synthesis-ledger-sovereign-sdk 1.0.0-alpha.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +30 -0
- package/atomics/11.json +65 -0
- package/atomics/13.json +58 -0
- package/atomics/15.json +58 -0
- package/atomics/16.json +58 -0
- package/atomics/17.json +58 -0
- package/atomics/18.json +58 -0
- package/atomics/20.json +58 -0
- package/atomics/23.json +65 -0
- package/atomics/24.json +72 -0
- package/atomics/25.json +37 -0
- package/atomics/26.json +37 -0
- package/atomics/27.json +44 -0
- package/atomics/28.json +58 -0
- package/atomics/29.json +37 -0
- package/atomics/3.json +65 -0
- package/atomics/32.json +37 -0
- package/atomics/36.json +65 -0
- package/atomics/39.json +10 -0
- package/atomics/40.json +58 -0
- package/atomics/41.json +37 -0
- package/atomics/47.json +65 -0
- package/atomics/70.json +65 -0
- package/atomics/71.json +65 -0
- package/atomics/72.json +65 -0
- package/atomics/73.json +72 -0
- package/atomics/74.json +65 -0
- package/atomics/75.json +72 -0
- package/atomics/76.json +65 -0
- package/atomics/8.json +65 -0
- package/atomics/83.json +58 -0
- package/atomics/84.json +58 -0
- package/atomics/86.json +65 -0
- package/atomics/87.json +58 -0
- package/atomics/89.json +58 -0
- package/atomics/9.json +65 -0
- package/atomics/91.json +65 -0
- package/atomics/93.json +58 -0
- package/atomics/96.json +65 -0
- package/atomics/97.json +58 -0
- package/bin/index.js +19 -0
- package/bin/synl.js +27 -0
- package/genesis_onchain.json +2234 -0
- package/package.json +21 -0
- package/shatter.js +31 -0
- package/src/ai_adapter.js +35 -0
- package/src/claim.js +21 -0
- package/src/forge.js +78 -0
- package/src/ledger.js +28 -0
- package/upload_genesis.js +40 -0
package/atomics/75.json
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
1
|
+
{
|
|
2
|
+
"id": 75,
|
|
3
|
+
"successBps": 9672,
|
|
4
|
+
"cid": "ar://SYNTH_ATOMIC_GH_ALGOOPTIMIZER",
|
|
5
|
+
"costUsd": 1500,
|
|
6
|
+
"details": "# A-GH-AlgoOptimizer Technical Specification\n\n## 1. Core Algorithm Logic\n\n### 1.1 Optimization Function\n\n```\nf(x) = argmin[Σᵢ₌â‚â¿ (wáµ¢ · Cáµ¢(x)) + λ · R(x)]\n\nWhere:\n- x ∈ â„ᵈ : parameter vector\n- Cáµ¢(x) : cost function for component i\n- wáµ¢ : weight coefficient, Σwáµ¢ = 1\n- R(x) : regularization term\n- λ : regularization coefficient [0.001, 0.1]\n```\n\n### 1.2 Gradient Descent Implementation\n\n```\nθₜ₊₠= θₜ - η · ∇L(θₜ) + μ · (θₜ - θₜ₋â‚)\n\nLearning Rate Decay:\nη(t) = η₀ / (1 + δ · t)\n\nConvergence Criterion:\n|L(θₜ₊â‚) - L(θₜ)| \u003c ε, where ε = 1e-6\n```\n\n### 1.3 Adaptive Threshold Calculation\n\n```\nT_adaptive = μ + k · σ · √(1 + 1/n + (x - xÌ„)²/Σ(xáµ¢ - xÌ„)²)\n\nWhere:\n- μ : rolling mean (window = 300s)\n- σ : rolling standard deviation\n- k : sensitivity factor [2.0, 3.5]\n- n : sample size\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 BPS Calculation Formula\n\n```\nBPS = Σⱼ₌â‚áµ (Iâ±¼ · Pâ±¼ · Sâ±¼) / m\n\nWhere:\n- Iâ±¼ : Impact score [1-10]\n- Pâ±¼ : Probability of occurrence [0-1]\n- Sâ±¼ : Severity multiplier [1-5]\n- m : total failure modes\n```\n\n### 2.2 Operational Failure Risk Matrix\n\n| Failure Mode | Impact (I) | Probability (P) | Severity (S) | BPS | Threshold |\n|--------------|------------|-----------------|--------------|-----|-----------|\n| Memory Exhaustion | 9 | 0.15 | 4 | 5.40 | \u003e4.0 CRITICAL |\n| CPU Saturation | 8 | 0.20 | 3 | 4.80 | \u003e4.0 CRITICAL |\n| Network Partition | 10 | 0.05 | 5 | 2.50 | \u003e2.0 HIGH |\n| Disk I/O Bottleneck | 7 | 0.25 | 3 | 5.25 | \u003e4.0 