Aggregate Risk Score\n\n```\nARS = √(Σᵢ BPSᵢ²) / n\n\nRisk Classification:\n- ARS \u003c 2.0 : NOMINAL\n- ARS ∈ [2.0, 3.5) : ELEVATED\n- ARS ∈ [3.5, 5.0) : HIGH\n- ARS ≥ 5.0 : CRITICAL\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-gh-algooptimizer/v1\",\n \"title\": \"A-GH-AlgoOptimizer Input Schema\",\n \"type\": \"object\",\n \"required\": [\"metadata\", \"parameters\", \"constraints\", \"objectives\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"metadata\": {\n \"type\": \"object\",\n \"required\": [\"request_id\", \"timestamp\", \"version\", \"source\"],\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"version\": {\n \"type\": \"string\",\n \"pattern\": \"^\\\\d+\\\\.\\\\d+\\\\.\\\\d+$\"\n },\n \"source\": {\n \"type\": \"string\",\n \"minLength\": 1,\n \"maxLength\": 64\n },\n \"priority\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 10,\n \"default\": 5\n }\n }\n },\n \"parameters\": {\n \"type\": \"object\",\n \"required\": [\"learning_rate\", \"max_iterations\", \"batch_size\"],\n \"properties\": {\n \"learning_rate\": {\n \"type\": \"number\",\n \"exclusiveMinimum\": 0,\n \"maximum\": 1.0\n },\n \"max_iterations\": {\n \"type\": \"integer\",\n \"minimum\": 100,\n \"maximum\": 1000000\n },\n \"batch_size\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 65536,\n \"multipleOf\": 1\n },\n \"momentum\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 0.99,\n \"default\": 0.9\n },\n \"regularization_lambda\": {\n \"type\": \"number\",\n \"minimum\": 0.0001,\n \"maximum\": 0.5,\n \"default\": 0.01\n },\n \"convergence_epsilon\": {\n \"type\": \"number\",\n \"exclusiveMinimum\": 0,\n \"maximum\": 0.001,\n \"default\": 1e-6\n },\n \"weight_vector\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"minItems\": 1,\n \"maxItems\": 256\n }\n }\n },\n \"constraints\": {\n \"type\": \"object\",\n \"required\": [\"resource_limits\", \"time_bounds\"],\n \"properties\": {\n \"resource_limits\": {\n \"type\": \"object\",\n \"properties\": {\n \"max_memory_mb\": {\n \"type\": \"integer\",\n \"minimum\": 256,\n \"maximum\": 524288\n },\n \"max_cpu_cores\": {\n \"type\": \"number\",\n \"minimum\": 0.1,\n \"maximum\": 256\n },\n \"max_gpu_memory_mb\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 81920\n }\n }\n },\n \"time_bounds\": {\n \"type\": \"object\",\n \"properties\": {\n \"timeout_seconds\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 86400\n },\n \"checkpoint_interval_seconds\": {\n \"type\": \"integer\",\n \"minimum\": 10,\n \"maximum\": 3600,\n \"default\": 300\n }\n }\n },\n \"bounds\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"dimension\", \"min\", \"max\"],\n \"properties\": {\n \"dimension\": {\n \"type\": \"integer\",\n \"minimum\": 0\n },\n \"min\": {\n \"type\": \"number\"\n },\n \"max\": {\n \"type\": \"number\"\n }\n }\n }\n }\n }\n },\n \"objectives\": {\n \"type\": \"object\",\n \"required\": [\"primary_metric\", \"optimization_direction\"],\n \"properties\": {\n \"primary_metric\": {\n \"type\": \"string\",\n \"enum\": [\"latency_p99\", \"throughput\", \"error_rate\", \"cost\", \"custom\"]\n },\n \"optimization_direction\": {\n \"type\": \"string\",\n \"enum\": [\"minimize\", \"maximize\"]\n },\n \"secondary_metrics\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"metric\", \"weight\"],\n \"properties\": {\n \"metric\": {\n \"type\": \"string\"\n },\n \"weight\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n }\n }\n },\n \"maxItems\": 10\n },\n \"target_value\": {\n \"type\": \"number\"\n },\n \"acceptable_deviation\": {\n \"type\": \"number\",\n \"minimum\": 0\n }\n }\n },\n \"data_source\": {\n \"type\": \"object\",\n \"properties\": {\n \"type\": {\n \"type\": \"string\",\n \"enum\": [\"streaming\", \"batch\", \"hybrid\"]\n },\n \"uri\": {\n \"type\": \"string\",\n \"format\": \"uri\"\n },\n \"format\": {\n \"type\": \"string\",\n \"enum\": [\"parquet\", \"avro\", \"json\", \"csv\", \"protobuf\"]\n },\n \"schema_registry_url\": {\n \"type\": \"string\",\n \"format\": \"uri\"\n }\n }\n }\n }\n}\n```\n\n---\n\n## 4. SRE Metrics for Operational Success\n\n### 4.1 Service Level Indicators (SLIs)\n\n| Metric | Formula | Target | Measurement Window |\n|--------|---------|--------|-------------------|\n| Availability | `(total_time - downtime) / total_time × 100` | ≥99.95% | 30d rolling |\n| Latency P50 | `percentile(request_duration, 0.50)` | ≤50ms | 5m |\n| Latency P99 | `percentile(request_duration, 0.99)` | ≤200ms | 5m |\n| Latency P99.9 | `percentile(request_duration, 0.999)` | ≤500ms | 5m |\n| Error Rate | `error_count / total_requests × 100` | ≤0.1% | 5m |\n| Throughput | `successful_requests / time_window` | ≥10,000 RPS | 1m |\n| Saturation | `resource_used / resource_limit × 100` | ≤80% | 1m |\n\n### 4.2 Service Level Objectives (SLOs)\n\n```yaml\nslos:\n - name: optimizer_availability\n target: 99.95\n window: 30d\n burn_rate_alerts:\n - severity: critical\n short_window: 5m\n long_window: 1h\n burn_rate: 14.4\n - severity: warning\n short_window: 30m\n long_window: 6h\n burn_rate: 6.0\n\n - name: optimization_latency\n target: 99.0\n threshold_ms: 200\n window: 7d\n \n - name: convergence_success_rate\n target: 99.5\n window: 7d\n```\n\n### 4.3 Golden Signals Metrics\n\n```\n# Request Rate\nrate(optimizer_requests_total[5m])\n\n# Error Rate\nsum(rate(optimizer_requests_total{status=~\"5..\"}[5m])) / \nsum(rate(optimizer_requests_total[5m]))\n\n# Latency Distribution\nhistogram_quantile(0.99, \n sum(rate(optimizer_request_duration_seconds_bucket[5m])) by (le))\n\n# Saturation\navg(optimizer_queue_depth) / optimizer_queue_capacity\n```\n\n### 4.4 Algorithm-Specific Metrics\n\n| Metric | Type | Labels | Description |\n|--------|------|--------|-------------|\n| `optimizer_iterations_total` | Counter | `algorithm`, `status` | Total optimization iterations |\n| `optimizer_convergence_time_seconds` | Histogram | `algorithm` | Time to convergence |\n| `optimizer_loss_value` | Gauge | `algorithm`, `iteration` | Current loss function value |\n| `optimizer_gradient_norm` | Gauge | `algorithm` | L2 norm of gradient |\n| `optimizer_parameter_updates` | Counter | `dimension` | Parameter update count |\n| `optimizer_checkpoint_size_bytes` | Gauge | `checkpoint_id` | Checkpoint storage size |\n| `optimizer_memory_allocated_bytes` | Gauge | `pool` | Memory allocation |\n| `optimizer_batch_processing_seconds` | Histogram | `batch_size` | Batch processing time |\n\n### 4.5 Alerting Thresholds\n\n```yaml\nalerts:\n - name: HighErrorRate\n expr: |\n sum(rate(optimizer_requests_total{status=\"error\"}[5m])) /\n sum(rate(optimizer_requests_total[5m])) \u003e 0.01\n for: 2m\n severity: critical\n \n - name: LatencyDegradation\n expr: |\n histogram_quantile(0.99, \n sum(rate(optimizer_request_duration_seconds_bucket[5m])) by (le)\n ) \u003e 0.5\n for: 5m\n severity: warning\n \n - name: AlgorithmDivergence\n expr: |\n increase(optimizer_loss_value[5m]) \u003e 0 and \n optimizer_iterations_total \u003e 1000\n for: 1m\n severity: critical\n \n - name: MemorySaturation\n expr: |\n optimizer_memory_allocated_bytes / \n optimizer_memory_limit_bytes \u003e 0.9\n for: 3m\n severity: warning\n \n - name: CheckpointFailure\n expr: |\n increase(optimizer_checkpoint_failures_total[10m]) \u003e 0\n for: 0m\n severity: critical\n \n - name: QueueBackpressure\n expr: |\n optimizer_queue_depth / optimizer_queue_capacity \u003e 0.8\n for: 5m\n severity: warning\n```\n\n### 4.6 Operational Health Score (OHS)\n\n```\nOHS = Π(SLIᵢ / SLOᵢ)^wᵢ × 100\n\nWhere:\n- SLIᵢ : measured SLI value\n- SLOᵢ : target SLO value \n- wᵢ : weight for metric i, Σwᵢ = 1\n\nComponent Weights:\n- Availability: 0.35\n- Latency: 0.25\n- Error Rate: 0.20\n- Throughput: 0.10\n- Saturation: 0.10\n\nHealth Classification:\n- OHS ≥ 95 : HEALTHY\n- OHS ∈ [85, 95) : DEGRADED\n- OHS ∈ [70, 85\n```]]]]",
1560
+ "outcome": "A-GH-AlgoOptimizer",
1561
+ "rType": 0,
1562
+ "persona": "GH",
1563
+ "primary_model": "Grok-3-Extraction",
1564
+ "privacy_tier": "Public",
1565
+ "sybox_fee_split": {
1566
+ "dev": 0.5,
1567
+ "curation": 0.4,
1568
+ "author": 0.1
1569
+ },
1570
+ "ticker": "SYNL",
1571
+ "audit_cadence": "Weekly",
1572
+ "lifecycle": "Genesis-Platinum",
1573
+ "global_outputs": [
1574
+ "synthesis_id",
1575
+ "logic_id",
1576
+ "bps_verified",
1577
+ "model_stack",
1578
+ "processing_ms",
1579
+ "timestamp"
1580
+ ],
1581
+ "custom_outputs": [
1582
+ {
1583
+ "field_name": "Type",
1584
+ "type": "Description",
1585
+ "description": "Downstream Intent",
1586
+ "downstream_intent": "BPS Sensitivity",
1587
+ "bps_sensitivity": ""
1588
+ },
1589
+ {
1590
+ "field_name": "optimal_parameter_set",
1591
+ "type": "Object",
1592
+ "description": "The final deterministic vector `x` produced by the gradient descent.",
1593
+ "downstream_intent": "**Production-Config-Service** for immediate hot-loading.",
1594
+ "bps_sensitivity": "High"
1595
+ },
1596
+ {
1597
+ "field_name": "optimization_efficiency",
1598
+ "type": "Object",
1599
+ "description": "Summary of `loss_reduction_percent`, `iterations`, and `convergence_rate`.",
1600
+ "downstream_intent": "**Cost-Analysis-Unit** for cloud spend auditing.",
1601
+ "bps_sensitivity": "Medium"
1602
+ },
1603
+ {
1604
+ "field_name": "resource_utilization_profile",
1605
+ "type": "Object",
1606
+ "description": "Saturation ratios for CPU, RAM, and GPU during execution.",
1607
+ "downstream_intent": "**Infrastructure-Optimizer** for rightsizing the next run.",
1608
+ "bps_sensitivity": "High"
1609
+ },
1610
+ {
1611
+ "field_name": "operational_health_score",
1612
+ "type": "Integer",
1613
+ "description": "Calculated OHS (0-100) based on SLI/SLO alignment.",
1614
+ "downstream_intent": "**A-CEO-KPISiphon** for ecosystem health dashboarding.",
1615
+ "bps_sensitivity": "High"
1616
+ },
1617
+ {
1618
+ "field_name": "convergence_proof_uri",
1619
+ "type": "String",
1620
+ "description": "Pointer reference to the detailed loss trajectory and gradient logs.",
1621
+ "downstream_intent": "**QA-Auditor** for deep-pack verification if needed.",
1622
+ "bps_sensitivity": "Low"
1623
+ }
1624
+ ]
1625
+ },
1626
+ {
1627
+ "id": 76,
1628
+ "successBps": 9930,
1629
+ "cid": "ar://SYNTH_ATOMIC_GH_NOISEGUARD",
1630
+ "costUsd": 1500,
1631
+ "details": "# A-GH-NoiseGuard Technical Logic Specification\n\n## 1. System Overview\n\nA-GH-NoiseGuard is an automated noise detection and suppression system for GitHub Actions workflows, designed to filter signal from noise in CI/CD telemetry streams.\n\n---\n\n## 2. Core Logic Functions\n\n### 2.1 Noise Classification Algorithm\n\n```\nNoiseScore(event) = Σ(wᵢ × fᵢ(event)) / Σ(wᵢ)\n\nWhere:\n f₁(event) = frequency_deviation_ratio | w₁ = 0.25\n f₂(event) = temporal_clustering_factor | w₂ = 0.20\n f₃(event) = semantic_entropy_score | w₃ = 0.30\n f₄(event) = historical_false_positive_rate| w₄ = 0.15\n f₅(event) = cross_correlation_coefficient | w₅ = 0.10\n\nClassification:\n NoiseScore \u003c 0.3 → SIGNAL (actionable)\n NoiseScore ∈ [0.3, 0.7) → AMBIGUOUS (queue for review)\n NoiseScore ≥ 0.7 → NOISE (suppress)\n```\n\n### 2.2 Frequency Deviation Ratio\n\n```\nf₁(event) = |observed_freq - baseline_freq| / (baseline_freq + ε)\n\nWhere:\n ε = 1e-6 (smoothing constant)\n baseline_freq = EMA(event_type, window=168h, α=0.1)\n```\n\n### 2.3 Temporal Clustering Factor\n\n```\nf₂(event) = 1 - (inter_arrival_variance / expected_variance)\n\nClamped to [0, 1]\nBurst detection threshold: CV \u003e 2.5 (coefficient of variation)\n```\n\n### 2.4 Semantic Entropy Score\n\n```\nf₃(event) = H(message_tokens) / log₂(|vocabulary|)\n\nH(X) = -Σ p(xᵢ) × log₂(p(xᵢ))\n\nHigh entropy (\u003e0.8) indicates noise (random/generated content)\nLow entropy (\u003c0.3) indicates signal (structured/meaningful)\n```\n\n---\n\n## 3. Breakdown Point Score (BPS) Matrix\n\n### 3.1 BPS Calculation Formula\n\n```\nBPS(component) = (Impact × Probability × Detectability⁻¹) / Recovery_Factor\n\nScale: 0-100\n 0-25: LOW RISK\n 26-50: MODERATE RISK\n 51-75: HIGH RISK\n 76-100: CRITICAL RISK\n```\n\n### 3.2 Operational Failure Risk Matrix\n\n| Component | Impact (1-10) | Probability (0-1) | Detectability (1-10) | Recovery Factor (1-5) | BPS | Risk Level |\n|-----------|---------------|-------------------|----------------------|-----------------------|-----|------------|\n| Event Ingestion Pipeline | 9 | 0.15 | 8 | 3 | 5.6 | LOW |\n| Noise Classification Engine | 8 | 0.25 | 6 | 2 | 16.7 | LOW |\n| State Store (Redis) | 10 | 0.10 | 9 | 4 | 2.8 | LOW |\n| Webhook Receiver | 7 | 0.20 | 7 | 3 | 6.7 | LOW |\n| Rate Limiter | 6 | 0.30 | 5 | 4 | 9.0 | LOW |\n| Alert Dispatcher | 9 | 0.12 | 4 | 2 | 13.5 | LOW |\n| ML Model Inference | 7 | 0.35 | 3 | 3 | 27.2 | MODERATE |\n| Configuration Sync | 5 | 0.40 | 6 | 4 | 8.3 | LOW |\n| Metrics Exporter | 4 | 0.20 | 8 | 5 | 2.0 | LOW |\n| Circuit Breaker Logic | 8 | 0.08 | 2 | 1 | 32.0 | MODERATE |\n| Token Refresh Service | 9 | 0.18 | 7 | 2 | 11.6 | LOW |\n| Dead Letter Queue | 6 | 0.05 | 9 | 5 | 0.7 | LOW |\n\n### 3.3 Cascading Failure Propagation Model\n\n```\nCascadeBPS(origin) = BPS(origin) × Π(1 + dependency_weight × BPS(dep))\n\nDependency Graph:\n Webhook Receiver → Event Ingestion → Classification Engine → Alert Dispatcher\n ↓ ↓ ↓\n Rate Limiter State Store ML Inference\n```\n\n---\n\n## 4. JSON Schema for Input Validation\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://noiseguard.internal/schemas/v1/event.json\",\n \"title\": \"A-GH-NoiseGuard Event Schema\",\n \"type\": \"object\",\n \"required\": [\"event_id\", \"timestamp\", \"source\", \"event_type\", \"payload\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"event_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\",\n \"description\": \"Unique event identifier (UUIDv4)\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 timestamp with timezone\"\n },\n \"source\": {\n \"type\": \"object\",\n \"required\": [\"repository\", \"organization\", \"installation_id\"],\n \"properties\": {\n \"repository\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-zA-Z0-9._-]+/[a-zA-Z0-9._-]+$\",\n \"maxLength\": 256\n },\n \"organization\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-zA-Z0-9-]+$\",\n \"maxLength\": 39\n },\n \"installation_id\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 9223372036854775807\n },\n \"actor\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-zA-Z0-9-]+$\",\n \"maxLength\": 39\n }\n }\n },\n \"event_type\": {\n \"type\": \"string\",\n \"enum\": [\n \"workflow_run\",\n \"workflow_job\",\n \"check_run\",\n \"check_suite\",\n \"deployment\",\n \"deployment_status\",\n \"push\",\n \"pull_request\",\n \"issue_comment\",\n \"status\"\n ]\n },\n \"payload\": {\n \"type\": \"object\",\n \"required\": [\"action\", \"data\"],\n \"properties\": {\n \"action\": {\n \"type\": \"string\",\n \"enum\": [\"created\", \"completed\", \"requested\", \"in_progress\", \"queued\", \"waiting\", \"pending\", \"failure\", \"success\", \"cancelled\", \"skipped\", \"stale\", \"timed_out\"]\n },\n \"data\": {\n \"type\": \"object\",\n \"properties\": {\n \"workflow_name\": {\n \"type\": \"string\",\n \"maxLength\": 512\n },\n \"job_name\": {\n \"type\": \"string\",\n \"maxLength\": 512\n },\n \"run_id\": {\n \"type\": \"integer\",\n \"minimum\": 1\n },\n \"run_attempt\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 100\n },\n \"conclusion\": {\n \"type\": [\"string\", \"null\"],\n \"enum\": [\"success\", \"failure\", \"cancelled\", \"skipped\", \"timed_out\", \"action_required\", \"neutral\", \"stale\", null]\n },\n \"duration_ms\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 86400000\n },\n \"labels\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"maxLength\": 128\n },\n \"maxItems\": 50,\n \"uniqueItems\": true\n }\n }\n },\n \"raw_message\": {\n \"type\": \"string\",\n \"maxLength\": 65536\n }\n }\n },\n \"metadata\": {\n \"type\": \"object\",\n \"properties\": {\n \"delivery_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\"\n },\n \"signature\": {\n \"type\": \"string\",\n \"pattern\": \"^sha256=[a-f0-9]{64}$\"\n },\n \"retry_count\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 10\n },\n \"ingestion_timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n }\n }\n },\n \"classification\": {\n \"type\": \"object\",\n \"properties\": {\n \"noise_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"classification\": {\n \"type\": \"string\",\n \"enum\": [\"SIGNAL\", \"AMBIGUOUS\", \"NOISE\"]\n },\n \"confidence\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"features\": {\n \"type\": \"object\",\n \"properties\": {\n \"f1_frequency_deviation\": { \"type\": \"number\" },\n \"f2_temporal_clustering\": { \"type\": \"number\" },\n \"f3_semantic_entropy\": { \"type\": \"number\" },\n \"f4_historical_fpr\": { \"type\": \"number\" },\n \"f5_cross_correlation\": { \"type\": \"number\" }\n }\n }\n }\n }\n }\n}\n```\n\n---\n\n## 5. SRE Metrics Specification\n\n### 5.1 Service Level Indicators (SLIs)\n\n| Metric Name | Type | Formula | Target |\n|-------------|------|---------|--------|\n| `noiseguard_availability` | Gauge | `(total_time - downtime) / total_time` | ≥ 99.9% |\n| `noiseguard_latency_p50_ms` | Histogram | `percentile(processing_time, 0.50)` | ≤ 50ms |\n| `noiseguard_latency_p99_ms` | Histogram | `percentile(processing_time, 0.99)` | ≤ 500ms |\n| `noiseguard_classification_accuracy` | Gauge | `correct_classifications / total_classifications` | ≥ 95% |\n| `noiseguard_false_positive_rate` | Gauge | `false_positives / (false_positives + true_negatives)` | ≤ 2% |\n| `noiseguard_false_negative_rate` | Gauge | `false_negatives / (false_negatives + true_positives)` | ≤ 5% |\n| `noiseguard_throughput_eps` | Counter | `events_processed / time_window_seconds` | ≥ 10,000 |\n| `noiseguard_error_rate` | Gauge | `failed_events / total_events` | ≤ 0.1% |\n\n### 5.2 Service Level Objectives (SLOs)\n\n```yaml\nslos:\n - name: \"Event Processing Availability\"\n sli: noiseguard_availability\n target: 0.999\n window: 30d\n burn_rate_alerts:\n - severity: critical\n short_window: 5m\n long_window: 1h\n burn_rate: 14.4\n - severity: warning\n short_window: 30m\n long_window: 6h\n burn_rate: 6.0\n\n - name: \"Classification Latency\"\n sli: noiseguard_latency_p99_ms\n target: 500\n window: 7d\n error_budget_consumption_rate: 0.1\n\n - name: \"Noise Detection Precision\"\n sli: noiseguard_classification_accuracy\n target: 0.95\n window: 7d\n minimum_sample_size: 10000\n```\n\n### 5.3 Prometheus Metrics Export\n\n```\n# HELP noiseguard_events_total Total events processed\n# TYPE noiseguard_events_total counter\nnoiseguard_events_total{classification=\"SIGNAL\",source=\"workflow_run\"} \nnoiseguard_events_total{classification=\"NOISE\",source=\"workflow_run\"}\nnoiseguard_events_total{classification=\"AMBIGUOUS\",source=\"workflow_run\"}\n\n# HELP noiseguard_processing_duration_seconds Event processing duration\n# TYPE noiseguard_processing_duration_seconds histogram\nnoiseguard_processing_duration_seconds_bucket{le=\"0.01\"}\nnoiseguard_processing_duration_seconds_bucket{le=\"0.05\"}\nnoiseguard_processing_duration_seconds_bucket{le=\"0.1\"}\nnoiseguard_processing_duration_seconds_bucket{le=\"0.5\"}\nnoiseguard_processing_duration_seconds_bucket{le=\"1.0\"}\nnoiseguard_processing_duration_seconds_bucket{le=\"+Inf\"}\n\n# HELP noiseguard_noise_score_distribution Noise score distribution\n# TYPE noiseguard_noise_score_distribution histogram\nnoiseguard_noise_score_distribution_bucket{le=\"0.1\"}\nnoiseguard_noise_score_distribution_bucket{le=\"0.3\"}\nnoiseguard_noise_score_distribution_bucket{le=\"0.5\"}\nnoiseguard_noise_score_distribution_bucket{le=\"0.7\"}\nnoiseguard_noise_score_distribution_bucket{le=\"0.9\"}\nnoiseguard_noise_score_distribution_bucket{le=\"1.0\"}\n\n# HELP noiseguard_circuit_breaker_state Circuit breaker state (0=closed, 1=open, 2=half-open)\n# TYPE noiseguard_circuit_breaker_state gauge\nnoiseguard_circuit_breaker_state{component=\"classifier\"}\nnoiseguard_circuit_breaker_state{component=\"dispatcher\"}\n\n# HELP noiseguard_queue_depth Current queue depth\n# TYPE noiseguard_queue_depth gauge\nnoiseguard_queue_depth{queue=\"ingestion\"}\nnoiseguard_queue_depth{queue=\"classification\"}\nnoiseguard_queue_depth{queue=\"dead_letter\"}\n\n# HELP noiseguard_model_inference_seconds ML model inference duration\n# TYPE noiseguard_model_inference_seconds summary\nnoiseguard_model_inference_seconds{quantile=\"0.5\"}\nnoiseguard_model_inference_seconds{quantile=\"0.9\"}\nnoiseguard_model_inference_seconds{quantile=\"0.99\"}\n```\n\n### 5.4 Alerting Rules\n\n```yaml\ngroups:\n - name: noiseguard_critical\n rules:\n - alert: NoiseGuardHighErrorRate\n expr: |\n sum(rate(noiseguard_events_total{status=\"error\"}[5m])) \n / sum(rate(noiseguard_events_total[5m])) \u003e 0.01\n for: 2m\n labels:\n severity: critical\n annotations:\n summary: \"Error rate exceeds 1%\"\n runbook: \"https://runbooks.internal/noiseguard/high-error-rate\"\n\n - alert: NoiseGuardLatencyBreach\n expr: |\n histogram_quantile(0.99, \n sum(rate(n\n```]",
1632
+ "outcome": "A-GH-NoiseGuard",
1633
+ "rType": 0,
1634
+ "persona": "GH",
1635
+ "primary_model": "Grok-3-Extraction",
1636
+ "privacy_tier": "Public",
1637
+ "sybox_fee_split": {
1638
+ "dev": 0.5,
1639
+ "curation": 0.4,
1640
+ "author": 0.1
1641
+ },
1642
+ "ticker": "SYNL",
1643
+ "audit_cadence": "Weekly",
1644
+ "lifecycle": "Genesis-Platinum",
1645
+ "global_outputs": [
1646
+ "synthesis_id",
1647
+ "logic_id",
1648
+ "bps_verified",
1649
+ "model_stack",
1650
+ "processing_ms",
1651
+ "timestamp"
1652
+ ],
1653
+ "custom_outputs": [
1654
+ {
1655
+ "field_name": "Type",
1656
+ "type": "Description",
1657
+ "description": "Downstream Intent",
1658
+ "downstream_intent": "BPS Sensitivity",
1659
+ "bps_sensitivity": ""
1660
+ },
1661
+ {
1662
+ "field_name": "signal_disposition",
1663
+ "type": "String",
1664
+ "description": "Enum: `SIGNAL`, `AMBIGUOUS`, or `NOISE`.",
1665
+ "downstream_intent": "**Incident-Router** for deciding if an alert is fired.",
1666
+ "bps_sensitivity": "High"
1667
+ },
1668
+ {
1669
+ "field_name": "noise_fingerprint",
1670
+ "type": "Object",
1671
+ "description": "Statistical breakdown of features (Entropy, Frequency, Clustering).",
1672
+ "downstream_intent": "**ML-Training-Pipeline** for model refinement/retraining.",
1673
+ "bps_sensitivity": "Medium"
1674
+ },
1675
+ {
1676
+ "field_name": "dispatch_route",
1677
+ "type": "Array",
1678
+ "description": "List of target channels (Slack, PagerDuty, AuditLog) for the event.",
1679
+ "downstream_intent": "**Notification-Engine** for delivery.",
1680
+ "bps_sensitivity": "Low"
1681
+ },
1682
+ {
1683
+ "field_name": "circuit_breaker_status",
1684
+ "type": "String",
1685
+ "description": "State of the classification engine (CLOSED, OPEN, HALF-OPEN).",
1686
+ "downstream_intent": "**SRE-Dashboard** for system health visibility.",
1687
+ "bps_sensitivity": "High"
1688
+ }
1689
+ ]
1690
+ },
1691
+ {
1692
+ "id": 83,
1693
+ "successBps": 9812,
1694
+ "cid": "ar://SYNTH_ATOMIC_CEO_BOARDSIM",
1695
+ "costUsd": 1500,
1696
+ "details": "# A-CEO-BoardSim Technical Logic Specification\n\n## 1. System Architecture Overview\n\n```\n┌─────────────────────────────────────────────────────────────────┐\n│ A-CEO-BoardSim Core Engine │\n├─────────────────────────────────────────────────────────────────┤\n│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │\n│ │ Decision │ │ Stakeholder │ │ Financial │ │\n│ │ Engine │──│ Simulation │──│ Modeling │ │\n│ └─────────────┘ └─────────────┘ └─────────────┘ │\n│ │ │ │ │\n│ ▼ ▼ ▼ │\n│ ┌─────────────────────────────────────────────────┐ │\n│ │ BPS (Breakdown Point Score) Matrix │ │\n│ └─────────────────────────────────────────────────┘ │\n│ │ │ │ │\n│ ▼ ▼ ▼ │\n│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │\n│ │ Risk │ │ Compliance │ │ Performance │ │\n│ │ Aggregator │──│ Validator │──│ Metrics │ │\n│ └─────────────┘ └─────────────┘ └─────────────┘ │\n└─────────────────────────────────────────────────────────────────┘\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 BPS Calculation Formula\n\n```\nBPS_total = Σ(w_i × R_i × S_i × T_i) / N\n\nWhere:\n w_i = Weight factor for risk category i (0.0 - 1.0)\n R_i = Raw risk score (1-100)\n S_i = Severity multiplier (1.0 - 5.0)\n T_i = Time decay factor = e^(-λt), λ = 0.1\n N = Normalization constant = Σw_i\n```\n\n### 2.2 BPS Category Matrix\n\n| Category ID | Risk Domain | Weight (w) | Threshold_Warning | Threshold_Critical | Threshold_Breakdown |\n|-------------|-------------|------------|-------------------|--------------------|--------------------|\n| BPS-001 | Liquidity Risk | 0.95 | 45 | 70 | 85 |\n| BPS-002 | Board Alignment | 0.85 | 40 | 65 | 80 |\n| BPS-003 | Regulatory Compliance | 0.90 | 35 | 60 | 75 |\n| BPS-004 | Market Position | 0.75 | 50 | 72 | 88 |\n| BPS-005 | Operational Continuity | 0.88 | 42 | 68 | 82 |\n| BPS-006 | Stakeholder Confidence | 0.80 | 48 | 70 | 85 |\n| BPS-007 | Strategic Execution | 0.82 | 44 | 66 | 80 |\n| BPS-008 | Talent Retention | 0.70 | 55 | 75 | 90 |\n| BPS-009 | Technology Debt | 0.78 | 50 | 73 | 87 |\n| BPS-010 | Supply Chain Resilience | 0.83 | 46 | 69 | 84 |\n\n### 2.3 BPS Severity Multiplier Logic\n\n```python\ndef calculate_severity_multiplier(risk_score: float, category: str) -\u003e float:\n \"\"\"\n S_i calculation based on risk score bands\n \"\"\"\n severity_bands = {\n (0, 25): 1.0,\n (25, 50): 1.5,\n (50, 70): 2.5,\n (70, 85): 3.5,\n (85, 100): 5.0\n }\n \n for (lower, upper), multiplier in severity_bands.items():\n if lower \u003c= risk_score \u003c upper:\n return multiplier\n return 5.0\n```\n\n### 2.4 Composite BPS State Machine\n\n```\n┌──────────────┐ BPS \u003c 40 ┌──────────────┐\n│ NOMINAL │◄───────────────│ WARNING │\n│ (Green) │ │ (Yellow) │\n└──────┬───────┘ └──────┬───────┘\n │ │\n │ BPS ≥ 40 │ BPS ≥ 65\n ▼ ▼\n┌──────────────┐ BPS ≥ 80 ┌──────────────┐\n│ WARNING │───────────────►│ CRITICAL │\n│ (Yellow) │ │ (Red) │\n└──────────────┘ └──────┬───────┘\n │\n │ BPS ≥ 90\n ▼\n ┌──────────────┐\n │ BREAKDOWN │\n │ (Black) │\n └──────────────┘\n```\n\n---\n\n## 3. JSON Schema Specifications\n\n### 3.1 Simulation Input Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://a-ceo-boardsim.io/schemas/simulation-input.json\",\n \"title\": \"A-CEO-BoardSim Simulation Input\",\n \"type\": \"object\",\n \"required\": [\"simulation_id\", \"timestamp\", \"company_state\", \"board_composition\", \"decision_context\"],\n \"properties\": {\n \"simulation_id\": {\n \"type\": \"string\",\n \"pattern\": \"^SIM-[A-Z0-9]{8}-[0-9]{4}$\",\n \"description\": \"Unique simulation identifier\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"version\": {\n \"type\": \"string\",\n \"pattern\": \"^[0-9]+\\\\.[0-9]+\\\\.[0-9]+$\",\n \"default\": \"1.0.0\"\n },\n \"company_state\": {\n \"type\": \"object\",\n \"required\": [\"financials\", \"market_position\", \"operational_metrics\"],\n \"properties\": {\n \"financials\": {\n \"type\": \"object\",\n \"required\": [\"revenue_ttm\", \"ebitda_margin\", \"cash_runway_months\", \"debt_to_equity\"],\n \"properties\": {\n \"revenue_ttm\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"description\": \"Trailing twelve months revenue in USD\"\n },\n \"ebitda_margin\": {\n \"type\": \"number\",\n \"minimum\": -1.0,\n \"maximum\": 1.0\n },\n \"cash_runway_months\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 120\n },\n \"debt_to_equity\": {\n \"type\": \"number\",\n \"minimum\": 0\n },\n \"burn_rate_monthly\": {\n \"type\": \"number\"\n },\n \"arr\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"description\": \"Annual Recurring Revenue\"\n }\n }\n },\n \"market_position\": {\n \"type\": \"object\",\n \"required\": [\"market_share_pct\", \"competitive_index\", \"tam_penetration\"],\n \"properties\": {\n \"market_share_pct\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100\n },\n \"competitive_index\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100\n },\n \"tam_penetration\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"nps_score\": {\n \"type\": \"integer\",\n \"minimum\": -100,\n \"maximum\": 100\n }\n }\n },\n \"operational_metrics\": {\n \"type\": \"object\",\n \"required\": [\"employee_count\", \"attrition_rate\", \"system_uptime\"],\n \"properties\": {\n \"employee_count\": {\n \"type\": \"integer\",\n \"minimum\": 1\n },\n \"attrition_rate\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"system_uptime\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"incident_mttr_hours\": {\n \"type\": \"number\",\n \"minimum\": 0\n }\n }\n }\n }\n },\n \"board_composition\": {\n \"type\": \"object\",\n \"required\": [\"members\", \"voting_threshold\"],\n \"properties\": {\n \"members\": {\n \"type\": \"array\",\n \"minItems\": 3,\n \"maxItems\": 15,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"member_id\", \"role\", \"voting_weight\", \"alignment_vector\"],\n \"properties\": {\n \"member_id\": {\n \"type\": \"string\",\n \"pattern\": \"^BM-[0-9]{4}$\"\n },\n \"role\": {\n \"type\": \"string\",\n \"enum\": [\"CHAIR\", \"INDEPENDENT\", \"INVESTOR\", \"FOUNDER\", \"EXECUTIVE\", \"OBSERVER\"]\n },\n \"voting_weight\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"alignment_vector\": {\n \"type\": \"object\",\n \"required\": [\"growth_priority\", \"risk_tolerance\", \"exit_timeline\"],\n \"properties\": {\n \"growth_priority\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"risk_tolerance\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"exit_timeline\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 120,\n \"description\": \"Months to preferred exit\"\n },\n \"governance_strictness\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n }\n }\n },\n \"influence_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100\n }\n }\n }\n },\n \"voting_threshold\": {\n \"type\": \"number\",\n \"minimum\": 0.5,\n \"maximum\": 1.0,\n \"description\": \"Required vote percentage for approval\"\n },\n \"quorum_requirement\": {\n \"type\": \"number\",\n \"minimum\": 0.5,\n \"maximum\": 1.0\n }\n }\n },\n \"decision_context\": {\n \"type\": \"object\",\n \"required\": [\"decision_type\", \"options\", \"constraints\"],\n \"properties\": {\n \"decision_type\": {\n \"type\": \"string\",\n \"enum\": [\n \"STRATEGIC_PIVOT\",\n \"FUNDING_ROUND\",\n \"M_AND_A\",\n \"EXECUTIVE_CHANGE\",\n \"MARKET_EXPANSION\",\n \"COST_RESTRUCTURING\",\n \"PRODUCT_LAUNCH\",\n \"PARTNERSHIP\",\n \"REGULATORY_RESPONSE\",\n \"CRISIS_MANAGEMENT\"\n ]\n },\n \"urgency_level\": {\n \"type\": \"string\",\n \"enum\": [\"LOW\", \"MEDIUM\", \"HIGH\", \"CRITICAL\"]\n },\n \"options\": {\n \"type\": \"array\",\n \"minItems\": 2,\n \"maxItems\": 10,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"option_id\", \"description\", \"projected_impact\"],\n \"properties\": {\n \"option_id\": {\n \"type\": \"string\",\n \"pattern\": \"^OPT-[0-9]{3}$\"\n },\n \"description\": {\n \"type\": \"string\",\n \"maxLength\": 500\n },\n \"projected_impact\": {\n \"type\": \"object\",\n \"properties\": {\n \"revenue_delta_pct\": { \"type\": \"number\" },\n \"cost_delta_pct\": { \"type\": \"number\" },\n \"risk_score_delta\": { \"type\": \"number\" },\n \"timeline_months\": { \"type\": \"integer\" },\n \"confidence_interval\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 }\n }\n }\n }\n }\n },\n \"constraints\": {\n \"type\": \"object\",\n \"properties\": {\n \"max_capital_deployment\": { \"type\": \"number\", \"minimum\": 0 },\n \"regulatory_blockers\": { \"type\": \"array\", \"items\": { \"type\": \"string\" } },\n \"timeline_hard_deadline\": { \"type\": \"string\", \"format\": \"date\" },\n \"stakeholder_vetoes\": { \"type\": \"array\", \"items\": { \"type\": \"string\" } }\n }\n }\n }\n },\n \"external_factors\": {\n \"type\": \"object\",\n \"properties\": {\n \"market_volatility_index\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100\n },\n \"regulatory_pressure_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100\n },\n \"competitive_threat_level\": {\n \"type\": \"string\",\n \"enum\": [\"LOW\", \"MODERATE\", \"HIGH\", \"SEVERE\"]\n },\n \"macroeconomic_indicators\": {\n \"type\": \"object\",\n \"properties\": {\n \"interest_rate_environment\": { \"type\": \"string\", \"enum\": [\"RISING\", \"STABLE\", \"FALLING\"] },\n \"gdp_growth_outlook\": { \"type\": \"string\", \"enum\": [\"RECESSION\", \"STAGNANT\", \"MODERATE\", \"STRONG\"] },\n \"sector_sentiment\": { \"type\": \"number\", \"minimum\": -1, \"maximum\": 1 }\n }\n }\n }\n }\n },\n \"additionalProperties\": false\n}\n```\n\n### 3.2 Simulation Output Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://a-ceo-boardsim.io/schemas/simulation-output.json\",\n \"title\": \"A-CEO-BoardSim Simulation Output\",\n \"type\": \"object\",\n \"required\": [\"simulation_id\", \"execution_metadata\", \"bps_analysis\", \"decision_outcome\", \"projections\"],\n \"properties\": {\n \"simulation_id\": {\n \"type\": \"string\",\n \"pattern\": \"^SIM-[A-Z0-9]{8}-[0-9]{4}$\"\n },\n \"execution_metadata\": {\n \"type\": \"object\",\n \"required\": [\"start_time\", \"end_time\", \"iterations\", \"convergence_achieved\"],\n \"properties\": {\n \"start_time\": { \"type\": \"string\", \"format\": \"date-time\" },\n \"end_time\": {\n```}}}}}\n\n## 3. Resilience Layer\n- **Noise_Tolerance**: 0.15\n- **Confidence_Threshold**: 0.85\n- **Logic_Smoothing**: Bayesian",