CRITICAL |\n| Algorithm Divergence | 10 | 0.08 | 5 | 4.00 | \u003e4.0 CRITICAL |\n| State Corruption | 10 | 0.03 | 5 | 1.50 | \u003e1.0 MEDIUM |\n| Dependency Timeout | 6 | 0.30 | 2 | 3.60 | \u003e3.0 HIGH |\n| Config Drift | 5 | 0.35 | 2 | 3.50 | \u003e3.0 HIGH |\n| Queue Overflow | 8 | 0.12 | 4 | 3.84 | \u003e3.0 HIGH |\n| Checkpoint Failure | 9 | 0.07 | 4 | 2.52 | \u003e2.0 HIGH |\n\n### 2.3 Aggregate Risk Score\n\n```\nARS = √(Σᵢ BPSᵢ²) / n\n\nRisk Classification:\n- ARS \u003c 2.0 : NOMINAL\n- ARS ∈ [2.0, 3.5) : ELEVATED\n- ARS ∈ [3.5, 5.0) : HIGH\n- ARS ≥ 5.0 : CRITICAL\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-gh-algooptimizer/v1\",\n \"title\": \"A-GH-AlgoOptimizer Input Schema\",\n \"type\": \"object\",\n \"required\": [\"metadata\", \"parameters\", \"constraints\", \"objectives\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"metadata\": {\n \"type\": \"object\",\n \"required\": [\"request_id\", \"timestamp\", \"version\", \"source\"],\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"version\": {\n \"type\": \"string\",\n \"pattern\": \"^\\\\d+\\\\.\\\\d+\\\\.\\\\d+$\"\n },\n \"source\": {\n \"type\": \"string\",\n \"minLength\": 1,\n \"maxLength\": 64\n },\n \"priority\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 10,\n \"default\": 5\n }\n }\n },\n \"parameters\": {\n \"type\": \"object\",\n \"required\": [\"learning_rate\", \"max_iterations\", \"batch_size\"],\n \"properties\": {\n \"learning_rate\": {\n \"type\": \"number\",\n \"exclusiveMinimum\": 0,\n \"maximum\": 1.0\n },\n \"max_iterations\": {\n \"type\": \"integer\",\n \"minimum\": 100,\n \"maximum\": 1000000\n },\n \"batch_size\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 65536,\n \"multipleOf\": 1\n },\n \"momentum\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 0.99,\n \"default\": 0.9\n },\n \"regularization_lambda\": {\n \"type\": \"number\",\n \"minimum\": 0.0001,\n \"maximum\": 0.5,\n \"default\": 0.01\n },\n \"convergence_epsilon\": {\n \"type\": \"number\",\n \"exclusiveMinimum\": 0,\n \"maximum\": 0.001,\n \"default\": 1e-6\n },\n \"weight_vector\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"minItems\": 1,\n \"maxItems\": 256\n }\n }\n },\n \"constraints\": {\n \"type\": \"object\",\n \"required\": [\"resource_limits\", \"time_bounds\"],\n \"properties\": {\n \"resource_limits\": {\n \"type\": \"object\",\n \"properties\": {\n \"max_memory_mb\": {\n \"type\": \"integer\",\n \"minimum\": 256,\n \"maximum\": 524288\n },\n \"max_cpu_cores\": {\n \"type\": \"number\",\n \"minimum\": 0.1,\n \"maximum\": 256\n },\n \"max_gpu_memory_mb\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 81920\n }\n }\n },\n \"time_bounds\": {\n \"type\": \"object\",\n \"properties\": {\n \"timeout_seconds\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 86400\n },\n \"checkpoint_interval_seconds\": {\n \"type\": \"integer\",\n \"minimum\": 10,\n \"maximum\": 3600,\n \"default\": 300\n }\n }\n },\n \"bounds\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"dimension\", \"min\", \"max\"],\n \"properties\": {\n \"dimension\": {\n \"type\": \"integer\",\n \"minimum\": 0\n },\n \"min\": {\n \"type\": \"number\"\n },\n \"max\": {\n \"type\": \"number\"\n }\n }\n }\n }\n }\n },\n \"objectives\": {\n \"type\": \"object\",\n \"required\": [\"primary_metric\", \"optimization_direction\"],\n \"properties\": {\n \"primary_metric\": {\n \"type\": \"string\",\n \"enum\": [\"latency_p99\", \"throughput\", \"error_rate\", \"cost\", \"custom\"]\n },\n \"optimization_direction\": {\n \"type\": \"string\",\n \"enum\": [\"minimize\", \"maximize\"]\n },\n \"secondary_metrics\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"metric\", \"weight\"],\n \"properties\": {\n \"metric\": {\n \"type\": \"string\"\n },\n \"weight\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n }\n }\n },\n \"maxItems\": 10\n },\n \"target_value\": {\n \"type\": \"number\"\n },\n \"acceptable_deviation\": {\n \"type\": \"number\",\n \"minimum\": 0\n }\n }\n },\n \"data_source\": {\n \"type\": \"object\",\n \"properties\": {\n \"type\": {\n \"type\": \"string\",\n \"enum\": [\"streaming\", \"batch\", \"hybrid\"]\n },\n \"uri\": {\n \"type\": \"string\",\n \"format\": \"uri\"\n },\n \"format\": {\n \"type\": \"string\",\n \"enum\": [\"parquet\", \"avro\", \"json\", \"csv\", \"protobuf\"]\n },\n \"schema_registry_url\": {\n \"type\": \"string\",\n \"format\": \"uri\"\n }\n }\n }\n }\n}\n```\n\n---\n\n## 4. SRE Metrics for Operational Success\n\n### 4.1 Service Level Indicators (SLIs)\n\n| Metric | Formula | Target | Measurement Window |\n|--------|---------|--------|-------------------|\n| Availability | `(total_time - downtime) / total_time × 100` | ≥99.95% | 30d rolling |\n| Latency P50 | `percentile(request_duration, 0.50)` | ≤50ms | 5m |\n| Latency P99 | `percentile(request_duration, 0.99)` | ≤200ms | 5m |\n| Latency P99.9 | `percentile(request_duration, 0.999)` | ≤500ms | 5m |\n| Error Rate | `error_count / total_requests × 100` | ≤0.1% | 5m |\n| Throughput | `successful_requests / time_window` | ≥10,000 RPS | 1m |\n| Saturation | `resource_used / resource_limit × 100` | ≤80% | 1m |\n\n### 4.2 Service Level Objectives (SLOs)\n\n```yaml\nslos:\n - name: optimizer_availability\n target: 99.95\n window: 30d\n burn_rate_alerts:\n - severity: critical\n short_window: 5m\n long_window: 1h\n burn_rate: 14.4\n - severity: warning\n short_window: 30m\n long_window: 6h\n burn_rate: 6.0\n\n - name: optimization_latency\n target: 99.0\n threshold_ms: 200\n window: 7d\n \n - name: convergence_success_rate\n target: 99.5\n window: 7d\n```\n\n### 4.3 Golden Signals Metrics\n\n```\n# Request Rate\nrate(optimizer_requests_total[5m])\n\n# Error Rate\nsum(rate(optimizer_requests_total{status=~\"5..\"}[5m])) / \nsum(rate(optimizer_requests_total[5m]))\n\n# Latency Distribution\nhistogram_quantile(0.99, \n sum(rate(optimizer_request_duration_seconds_bucket[5m])) by (le))\n\n# Saturation\navg(optimizer_queue_depth) / optimizer_queue_capacity\n```\n\n### 4.4 Algorithm-Specific Metrics\n\n| Metric | Type | Labels | Description |\n|--------|------|--------|-------------|\n| `optimizer_iterations_total` | Counter | `algorithm`, `status` | Total optimization iterations |\n| `optimizer_convergence_time_seconds` | Histogram | `algorithm` | Time to convergence |\n| `optimizer_loss_value` | Gauge | `algorithm`, `iteration` | Current loss function value |\n| `optimizer_gradient_norm` | Gauge | `algorithm` | L2 norm of gradient |\n| `optimizer_parameter_updates` | Counter | `dimension` | Parameter update count |\n| `optimizer_checkpoint_size_bytes` | Gauge | `checkpoint_id` | Checkpoint storage size |\n| `optimizer_memory_allocated_bytes` | Gauge | `pool` | Memory allocation |\n| `optimizer_batch_processing_seconds` | Histogram | `batch_size` | Batch processing time |\n\n### 4.5 Alerting Thresholds\n\n```yaml\nalerts:\n - name: HighErrorRate\n expr: |\n sum(rate(optimizer_requests_total{status=\"error\"}[5m])) /\n sum(rate(optimizer_requests_total[5m])) \u003e 