1697
+ "outcome": "A-CEO-BoardSim",
1698
+ "rType": 0,
1699
+ "persona": "CEO",
1700
+ "primary_model": "GPT-4o-Synthesis",
1701
+ "privacy_tier": "Public",
1702
+ "sybox_fee_split": {
1703
+ "dev": 0.5,
1704
+ "curation": 0.4,
1705
+ "author": 0.1
1706
+ },
1707
+ "ticker": "SYNL",
1708
+ "audit_cadence": "Weekly",
1709
+ "lifecycle": "Genesis-Platinum",
1710
+ "global_outputs": [
1711
+ "synthesis_id",
1712
+ "logic_id",
1713
+ "bps_verified",
1714
+ "model_stack",
1715
+ "processing_ms",
1716
+ "timestamp"
1717
+ ],
1718
+ "custom_outputs": [
1719
+ {
1720
+ "field_name": "alignment_variance_matrix",
1721
+ "type": "Object",
1722
+ "description": "Delta vectors between Founder, Investor, and Chair priorities",
1723
+ "downstream_intent": "A-CEO-PivotOracle",
1724
+ "bps_sensitivity": "High"
1725
+ },
1726
+ {
1727
+ "field_name": "simulated_outcome_verdict",
1728
+ "type": "String",
1729
+ "description": "Highest probability success path (e.g., \"OPT-001: Vertical Expansion\")",
1730
+ "downstream_intent": "Executive Dashboard",
1731
+ "bps_sensitivity": "Medium"
1732
+ },
1733
+ {
1734
+ "field_name": "liquidity_event_probability",
1735
+ "type": "Float",
1736
+ "description": "Projected risk of \"Black\" state BPS based on burn vs. runway",
1737
+ "downstream_intent": "A-CFO-TreasuryBot",
1738
+ "bps_sensitivity": "High"
1739
+ },
1740
+ {
1741
+ "field_name": "stakeholder_veto_flags",
1742
+ "type": "Array",
1743
+ "description": "Identifiers for board members likely to block specific options",
1744
+ "downstream_intent": "A-CEO-GapDetector",
1745
+ "bps_sensitivity": "Medium"
1746
+ }
1747
+ ]
1748
+ },
1749
+ {
1750
+ "id": 84,
1751
+ "successBps": 9999,
1752
+ "cid": "ar://SYNTH_ATOMIC_CEO_PIVOTORACLE",
1753
+ "costUsd": 1500,
1754
+ "details": "# A-CEO-PivotOracle Technical Specification\n\n## System Overview\n\nA-CEO-PivotOracle is a decision-support system for evaluating strategic pivot opportunities against operational stability thresholds.\n\n---\n\n## 1. Breakdown Point Score (BPS) Matrix\n\n### 1.1 BPS Calculation Formula\n\n```\nBPS = Σ(Wᵢ × Rᵢ × Iᵢ) / N\n\nWhere:\n- Wᵢ = Weight factor for risk category i (0.0 - 1.0)\n- Rᵢ = Risk probability for category i (0.0 - 1.0)\n- Iᵢ = Impact severity for category i (1 - 10)\n- N = Normalization constant (sum of all weights × 10)\n```\n\n### 1.2 Risk Category Weights\n\n| Category ID | Risk Category | Weight (Wᵢ) | Threshold |\n|-------------|---------------|-------------|-----------|\n| RC-001 | Revenue Continuity | 0.25 | BPS ≤ 6.0 |\n| RC-002 | Talent Retention | 0.15 | BPS ≤ 7.0 |\n| RC-003 | Technical Debt Accumulation | 0.20 | BPS ≤ 5.5 |\n| RC-004 | Market Timing Risk | 0.15 | BPS ≤ 7.5 |\n| RC-005 | Capital Runway Depletion | 0.25 | BPS ≤ 4.0 |\n\n### 1.3 BPS Severity Classification\n\n```\nBPS ∈ [0.0, 3.0) → GREEN → Proceed with pivot\nBPS ∈ [3.0, 5.5) → YELLOW → Proceed with mitigation plan\nBPS ∈ [5.5, 7.5) → ORANGE → Delay pivot, address risks\nBPS ∈ [7.5, 10.0] → RED → Abort pivot consideration\n```\n\n### 1.4 Composite BPS Matrix\n\n```\n┌─────────────────────────────────────────────────────────────────┐\n│ IMPACT SEVERITY (I) │\n├─────────┬───────┬───────┬───────┬───────┬───────┬───────┬──────┤\n│ P(R) │ 1-2 │ 3-4 │ 5-6 │ 7-8 │ 9-10 │ ZONE │ ACT │\n├─────────┼───────┼───────┼───────┼───────┼───────┼───────┼──────┤\n│ 0.0-0.2 │ 0.2 │ 0.6 │ 1.0 │ 1.4 │ 1.8 │ GREEN │ GO │\n│ 0.2-0.4 │ 0.8 │ 1.6 │ 2.4 │ 3.2 │ 4.0 │ GREEN │ GO │\n│ 0.4-0.6 │ 1.5 │ 3.0 │ 4.5 │ 6.0 │ 7.5 │ YELLOW│ MIT │\n│ 0.6-0.8 │ 2.4 │ 4.8 │ 7.2 │ 9.6 │ 10.0 │ ORANGE│ HOLD │\n│ 0.8-1.0 │ 3.6 │ 7.2 │ 10.0 │ 10.0 │ 10.0 │ RED │ STOP │\n└─────────┴───────┴───────┴───────┴───────┴───────┴───────┴──────┘\n```\n\n---\n\n## 2. JSON Schema for Input Validation\n\n### 2.1 Primary Request Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://pivot-oracle.internal/schemas/pivot-request.json\",\n \"title\": \"PivotOracleRequest\",\n \"type\": \"object\",\n \"required\": [\n \"request_id\",\n \"timestamp\",\n \"pivot_context\",\n \"risk_assessment\",\n \"financial_metrics\",\n \"operational_state\"\n ],\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"pattern\": \"^PVT-[0-9]{4}-[A-Z]{3}-[0-9]{6}$\",\n \"description\": \"Unique pivot request identifier\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"pivot_context\": {\n \"$ref\": \"#/$defs/PivotContext\"\n },\n \"risk_assessment\": {\n \"$ref\": \"#/$defs/RiskAssessment\"\n },\n \"financial_metrics\": {\n \"$ref\": \"#/$defs/FinancialMetrics\"\n },\n \"operational_state\": {\n \"$ref\": \"#/$defs/OperationalState\"\n }\n },\n \"$defs\": {\n \"PivotContext\": {\n \"type\": \"object\",\n \"required\": [\"pivot_type\", \"target_market\", \"timeline_days\", \"confidence_score\"],\n \"properties\": {\n \"pivot_type\": {\n \"type\": \"string\",\n \"enum\": [\"MARKET\", \"PRODUCT\", \"TECHNOLOGY\", \"BUSINESS_MODEL\", \"CHANNEL\", \"CUSTOMER_SEGMENT\"]\n },\n \"target_market\": {\n \"type\": \"string\",\n \"minLength\": 3,\n \"maxLength\": 128\n },\n \"timeline_days\": {\n \"type\": \"integer\",\n \"minimum\": 30,\n \"maximum\": 730\n },\n \"confidence_score\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n },\n \"reversibility_index\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0,\n \"default\": 0.5\n }\n }\n },\n \"RiskAssessment\": {\n \"type\": \"object\",\n \"required\": [\"categories\"],\n \"properties\": {\n \"categories\": {\n \"type\": \"array\",\n \"minItems\": 5,\n \"maxItems\": 5,\n \"items\": {\n \"$ref\": \"#/$defs/RiskCategory\"\n }\n },\n \"correlation_matrix\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"number\",\n \"minimum\": -1.0,\n \"maximum\": 1.0\n }\n }\n }\n }\n },\n \"RiskCategory\": {\n \"type\": \"object\",\n \"required\": [\"category_id\", \"probability\", \"impact\", \"mitigation_readiness\"],\n \"properties\": {\n \"category_id\": {\n \"type\": \"string\",\n \"pattern\": \"^RC-[0-9]{3}$\"\n },\n \"probability\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n },\n \"impact\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 10\n },\n \"mitigation_readiness\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n },\n \"time_to_manifest_days\": {\n \"type\": \"integer\",\n \"minimum\": 1\n }\n }\n },\n \"FinancialMetrics\": {\n \"type\": \"object\",\n \"required\": [\"runway_months\", \"burn_rate\", \"revenue_current\", \"revenue_projected\"],\n \"properties\": {\n \"runway_months\": {\n \"type\": \"number\",\n \"minimum\": 0\n },\n \"burn_rate\": {\n \"type\": \"number\",\n \"minimum\": 0\n },\n \"revenue_current\": {\n \"type\": \"number\",\n \"minimum\": 0\n },\n \"revenue_projected\": {\n \"type\": \"number\"\n },\n \"pivot_cost_estimate\": {\n \"type\": \"number\",\n \"minimum\": 0\n },\n \"opportunity_cost_monthly\": {\n \"type\": \"number\",\n \"minimum\": 0\n }\n }\n },\n \"OperationalState\": {\n \"type\": \"object\",\n \"required\": [\"team_size\", \"system_stability\", \"technical_debt_ratio\"],\n \"properties\": {\n \"team_size\": {\n \"type\": \"integer\",\n \"minimum\": 1\n },\n \"system_stability\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n },\n \"technical_debt_ratio\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n },\n \"deployment_frequency_daily\": {\n \"type\": \"number\",\n \"minimum\": 0\n },\n \"mttr_hours\": {\n \"type\": \"number\",\n \"minimum\": 0\n },\n \"change_failure_rate\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n }\n }\n }\n }\n}\n```\n\n### 2.2 Response Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://pivot-oracle.internal/schemas/pivot-response.json\",\n \"title\": \"PivotOracleResponse\",\n \"type\": \"object\",\n \"required\": [\"request_id\", \"timestamp\", \"verdict\", \"bps_composite\", \"sre_metrics\", \"recommendations\"],\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"verdict\": {\n \"type\": \"string\",\n \"enum\": [\"PROCEED\", \"PROCEED_WITH_MITIGATION\", \"DELAY\", \"ABORT\"]\n },\n \"bps_composite\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 10.0\n },\n \"bps_breakdown\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"category_id\": { \"type\": \"string\" },\n \"bps_contribution\": { \"type\": \"number\" },\n \"threshold_status\": { \"type\": \"string\", \"enum\": [\"PASS\", \"WARN\", \"FAIL\"] }\n }\n }\n },\n \"sre_metrics\": {\n \"$ref\": \"#/$defs/SREMetricsOutput\"\n },\n \"recommendations\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"priority\": { \"type\": \"integer\", \"minimum\": 1, \"maximum\": 5 },\n \"action\": { \"type\": \"string\" },\n \"expected_bps_reduction\": { \"type\": \"number\" },\n \"effort_days\": { \"type\": \"integer\" }\n }\n }\n },\n \"confidence_interval\": {\n \"type\": \"object\",\n \"properties\": {\n \"lower_bound\": { \"type\": \"number\" },\n \"upper_bound\": { \"type\": \"number\" },\n \"confidence_level\": { \"type\": \"number\" }\n }\n }\n },\n \"$defs\": {\n \"SREMetricsOutput\": {\n \"type\": \"object\",\n \"properties\": {\n \"pivot_readiness_score\": { \"type\": \"number\" },\n \"operational_risk_index\": { \"type\": \"number\" },\n \"recovery_capability_score\": { \"type\": \"number\" },\n \"slo_impact_projection\": { \"type\": \"object\" }\n }\n }\n }\n}\n```\n\n---\n\n## 3. SRE Metrics for Operational Success\n\n### 3.1 Core SLI/SLO Definitions\n\n| Metric ID | Metric Name | SLI Definition | SLO Target | Error Budget |\n|-----------|-------------|----------------|------------|--------------|\n| SRE-001 | Pivot Decision Latency | P99 response time for oracle query | ≤ 500ms | 0.1% |\n| SRE-002 | Decision Accuracy | Correct predictions / Total predictions | ≥ 85% | 15% |\n| SRE-003 | System Availability | Uptime / Total time | ≥ 99.9% | 0.1% |\n| SRE-004 | Data Freshness | Age of input data at decision time | ≤ 1 hour | 5% |\n| SRE-005 | Rollback Success Rate | Successful rollbacks / Attempted rollbacks | ≥ 99% | 1% |\n\n### 3.2 Pivot-Specific Operational Metrics\n\n```\n┌────────────────────────────────────────────────────────────────────────┐\n│ PIVOT OPERATIONAL METRICS │\n├──────────────────────┬─────────────────────────────────────────────────┤\n│ METRIC │ FORMULA │\n├──────────────────────┼─────────────────────────────────────────────────┤\n│ Pivot Readiness │ PRS = (1 - TDR) × SS × (1 - CFR) × DF_norm │\n│ Score (PRS) │ Where: TDR = Tech Debt Ratio │\n│ │ SS = System Stability │\n│ │ CFR = Change Failure Rate │\n│ │ DF_norm = Deployment Freq / 10 │\n├──────────────────────┼─────────────────────────────────────────────────┤\n│ Operational Risk │ ORI = (MTTR / 24) × CFR × (1 - SS) │\n│ Index (ORI) │ Target: ORI \u003c 0.15 │\n├──────────────────────┼─────────────────────────────────────────────────┤\n│ Recovery Capability │ RCS = (1 - (MTTR / MTTR_max)) × RR × (1 - ORI) │\n│ Score (RCS) │ Where: RR = Reversibility Index │\n│ │ MTTR_max = 72 hours │\n├──────────────────────┼─────────────────────────────────────────────────┤\n│ Pivot Velocity │ PV = Timeline_days / (BPS × (1 + ORI)) │\n│ Index (PVI) │ Higher = Better execution speed │\n├──────────────────────┼─────────────────────────────────────────────────┤\n│ Financial Stress │ FSI = (Pivot_cost + (Burn × Timeline_months)) │\n│ Index (FSI) │ / (Runway_months × Burn) │\n│ │ Target: FSI \u003c 0.6 │\n└──────────────────────┴─────────────────────────────────────────────────┘\n```\n\n### 3.3 Threshold Gates\n\n```python\n# Gate Logic Pseudocode\ndef evaluate_pivot_gates(metrics: dict) -\u003e tuple[bool, list[str]]:\n gates = {\n \"G1_RUNWAY\": metrics[\"runway_months\"] \u003e= 6,\n \"G2_STABILITY\": metrics[\"\n```}]]]]\n\n## 3. Resilience Layer\n- **Noise_Tolerance**: 0.15\n- **Confidence_Threshold**: 0.85\n- **Logic_Smoothing**: Bayesian",
1755
+ "outcome": "A-CEO-PivotOracle",
1756
+ "rType": 0,
1757
+ "persona": "CEO",
1758
+ "primary_model": "GPT-4o-Synthesis",
1759
+ "privacy_tier": "Public",
1760
+ "sybox_fee_split": {
1761
+ "dev": 0.5,
1762
+ "curation": 0.4,
1763
+ "author": 0.1
1764
+ },
1765
+ "ticker": "SYNL",
1766
+ "audit_cadence": "Weekly",
1767
+ "lifecycle": "Genesis-Platinum",
1768
+ "global_outputs": [
1769
+ "synthesis_id",
1770
+ "logic_id",
1771
+ "bps_verified",
1772
+ "model_stack",
1773
+ "processing_ms",
1774
+ "timestamp"
1775
+ ],
1776
+ "custom_outputs": [
1777
+ {
1778
+ "field_name": "pivot_directive_verdict",
1779
+ "type": "String",
1780
+ "description": "Finite state output: `PROCEED`, `MITIGATE`, `DELAY`, or `ABORT`",
1781
+ "downstream_intent": "Synthesis Ledger Root",
1782
+ "bps_sensitivity": "High"
1783
+ },
1784
+ {
1785
+ "field_name": "gate_compliance_results",
1786
+ "type": "Object",
1787
+ "description": "Boolean pass/fail states for G1-G5 (Runway, Tech Debt, etc.)",
1788
+ "downstream_intent": "A-CTO-Infraspective",
1789
+ "bps_sensitivity": "High"
1790
+ },
1791
+ {
1792
+ "field_name": "reversibility_index_delta",
1793
+ "type": "Float",
1794
+ "description": "Quantitative measure of \"lock-in\" risk for the chosen pivot",
1795
+ "downstream_intent": "A-CEO-BoardSim",
1796
+ "bps_sensitivity": "Medium"
1797
+ },
1798
+ {
1799
+ "field_name": "mitigation_priority_stack",
1800
+ "type": "Array",
1801
+ "description": "Sequence of actions required to reduce BPS to Green/Yellow",
1802
+ "downstream_intent": "A-COO-WorkflowMapper",
1803
+ "bps_sensitivity": "Medium"
1804
+ }
1805
+ ]
1806
+ },
1807
+ {
1808
+ "id": 86,
1809
+ "successBps": 9605,
1810
+ "cid": "ar://SYNTH_ATOMIC_CSO_MOATCLASSIFIER",
1811
+ "costUsd": 1500,
1812
+ "details": "# A-CSO-MoatClassifier Technical Specification\n\n## 1. Core Classification Logic\n\n### 1.1 Moat Category Enumeration\n\n```\nMOAT_CATEGORIES = {\n 0: \"NO_MOAT\",\n 1: \"NETWORK_EFFECTS\",\n 2: \"SWITCHING_COSTS\", \n 3: \"COST_ADVANTAGES\",\n 4: \"INTANGIBLE_ASSETS\",\n 5: \"EFFICIENT_SCALE\",\n 6: \"COMPOSITE_MOAT\"\n}\n```\n\n### 1.2 Classification Function\n\n```\nf(x) = argmax(Σᵢ wᵢ · σ(θᵢᵀx + bᵢ))\n\nWhere:\n- x ∈ ℝⁿ = input feature vector\n- wᵢ = category weight for moat type i\n- θᵢ = learned parameter vector for category i\n- bᵢ = bias term\n- σ = sigmoid activation: σ(z) = 1/(1 + e⁻ᶻ)\n```\n\n### 1.3 Moat Strength Score (MSS)\n\n```\nMSS = Σⱼ₌₁ᵐ (Dⱼ · Sⱼ · Tⱼ) / m\n\nWhere:\n- Dⱼ = Durability factor [0,1] for attribute j\n- Sⱼ = Sustainability coefficient [0,1]\n- Tⱼ = Threat resistance score [0,1]\n- m = total evaluated attributes\n\nFinal Classification Threshold:\n- MSS \u003c 0.25 → NO_MOAT\n- MSS ∈ [0.25, 0.50) → WEAK_MOAT\n- MSS ∈ [0.50, 0.75) → MODERATE_MOAT\n- MSS ≥ 0.75 → STRONG_MOAT\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 Risk Category Definitions\n\n| Risk ID | Category | Description | Weight (λ) |\n|---------|----------|-------------|------------|\n| R001 | DATA_INTEGRITY | Input data corruption/staleness | 0.25 |\n| R002 | MODEL_DRIFT | Classification accuracy degradation | 0.20 |\n| R003 | LATENCY_BREACH | Response time SLA violation | 0.15 |\n| R004 | THROUGHPUT_COLLAPSE | Request processing capacity failure | 0.15 |\n| R005 | DEPENDENCY_FAILURE | Upstream/downstream service outage | 0.10 |\n| R006 | RESOURCE_EXHAUSTION | Memory/CPU/storage depletion | 0.10 |\n| R007 | SECURITY_BREACH | Authentication/authorization failure | 0.05 |\n\n### 2.2 BPS Calculation Matrix\n\n```\nBPS(t) = Σᵢ₌₁⁷ λᵢ · Pᵢ(t) · Iᵢ\n\nWhere:\n- λᵢ = risk weight from table above\n- Pᵢ(t) = probability of risk i at time t\n- Iᵢ = impact severity [1-10]\n\nOperational State Thresholds:\n- BPS \u003c 2.0 → NOMINAL\n- BPS ∈ [2.0, 4.0) → DEGRADED\n- BPS ∈ [4.0, 7.0) → CRITICAL\n- BPS ≥ 7.0 → FAILURE\n```\n\n### 2.3 Full BPS Matrix\n\n```\n┌─────────┬────────┬────────┬────────┬────────┬────────┬────────┬────────┐\n│ State │ R001 │ R002 │ R003 │ R004 │ R005 │ R006 │ R007 │\n├─────────┼────────┼────────┼────────┼────────┼────────┼────────┼────────┤\n│ NOMINAL │ P\u003c0.05 │ P\u003c0.03 │ P\u003c0.02 │ P\u003c0.02 │ P\u003c0.01 │ P\u003c0.01 │ P\u003c0.001│\n│ │ I≤2 │ I≤2 │ I≤3 │ I≤3 │ I≤4 │ I≤4 │ I≤5 │\n├─────────┼────────┼────────┼────────┼────────┼────────┼────────┼────────┤\n│ DEGRADED│ P\u003c0.15 │ P\u003c0.10 │ P\u003c0.08 │ P\u003c0.08 │ P\u003c0.05 │ P\u003c0.05 │ P\u003c0.01 │\n│ │ I≤5 │ I≤5 │ I≤5 │ I≤5 │ I≤6 │ I≤6 │ I≤7 │\n├─────────┼────────┼────────┼────────┼────────┼────────┼────────┼────────┤\n│ CRITICAL│ P\u003c0.40 │ P\u003c0.30 │ P\u003c0.25 │ P\u003c0.25 │ P\u003c0.20 │ P\u003c0.20 │ P\u003c0.05 │\n│ │ I≤8 │ I≤8 │ I≤7 │ I≤7 │ I≤8 │ I≤8 │ I≤9 │\n├─────────┼────────┼────────┼────────┼────────┼────────┼────────┼────────┤\n│ FAILURE │ P≥0.40 │ P≥0.30 │ P≥0.25 │ P≥0.25 │ P≥0.20 │ P≥0.20 │ P≥0.05 │\n│ │ I\u003e8 │ I\u003e8 │ I\u003e7 │ I\u003e7 │ I\u003e8 │ I\u003e8 │ I\u003e9 │\n└─────────┴────────┴────────┴────────┴────────┴────────┴────────┴────────┘\n```\n\n### 2.4 Cascading Failure Probability\n\n```\nP_cascade(n) = 1 - ∏ᵢ₌₁ⁿ (1 - Pᵢ · Cᵢⱼ)\n\nWhere:\n- Cᵢⱼ = correlation coefficient between risk i and j\n- n = number of active risk factors\n\nCorrelation Matrix Cᵢⱼ:\n R001 R002 R003 R004 R005 R006 R007\nR001 1.00 0.65 0.20 0.15 0.30 0.25 0.10\nR002 0.65 1.00 0.35 0.25 0.20 0.15 0.05\nR003 0.20 0.35 1.00 0.80 0.45 0.70 0.15\nR004 0.15 0.25 0.80 1.00 0.50 0.75 0.10\nR005 0.30 0.20 0.45 0.50 1.00 0.40 0.20\nR006 0.25 0.15 0.70 0.75 0.40 1.00 0.15\nR007 0.10 0.05 0.15 0.10 0.20 0.15 1.00\n```\n\n---\n\n## 3. Input Validation JSON Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-cso-moat-classifier/v1\",\n \"title\": \"A-CSO-MoatClassifier Input Schema\",\n \"type\": \"object\",\n \"required\": [\n \"request_id\",\n \"timestamp\",\n \"entity\",\n \"moat_indicators\",\n \"financial_metrics\"\n ],\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$\",\n \"description\": \"UUID v4 format request identifier\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 timestamp with timezone\"\n },\n \"entity\": {\n \"type\": \"object\",\n \"required\": [\"id\", \"type\", \"sector\"],\n \"properties\": {\n \"id\": {\n \"type\": \"string\",\n \"minLength\": 1,\n \"maxLength\": 64\n },\n \"type\": {\n \"type\": \"string\",\n \"enum\": [\"PUBLIC_COMPANY\", \"PRIVATE_COMPANY\", \"SUBSIDIARY\", \"DIVISION\"]\n },\n \"sector\": {\n \"type\": \"string\",\n \"enum\": [\n \"TECHNOLOGY\", \"HEALTHCARE\", \"FINANCIALS\", \"CONSUMER_DISCRETIONARY\",\n \"CONSUMER_STAPLES\", \"INDUSTRIALS\", \"ENERGY\", \"MATERIALS\",\n \"UTILITIES\", \"REAL_ESTATE\", \"COMMUNICATION_SERVICES\"\n ]\n },\n \"market_cap_usd\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1e15\n }\n }\n },\n \"moat_indicators\": {\n \"type\": \"object\",\n \"required\": [\"network_effects\", \"switching_costs\", \"cost_advantages\", \"intangible_assets\", \"efficient_scale\"],\n \"properties\": {\n \"network_effects\": {\n \"$ref\": \"#/$defs/moat_indicator\"\n },\n \"switching_costs\": {\n \"$ref\": \"#/$defs/moat_indicator\"\n },\n \"cost_advantages\": {\n \"$ref\": \"#/$defs/moat_indicator\"\n },\n \"intangible_assets\": {\n \"$ref\": \"#/$defs/moat_indicator\"\n },\n \"efficient_scale\": {\n \"$ref\": \"#/$defs/moat_indicator\"\n }\n }\n },\n \"financial_metrics\": {\n \"type\": \"object\",\n \"required\": [\"roic\", \"revenue_growth_5y\", \"gross_margin\", \"operating_margin\"],\n \"properties\": {\n \"roic\": {\n \"type\": \"number\",\n \"minimum\": -1.0,\n \"maximum\": 2.0,\n \"description\": \"Return on Invested Capital as decimal\"\n },\n \"revenue_growth_5y\": {\n \"type\": \"number\",\n \"minimum\": -1.0,\n \"maximum\": 10.0,\n \"description\": \"5-year CAGR as decimal\"\n },\n \"gross_margin\": {\n \"type\": \"number\",\n \"minimum\": -1.0,\n \"maximum\": 1.0\n },\n \"operating_margin\": {\n \"type\": \"number\",\n \"minimum\": -2.0,\n \"maximum\": 1.0\n },\n \"fcf_margin\": {\n \"type\": \"number\",\n \"minimum\": -2.0,\n \"maximum\": 1.0\n },\n \"debt_to_equity\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100\n }\n }\n },\n \"competitive_data\": {\n \"type\": \"object\",\n \"properties\": {\n \"market_share\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1.0\n },\n \"competitor_count\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 10000\n },\n \"hhi_index\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 10000,\n \"description\": \"Herfindahl-Hirschman Index\"\n },\n \"years_of_dominance\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 200\n }\n }\n },\n \"metadata\": {\n \"type\": \"object\",\n \"properties\": {\n \"source\": {\n \"type\": \"string\",\n \"maxLength\": 128\n },\n \"confidence_level\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1.0\n },\n \"data_freshness_hours\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 8760\n }\n }\n }\n },\n \"$defs\": {\n \"moat_indicator\": {\n \"type\": \"object\",\n \"required\": [\"score\", \"confidence\"],\n \"properties\": {\n \"score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1.0,\n \"description\": \"Normalized indicator strength\"\n },\n \"confidence\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1.0,\n \"description\": \"Data confidence level\"\n },\n \"evidence_count\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 1000\n },\n \"trend\": {\n \"type\": \"string\",\n \"enum\": [\"IMPROVING\", \"STABLE\", \"DECLINING\", \"UNKNOWN\"]\n },\n \"sub_indicators\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"name\": {\"type\": \"string\"},\n \"value\": {\"type\": \"number\"},\n \"weight\": {\"type\": \"number\", \"minimum\": 0, \"maximum\": 1}\n }\n },\n \"maxItems\": 20\n }\n }\n }\n },\n \"additionalProperties\": false\n}\n```\n\n---\n\n## 4. Output Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-cso-moat-classifier/v1/output\",\n \"title\": \"A-CSO-MoatClassifier Output Schema\",\n \"type\": \"object\",\n \"required\": [\n \"request_id\",\n \"classification\",\n \"scores\",\n \"processing_metadata\"\n ],\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\"\n },\n \"classification\": {\n \"type\": \"object\",\n \"required\": [\"primary_moat\", \"moat_strength\", \"confidence\"],\n \"properties\": {\n \"primary_moat\": {\n \"type\": \"string\",\n \"enum\": [\"NO_MOAT\", \"NETWORK_EFFECTS\", \"SWITCHING_COSTS\", \"COST_ADVANTAGES\", \"INTANGIBLE_ASSETS\", \"EFFICIENT_SCALE\", \"COMPOSITE_MOAT\"]\n },\n \"secondary_moats\": {\n \"type\": \"array\",\n \"items\": {\"type\": \"string\"}\n },\n \"moat_strength\": {\n \"type\": \"string\",\n \"enum\": [\"NONE\", \"WEAK\", \"MODERATE\", \"STRONG\"]\n },\n \"confidence\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1.0\n }\n }\n },\n \"scores\": {\n \"type\": \"object\",\n \"properties\": {\n \"mss\": {\n \"type\": \"number\",\n \"description\": \"Moat\n```}}}}}]]]]",
1813
+ "outcome": "A-CSO-MoatClassifier",
1814
+ "rType": 0,
1815
+ "persona": "CSO",
1816
+ "primary_model": "GPT-4o-Synthesis",
1817
+ "privacy_tier": "Public",
1818
+ "sybox_fee_split": {
1819
+ "dev": 0.5,
1820
+ "curation": 0.4,
1821
+ "author": 0.1
1822
+ },
1823
+ "ticker": "SYNL",
1824
+ "audit_cadence": "Weekly",
1825
+ "lifecycle": "Genesis-Platinum",
1826
+ "global_outputs": [
1827
+ "synthesis_id",
1828
+ "logic_id",
1829
+ "bps_verified",
1830
+ "model_stack",
1831
+ "processing_ms",
1832
+ "timestamp"
1833
+ ],
1834
+ "custom_outputs": [
1835
+ {
1836
+ "field_name": "primary_classification",
1837
+ "type": "String",
1838
+ "description": "The dominant moat type (e.g., \"COMPOSITE_MOAT\").",
1839
+ "downstream_intent": "Executive Dashboards",
1840
+ "bps_sensitivity": "High"
1841
+ },
1842
+ {
1843
+ "field_name": "mss_vector_pack",
1844
+ "type": "Object",
1845
+ "description": "Combined MSS score (0-1) and durability/sustainability coefficients.",
1846
+ "downstream_intent": "`A-CFO-YieldForecaster`",
1847
+ "bps_sensitivity": "High"
1848
+ },
1849
+ {
1850
+ "field_name": "threat_resistance_index",
1851
+ "type": "Object",
1852
+ "description": "Scores for disruption, erosion, and regulatory risks.",
1853
+ "downstream_intent": "Risk Committees",
1854
+ "bps_sensitivity": "Medium"
1855
+ },
1856
+ {
1857
+ "field_name": "financial_alignment_scores",
1858
+ "type": "Object",
1859
+ "description": "ROIC vs WACC spread and growth quality indices.",
1860
+ "downstream_intent": "`A-CEO-StrategyLinter`",
1861
+ "bps_sensitivity": "Medium"
1862
+ },
1863
+ {
1864
+ "field_name": "adversarial_focus_areas",
1865
+ "type": "Array",
1866
+ "description": "High-priority vulnerabilities identified for monitoring.",
1867
+ "downstream_intent": "`A-CSO-VectorGen`",
1868
+ "bps_sensitivity": "High"
1869
+ }
1870
+ ]
1871
+ },
1872
+ {
1873
+ "id": 87,
1874
+ "successBps": 9782,
1875
+ "cid": "ar://SYNTH_ATOMIC_CSO_PARITYAUDIT",
1876
+ "costUsd": 1500,
1877
+ "details": "# A-CSO-ParityAudit Technical Logic Specification\n\n## 1. Core Logic Definition\n\n### 1.1 Parity Audit Function\n\n```\nP(audit) = Σ(i=1→n) [Δconfig(i) × W(i)] / Σ(i=1→n) W(i)\n\nWhere:\n- Δconfig(i) = |expected_state(i) - actual_state(i)|\n- W(i) = criticality_weight for component i\n- P(audit) ∈ [0, 1] where 0 = perfect parity, 1 = total drift\n```\n\n### 1.2 Drift Detection Algorithm\n\n```python\ndef calculate_parity_score(expected: dict, actual: dict, weights: dict) -\u003e float:\n total_weighted_drift = 0.0\n total_weight = 0.0\n \n for key in expected.keys():\n weight = weights.get(key, 1.0)\n if key not in actual:\n drift = 1.0 # Missing component = maximum drift\n elif isinstance(expected[key], (int, float)):\n drift = abs(expected[key] - actual[key]) / max(abs(expected[key]), 1)\n drift = min(drift, 1.0)\n elif expected[key] != actual[key]:\n drift = 1.0\n else:\n drift = 0.0\n \n total_weighted_drift += drift * weight\n total_weight += weight\n \n return total_weighted_drift / total_weight if total_weight \u003e 0 else 0.0\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 BPS Calculation Formula\n\n```\nBPS = Σ(j=1→m) [R(j) × I(j) × (1 - M(j))]\n\nWhere:\n- R(j) = Risk probability [0, 1]\n- I(j) = Impact severity [1, 10]\n- M(j) = Mitigation effectiveness [0, 1]\n- BPS ∈ [0, 100] normalized\n```\n\n### 2.2 Operational Failure Risk Matrix\n\n| Risk Category | Risk ID | R(j) | I(j) | M(j) | Raw BPS | Threshold |\n|---------------|---------|------|------|------|---------|-----------|\n| Config Drift | BPS-001 | 0.35 | 8 | 0.70 | 0.84 | ≤ 1.0 |\n| Schema Violation | BPS-002 | 0.20 | 9 | 0.85 | 0.27 | ≤ 0.5 |\n| State Inconsistency | BPS-003 | 0.45 | 7 | 0.60 | 1.26 | ≤ 1.5 |\n| Audit Timeout | BPS-004 | 0.15 | 6 | 0.90 | 0.09 | ≤ 0.2 |\n| Data Corruption | BPS-005 | 0.05 | 10 | 0.95 | 0.025 | ≤ 0.1 |\n| Cascade Failure | BPS-006 | 0.10 | 10 | 0.75 | 0.25 | ≤ 0.5 |\n| Resource Exhaustion | BPS-007 | 0.25 | 7 | 0.80 | 0.35 | ≤ 0.5 |\n| Auth Failure | BPS-008 | 0.08 | 9 | 0.92 | 0.058 | ≤ 0.1 |\n\n### 2.3 Aggregate BPS Scoring\n\n```\nAggregate_BPS = Σ(Raw_BPS) / m × 100 = 3.153 / 8 × 100 = 39.41\n\nSeverity Classification:\n- BPS ∈ [0, 25]: NOMINAL\n- BPS ∈ (25, 50]: ELEVATED\n- BPS ∈ (50, 75]: CRITICAL\n- BPS ∈ (75, 100]: BREAKDOWN_IMMINENT\n```\n\n### 2.4 BPS Trigger Logic\n\n```python\ndef evaluate_bps_triggers(bps_scores: dict) -\u003e list:\n triggers = []\n for risk_id, score in bps_scores.items():\n threshold = BPS_THRESHOLDS[risk_id]\n if score \u003e threshold:\n triggers.append({\n \"risk_id\": risk_id,\n \"score\": score,\n \"threshold\": threshold,\n \"breach_factor\": score / threshold,\n \"action\": \"ESCALATE\" if score \u003e threshold * 2 else \"ALERT\"\n })\n return triggers\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n### 3.1 Audit Request Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-cso-parity-audit-request.json\",\n \"title\": \"A-CSO-ParityAudit Request\",\n \"type\": \"object\",\n \"required\": [\"audit_id\", \"timestamp\", \"target_systems\", \"expected_state\", \"audit_config\"],\n \"properties\": {\n \"audit_id\": {\n \"type\": \"string\",\n \"pattern\": \"^AUD-[A-Z0-9]{8}-[0-9]{13}$\",\n \"description\": \"Unique audit identifier: AUD-{8-char-hex}-{unix-ms}\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 timestamp\"\n },\n \"target_systems\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"maxItems\": 500,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"system_id\", \"system_type\", \"criticality\"],\n \"properties\": {\n \"system_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-z0-9-]{3,64}$\"\n },\n \"system_type\": {\n \"type\": \"string\",\n \"enum\": [\"compute\", \"storage\", \"network\", \"database\", \"cache\", \"queue\", \"service\"]\n },\n \"criticality\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 10\n },\n \"region\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-z]{2}-[a-z]+-[0-9]$\"\n }\n }\n }\n },\n \"expected_state\": {\n \"type\": \"object\",\n \"required\": [\"version\", \"checksum\", \"components\"],\n \"properties\": {\n \"version\": {\n \"type\": \"string\",\n \"pattern\": \"^[0-9]+\\\\.[0-9]+\\\\.[0-9]+(-[a-z0-9]+)?$\"\n },\n \"checksum\": {\n \"type\": \"string\",\n \"pattern\": \"^sha256:[a-f0-9]{64}$\"\n },\n \"components\": {\n \"type\": \"object\",\n \"additionalProperties\": {\n \"type\": \"object\",\n \"required\": [\"expected_value\", \"tolerance\", \"weight\"],\n \"properties\": {\n \"expected_value\": {\n \"oneOf\": [\n {\"type\": \"string\"},\n {\"type\": \"number\"},\n {\"type\": \"boolean\"},\n {\"type\": \"object\"},\n {\"type\": \"array\"}\n ]\n },\n \"tolerance\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"weight\": {\n \"type\": \"number\",\n \"minimum\": 0.1,\n \"maximum\": 10\n }\n }\n }\n }\n }\n },\n \"audit_config\": {\n \"type\": \"object\",\n \"required\": [\"timeout_ms\", \"retry_policy\", \"parallelism\"],\n \"properties\": {\n \"timeout_ms\": {\n \"type\": \"integer\",\n \"minimum\": 1000,\n \"maximum\": 300000\n },\n \"retry_policy\": {\n \"type\": \"object\",\n \"required\": [\"max_retries\", \"backoff_base_ms\", \"backoff_max_ms\"],\n \"properties\": {\n \"max_retries\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 10\n },\n \"backoff_base_ms\": {\n \"type\": \"integer\",\n \"minimum\": 100,\n \"maximum\": 5000\n },\n \"backoff_max_ms\": {\n \"type\": \"integer\",\n \"minimum\": 1000,\n \"maximum\": 60000\n }\n }\n },\n \"parallelism\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 100\n },\n \"fail_fast\": {\n \"type\": \"boolean\",\n \"default\": false\n }\n }\n },\n \"metadata\": {\n \"type\": \"object\",\n \"properties\": {\n \"initiator\": {\n \"type\": \"string\"\n },\n \"correlation_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\"\n },\n \"tags\": {\n \"type\": \"object\",\n \"additionalProperties\": {\n \"type\": \"string\"\n }\n }\n }\n }\n },\n \"additionalProperties\": false\n}\n```\n\n### 3.2 Audit Response Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-cso-parity-audit-response.json\",\n \"title\": \"A-CSO-ParityAudit Response\",\n \"type\": \"object\",\n \"required\": [\"audit_id\", \"status\", \"parity_score\", \"bps_aggregate\", \"results\", \"timing\"],\n \"properties\": {\n \"audit_id\": {\n \"type\": \"string\",\n \"pattern\": \"^AUD-[A-Z0-9]{8}-[0-9]{13}$\"\n },\n \"status\": {\n \"type\": \"string\",\n \"enum\": [\"PASS\", \"WARN\", \"FAIL\", \"ERROR\", \"TIMEOUT\"]\n },\n \"parity_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"bps_aggregate\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100\n },\n \"results\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"system_id\", \"drift_detected\", \"drift_score\", \"components\"],\n \"properties\": {\n \"system_id\": {\n \"type\": \"string\"\n },\n \"drift_detected\": {\n \"type\": \"boolean\"\n },\n \"drift_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"components\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"component_id\", \"expected\", \"actual\", \"match\"],\n \"properties\": {\n \"component_id\": {\n \"type\": \"string\"\n },\n \"expected\": {},\n \"actual\": {},\n \"match\": {\n \"type\": \"boolean\"\n },\n \"drift_magnitude\": {\n \"type\": \"number\"\n }\n }\n }\n }\n }\n }\n },\n \"timing\": {\n \"type\": \"object\",\n \"required\": [\"start_time\", \"end_time\", \"duration_ms\"],\n \"properties\": {\n \"start_time\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"end_time\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"duration_ms\": {\n \"type\": \"integer\"\n }\n }\n },\n \"bps_breakdown\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"risk_id\": {\"type\": \"string\"},\n \"score\": {\"type\": \"number\"},\n \"threshold_breached\": {\"type\": \"boolean\"}\n }\n }\n }\n }\n}\n```\n\n---\n\n## 4. SRE Metrics for Operational Success\n\n### 4.1 Service Level Indicators (SLIs)\n\n| Metric ID | Metric Name | Formula | Unit |\n|-----------|-------------|---------|------|\n| SLI-001 | Audit Latency P50 | percentile(audit_duration_ms, 50) | ms |\n| SLI-002 | Audit Latency P99 | percentile(audit_duration_ms, 99) | ms |\n| SLI-003 | Audit Success Rate | (successful_audits / total_audits) × 100 | % |\n| SLI-004 | Drift Detection Accuracy | (true_positives + true_negatives) / total_checks | ratio |\n| SLI-005 | Parity Score Mean | Σ(parity_scores) / n | [0,1] |\n| SLI-006 | BPS Threshold Breach Rate | breached_thresholds / total_thresholds | ratio |\n| SLI-007 | Schema Validation Pass Rate | valid_requests / total_requests | ratio |\n| SLI-008 | System Coverage | audited_systems / total_registered_systems | ratio |\n\n### 4.2 Service Level Objectives (SLOs)\n\n```yaml\nslos:\n - id: SLO-PARITY-001\n name: \"Audit Latency\"\n sli: SLI-002\n target: 5000\n operator: \"\u003c=\"\n window: \"30d\"\n error_budget: 0.001 # 99.9%\n\n - id: SLO-PARITY-002\n name: \"Audit Availability\"\n sli: SLI-003\n target: 99.95\n operator: \"\u003e=\"\n window: \"30d\"\n error_budget: 0.0005\n\n - id: SLO-PARITY-003\n name: \"Drift Detection Accuracy\"\n sli: SLI-004\n target: 0.998\n operator: \"\u003e=\"\n window: \"7d\"\n error_budget: 0.002\n\n - id: SLO-PARITY-004\n name: \"Parity Score Threshold\"\n sli: SLI-005\n target: 0.05\n operator: \"\u003c=\"\n window: \"24h\"\n error_budget: 0.01\n\n - id: SLO-PARITY-005\n name: \"BPS Stability\"\n sli: SLI-006\n target: 0.02\n operator: \"\u003c=\"\n window: \"7d\"\n error_budget: 0.005\n```\n\n### 4.3 Metric Collection Specification\n\n```python\nMETRICS_SPEC = {\n \"audit_duration_ms\": {\n \"type\": \"histogram\",\n \"buckets\": [100, 250, 500, 1000, 2500, 5000, 10000, 30000],\n \"labels\": [\"system_type\", \"region\", \"status\"]\n },\n \"parity_score\": {\n \"type\": \"gauge\",\n \"labels\": [\"system_id\", \"audit_id\"]\n },\n \"bps_score\": {\n \"type\": \"gauge\",\n \"labels\": [\"risk_id\", \"severity\"]\n```}}",