0.01\n for: 2m\n severity: critical\n \n - name: LatencyDegradation\n expr: |\n histogram_quantile(0.99, \n sum(rate(optimizer_request_duration_seconds_bucket[5m])) by (le)\n ) \u003e 0.5\n for: 5m\n severity: warning\n \n - name: AlgorithmDivergence\n expr: |\n increase(optimizer_loss_value[5m]) \u003e 0 and \n optimizer_iterations_total \u003e 1000\n for: 1m\n severity: critical\n \n - name: MemorySaturation\n expr: |\n optimizer_memory_allocated_bytes / \n optimizer_memory_limit_bytes \u003e 0.9\n for: 3m\n severity: warning\n \n - name: CheckpointFailure\n expr: |\n increase(optimizer_checkpoint_failures_total[10m]) \u003e 0\n for: 0m\n severity: critical\n \n - name: QueueBackpressure\n expr: |\n optimizer_queue_depth / optimizer_queue_capacity \u003e 0.8\n for: 5m\n severity: warning\n```\n\n### 4.6 Operational Health Score (OHS)\n\n```\nOHS = Î (SLIáµ¢ / SLOáµ¢)^wáµ¢ × 100\n\nWhere:\n- SLIáµ¢ : measured SLI value\n- SLOáµ¢ : target SLO value \n- wáµ¢ : weight for metric i, Σwáµ¢ = 1\n\nComponent Weights:\n- Availability: 0.35\n- Latency: 0.25\n- Error Rate: 0.20\n- Throughput: 0.10\n- Saturation: 0.10\n\nHealth Classification:\n- OHS ≥ 95 : HEALTHY\n- OHS ∈ [85, 95) : DEGRADED\n- OHS ∈ [70, 85\n```]]]]",
|
|
7
|
+
"outcome": "A-GH-AlgoOptimizer",
|
|
8
|
+
"rType": 0,
|
|
9
|
+
"persona": "GH",
|
|
10
|
+
"primary_model": "Grok-3-Extraction",
|
|
11
|
+
"privacy_tier": "Public",
|
|
12
|
+
"sybox_fee_split": {
|
|
13
|
+
"dev": 0.5,
|
|
14
|
+
"curation": 0.4,
|
|
15
|
+
"author": 0.1
|
|
16
|
+
},
|
|
17
|
+
"ticker": "SYNL",
|
|
18
|
+
"audit_cadence": "Weekly",
|
|
19
|
+
"lifecycle": "Genesis-Platinum",
|
|
20
|
+
"global_outputs": [
|
|
21
|
+
"synthesis_id",
|
|
22
|
+
"logic_id",
|
|
23
|
+
"bps_verified",
|
|
24
|
+
"model_stack",
|
|
25
|
+
"processing_ms",
|
|
26
|
+
"timestamp"
|
|
27
|
+
],
|
|
28
|
+
"custom_outputs": [
|
|
29
|
+
{
|
|
30
|
+
"field_name": "Type",
|
|
31
|
+
"type": "Description",
|
|
32
|
+
"description": "Downstream Intent",
|
|
33
|
+
"downstream_intent": "BPS Sensitivity",
|
|
34
|
+
"bps_sensitivity": ""
|
|
35
|
+
},
|
|
36
|
+
{
|
|
37
|
+
"field_name": "optimal_parameter_set",
|
|
38
|
+
"type": "Object",
|
|
39
|
+
"description": "The final deterministic vector `x` produced by the gradient descent.",
|
|
40
|
+
"downstream_intent": "**Production-Config-Service** for immediate hot-loading.",
|
|
41
|
+
"bps_sensitivity": "High"
|
|
42
|
+
},
|
|
43
|
+
{
|
|
44
|
+
"field_name": "optimization_efficiency",
|
|
45
|
+
"type": "Object",
|
|
46
|
+
"description": "Summary of `loss_reduction_percent`, `iterations`, and `convergence_rate`.",
|
|
47
|
+
"downstream_intent": "**Cost-Analysis-Unit** for cloud spend auditing.",
|
|
48
|
+
"bps_sensitivity": "Medium"
|
|
49
|
+
},
|
|
50
|
+
{
|
|
51
|
+
"field_name": "resource_utilization_profile",
|
|
52
|
+
"type": "Object",
|
|
53
|
+
"description": "Saturation ratios for CPU, RAM, and GPU during execution.",
|
|
54
|
+
"downstream_intent": "**Infrastructure-Optimizer** for rightsizing the next run.",
|
|
55
|
+
"bps_sensitivity": "High"
|
|
56
|
+
},
|
|
57
|
+
{
|
|
58
|
+
"field_name": "operational_health_score",
|
|
59
|
+
"type": "Integer",
|
|
60
|
+
"description": "Calculated OHS (0-100) based on SLI/SLO alignment.",
|
|
61
|
+
"downstream_intent": "**A-CEO-KPISiphon** for ecosystem health dashboarding.",
|
|
62
|
+
"bps_sensitivity": "High"
|
|
63
|
+
},
|
|
64
|
+
{
|
|
65
|
+
"field_name": "convergence_proof_uri",
|
|
66
|
+
"type": "String",