1878
+ "outcome": "A-CSO-ParityAudit",
1879
+ "rType": 0,
1880
+ "persona": "CSO",
1881
+ "primary_model": "GPT-4o-Synthesis",
1882
+ "privacy_tier": "Public",
1883
+ "sybox_fee_split": {
1884
+ "dev": 0.5,
1885
+ "curation": 0.4,
1886
+ "author": 0.1
1887
+ },
1888
+ "ticker": "SYNL",
1889
+ "audit_cadence": "Weekly",
1890
+ "lifecycle": "Genesis-Platinum",
1891
+ "global_outputs": [
1892
+ "synthesis_id",
1893
+ "logic_id",
1894
+ "bps_verified",
1895
+ "model_stack",
1896
+ "processing_ms",
1897
+ "timestamp"
1898
+ ],
1899
+ "custom_outputs": [
1900
+ {
1901
+ "field_name": "audit_verdict",
1902
+ "type": "String",
1903
+ "description": "Categorical status: \"PASS\", \"WARN\", \"FAIL\", \"CRITICAL\".",
1904
+ "downstream_intent": "`Sentinel-Audit-Trigger`",
1905
+ "bps_sensitivity": "High"
1906
+ },
1907
+ {
1908
+ "field_name": "drift_decomposition",
1909
+ "type": "Array",
1910
+ "description": "List of system IDs with specific drift magnitudes and component failures.",
1911
+ "downstream_intent": "SRE Response Teams",
1912
+ "bps_sensitivity": "High"
1913
+ },
1914
+ {
1915
+ "field_name": "parity_coefficient",
1916
+ "type": "Float",
1917
+ "description": "Normalized score (0-1) where 0 is perfect state alignment.",
1918
+ "downstream_intent": "`A-COO-ResourceAlloc`",
1919
+ "bps_sensitivity": "High"
1920
+ },
1921
+ {
1922
+ "field_name": "bps_risk_matrix",
1923
+ "type": "Object",
1924
+ "description": "Real-time calculation of R(j) * I(j) across 8 risk categories.",
1925
+ "downstream_intent": "`Grok-3-Linter`",
1926
+ "bps_sensitivity": "High"
1927
+ }
1928
+ ]
1929
+ },
1930
+ {
1931
+ "id": 89,
1932
+ "successBps": 9689,
1933
+ "cid": "ar://SYNTH_ATOMIC_CFO_LEDGERPARSER",
1934
+ "costUsd": 1500,
1935
+ "details": "# A-CFO-LedgerParser Technical Specification\n\n## System Overview\n\n```\nComponent ID: A-CFO-LedgerParser\nClassification: Financial Data Ingestion Pipeline\nCriticality Tier: P0 (Business Critical)\n```\n\n---\n\n## 1. Core Logic Architecture\n\n### 1.1 Parser State Machine\n\n```\n┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐\n│ INIT │───▶│ VALIDATE │───▶│ PARSE │───▶│ TRANSFORM │\n│ S0 │ │ S1 │ │ S2 │ │ S3 │\n└─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘\n │ │ │ │\n ▼ ▼ ▼ ▼\n┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐\n│ ABORT_E0 │ │ REJECT_E1 │ │ ERROR_E2 │ │ COMMIT_S4 │\n└─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘\n```\n\n### 1.2 Processing Logic Flow\n\n```python\n# Pseudocode Logic Block\ndef process_ledger(input_stream):\n state = S0_INIT\n \n # Phase 1: Schema Validation\n if not validate_schema(input_stream):\n return (E1_REJECT, null, error_manifest)\n \n state = S1_VALIDATE\n \n # Phase 2: Structural Integrity Check\n checksum = compute_sha256(input_stream.payload)\n if checksum != input_stream.metadata.checksum:\n return (E1_REJECT, null, INTEGRITY_FAILURE)\n \n # Phase 3: Lexical Analysis\n tokens = tokenize(input_stream.payload)\n if token_error_rate(tokens) \u003e 0.001:\n return (E2_ERROR, partial_result, token_errors)\n \n state = S2_PARSE\n \n # Phase 4: Semantic Parsing\n ast = build_ledger_ast(tokens)\n entries = extract_journal_entries(ast)\n \n # Phase 5: Balance Verification\n for entry in entries:\n if abs(sum(entry.debits) - sum(entry.credits)) \u003e EPSILON:\n flag_imbalance(entry)\n \n state = S3_TRANSFORM\n \n # Phase 6: Normalization\n normalized = normalize_to_canonical(entries)\n \n state = S4_COMMIT\n return (S4_COMMIT, normalized, null)\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 Risk Calculation Formula\n\n```\nBPS = (P × I × D) / M\n\nWhere:\n P = Probability of occurrence (0.0 - 1.0)\n I = Impact severity (1 - 10)\n D = Detection difficulty (1 - 10)\n M = Mitigation effectiveness (1 - 10)\n\nRisk Classification:\n BPS \u003c 2.0 → LOW (Green)\n BPS 2.0-5.0 → MEDIUM (Yellow)\n BPS 5.0-8.0 → HIGH (Orange)\n BPS \u003e 8.0 → CRITICAL (Red)\n```\n\n### 2.2 Failure Mode Matrix\n\n| Failure Mode ID | Description | P | I | D | M | BPS | Classification |\n|-----------------|-------------|---|---|---|---|-----|----------------|\n| FM-001 | Schema validation bypass | 0.05 | 10 | 3 | 8 | 0.19 | LOW |\n| FM-002 | Checksum collision attack | 0.01 | 10 | 8 | 6 | 0.13 | LOW |\n| FM-003 | Memory exhaustion (large payload) | 0.15 | 8 | 4 | 5 | 0.96 | LOW |\n| FM-004 | Floating-point precision loss | 0.30 | 9 | 7 | 4 | 4.73 | MEDIUM |\n| FM-005 | Character encoding corruption | 0.20 | 7 | 6 | 7 | 1.20 | LOW |\n| FM-006 | Concurrent write race condition | 0.25 | 9 | 8 | 3 | 6.00 | HIGH |\n| FM-007 | Malformed date parsing | 0.35 | 6 | 3 | 8 | 0.79 | LOW |\n| FM-008 | Currency conversion drift | 0.40 | 8 | 9 | 5 | 5.76 | HIGH |\n| FM-009 | Orphaned transaction reference | 0.20 | 7 | 5 | 6 | 1.17 | LOW |\n| FM-010 | Cascading validation timeout | 0.10 | 10 | 6 | 4 | 1.50 | LOW |\n| FM-011 | Double-entry imbalance propagation | 0.08 | 10 | 4 | 3 | 1.07 | LOW |\n| FM-012 | Upstream dependency failure | 0.45 | 8 | 2 | 6 | 1.20 | LOW |\n| FM-013 | State machine deadlock | 0.05 | 10 | 9 | 2 | 2.25 | MEDIUM |\n| FM-014 | Audit trail truncation | 0.12 | 9 | 7 | 5 | 1.51 | LOW |\n| FM-015 | Regulatory field omission | 0.18 | 10 | 5 | 7 | 1.29 | LOW |\n\n### 2.3 Aggregate Risk Profile\n\n```\nTotal Weighted BPS = Σ(BPS_i × Weight_i) / n\n\nCritical Path Components:\n - Input Validation Layer: Σ BPS = 2.08\n - Parse Engine: Σ BPS = 7.69\n - Transform Pipeline: Σ BPS = 8.56\n - Commit Handler: Σ BPS = 4.96\n\nSystem Aggregate BPS: 5.82 (HIGH - Requires active monitoring)\n```\n\n---\n\n## 3. JSON Schema Specification\n\n### 3.1 Input Payload Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://schemas.internal/a-cfo-ledgerparser/v2.1/input\",\n \"title\": \"LedgerParser Input Payload\",\n \"type\": \"object\",\n \"required\": [\"metadata\", \"payload\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"metadata\": {\n \"type\": \"object\",\n \"required\": [\"version\", \"timestamp\", \"source_system\", \"checksum\", \"entry_count\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"version\": {\n \"type\": \"string\",\n \"pattern\": \"^[0-9]+\\\\.[0-9]+\\\\.[0-9]+$\",\n \"description\": \"Semantic version of payload format\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 UTC timestamp\"\n },\n \"source_system\": {\n \"type\": \"string\",\n \"enum\": [\"ERP_SAP\", \"ERP_ORACLE\", \"ERP_NETSUITE\", \"LEGACY_MAINFRAME\", \"MANUAL_ENTRY\"],\n \"description\": \"Originating system identifier\"\n },\n \"checksum\": {\n \"type\": \"string\",\n \"pattern\": \"^sha256:[a-f0-9]{64}$\",\n \"description\": \"SHA-256 hash of payload object\"\n },\n \"entry_count\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 1000000,\n \"description\": \"Expected journal entry count\"\n },\n \"fiscal_period\": {\n \"type\": \"object\",\n \"required\": [\"year\", \"period\"],\n \"properties\": {\n \"year\": {\n \"type\": \"integer\",\n \"minimum\": 1900,\n \"maximum\": 2100\n },\n \"period\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 13\n }\n }\n },\n \"correlation_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\",\n \"description\": \"Distributed tracing identifier\"\n }\n }\n },\n \"payload\": {\n \"type\": \"object\",\n \"required\": [\"journal_entries\"],\n \"properties\": {\n \"journal_entries\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"maxItems\": 1000000,\n \"items\": {\n \"$ref\": \"#/$defs/journal_entry\"\n }\n },\n \"adjustments\": {\n \"type\": \"array\",\n \"items\": {\n \"$ref\": \"#/$defs/adjustment_entry\"\n }\n }\n }\n }\n },\n \"$defs\": {\n \"journal_entry\": {\n \"type\": \"object\",\n \"required\": [\"entry_id\", \"effective_date\", \"lines\", \"status\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"entry_id\": {\n \"type\": \"string\",\n \"pattern\": \"^JE-[A-Z0-9]{8}-[0-9]{6}$\"\n },\n \"effective_date\": {\n \"type\": \"string\",\n \"format\": \"date\"\n },\n \"posting_date\": {\n \"type\": \"string\",\n \"format\": \"date\"\n },\n \"description\": {\n \"type\": \"string\",\n \"maxLength\": 500\n },\n \"status\": {\n \"type\": \"string\",\n \"enum\": [\"DRAFT\", \"PENDING\", \"POSTED\", \"REVERSED\", \"VOID\"]\n },\n \"lines\": {\n \"type\": \"array\",\n \"minItems\": 2,\n \"items\": {\n \"$ref\": \"#/$defs/line_item\"\n }\n },\n \"attachments\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"attachment_id\": {\"type\": \"string\"},\n \"mime_type\": {\"type\": \"string\"},\n \"checksum\": {\"type\": \"string\"}\n }\n }\n }\n }\n },\n \"line_item\": {\n \"type\": \"object\",\n \"required\": [\"line_number\", \"account_code\", \"amount\", \"entry_type\", \"currency\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"line_number\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 9999\n },\n \"account_code\": {\n \"type\": \"string\",\n \"pattern\": \"^[0-9]{4}-[0-9]{4}-[0-9]{4}$\"\n },\n \"amount\": {\n \"type\": \"object\",\n \"required\": [\"value\", \"precision\"],\n \"properties\": {\n \"value\": {\n \"type\": \"string\",\n \"pattern\": \"^-?[0-9]+$\",\n \"description\": \"Integer representation to avoid floating-point errors\"\n },\n \"precision\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 8,\n \"description\": \"Decimal places (value / 10^precision = actual amount)\"\n }\n }\n },\n \"entry_type\": {\n \"type\": \"string\",\n \"enum\": [\"DEBIT\", \"CREDIT\"]\n },\n \"currency\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{3}$\",\n \"description\": \"ISO 4217 currency code\"\n },\n \"cost_center\": {\n \"type\": \"string\",\n \"pattern\": \"^CC-[A-Z0-9]{6}$\"\n },\n \"project_code\": {\n \"type\": \"string\",\n \"pattern\": \"^PRJ-[0-9]{8}$\"\n },\n \"memo\": {\n \"type\": \"string\",\n \"maxLength\": 255\n }\n }\n },\n \"adjustment_entry\": {\n \"type\": \"object\",\n \"required\": [\"adjustment_id\", \"original_entry_id\", \"adjustment_type\", \"lines\"],\n \"properties\": {\n \"adjustment_id\": {\n \"type\": \"string\",\n \"pattern\": \"^ADJ-[A-Z0-9]{8}-[0-9]{6}$\"\n },\n \"original_entry_id\": {\n \"type\": \"string\",\n \"pattern\": \"^JE-[A-Z0-9]{8}-[0-9]{6}$\"\n },\n \"adjustment_type\": {\n \"type\": \"string\",\n \"enum\": [\"CORRECTION\", \"REVERSAL\", \"RECLASSIFICATION\", \"ACCRUAL\"]\n },\n \"lines\": {\n \"type\": \"array\",\n \"minItems\": 2,\n \"items\": {\n \"$ref\": \"#/$defs/line_item\"\n }\n }\n }\n }\n }\n}\n```\n\n### 3.2 Output Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://schemas.internal/a-cfo-ledgerparser/v2.1/output\",\n \"title\": \"LedgerParser Output Result\",\n \"type\": \"object\",\n \"required\": [\"result_code\", \"processing_metadata\", \"data\"],\n \"properties\": {\n \"result_code\": {\n \"type\": \"string\",\n \"enum\": [\"S4_COMMIT\", \"E1_REJECT\", \"E2_ERROR\", \"E0_ABORT\"]\n },\n \"processing_metadata\": {\n \"type\": \"object\",\n \"required\": [\"start_time\", \"end_time\", \"entries_processed\", \"entries_failed\"],\n \"properties\": {\n \"start_time\": {\"type\": \"string\", \"format\": \"date-time\"},\n \"end_time\": {\"type\": \"string\", \"format\": \"date-time\"},\n \"duration_ms\": {\"type\": \"integer\"},\n \"entries_processed\": {\"type\": \"integer\"},\n \"entries_failed\": {\"type\": \"integer\"},\n \"warnings\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"code\": {\"type\": \"string\"},\n \"message\": {\"type\": \"string\"},\n \"entry_id\": {\"type\": \"string\"}\n }\n }\n }\n }\n },\n \"data\": {\n \"type\": [\"object\", \"null\"],\n \"properties\": {\n \"canonical_entries\": {\"type\": \"array\"},\n \"balance_verification\": {\n \"type\": \"object\",\n \"properties\": {\n \"total_debits\": {\"type\": \"string\"},\n \"total_credits\": {\"type\": \"string\"},\n \"variance\": {\"type\": \"string\"},\n \"balanced\": {\"type\": \"boolean\"}\n }\n }\n }\n },\n \"errors\": {\n \"type\": [\"array\", \"null\"],\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"error_code\": {\"type\": \"string\"},\n \"severity\": {\"type\": \"string\", \"enum\": [\"FATAL\", \"ERROR\", \"WARNING\"]},\n \"location\": {\"type\": \"string\"},\n \"message\": {\"type\": \"string\n```}}}}}}",
1936
+ "outcome": "A-CFO-LedgerParser",
1937
+ "rType": 0,
1938
+ "persona": "CFO",
1939
+ "primary_model": "Claude-3.5-Reasoning",
1940
+ "privacy_tier": "Public",
1941
+ "sybox_fee_split": {
1942
+ "dev": 0.5,
1943
+ "curation": 0.4,
1944
+ "author": 0.1
1945
+ },
1946
+ "ticker": "SYNL",
1947
+ "audit_cadence": "Weekly",
1948
+ "lifecycle": "Genesis-Platinum",
1949
+ "global_outputs": [
1950
+ "synthesis_id",
1951
+ "logic_id",
1952
+ "bps_verified",
1953
+ "model_stack",
1954
+ "processing_ms",
1955
+ "timestamp"
1956
+ ],
1957
+ "custom_outputs": [
1958
+ {
1959
+ "field_name": "canonical_ledger_summary",
1960
+ "type": "Object",
1961
+ "description": "Nested object containing total debits, credits, and variance in base USD.",
1962
+ "downstream_intent": "A-CEO-KPISiphon",
1963
+ "bps_sensitivity": "YES"
1964
+ },
1965
+ {
1966
+ "field_name": "integrity_manifest",
1967
+ "type": "Object",
1968
+ "description": "Includes SHA-256 validation hashes and double-entry verification status.",
1969
+ "downstream_intent": "External Auditors",
1970
+ "bps_sensitivity": "YES"
1971
+ },
1972
+ {
1973
+ "field_name": "anomaly_signatures",
1974
+ "type": "Array",
1975
+ "description": "IDs and snippets of entries exceeding currency conversion or precision tolerances.",
1976
+ "downstream_intent": "A-CFO-SolvencyAudit",
1977
+ "bps_sensitivity": "No"
1978
+ },
1979
+ {
1980
+ "field_name": "normalization_metadata",
1981
+ "type": "Object",
1982
+ "description": "Counts of entries processed, failed, and specific cost-center allocation mappings.",
1983
+ "downstream_intent": "Data Engineer Persona",
1984
+ "bps_sensitivity": "No"
1985
+ }
1986
+ ]
1987
+ },
1988
+ {
1989
+ "id": 91,
1990
+ "successBps": 9718,
1991
+ "cid": "ar://SYNTH_ATOMIC_CFO_SOLVENCYAUDIT",
1992
+ "costUsd": 1500,
1993