|
|
67
|
+
"description": "Pointer reference to the detailed loss trajectory and gradient logs.",
|
|
68
|
+
"downstream_intent": "**QA-Auditor** for deep-pack verification if needed.",
|
|
69
|
+
"bps_sensitivity": "Low"
|
|
70
|
+
}
|
|
71
|
+
]
|
|
72
|
+
}
|
package/atomics/76.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
1
|
+
{
|
|
2
|
+
"id": 76,
|
|
3
|
+
"successBps": 9930,
|
|
4
|
+
"cid": "ar://SYNTH_ATOMIC_GH_NOISEGUARD",
|
|
5
|
+
"costUsd": 1500,
|
|
6
|
+
"details": "# A-GH-NoiseGuard Technical Logic Specification\n\n## 1. System Overview\n\nA-GH-NoiseGuard is an automated noise detection and suppression system for GitHub Actions workflows, designed to filter signal from noise in CI/CD telemetry streams.\n\n---\n\n## 2. Core Logic Functions\n\n### 2.1 Noise Classification Algorithm\n\n```\nNoiseScore(event) = Σ(wáµ¢ × fáµ¢(event)) / Σ(wáµ¢)\n\nWhere:\n fâ‚(event) = frequency_deviation_ratio | wâ‚ = 0.25\n fâ‚‚(event) = temporal_clustering_factor | wâ‚‚ = 0.20\n f₃(event) = semantic_entropy_score | w₃ = 0.30\n fâ‚„(event) = historical_false_positive_rate| wâ‚„ = 0.15\n fâ‚…(event) = cross_correlation_coefficient | wâ‚… = 0.10\n\nClassification:\n NoiseScore \u003c 0.3 → SIGNAL (actionable)\n NoiseScore ∈ [0.3, 0.7) → AMBIGUOUS (queue for review)\n NoiseScore ≥ 0.7 → NOISE (suppress)\n```\n\n### 2.2 Frequency Deviation Ratio\n\n```\nfâ‚(event) = |observed_freq - baseline_freq| / (baseline_freq + ε)\n\nWhere:\n ε = 1e-6 (smoothing constant)\n baseline_freq = EMA(event_type, window=168h, α=0.1)\n```\n\n### 2.3 Temporal Clustering Factor\n\n```\nfâ‚‚(event) = 1 - (inter_arrival_variance / expected_variance)\n\nClamped to [0, 1]\nBurst detection threshold: CV \u003e 2.5 (coefficient of variation)\n```\n\n### 2.4 Semantic Entropy Score\n\n```\nf₃(event) = H(message_tokens) / logâ‚‚(|vocabulary|)\n\nH(X) = -Σ p(xáµ¢) × logâ‚‚(p(xáµ¢))\n\nHigh entropy (\u003e0.8) indicates noise (random/generated content)\nLow entropy (\u003c0.3) indicates signal (structured/meaningful)\n```\n\n---\n\n## 3. Breakdown Point Score (BPS) Matrix\n\n### 3.1 BPS Calculation Formula\n\n```\nBPS(component) = (Impact × Probability × Detectabilityâ»Â¹) / Recovery_Factor\n\nScale: 0-100\n 0-25: LOW RISK\n 26-50: MODERATE RISK\n 51-75: HIGH RISK\n 76-100: CRITICAL RISK\n```\n\n### 3.2 Operational Failure Risk Matrix\n\n| Component | Impact (1-10) | Probability (0-1) | Detectability (1-10) | Recovery Factor (1-5) | BPS | Risk Level |\n|-----------|---------------|-------------------|----------------------|-----------------------|-----|------------|\n| Event Ingestion Pipeline | 9 | 0.15 | 8 | 3 | 5.6 | LOW |\n| Noise Classification Engine | 8 | 0.25 | 6 | 2 | 16.7 | LOW |\n| State Store (Redis) | 10 | 0.10 | 9 | 4 | 2.8 | LOW |\n| Webhook Receiver | 7 | 0.20 | 7 | 3 | 6.7 | LOW |\n| Rate Limiter | 6 | 0.30 | 5 | 4 | 9.0 | LOW |\n| Alert Dispatcher | 9 | 0.12 | 4 | 2 | 13.5 | LOW |\n| ML Model Inference | 7 | 0.35 | 3 | 3 | 27.2 | MODERATE |\n| Configuration Sync | 5 | 0.40 | 6 | 4 | 8.3 | LOW |\n| Metrics Exporter | 4 | 0.20 | 8 | 5 | 2.0 | LOW |\n| Circuit Breaker Logic | 8 | 0.08 | 2 | 1 | 32.0 | MODERATE |\n| Token Refresh Service | 9 | 0.18 | 7 | 2 | 11.6 | LOW |\n| Dead Letter Queue | 6 | 0.05 | 9 | 5 | 0.7 | LOW |\n\n### 3.3 Cascading Failure Propagation Model\n\n```\nCascadeBPS(origin) = BPS(origin) × Î (1 + dependency_weight × BPS(dep))\n\nDependency Graph:\n Webhook Receiver → Event Ingestion → Classification Engine → Alert Dispatcher\n ↓ ↓ ↓\n Rate Limiter