+ "details": "# A-CFO-SolvencyAudit Technical Specification\n\n## 1. Core Logic Definition\n\n### 1.1 Solvency Audit Function\n\n```\nSolvencyScore(t) = Σ[w_i × R_i(t)] / Σ[w_i × L_i(t)] × AdjustmentFactor(t)\n\nWhere:\n R_i(t) = Realizable Asset Value at time t for asset class i\n L_i(t) = Liability Obligation at time t for liability class i\n w_i = Weight coefficient per asset/liability class\n AdjustmentFactor(t) = 1 - (VolatilityPenalty + LiquidityDiscount + ConcentrationRisk)\n```\n\n### 1.2 Primary Solvency Ratios\n\n| Ratio | Formula | Critical Threshold |\n|-------|---------|-------------------|\n| Current Ratio | `CA / CL` | ≥ 1.5 |\n| Quick Ratio | `(CA - Inventory) / CL` | ≥ 1.0 |\n| Cash Ratio | `(Cash + MarketableSecurities) / CL` | ≥ 0.2 |\n| Debt-to-Equity | `TotalDebt / ShareholderEquity` | ≤ 2.0 |\n| Interest Coverage | `EBIT / InterestExpense` | ≥ 3.0 |\n| Debt Service Coverage | `NOI / TotalDebtService` | ≥ 1.25 |\n\n### 1.3 Composite Solvency Index (CSI)\n\n```\nCSI = (0.25 × NormalizedCurrentRatio) + \n (0.20 × NormalizedQuickRatio) + \n (0.15 × NormalizedCashRatio) + \n (0.20 × InverseNormalizedDTE) + \n (0.10 × NormalizedICR) + \n (0.10 × NormalizedDSCR)\n\nNormalization: N(x) = min(1, max(0, (x - x_min) / (x_max - x_min)))\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 Risk Category Definitions\n\n```\nBPS = Σ(ImpactScore × ProbabilityScore × DetectionDifficulty) / MaxPossibleScore × 100\n```\n\n### 2.2 Operational Failure Risk Matrix\n\n| Risk ID | Failure Mode | Impact (1-10) | Probability (1-10) | Detection (1-10) | BPS | Mitigation Priority |\n|---------|--------------|---------------|-------------------|------------------|-----|---------------------|\n| BPS-001 | Data Feed Latency \u003e 5min | 8 | 6 | 3 | 14.4 | P1 |\n| BPS-002 | Asset Valuation Stale \u003e 24h | 9 | 4 | 4 | 14.4 | P1 |\n| BPS-003 | Liability Sync Failure | 10 | 3 | 5 | 15.0 | P0 |\n| BPS-004 | FX Rate Desync | 7 | 5 | 4 | 14.0 | P2 |\n| BPS-005 | Calculation Engine Timeout | 8 | 4 | 2 | 6.4 | P2 |\n| BPS-006 | Threshold Alert Suppression | 9 | 2 | 7 | 12.6 | P1 |\n| BPS-007 | Audit Trail Corruption | 10 | 1 | 8 | 8.0 | P1 |\n| BPS-008 | Regulatory Report Delay | 9 | 3 | 3 | 8.1 | P1 |\n| BPS-009 | Multi-Entity Aggregation Error | 8 | 4 | 6 | 19.2 | P0 |\n| BPS-010 | Historical Data Truncation | 7 | 2 | 5 | 7.0 | P3 |\n\n### 2.3 BPS Threshold Classification\n\n```\nBPS Range | Classification | Response SLA | Escalation Level\n-------------|----------------|--------------|------------------\n0.0 - 5.0 | LOW | 72h | L1 Operations\n5.1 - 10.0 | MODERATE | 24h | L2 Engineering\n10.1 - 15.0 | HIGH | 4h | L3 SRE + Finance\n15.1 - 20.0 | CRITICAL | 1h | P0 Incident\n\u003e 20.0 | CATASTROPHIC | 15min | Executive + Regulatory\n```\n\n### 2.4 Cascade Failure Probability Model\n\n```\nP(CascadeFailure) = 1 - Π(1 - P_i × DependencyWeight_i)\n\nDependencyGraph:\n DataIngestion → Valuation → Calculation → Reporting → Alerting\n \n Edge Weights:\n DataIngestion → Valuation: 0.95\n Valuation → Calculation: 0.90\n Calculation → Reporting: 0.85\n Reporting → Alerting: 0.80\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n### 3.1 Primary Audit Request Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-cfo-solvency-audit/v2.1.0\",\n \"title\": \"A-CFO-SolvencyAudit-Request\",\n \"type\": \"object\",\n \"required\": [\"auditId\", \"timestamp\", \"entityScope\", \"assetPortfolio\", \"liabilityPortfolio\", \"parameters\"],\n \"properties\": {\n \"auditId\": {\n \"type\": \"string\",\n \"pattern\": \"^AUD-[0-9]{4}-[A-Z]{2}-[0-9]{8}$\",\n \"description\": \"Unique audit identifier\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 UTC timestamp\"\n },\n \"entityScope\": {\n \"type\": \"object\",\n \"required\": [\"primaryEntity\", \"consolidationType\"],\n \"properties\": {\n \"primaryEntity\": {\n \"type\": \"string\",\n \"pattern\": \"^ENT-[0-9]{6}$\"\n },\n \"subsidiaries\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"pattern\": \"^ENT-[0-9]{6}$\"\n },\n \"maxItems\": 500\n },\n \"consolidationType\": {\n \"type\": \"string\",\n \"enum\": [\"FULL\", \"PROPORTIONAL\", \"EQUITY_METHOD\", \"STANDALONE\"]\n },\n \"eliminationRules\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"ruleId\": { \"type\": \"string\" },\n \"sourceEntity\": { \"type\": \"string\" },\n \"targetEntity\": { \"type\": \"string\" },\n \"eliminationType\": { \n \"type\": \"string\",\n \"enum\": [\"INTERCOMPANY_RECEIVABLE\", \"INTERCOMPANY_PAYABLE\", \"INVESTMENT\", \"DIVIDEND\"]\n }\n }\n }\n }\n }\n },\n \"assetPortfolio\": {\n \"type\": \"object\",\n \"required\": [\"currentAssets\", \"nonCurrentAssets\", \"valuationDate\"],\n \"properties\": {\n \"valuationDate\": {\n \"type\": \"string\",\n \"format\": \"date\"\n },\n \"baseCurrency\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{3}$\",\n \"default\": \"USD\"\n },\n \"currentAssets\": {\n \"type\": \"object\",\n \"properties\": {\n \"cashAndEquivalents\": {\n \"$ref\": \"#/$defs/monetaryAmount\"\n },\n \"marketableSecurities\": {\n \"$ref\": \"#/$defs/monetaryAmount\"\n },\n \"accountsReceivable\": {\n \"type\": \"object\",\n \"properties\": {\n \"gross\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"allowanceForDoubtful\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"agingBuckets\": {\n \"type\": \"object\",\n \"properties\": {\n \"current\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"days30\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"days60\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"days90\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"days90Plus\": { \"$ref\": \"#/$defs/monetaryAmount\" }\n }\n }\n }\n },\n \"inventory\": {\n \"type\": \"object\",\n \"properties\": {\n \"rawMaterials\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"workInProgress\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"finishedGoods\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"valuationMethod\": {\n \"type\": \"string\",\n \"enum\": [\"FIFO\", \"LIFO\", \"WEIGHTED_AVERAGE\", \"SPECIFIC_ID\"]\n }\n }\n },\n \"prepaidExpenses\": { \"$ref\": \"#/$defs/monetaryAmount\" }\n }\n },\n \"nonCurrentAssets\": {\n \"type\": \"object\",\n \"properties\": {\n \"propertyPlantEquipment\": {\n \"type\": \"object\",\n \"properties\": {\n \"grossValue\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"accumulatedDepreciation\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"impairmentProvision\": { \"$ref\": \"#/$defs/monetaryAmount\" }\n }\n },\n \"intangibleAssets\": {\n \"type\": \"object\",\n \"properties\": {\n \"goodwill\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"patents\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"trademarks\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"software\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"amortization\": { \"$ref\": \"#/$defs/monetaryAmount\" }\n }\n },\n \"longTermInvestments\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"deferredTaxAssets\": { \"$ref\": \"#/$defs/monetaryAmount\" }\n }\n }\n }\n },\n \"liabilityPortfolio\": {\n \"type\": \"object\",\n \"required\": [\"currentLiabilities\", \"nonCurrentLiabilities\"],\n \"properties\": {\n \"currentLiabilities\": {\n \"type\": \"object\",\n \"properties\": {\n \"accountsPayable\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"shortTermDebt\": {\n \"type\": \"array\",\n \"items\": {\n \"$ref\": \"#/$defs/debtInstrument\"\n }\n },\n \"currentPortionLongTermDebt\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"accruedExpenses\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"deferredRevenue\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"taxesPayable\": { \"$ref\": \"#/$defs/monetaryAmount\" }\n }\n },\n \"nonCurrentLiabilities\": {\n \"type\": \"object\",\n \"properties\": {\n \"longTermDebt\": {\n \"type\": \"array\",\n \"items\": {\n \"$ref\": \"#/$defs/debtInstrument\"\n }\n },\n \"pensionObligations\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"deferredTaxLiabilities\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"leaseObligations\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"contingentLiabilities\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"description\": { \"type\": \"string\" },\n \"estimatedAmount\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"probability\": { \n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"classification\": {\n \"type\": \"string\",\n \"enum\": [\"PROBABLE\", \"POSSIBLE\", \"REMOTE\"]\n }\n }\n }\n }\n }\n }\n }\n },\n \"parameters\": {\n \"type\": \"object\",\n \"properties\": {\n \"stressTestScenarios\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"enum\": [\"BASE\", \"MILD_RECESSION\", \"SEVERE_RECESSION\", \"LIQUIDITY_CRISIS\", \"MARKET_SHOCK\"]\n },\n \"default\": [\"BASE\"]\n },\n \"confidenceLevel\": {\n \"type\": \"number\",\n \"minimum\": 0.90,\n \"maximum\": 0.99,\n \"default\": 0.95\n },\n \"timeHorizon\": {\n \"type\": \"object\",\n \"properties\": {\n \"value\": { \"type\": \"integer\", \"minimum\": 1, \"maximum\": 120 },\n \"unit\": { \"type\": \"string\", \"enum\": [\"DAYS\", \"MONTHS\", \"QUARTERS\", \"YEARS\"] }\n }\n },\n \"regulatoryFramework\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"enum\": [\"GAAP\", \"IFRS\", \"BASEL_III\", \"SOLVENCY_II\", \"SOX\"]\n }\n }\n }\n }\n },\n \"$defs\": {\n \"monetaryAmount\": {\n \"type\": \"object\",\n \"required\": [\"value\", \"currency\"],\n \"properties\": {\n \"value\": {\n \"type\": \"number\",\n \"minimum\": -999999999999.99,\n \"maximum\": 999999999999.99\n },\n \"currency\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{3}$\"\n },\n \"precision\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 8,\n \"default\": 2\n }\n }\n },\n \"debtInstrument\": {\n \"type\": \"object\",\n \"required\": [\"instrumentId\", \"principal\", \"interestRate\", \"maturityDate\"],\n \"properties\": {\n \"instrumentId\": {\n \"type\": \"string\",\n \"pattern\": \"^DEBT-[A-Z0-9]{8}$\"\n },\n \"instrumentType\": {\n \"type\": \"string\",\n \"enum\": [\"TERM_LOAN\", \"REVOLVER\", \"BOND\", \"CONVERTIBLE\", \"COMMERCIAL_PAPER\", \"LEASE\"]\n },\n \"principal\": { \"$ref\": \"#/$defs/monetaryAmount\" },\n \"interestRate\": {\n \"type\": \"object\",\n \"properties\": {\n \"type\": { \"type\": \"string\", \"enum\": [\"FIXED\", \"FLOATING\"] },\n \"baseRate\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"spread\": { \"type\": \"number\", \"\n```}}}}}}}",
1994
+ "outcome": "A-CFO-SolvencyAudit",
1995
+ "rType": 0,
1996
+ "persona": "CFO",
1997
+ "primary_model": "Claude-3.5-Reasoning",
1998
+ "privacy_tier": "Public",
1999
+ "sybox_fee_split": {
2000
+ "dev": 0.5,
2001
+ "curation": 0.4,
2002
+ "author": 0.1
2003
+ },
2004
+ "ticker": "SYNL",
2005
+ "audit_cadence": "Weekly",
2006
+ "lifecycle": "Genesis-Platinum",
2007
+ "global_outputs": [
2008
+ "synthesis_id",
2009
+ "logic_id",
2010
+ "bps_verified",
2011
+ "model_stack",
2012
+ "processing_ms",
2013
+ "timestamp"
2014
+ ],
2015
+ "custom_outputs": [
2016
+ {
2017
+ "field_name": "composite_solvency_index",
2018
+ "type": "Float",
2019
+ "description": "Normalized CSI score (0.0 - 1.0) based on weighted financial ratios.",
2020
+ "downstream_intent": "A-CEO-KPISiphon",
2021
+ "bps_sensitivity": "YES"
2022
+ },
2023
+ {
2024
+ "field_name": "ratio_compliance_map",
2025
+ "type": "Object",
2026
+ "description": "Key-value pairs of ratios (Current, Quick, Debt-to-Equity) and status strings.",
2027
+ "downstream_intent": "A-CFO-VolatSim",
2028
+ "bps_sensitivity": "YES"
2029
+ },
2030
+ {
2031
+ "field_name": "risk_cascade_probability",
2032
+ "type": "Float",
2033
+ "description": "Calculated probability of systemic failure based on dependency weights.",
2034
+ "downstream_intent": "A-CEO-ExecutiveBrief",
2035
+ "bps_sensitivity": "No"
2036
+ },
2037
+ {
2038
+ "field_name": "entity_elimination_summary",
2039
+ "type": "Array",
2040
+ "description": "Summary of intercompany receivables/payables removed during consolidation.",
2041
+ "downstream_intent": "Tax/Legal Persona",
2042
+ "bps_sensitivity": "No"
2043
+ },
2044
+ {
2045
+ "field_name": "bps_incident_log",
2046
+ "type": "Array",
2047
+ "description": "Active alerts (e.g., BPS-002 Stale Valuation) impacting audit fidelity.",
2048
+ "downstream_intent": "SRE Persona",
2049
+ "bps_sensitivity": "YES"
2050
+ }
2051
+ ]
2052
+ },
2053
+ {
2054
+ "id": 93,
2055
+ "successBps": 9924,
2056
+ "cid": "ar://SYNTH_ATOMIC_CMO_PULSEHARVESTER",
2057
+ "costUsd": 1500,
2058
+ "details": "# A-CMO-PulseHarvester Technical Specification\n\n## System Overview\n\nA-CMO-PulseHarvester is a real-time marketing signal aggregation and processing system designed to harvest, normalize, and route customer engagement pulses across distributed channel endpoints.\n\n---\n\n## Core Logic Architecture\n\n### Signal Processing Pipeline\n\n```\n┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐\n│ Pulse Ingress │───▶│ Normalization │───▶│ Enrichment │\n│ (Multi-Channel)│ │ Engine │ │ Layer │\n└─────────────────┘ └──────────────────┘ └─────────────────┘\n │\n ▼\n┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐\n│ Action Router │◀───│ Scoring Engine │◀───│ Deduplication │\n│ (Downstream) │ │ (BPS Matrix) │ │ Buffer │\n└─────────────────┘ └──────────────────┘ └─────────────────┘\n```\n\n---\n\n## Breakdown Point Score (BPS) Matrix\n\n### Risk Classification Formula\n\n```\nBPS = Σ(Wᵢ × Rᵢ × Iᵢ) / N\n\nWhere:\n Wᵢ = Weight factor for failure domain i (0.0 - 1.0)\n Rᵢ = Risk probability coefficient (0.0 - 1.0)\n Iᵢ = Impact severity multiplier (1 - 10)\n N = Normalization constant (sum of all weights)\n```\n\n### BPS Threshold Classifications\n\n| BPS Range | Classification | Action Required |\n|-----------|----------------|-----------------|\n| 0.00 - 0.15 | NOMINAL | Standard monitoring |\n| 0.16 - 0.35 | ELEVATED | Increase observation frequency |\n| 0.36 - 0.55 | WARNING | Alert on-call, prepare mitigation |\n| 0.56 - 0.75 | CRITICAL | Immediate intervention required |\n| 0.76 - 1.00 | BREAKDOWN | Circuit breaker activation |\n\n### Operational Failure Risk Matrix\n\n| Failure Domain | Weight (W) | Risk Factors | Impact (I) | Mitigation |\n|----------------|------------|--------------|------------|------------|\n| **Ingress Saturation** | 0.25 | Queue depth \u003e 10K, Latency p99 \u003e 500ms | 8 | Backpressure activation |\n| **Normalization Drift** | 0.15 | Schema mismatch rate \u003e 2%, Parse failures \u003e 0.5% | 6 | Schema version rollback |\n| **Enrichment Timeout** | 0.20 | External API latency \u003e 200ms, Cache miss \u003e 15% | 7 | Graceful degradation mode |\n| **Dedup Buffer Overflow** | 0.15 | Memory utilization \u003e 85%, Bloom filter FPR \u003e 1% | 5 | Buffer flush + resize |\n| **Scoring Engine Stall** | 0.15 | Processing time \u003e 50ms/pulse, Model load failure | 9 | Fallback scoring model |\n| **Router Partition** | 0.10 | Downstream ACK rate \u003c 95%, Connection pool exhaustion | 8 | Retry with exponential backoff |\n\n### BPS Calculation Example\n\n```python\ndef calculate_bps(metrics: dict) -\u003e float:\n domains = {\n \u0027ingress_saturation\u0027: {\n \u0027weight\u0027: 0.25,\n \u0027impact\u0027: 8,\n \u0027risk\u0027: min(1.0, (metrics[\u0027queue_depth\u0027] / 10000) * \n (metrics[\u0027p99_latency_ms\u0027] / 500))\n },\n \u0027normalization_drift\u0027: {\n \u0027weight\u0027: 0.15,\n \u0027impact\u0027: 6,\n \u0027risk\u0027: min(1.0, (metrics[\u0027schema_mismatch_rate\u0027] / 0.02) * \n (metrics[\u0027parse_failure_rate\u0027] / 0.005))\n },\n \u0027enrichment_timeout\u0027: {\n \u0027weight\u0027: 0.20,\n \u0027impact\u0027: 7,\n \u0027risk\u0027: min(1.0, (metrics[\u0027api_latency_ms\u0027] / 200) * \n (metrics[\u0027cache_miss_rate\u0027] / 0.15))\n },\n \u0027dedup_overflow\u0027: {\n \u0027weight\u0027: 0.15,\n \u0027impact\u0027: 5,\n \u0027risk\u0027: min(1.0, (metrics[\u0027memory_util\u0027] / 0.85) * \n (metrics[\u0027bloom_fpr\u0027] / 0.01))\n },\n \u0027scoring_stall\u0027: {\n \u0027weight\u0027: 0.15,\n \u0027impact\u0027: 9,\n \u0027risk\u0027: min(1.0, metrics[\u0027scoring_time_ms\u0027] / 50) if \n metrics[\u0027model_loaded\u0027] else 1.0\n },\n \u0027router_partition\u0027: {\n \u0027weight\u0027: 0.10,\n \u0027impact\u0027: 8,\n \u0027risk\u0027: min(1.0, (1 - metrics[\u0027downstream_ack_rate\u0027]) / 0.05)\n }\n }\n \n total_weight = sum(d[\u0027weight\u0027] for d in domains.values())\n bps = sum(\n d[\u0027weight\u0027] * d[\u0027risk\u0027] * (d[\u0027impact\u0027] / 10) \n for d in domains.values()\n ) / total_weight\n \n return round(min(1.0, max(0.0, bps)), 4)\n```\n\n---\n\n## JSON Schema for Input Validation\n\n### Pulse Event Schema (v2.3.0)\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://schemas.internal/a-cmo-pulseharvester/pulse-event/v2.3.0\",\n \"title\": \"PulseEvent\",\n \"description\": \"Canonical schema for marketing pulse ingestion\",\n \"type\": \"object\",\n \"required\": [\n \"event_id\",\n \"timestamp\",\n \"channel\",\n \"pulse_type\",\n \"entity\",\n \"payload\"\n ],\n \"additionalProperties\": false,\n \"properties\": {\n \"event_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\",\n \"description\": \"UUIDv7 for temporal ordering\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 with millisecond precision\"\n },\n \"channel\": {\n \"type\": \"string\",\n \"enum\": [\n \"email\",\n \"sms\",\n \"push\",\n \"web\",\n \"social\",\n \"voice\",\n \"iot\",\n \"partner_api\"\n ]\n },\n \"pulse_type\": {\n \"type\": \"string\",\n \"enum\": [\n \"impression\",\n \"click\",\n \"conversion\",\n \"engagement\",\n \"bounce\",\n \"unsubscribe\",\n \"complaint\",\n \"delivery\",\n \"open\"\n ]\n },\n \"entity\": {\n \"type\": \"object\",\n \"required\": [\"entity_id\", \"entity_type\"],\n \"properties\": {\n \"entity_id\": {\n \"type\": \"string\",\n \"minLength\": 8,\n \"maxLength\": 128,\n \"pattern\": \"^[a-zA-Z0-9_-]+$\"\n },\n \"entity_type\": {\n \"type\": \"string\",\n \"enum\": [\"customer\", \"prospect\", \"lead\", \"account\", \"anonymous\"]\n },\n \"identity_graph_ref\": {\n \"type\": \"string\",\n \"format\": \"uri\",\n \"description\": \"Optional reference to identity resolution service\"\n }\n }\n },\n \"payload\": {\n \"type\": \"object\",\n \"required\": [\"campaign_id\"],\n \"properties\": {\n \"campaign_id\": {\n \"type\": \"string\",\n \"pattern\": \"^CMP-[A-Z0-9]{8,16}$\"\n },\n \"variant_id\": {\n \"type\": \"string\",\n \"pattern\": \"^VAR-[A-Z0-9]{4,8}$\"\n },\n \"content_id\": {\n \"type\": \"string\"\n },\n \"attribution\": {\n \"type\": \"object\",\n \"properties\": {\n \"source\": {\"type\": \"string\"},\n \"medium\": {\"type\": \"string\"},\n \"term\": {\"type\": \"string\"},\n \"content\": {\"type\": \"string\"},\n \"campaign\": {\"type\": \"string\"}\n }\n },\n \"value\": {\n \"type\": \"object\",\n \"properties\": {\n \"amount\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 999999999.99\n },\n \"currency\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{3}$\"\n }\n }\n },\n \"metadata\": {\n \"type\": \"object\",\n \"additionalProperties\": true,\n \"maxProperties\": 50\n }\n }\n },\n \"context\": {\n \"type\": \"object\",\n \"properties\": {\n \"geo\": {\n \"type\": \"object\",\n \"properties\": {\n \"country_code\": {\"type\": \"string\", \"pattern\": \"^[A-Z]{2}$\"},\n \"region\": {\"type\": \"string\"},\n \"city\": {\"type\": \"string\"},\n \"postal_code\": {\"type\": \"string\"},\n \"latitude\": {\"type\": \"number\", \"minimum\": -90, \"maximum\": 90},\n \"longitude\": {\"type\": \"number\", \"minimum\": -180, \"maximum\": 180}\n }\n },\n \"device\": {\n \"type\": \"object\",\n \"properties\": {\n \"type\": {\"type\": \"string\", \"enum\": [\"mobile\", \"tablet\", \"desktop\", \"tv\", \"iot\", \"unknown\"]},\n \"os\": {\"type\": \"string\"},\n \"browser\": {\"type\": \"string\"},\n \"fingerprint_hash\": {\"type\": \"string\", \"pattern\": \"^[a-f0-9]{64}$\"}\n }\n },\n \"session_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\"\n }\n }\n },\n \"processing_hints\": {\n \"type\": \"object\",\n \"properties\": {\n \"priority\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 10,\n \"default\": 5\n },\n \"ttl_seconds\": {\n \"type\": \"integer\",\n \"minimum\": 60,\n \"maximum\": 604800,\n \"default\": 86400\n },\n \"idempotency_key\": {\n \"type\": \"string\",\n \"maxLength\": 256\n },\n \"routing_tags\": {\n \"type\": \"array\",\n \"items\": {\"type\": \"string\"},\n \"maxItems\": 10\n }\n }\n }\n }\n}\n```\n\n### Validation Error Response Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://schemas.internal/a-cmo-pulseharvester/validation-error/v1.0.0\",\n \"type\": \"object\",\n \"required\": [\"error_code\", \"errors\", \"request_id\", \"timestamp\"],\n \"properties\": {\n \"error_code\": {\n \"type\": \"string\",\n \"enum\": [\n \"SCHEMA_VALIDATION_FAILED\",\n \"MALFORMED_JSON\",\n \"PAYLOAD_TOO_LARGE\",\n \"RATE_LIMITED\",\n \"AUTHENTICATION_FAILED\"\n ]\n },\n \"errors\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"path\", \"message\", \"code\"],\n \"properties\": {\n \"path\": {\"type\": \"string\"},\n \"message\": {\"type\": \"string\"},\n \"code\": {\"type\": \"string\"},\n \"expected\": {},\n \"received\": {}\n }\n }\n },\n \"request_id\": {\"type\": \"string\", \"format\": \"uuid\"},\n \"timestamp\": {\"type\": \"string\", \"format\": \"date-time\"}\n }\n}\n```\n\n---\n\n## SRE Metrics Specification\n\n### Service Level Objectives (SLOs)\n\n| Metric | Target | Burn Rate Alert (1h) | Burn Rate Alert (6h) |\n|--------|--------|---------------------|---------------------|\n| Availability | 99.95% | 14.4x | 6x |\n| Ingestion Latency (p50) | ≤ 25ms | N/A | N/A |\n| Ingestion Latency (p95) | ≤ 100ms | 3x | 1.5x |\n| Ingestion Latency (p99) | ≤ 250ms | 2x | 1x |\n| Processing Success Rate | 99.9% | 10x | 4x |\n| Data Freshness | ≤ 30s | N/A | 2x |\n\n### Golden Signals Metrics\n\n```yaml\n# Latency Metrics\npulse_harvester_ingestion_duration_seconds:\n type: histogram\n buckets: [0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0, 2.5]\n labels: [channel, pulse_type, status]\n\npulse_harvester_processing_duration_seconds:\n type: histogram\n buckets: [0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5]\n labels: [stage, outcome]\n\npulse_harvester_end_to_end_latency_seconds:\n type: histogram\n buckets: [0.05, 0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10.0]\n labels: [channel, destination]\n\n# Traffic Metrics\npulse_harvester_events_received_total:\n type: counter\n labels: [channel, pulse_type, validation_status]\n\npulse_harvester_events_processed_total:\n type: counter\n labels: [channel, pulse_type, outcome]\n\npulse_harvester_events_routed_total:\n type: counter\n labels: [destination, status]\n\npulse_harvester_bytes_ingested_total:\n type: counter\n labels: [channel, compression]\n\n# Error Metrics\npulse_harvester_errors_total:\n type: counter\n labels: [error_type, stage, severity]\n\npulse_harvester_validation_failures_total:\n type: counter\n labels: [channel, failure_reason]\n\npulse_harvester_circuit_breaker_state:\n type: gauge\n labels: [component]\n # 0=closed, 1=half-open, 2=open\n\n# Saturation Metrics\npulse_harvester_queue_depth:\n type: gauge\n labels: [queue_name, priority]\n\npulse_harvester_buffer_utilization_ratio:\n type: gauge\n labels: [buffer_name]\n\npulse_harvester_connection_pool_usage_ratio:\n type: gauge\n labels: [pool_name, destination]\n\npulse_harvester_memory_heap_bytes:\n type: gauge\n labels: [generation]\n\npulse_harvester_goroutines_active:\n type: gauge\n labels: [component]\n```\n\n### Derived SLI Calculations\n\n```promql\n# Availability SLI\nsum(rate(pulse_harvester_events_processed_total{outcome=\"success\"}[5m]))\n/\nsum(rate(pulse_harvester_events_received_total{validation_status=\"valid\"}[5m]))\n```",
2059
+ "outcome": "A-CMO-PulseHarvester",
2060
+ "rType": 0,
2061
+ "persona": "CMO",
2062
+ "primary_model": "GPT-4o-Synthesis",
2063
+ "privacy_tier": "Public",
2064
+ "sybox_fee_split": {
2065
+ "dev": 0.5,
2066
+ "curation": 0.4,
2067
+ "author": 0.1
2068
+ },
2069
+ "ticker": "SYNL",
2070
+ "audit_cadence": "Weekly",
2071
+ "lifecycle": "Genesis-Platinum",
2072
+ "global_outputs": [
2073
+ "synthesis_id",
2074
+ "logic_id",
2075
+ "bps_verified",
2076
+ "model_stack",
2077
+ "processing_ms",
2078
+ "timestamp"
2079
+ ],
2080
+ "custom_outputs": [
2081
+ {
2082
+ "field_name": "harvest_efficiency_object",
2083
+ "type": "Object",
2084
+ "description": "Nested signal containing `events_valid` vs `events_received` and `total_duration_ms`.",
2085
+ "downstream_intent": "A-CEO-KPISiphon",
2086
+ "bps_sensitivity": "Yes"
2087
+ },
2088
+ {
2089
+ "field_name": "priority_redistribution_map",
2090
+ "type": "Object",
2091
+ "description": "Count of events mapped to priority levels (P5–P10).",
2092
+ "downstream_intent": "A-COO-WorkflowMapper",
2093
+ "bps_sensitivity": "No"
2094
+ },
2095
+ {
2096
+ "field_name": "identity_resolution_yield",
2097
+ "type": "Float",
2098
+ "description": "Ratio of successfully resolved identities to total unique entities.",
2099
+ "downstream_intent": "A-CMO-BrandTuner",
2100
+ "bps_sensitivity": "Yes"
2101
+ },
2102
+ {
2103
+ "field_name": "routing_ack_status",
2104
+ "type": "Boolean",
2105
+ "description": "Returns `true` only if all downstream sinks (Warehouse, Personalization) confirmed ACK.",
2106
+ "downstream_intent": "SRE/Sentinel Audit",
2107
+ "bps_sensitivity": "Yes"
2108
+ }
2109
+ ]
2110
+ },
2111
+ {
2112
+ "id": 96,
2113
+ "successBps": 9860,
2114
+ "cid": "ar://SYNTH_ATOMIC_CMO_BRANDTUNER",
2115
+ "costUsd": 1500,
2116
+ "details": "# A-CMO-BrandTuner Technical Logic Specification\n\n## 1. System Architecture Overview\n\n```\n┌─────────────────────────────────────────────────────────────────────┐\n│ A-CMO-BrandTuner Core Engine │\n├─────────────────────────────────────────────────────────────────────┤\n│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │\n│ │ Brand Signal │ │ Sentiment │ │ Competitive │ │\n│ │ Ingestion │──│ Analysis │──│ Indexing │ │\n│ └──────────────┘ └──────────────┘ └──────────────┘ │\n│ │ │ │ │\n│ ▼ ▼ ▼ │\n│ ┌─────────────────────────────────────────────────────────┐ │\n│ │ Brand Health Score Calculator │ │\n│ │ BHS = Σ(wᵢ × Sᵢ) / Σwᵢ × (1 - DegradationFactor)│ │\n│ └─────────────────────────────────────────────────────────┘ │\n│ │ │\n│ ▼ │\n│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │\n│ │ Tuning │ │ Threshold │ │ Alert │ │\n│ │ Engine │──│ Evaluator │──│ Dispatcher │ │\n│ └──────────────┘ └──────────────┘ └──────────────┘ │\n└─────────────────────────────────────────────────────────────────────┘\n```\n\n---\n\n## 2. Core Mathematical Models\n\n### 2.1 Brand Health Score (BHS)\n\n```\nBHS(t) = (α × Awareness(t) + β × Sentiment(t) + γ × Engagement(t) + δ × Loyalty(t)) / (α + β + γ + δ)\n\nWhere:\n α = 0.25 (Awareness weight)\n β = 0.30 (Sentiment weight)\n γ = 0.25 (Engagement weight)\n δ = 0.20 (Loyalty weight)\n\nNormalized Range: [0.0, 1.0]\n```\n\n### 2.2 Brand Velocity Index (BVI)\n\n```\nBVI(t) = (BHS(t) - BHS(t-Δt)) / Δt\n\nWhere:\n Δt = measurement interval (default: 24h)\n \nInterpretation:\n BVI \u003e 0.05 → Positive momentum\n BVI ∈ [-0.05, 0.05] → Stable\n BVI \u003c -0.05 → Negative momentum (trigger alert)\n```\n\n### 2.3 Competitive Position Score (CPS)\n\n```\nCPS = (BHS_self - μ_competitors) / σ_competitors\n\nWhere:\n μ_competitors = mean BHS of competitor set\n σ_competitors = standard deviation of competitor BHS\n \nZ-score interpretation:\n CPS \u003e 2.0 → Market leader\n CPS ∈ [0, 2.0] → Above average\n CPS ∈ [-2.0, 0] → Below average\n CPS \u003c -2.0 → Critical position\n```\n\n### 2.4 Tuning Coefficient Calculation\n\n```\nTuneCoeff(channel) = (TargetBHS - CurrentBHS) × ChannelElasticity(channel) × BudgetConstraint\n\nChannelElasticity:\n Social = 0.15\n Search = 0.12\n Display = 0.08\n Email = 0.10\n Content = 0.18\n PR = 0.22\n```\n\n---\n\n## 3. Breakdown Point Score (BPS) Matrix\n\n### 3.1 BPS Calculation Formula\n\n```\nBPS(component) = Σ(Pᵢ × Iᵢ × Dᵢ) / 100\n\nWhere:\n Pᵢ = Probability of failure (0-100)\n Iᵢ = Impact severity (1-10)\n Dᵢ = Detection difficulty (1-10)\n\nRisk Classification:\n BPS ∈ [0, 50) → LOW\n BPS ∈ [50, 150) → MEDIUM\n BPS ∈ [150, 300) → HIGH\n BPS ≥ 300 → CRITICAL\n```\n\n### 3.2 Component BPS Matrix\n\n| Component | Failure Mode | P (0-100) | I (1-10) | D (1-10) | BPS | Risk Level |\n|-----------|--------------|-----------|----------|----------|-----|------------|\n| Data Ingestion Pipeline | Source API timeout | 35 | 8 | 3 | 84 | MEDIUM |\n| Data Ingestion Pipeline | Schema drift | 25 | 9 | 7 | 157.5 | HIGH |\n| Data Ingestion Pipeline | Rate limit exceeded | 45 | 6 | 2 | 54 | MEDIUM |\n| Sentiment Analyzer | Model degradation | 20 | 8 | 8 | 128 | MEDIUM |\n| Sentiment Analyzer | Language detection failure | 15 | 5 | 4 | 30 | LOW |\n| Sentiment Analyzer | Context misclassification | 40 | 7 | 9 | 252 | HIGH |\n| BHS Calculator | Weight misconfiguration | 10 | 10 | 6 | 60 | MEDIUM |\n| BHS Calculator | Null signal propagation | 25 | 9 | 5 | 112.5 | MEDIUM |\n| BHS Calculator | Temporal alignment drift | 30 | 7 | 8 | 168 | HIGH |\n| Tuning Engine | Recommendation oscillation | 35 | 8 | 7 | 196 | HIGH |\n| Tuning Engine | Budget constraint violation | 20 | 9 | 4 | 72 | MEDIUM |\n| Tuning Engine | Channel elasticity stale | 45 | 6 | 6 | 162 | HIGH |\n| Alert Dispatcher | Notification queue overflow | 25 | 7 | 3 | 52.5 | MEDIUM |\n| Alert Dispatcher | Threshold false positive | 50 | 4 | 5 | 100 | MEDIUM |\n| Alert Dispatcher | Escalation path failure | 15 | 10 | 4 | 60 | MEDIUM |\n| Database Layer | Connection pool exhaustion | 20 | 9 | 3 | 54 | MEDIUM |\n| Database Layer | Replication lag \u003e 30s | 30 | 8 | 4 | 96 | MEDIUM |\n| Database Layer | Index corruption | 5 | 10 | 8 | 40 | LOW |\n| Cache Layer | Cache stampede | 25 | 7 | 5 | 87.5 | MEDIUM |\n| Cache Layer | Stale data serving | 40 | 6 | 7 | 168 | HIGH |\n| External Dependencies | Social API deprecation | 10 | 10 | 2 | 20 | LOW |\n| External Dependencies | Third-party rate limiting | 55 | 5 | 2 | 55 | MEDIUM |\n\n### 3.3 Aggregate System BPS\n\n```\nSystem_BPS = Σ(Component_BPS × CriticalityWeight) / Σ(CriticalityWeight)\n\nComponent Criticality Weights:\n Data Ingestion Pipeline = 1.5\n Sentiment Analyzer = 1.3\n BHS Calculator = 1.8\n Tuning Engine = 1.6\n Alert Dispatcher = 1.0\n Database Layer = 1.4\n Cache Layer = 0.9\n External Dependencies = 1.2\n\nCurrent System_BPS = 127.4 (MEDIUM)\n```\n\n---\n\n## 4. JSON Schema Specifications\n\n### 4.1 Brand Configuration Input Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://a-cmo.io/schemas/brand-tuner/config/v2\",\n \"title\": \"BrandTunerConfiguration\",\n \"type\": \"object\",\n \"required\": [\"brand_id\", \"tenant_id\", \"config_version\", \"brand_profile\", \"tuning_parameters\", \"alert_thresholds\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"brand_id\": {\n \"type\": \"string\",\n \"pattern\": \"^BRD-[A-Z0-9]{8}$\",\n \"description\": \"Unique brand identifier\"\n },\n \"tenant_id\": {\n \"type\": \"string\",\n \"pattern\": \"^TNT-[A-Z0-9]{6}$\"\n },\n \"config_version\": {\n \"type\": \"string\",\n \"pattern\": \"^\\\\d+\\\\.\\\\d+\\\\.\\\\d+$\"\n },\n \"brand_profile\": {\n \"type\": \"object\",\n \"required\": [\"name\", \"industry\", \"market_segment\", \"competitors\"],\n \"properties\": {\n \"name\": {\n \"type\": \"string\",\n \"minLength\": 1,\n \"maxLength\": 256\n },\n \"industry\": {\n \"type\": \"string\",\n \"enum\": [\"technology\", \"finance\", \"healthcare\", \"retail\", \"manufacturing\", \"media\", \"automotive\", \"energy\", \"telecom\", \"other\"]\n },\n \"market_segment\": {\n \"type\": \"string\",\n \"enum\": [\"enterprise\", \"smb\", \"consumer\", \"mixed\"]\n },\n \"competitors\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"maxItems\": 20,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"competitor_id\", \"name\", \"weight\"],\n \"properties\": {\n \"competitor_id\": {\n \"type\": \"string\",\n \"pattern\": \"^CMP-[A-Z0-9]{8}$\"\n },\n \"name\": {\n \"type\": \"string\"\n },\n \"weight\": {\n \"type\": \"number\",\n \"minimum\": 0.1,\n \"maximum\": 1.0\n }\n }\n }\n },\n \"brand_keywords\": {\n \"type\": \"array\",\n \"maxItems\": 100,\n \"items\": {\n \"type\": \"string\",\n \"minLength\": 2,\n \"maxLength\": 64\n }\n }\n }\n },\n \"tuning_parameters\": {\n \"type\": \"object\",\n \"required\": [\"weights\", \"channels\", \"budget_constraints\"],\n \"properties\": {\n \"weights\": {\n \"type\": \"object\",\n \"required\": [\"awareness\", \"sentiment\", \"engagement\", \"loyalty\"],\n \"properties\": {\n \"awareness\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"sentiment\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"engagement\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"loyalty\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 }\n },\n \"additionalProperties\": false\n },\n \"channels\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"channel_id\", \"type\", \"enabled\", \"elasticity_override\"],\n \"properties\": {\n \"channel_id\": {\n \"type\": \"string\",\n \"pattern\": \"^CHN-[A-Z0-9]{6}$\"\n },\n \"type\": {\n \"type\": \"string\",\n \"enum\": [\"social\", \"search\", \"display\", \"email\", \"content\", \"pr\", \"influencer\", \"podcast\", \"video\"]\n },\n \"enabled\": { \"type\": \"boolean\" },\n \"elasticity_override\": {\n \"type\": [\"number\", \"null\"],\n \"minimum\": 0.01,\n \"maximum\": 0.50\n }\n }\n }\n },\n \"budget_constraints\": {\n \"type\": \"object\",\n \"required\": [\"total_monthly\", \"currency\", \"allocation_mode\"],\n \"properties\": {\n \"total_monthly\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100000000\n },\n \"currency\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{3}$\"\n },\n \"allocation_mode\": {\n \"type\": \"string\",\n \"enum\": [\"fixed\", \"dynamic\", \"hybrid\"]\n },\n \"channel_caps\": {\n \"type\": \"object\",\n \"additionalProperties\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n }\n }\n }\n },\n \"tuning_frequency\": {\n \"type\": \"string\",\n \"enum\": [\"realtime\", \"hourly\", \"daily\", \"weekly\"],\n \"default\": \"daily\"\n },\n \"smoothing_factor\": {\n \"type\": \"number\",\n \"minimum\": 0.1,\n \"maximum\": 0.9,\n \"default\": 0.3\n }\n }\n },\n \"alert_thresholds\": {\n \"type\": \"object\",\n \"required\": [\"bhs_critical\", \"bhs_warning\", \"bvi_negative_threshold\", \"cps_floor\"],\n \"properties\": {\n \"bhs_critical\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 0.5\n },\n \"bhs_warning\": {\n \"type\": \"number\",\n \"minimum\": 0.2,\n \"maximum\": 0.7\n },\n \"bvi_negative_threshold\": {\n \"type\": \"number\",\n \"minimum\": -0.2,\n \"maximum\": 0\n },\n \"cps_floor\": {\n \"type\": \"number\",\n \"minimum\": -3,\n \"maximum\": 0\n },\n \"sentiment_spike_threshold\": {\n \"type\": \"number\",\n \"minimum\": 0.1,\n \"maximum\": 0.5,\n \"default\": 0.25\n }\n }\n },\n \"data_sources\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"source_id\", \"type\", \"priority\", \"refresh_interval_seconds\"],\n \"properties\": {\n \"source_id\": {\n \"type\": \"string\",\n \"pattern\": \"^SRC-[A-Z0-9]{8}$\"\n },\n \"type\": {\n \"type\": \"string\",\n \"enum\": [\"social_api\", \"web_scraper\", \"survey\", \"crm\", \"analytics\", \"custom\"]\n },\n \"priority\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 10\n },\n \"refresh_interval_seconds\": {\n \"type\": \"integer\",\n \"minimum\": 60,\n \"maximum\": 86400\n },\n \"credentials_ref\": {\n \"type\": \"string\",\n \"pattern\": \"^vault://[a-z0-9-]+/[a-z0-9-]+$\"\n }\n }\n }\n },\n \"metadata\": {\n \"type\": \"object\",\n \"properties\": {\n \"created_at\": { \"type\": \"string\", \"format\": \"date-time\" },\n \"updated_at\":\n```}}}}]]]",