State Store ML Inference\n```\n\n---\n\n## 4. JSON Schema for Input Validation\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://noiseguard.internal/schemas/v1/event.json\",\n \"title\": \"A-GH-NoiseGuard Event Schema\",\n \"type\": \"object\",\n \"required\": [\"event_id\", \"timestamp\", \"source\", \"event_type\", \"payload\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"event_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\",\n \"description\": \"Unique event identifier (UUIDv4)\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 timestamp with timezone\"\n },\n \"source\": {\n \"type\": \"object\",\n \"required\": [\"repository\", \"organization\", \"installation_id\"],\n \"properties\": {\n \"repository\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-zA-Z0-9._-]+/[a-zA-Z0-9._-]+$\",\n \"maxLength\": 256\n },\n \"organization\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-zA-Z0-9-]+$\",\n \"maxLength\": 39\n },\n \"installation_id\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 9223372036854775807\n },\n \"actor\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-zA-Z0-9-]+$\",\n \"maxLength\": 39\n }\n }\n },\n \"event_type\": {\n \"type\": \"string\",\n \"enum\": [\n \"workflow_run\",\n \"workflow_job\",\n \"check_run\",\n \"check_suite\",\n \"deployment\",\n \"deployment_status\",\n \"push\",\n \"pull_request\",\n \"issue_comment\",\n \"status\"\n ]\n },\n \"payload\": {\n \"type\": \"object\",\n \"required\": [\"action\", \"data\"],\n \"properties\": {\n \"action\": {\n \"type\": \"string\",\n \"enum\": [\"created\", \"completed\", \"requested\", \"in_progress\", \"queued\", \"waiting\", \"pending\", \"failure\", \"success\", \"cancelled\", \"skipped\", \"stale\", \"timed_out\"]\n },\n \"data\": {\n \"type\": \"object\",\n \"properties\": {\n \"workflow_name\": {\n \"type\": \"string\",\n \"maxLength\": 512\n },\n \"job_name\": {\n \"type\": \"string\",\n \"maxLength\": 512\n },\n \"run_id\": {\n \"type\": \"integer\",\n \"minimum\": 1\n },\n \"run_attempt\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 100\n },\n \"conclusion\": {\n \"type\": [\"string\", \"null\"],\n \"enum\": [\"success\", \"failure\", \"cancelled\", \"skipped\", \"timed_out\", \"action_required\", \"neutral\", \"stale\", null]\n },\n \"duration_ms\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 86400000\n },\n \"labels\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"maxLength\": 128\n },\n \"maxItems\": 50,\n \"uniqueItems\": true\n }\n }\n },\n \"raw_message\": {\n \"type\": \"string\",\n \"maxLength\": 65536\n }\n }\n },\n \"metadata\": {\n \"type\": \"object\",\n \"properties\": {\n \"delivery_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\"\n },\n \"signature\": {\n \"type\": \"string\",\n \"pattern\": \"^sha256=[a-f0-9]{64}$\"\n },\n \"retry_count\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 10\n },\n \"ingestion_timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n }\n }\n },\n \"classification\": {\n \"type\": \"object\",\n \"properties\": {\n \"noise_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"classification\": {\n \"type\": \"string\",\n \"enum\": [\"SIGNAL\", \"AMBIGUOUS\", \"NOISE\"]\n },\n \"confidence\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"features\": {\n \"type\": \"object\",\n \"properties\": {\n \"f1_frequency_deviation\": { \"type\": \"number\" },\n \"f2_temporal_clustering\": { \"type\": \"number\" },\n \"f3_semantic_entropy\": { \"type\": \"number\" },\n \"f4_historical_fpr\": { \"type\": \"number\" },\n \"f5_cross_correlation\": { \"type\": \"number\" }\n }\n }\n }\n }\n }\n}\n```\n\n---\n\n## 5. SRE Metrics Specification\n\n### 5.1 Service Level Indicators (SLIs)\n\n| Metric Name | Type | Formula | Target |\n|-------------|------|---------|--------|\n| `noiseguard_availability` | Gauge | `(total_time - downtime) / total_time` | ≥ 99.9% |\n| `noiseguard_latency_p50_ms` | Histogram | `percentile(processing_time, 0.50)` | ≤ 50ms |\n| `noiseguard_latency_p99_ms` | Histogram | `percentile(processing_time, 0.99)` | ≤ 500ms |\n| `noiseguard_classification_accuracy` | Gauge | `correct_classifications / total_classifications` | ≥ 95% |\n| `noiseguard_false_positive_rate` | Gauge | `false_positives / (false_positives + true_negatives)` | ≤ 2% |\n| `noiseguard_false_negative_rate` | Gauge | `false_negatives / (false_negatives + true_positives)` | ≤ 5% |\n| `noiseguard_throughput_eps` | Counter | `events_processed / time_window_seconds` | ≥ 10,000 |\n| `noiseguard_error_rate` | Gauge | `failed_events / total_events` | ≤ 0.1% |\n\n### 5.2 Service Level Objectives (SLOs)\n\n```yaml\nslos:\n - name: \"Event Processing Availability\"\n sli: noiseguard_availability\n target: 0.999\n window: 30d\n burn_rate_alerts:\n - severity: critical\n short_window: 5m\n long_window: 1h\n burn_rate: 14.4\n - severity: warning\n short_window: 30m\n long_window: 6h\n burn_rate: 6.0\n\n - name: \"Classification Latency\"\n sli: noiseguard_latency_p99_ms\n target: 500\n window: 7d\n error_budget_consumption_rate: 0.1\n\n - name: \"Noise Detection Precision\"\n sli: noiseguard_classification_accuracy\n target: 0.95\n window: 7d\n minimum_sample_size: 10000\n```\n\n### 5.3 Prometheus Metrics Export\n\n```\n# HELP noiseguard_events_total Total events processed\n# TYPE noiseguard_events_total counter\nnoiseguard_events_total{classification=\"SIGNAL\",source=\"workflow_run\"} \nnoiseguard_events_total{classification=\"NOISE\",source=\"workflow_run\"}\nnoiseguard_events_total{classification=\"AMBIGUOUS\",source=\"workflow_run\"}\n\n# HELP noiseguard_processing_duration_seconds Event processing duration\n# TYPE noiseguard_processing_duration_seconds histogram\nnoiseguard_processing_duration_seconds_bucket{le=\"0.01\"}\nnoiseguard_processing_duration_seconds_bucket{le=\"0.05\"}\nnoiseguard_processing_duration_seconds_bucket{le=\"0.1\"}\nnoiseguard_processing_duration_seconds_bucket{le=\"0.5\"}\nnoiseguard_processing_duration_seconds_bucket{le=\"1.0\"}\nnoiseguard_processing_duration_seconds_bucket{le=\"+Inf\"}\n\n# HELP noiseguard_noise_score_distribution Noise score distribution\n# TYPE noiseguard_noise_score_distribution histogram\nnoiseguard_noise_score_distribution_bucket{le=\"0.1\"}\nnoiseguard_noise_score_distribution_bucket{le=\"0.3\"}\nnoiseguard_noise_score_distribution_bucket{le=\"0.5\"}\nnoiseguard_noise_score_distribution_bucket{le=\"0.7\"}\nnoiseguard_noise_score_distribution_bucket{le=\"0.9\"}\nnoiseguard_noise_score_distribution_bucket{le=\"1.0\"}\n\n# HELP noiseguard_circuit_breaker_state Circuit breaker state (0=closed, 1=open, 2=half-open)\n# TYPE noiseguard_circuit_breaker_state gauge\nnoiseguard_circuit_breaker_state{component=\"classifier\"}\nnoiseguard_circuit_breaker_state{component=\"dispatcher\"}\n\n# HELP noiseguard_queue_depth Current queue depth\n# TYPE noiseguard_queue_depth gauge\nnoiseguard_queue_depth{queue=\"ingestion\"}\nnoiseguard_queue_depth{queue=\"classification\"}\nnoiseguard_queue_depth{queue=\"dead_letter\"}\n\n# HELP