2117
+ "outcome": "A-CMO-BrandTuner",
2118
+ "rType": 0,
2119
+ "persona": "CMO",
2120
+ "primary_model": "GPT-4o-Synthesis",
2121
+ "privacy_tier": "Public",
2122
+ "sybox_fee_split": {
2123
+ "dev": 0.5,
2124
+ "curation": 0.4,
2125
+ "author": 0.1
2126
+ },
2127
+ "ticker": "SYNL",
2128
+ "audit_cadence": "Weekly",
2129
+ "lifecycle": "Genesis-Platinum",
2130
+ "global_outputs": [
2131
+ "synthesis_id",
2132
+ "logic_id",
2133
+ "bps_verified",
2134
+ "model_stack",
2135
+ "processing_ms",
2136
+ "timestamp"
2137
+ ],
2138
+ "custom_outputs": [
2139
+ {
2140
+ "field_name": "brand_health_score_delta",
2141
+ "type": "Float",
2142
+ "description": "The difference between `current_bhs` and `bhs_forecast_30d`.",
2143
+ "downstream_intent": "A-CEO-KPISiphon",
2144
+ "bps_sensitivity": "Yes"
2145
+ },
2146
+ {
2147
+ "field_name": "tuning_coefficient_array",
2148
+ "type": "Array",
2149
+ "description": "Recommended budget adjustments per channel (ID, recommended_budget, rationale).",
2150
+ "downstream_intent": "Marketing-Persona",
2151
+ "bps_sensitivity": "No"
2152
+ },
2153
+ {
2154
+ "field_name": "competitive_z_score",
2155
+ "type": "Float",
2156
+ "description": "Deterministic CPS value relative to industry competitor mean.",
2157
+ "downstream_intent": "A-CMO-PulseHarvester",
2158
+ "bps_sensitivity": "No"
2159
+ },
2160
+ {
2161
+ "field_name": "optimization_roi_multiplier",
2162
+ "type": "Float",
2163
+ "description": "Projected increase in ROI based on proposed reallocations.",
2164
+ "downstream_intent": "A-CFO-LedgerSiphon",
2165
+ "bps_sensitivity": "Yes"
2166
+ },
2167
+ {
2168
+ "field_name": "sentiment_volatility_flag",
2169
+ "type": "Boolean",
2170
+ "description": "`True` if `sentiment_volatility` exceeds the `sentiment_spike_threshold`.",
2171
+ "downstream_intent": "A-CMO-FearMapper",
2172
+ "bps_sensitivity": "Yes"
2173
+ }
2174
+ ]
2175
+ },
2176
+ {
2177
+ "id": 97,
2178
+ "successBps": 9999,
2179
+ "cid": "ar://SYNTH_ATOMIC_COO_WORKFLOWMAPPER",
2180
+ "costUsd": 1500,
2181
+ "details": "# A-COO-WorkflowMapper Technical Specification\n\n## 1. Core Logic Definition\n\n### 1.1 Workflow Mapping Function\n\n```\nW(x) = Σ(Tᵢ × Dᵢ × Cᵢ) / N\n\nWhere:\n- W(x) = Workflow efficiency score for process x\n- Tᵢ = Task completion time for step i (seconds)\n- Dᵢ = Dependency weight factor [0.1 - 1.0]\n- Cᵢ = Criticality coefficient [1 - 10]\n- N = Total number of workflow steps\n```\n\n### 1.2 Process State Machine\n\n```\nStates: {INIT, QUEUED, PROCESSING, BLOCKED, COMPLETED, FAILED, ROLLBACK}\n\nTransitions:\nINIT → QUEUED: trigger(task_submitted)\nQUEUED → PROCESSING: trigger(resource_available ∧ dependencies_met)\nPROCESSING → COMPLETED: trigger(exit_code == 0 ∧ validation_passed)\nPROCESSING → FAILED: trigger(exit_code != 0 ∨ timeout_exceeded)\nPROCESSING → BLOCKED: trigger(dependency_unavailable ∨ resource_contention)\nBLOCKED → QUEUED: trigger(blocker_resolved)\nFAILED → ROLLBACK: trigger(rollback_policy == enabled)\nROLLBACK → INIT: trigger(state_restored)\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 BPS Calculation Formula\n\n```\nBPS = (F × S × P) / R\n\nWhere:\n- F = Failure frequency (incidents/hour)\n- S = Severity multiplier [1-5]\n- P = Propagation factor (affected downstream systems)\n- R = Recovery capability score [0.1 - 1.0]\n\nRisk Classification:\n- BPS \u003c 10: LOW\n- BPS 10-50: MODERATE \n- BPS 51-100: HIGH\n- BPS \u003e 100: CRITICAL\n```\n\n### 2.2 BPS Risk Matrix\n\n| Component | Failure Mode | F (inc/hr) | S | P | R | BPS | Risk Level |\n|-----------|--------------|------------|---|---|-----|-----|------------|\n| Task Scheduler | Queue overflow | 0.05 | 4 | 8 | 0.7 | 2.29 | LOW |\n| Task Scheduler | Deadlock | 0.01 | 5 | 12 | 0.3 | 2.00 | LOW |\n| Dependency Resolver | Circular reference | 0.02 | 5 | 15 | 0.4 | 3.75 | LOW |\n| Dependency Resolver | Stale cache | 0.15 | 3 | 6 | 0.8 | 3.38 | LOW |\n| State Manager | Data corruption | 0.001 | 5 | 20 | 0.2 | 0.50 | LOW |\n| State Manager | Split-brain | 0.005 | 5 | 25 | 0.15 | 4.17 | LOW |\n| Resource Allocator | Exhaustion | 0.08 | 4 | 10 | 0.5 | 6.40 | LOW |\n| Resource Allocator | Fragmentation | 0.12 | 3 | 5 | 0.6 | 3.00 | LOW |\n| Event Bus | Message loss | 0.03 | 5 | 18 | 0.4 | 6.75 | LOW |\n| Event Bus | Ordering violation | 0.07 | 4 | 8 | 0.6 | 3.73 | LOW |\n| Validation Engine | Schema drift | 0.04 | 3 | 4 | 0.9 | 0.53 | LOW |\n| Validation Engine | False positive | 0.20 | 2 | 2 | 0.95 | 0.84 | LOW |\n| Rollback Handler | Incomplete restore | 0.008 | 5 | 15 | 0.25 | 2.40 | LOW |\n| Rollback Handler | Cascade failure | 0.002 | 5 | 30 | 0.1 | 3.00 | LOW |\n| API Gateway | Rate limit breach | 0.10 | 3 | 6 | 0.85 | 2.12 | LOW |\n| API Gateway | Auth token expiry | 0.25 | 4 | 3 | 0.9 | 3.33 | LOW |\n\n### 2.3 Aggregate System BPS\n\n```\nBPS_system = √(Σ BPSᵢ²) × (1 + correlation_factor)\n\ncorrelation_factor = count(shared_dependencies) / total_components\n\nCurrent System BPS: 14.82 (MODERATE)\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://schemas.internal/a-coo-workflow-mapper/v1\",\n \"title\": \"A-COO-WorkflowMapper Input Schema\",\n \"type\": \"object\",\n \"required\": [\"workflow_id\", \"version\", \"tasks\", \"metadata\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"workflow_id\": {\n \"type\": \"string\",\n \"pattern\": \"^WF-[A-Z0-9]{8}-[A-Z0-9]{4}$\",\n \"description\": \"Unique workflow identifier\"\n },\n \"version\": {\n \"type\": \"string\",\n \"pattern\": \"^\\\\d+\\\\.\\\\d+\\\\.\\\\d+$\"\n },\n \"priority\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 10,\n \"default\": 5\n },\n \"timeout_ms\": {\n \"type\": \"integer\",\n \"minimum\": 1000,\n \"maximum\": 86400000,\n \"default\": 300000\n },\n \"retry_policy\": {\n \"type\": \"object\",\n \"required\": [\"max_attempts\", \"backoff_type\"],\n \"properties\": {\n \"max_attempts\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 10\n },\n \"backoff_type\": {\n \"type\": \"string\",\n \"enum\": [\"linear\", \"exponential\", \"fibonacci\", \"constant\"]\n },\n \"base_delay_ms\": {\n \"type\": \"integer\",\n \"minimum\": 100,\n \"maximum\": 60000,\n \"default\": 1000\n },\n \"max_delay_ms\": {\n \"type\": \"integer\",\n \"minimum\": 1000,\n \"maximum\": 300000,\n \"default\": 30000\n },\n \"jitter_factor\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1,\n \"default\": 0.1\n }\n }\n },\n \"tasks\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"maxItems\": 500,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"task_id\", \"type\", \"executor\"],\n \"properties\": {\n \"task_id\": {\n \"type\": \"string\",\n \"pattern\": \"^T-[A-Z0-9]{6}$\"\n },\n \"type\": {\n \"type\": \"string\",\n \"enum\": [\"compute\", \"io\", \"network\", \"validation\", \"transform\", \"aggregate\"]\n },\n \"executor\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-z][a-z0-9-]{2,63}$\"\n },\n \"dependencies\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"pattern\": \"^T-[A-Z0-9]{6}$\"\n },\n \"uniqueItems\": true,\n \"maxItems\": 50\n },\n \"criticality\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 10,\n \"default\": 5\n },\n \"idempotent\": {\n \"type\": \"boolean\",\n \"default\": false\n },\n \"resource_requirements\": {\n \"type\": \"object\",\n \"properties\": {\n \"cpu_millicores\": {\n \"type\": \"integer\",\n \"minimum\": 50,\n \"maximum\": 64000\n },\n \"memory_mb\": {\n \"type\": \"integer\",\n \"minimum\": 64,\n \"maximum\": 524288\n },\n \"gpu_count\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 8\n },\n \"ephemeral_storage_mb\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 1048576\n }\n }\n },\n \"input_schema\": {\n \"$ref\": \"#/$defs/data_contract\"\n },\n \"output_schema\": {\n \"$ref\": \"#/$defs/data_contract\"\n }\n }\n }\n },\n \"metadata\": {\n \"type\": \"object\",\n \"required\": [\"owner\", \"created_at\"],\n \"properties\": {\n \"owner\": {\n \"type\": \"string\",\n \"format\": \"email\"\n },\n \"created_at\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"tags\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-z0-9-_]{1,64}$\"\n },\n \"maxItems\": 20\n },\n \"cost_center\": {\n \"type\": \"string\",\n \"pattern\": \"^CC-[0-9]{6}$\"\n },\n \"sla_tier\": {\n \"type\": \"string\",\n \"enum\": [\"platinum\", \"gold\", \"silver\", \"bronze\"]\n }\n }\n },\n \"rollback_config\": {\n \"type\": \"object\",\n \"properties\": {\n \"enabled\": {\n \"type\": \"boolean\",\n \"default\": true\n },\n \"checkpoint_interval_tasks\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 100\n },\n \"preserve_partial_results\": {\n \"type\": \"boolean\",\n \"default\": false\n }\n }\n }\n },\n \"$defs\": {\n \"data_contract\": {\n \"type\": \"object\",\n \"required\": [\"format\", \"version\"],\n \"properties\": {\n \"format\": {\n \"type\": \"string\",\n \"enum\": [\"json\", \"avro\", \"protobuf\", \"parquet\"]\n },\n \"version\": {\n \"type\": \"string\",\n \"pattern\": \"^\\\\d+\\\\.\\\\d+$\"\n },\n \"schema_registry_id\": {\n \"type\": \"string\",\n \"pattern\": \"^SR-[A-Z0-9]{12}$\"\n },\n \"compression\": {\n \"type\": \"string\",\n \"enum\": [\"none\", \"gzip\", \"snappy\", \"lz4\", \"zstd\"]\n }\n }\n }\n }\n}\n```\n\n---\n\n## 4. SRE Metrics Specification\n\n### 4.1 Service Level Indicators (SLIs)\n\n| Metric Name | Type | Formula | Unit |\n|-------------|------|---------|------|\n| `workflow_completion_rate` | Gauge | `completed_workflows / total_workflows` | ratio |\n| `task_latency_p50` | Histogram | `percentile(task_duration, 0.50)` | ms |\n| `task_latency_p95` | Histogram | `percentile(task_duration, 0.95)` | ms |\n| `task_latency_p99` | Histogram | `percentile(task_duration, 0.99)` | ms |\n| `dependency_resolution_time` | Histogram | `resolve_end - resolve_start` | ms |\n| `queue_depth` | Gauge | `count(tasks WHERE state = QUEUED)` | count |\n| `error_rate` | Counter | `failed_tasks / total_tasks` | ratio |\n| `rollback_frequency` | Counter | `rollback_events / time_window` | events/hr |\n| `resource_utilization_cpu` | Gauge | `allocated_cpu / available_cpu` | ratio |\n| `resource_utilization_memory` | Gauge | `allocated_mem / available_mem` | ratio |\n| `checkpoint_success_rate` | Gauge | `successful_checkpoints / total_checkpoints` | ratio |\n| `state_sync_lag` | Gauge | `current_time - last_sync_time` | ms |\n\n### 4.2 Service Level Objectives (SLOs)\n\n```yaml\nslos:\n availability:\n target: 99.95%\n window: 30d\n calculation: |\n 1 - (sum(workflow_failures) / sum(workflow_attempts))\n error_budget_burn_rate_alert:\n fast: 14.4 # 2% budget in 1 hour\n slow: 6.0 # 5% budget in 6 hours\n\n latency:\n p50_target: 500ms\n p95_target: 2000ms\n p99_target: 5000ms\n window: 7d\n calculation: |\n count(requests WHERE latency \u003c= threshold) / count(requests)\n\n throughput:\n target: 10000 workflows/minute\n sustained_window: 5m\n burst_capacity: 25000 workflows/minute\n burst_window: 30s\n\n correctness:\n target: 99.99%\n window: 30d\n calculation: |\n 1 - (sum(data_corruption_events + ordering_violations) / sum(processed_tasks))\n\n durability:\n target: 99.999%\n window: 365d\n calculation: |\n 1 - (sum(lost_workflow_states) / sum(total_workflow_states))\n```\n\n### 4.3 Alerting Thresholds\n\n```yaml\nalerts:\n - name: WorkflowCompletionRateLow\n expr: workflow_completion_rate \u003c 0.95\n for: 5m\n severity: warning\n \n - name: WorkflowCompletionRateCritical\n expr: workflow_completion_rate \u003c 0.90\n for: 2m\n severity: critical\n \n - name: TaskLatencyP99High\n expr: task_latency_p99 \u003e 5000\n for: 10m\n severity: warning\n \n - name: QueueDepthExceeded\n expr: queue_depth \u003e 10000\n for: 5m\n severity: warning\n \n - name: QueueDepthCritical\n expr: queue_depth \u003e 50000\n for: 2m\n severity: critical\n \n - name: ErrorRateElevated\n expr: rate(error_rate[5m]) \u003e 0.01\n for: 5m\n severity: warning\n \n - name: ErrorRateCritical\n expr: rate(error_rate[5m]) \u003e 0.05\n for: 2m\n severity: critical\n \n - name: RollbackFrequencyHigh\n expr: rollback_frequency \u003e 10\n for: 15m\n severity: warning\n \n - name: StateSyncLagHigh\n expr: state_sync_lag \u003e 5000\n for: 5m\n severity: warning\n \n - name: ResourceExhaustion\n expr: resource_utilization_cpu \u003e 0.90 OR resource_utilization_memory \u003e 0.85\n for: 10m\n severity: warning\n \n - name: CheckpointFailure\n expr: checkpoint_success_rate \u003c 0.99\n```\n\n## 3. Resilience Layer\n- **Noise_Tolerance**: 0.15\n- **Confidence_Threshold**: 0.85\n- **Logic_Smoothing**: Bayesian",
2182
+ "outcome": "A-COO-WorkflowMapper",
2183
+ "rType": 0,
2184
+ "persona": "COO",
2185
+ "primary_model": "Claude-3.5-Reasoning",
2186
+ "privacy_tier": "Public",
2187
+ "sybox_fee_split": {
2188
+ "dev": 0.5,
2189
+ "curation": 0.4,
2190
+ "author": 0.1
2191
+ },
2192
+ "ticker": "SYNL",
2193
+ "audit_cadence": "Weekly",
2194
+ "lifecycle": "Genesis-Platinum",
2195
+ "global_outputs": [
2196
+ "synthesis_id",
2197
+ "logic_id",
2198
+ "bps_verified",
2199
+ "model_stack",
2200
+ "processing_ms",
2201
+ "timestamp"
2202
+ ],
2203
+ "custom_outputs": [
2204
+ {
2205
+ "field_name": "workflow_efficiency_score",
2206
+ "type": "Integer",
2207
+ "description": "Normalized score (0-10,000) based on .",
2208
+ "downstream_intent": "**A-CEO-KPISiphon** for operational health tracking.",
2209
+ "bps_sensitivity": "Yes"
2210
+ },
2211
+ {
2212
+ "field_name": "task_execution_summary",
2213
+ "type": "Array",
2214
+ "description": "Objects containing `task_id`, `state`, `duration_ms`, and `bps_contribution`.",
2215
+ "downstream_intent": "**A-COO-BottleneckSim** to identify slow-path nodes.",
2216
+ "bps_sensitivity": "Yes"
2217
+ },
2218
+ {
2219
+ "field_name": "critical_path_latency_ms",
2220
+ "type": "Integer",
2221
+ "description": "Total duration of the longest dependency chain.",
2222
+ "downstream_intent": "**A-COO-AllocLogic** for resource scaling triggers.",
2223
+ "bps_sensitivity": "No"
2224
+ },
2225
+ {
2226
+ "field_name": "validation_verdict",
2227
+ "type": "Object",
2228
+ "description": "Nested signal containing `circular_deps` (boolean) and `schema_drift_detected` (boolean).",
2229
+ "downstream_intent": "**Sentinel Audit** for security and integrity checks.",
2230
+ "bps_sensitivity": "Yes"
2231
+ }
2232
+ ]
2233
+ }
2234
+ ]