noiseguard_model_inference_seconds ML model inference duration\n# TYPE noiseguard_model_inference_seconds summary\nnoiseguard_model_inference_seconds{quantile=\"0.5\"}\nnoiseguard_model_inference_seconds{quantile=\"0.9\"}\nnoiseguard_model_inference_seconds{quantile=\"0.99\"}\n```\n\n### 5.4 Alerting Rules\n\n```yaml\ngroups:\n - name: noiseguard_critical\n rules:\n - alert: NoiseGuardHighErrorRate\n expr: |\n sum(rate(noiseguard_events_total{status=\"error\"}[5m])) \n / sum(rate(noiseguard_events_total[5m])) \u003e 0.01\n for: 2m\n labels:\n severity: critical\n annotations:\n summary: \"Error rate exceeds 1%\"\n runbook: \"https://runbooks.internal/noiseguard/high-error-rate\"\n\n - alert: NoiseGuardLatencyBreach\n expr: |\n histogram_quantile(0.99, \n sum(rate(n\n```]",
|
|
7
|
+
"outcome": "A-GH-NoiseGuard",
|
|
8
|
+
"rType": 0,
|
|
9
|
+
"persona": "GH",
|
|
10
|
+
"primary_model": "Grok-3-Extraction",
|
|
11
|
+
"privacy_tier": "Public",
|
|
12
|
+
"sybox_fee_split": {
|
|
13
|
+
"dev": 0.5,
|
|
14
|
+
"curation": 0.4,
|
|
15
|
+
"author": 0.1
|
|
16
|
+
},
|
|
17
|
+
"ticker": "SYNL",
|
|
18
|
+
"audit_cadence": "Weekly",
|
|
19
|
+
"lifecycle": "Genesis-Platinum",
|
|
20
|
+
"global_outputs": [
|
|
21
|
+
"synthesis_id",
|
|
22
|
+
"logic_id",
|
|
23
|
+
"bps_verified",
|
|
24
|
+
"model_stack",
|
|
25
|
+
"processing_ms",
|
|
26
|
+
"timestamp"
|
|
27
|
+
],
|
|
28
|
+
"custom_outputs": [
|
|
29
|
+
{
|
|
30
|
+
"field_name": "Type",
|
|
31
|
+
"type": "Description",
|
|
32
|
+
"description": "Downstream Intent",
|
|
33
|
+
"downstream_intent": "BPS Sensitivity",
|
|
34
|
+
"bps_sensitivity": ""
|
|
35
|
+
},
|
|
36
|
+
{
|
|
37
|
+
"field_name": "signal_disposition",
|
|
38
|
+
"type": "String",
|
|
39
|
+
"description": "Enum: `SIGNAL`, `AMBIGUOUS`, or `NOISE`.",
|
|
40
|
+
"downstream_intent": "**Incident-Router** for deciding if an alert is fired.",
|
|
41
|
+
"bps_sensitivity": "High"
|
|
42
|
+
},
|
|
43
|
+
{
|
|
44
|
+
"field_name": "noise_fingerprint",
|
|
45
|
+
"type": "Object",
|
|
46
|
+
"description": "Statistical breakdown of features (Entropy, Frequency, Clustering).",
|
|
47
|
+
"downstream_intent": "**ML-Training-Pipeline** for model refinement/retraining.",
|
|
48
|
+
"bps_sensitivity": "Medium"
|
|
49
|
+
},
|
|
50
|
+
{
|
|
51
|
+
"field_name": "dispatch_route",
|
|
52
|
+
"type": "Array",
|
|
53
|
+
"description": "List of target channels (Slack, PagerDuty, AuditLog) for the event.",
|
|
54
|
+
"downstream_intent": "**Notification-Engine** for delivery.",
|
|
55
|
+
"bps_sensitivity": "Low"
|
|
56
|
+
},
|
|
57
|
+
{
|
|
58
|
+
"field_name": "circuit_breaker_status",
|
|
59
|
+
"type": "String",
|
|
60
|
+
"description": "State of the classification engine (CLOSED, OPEN, HALF-OPEN).",
|
|
61
|
+
"downstream_intent": "**SRE-Dashboard** for system health visibility.",
|
|
62
|
+
"bps_sensitivity": "High"
|
|
63
|
+
}
|
|
64
|
+
]
|
|
65
|
+
}
|
package/atomics/8.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
1
|
+
{
|
|
2
|
+
"id": 8,
|
|
3
|
+
"successBps": 9698,
|
|
4
|
+
"cid": "ar://SYNTH_ATOMIC_HC_PATHVALIDATOR",
|
|
5
|
+
"costUsd": 1500,
|
|
6
|
+
"details": "# A-HC-PathValidator Technical Specification\n\n## 1. Core Logic Definition\n\n### 1.1 Functional Purpose\nA-HC-PathValidator performs hierarchical path validation for distributed system routing, ensuring path integrity across service mesh topologies with deterministic failure detection.\n\n### 1.2 Validation Algorithm\n\n```\nFUNCTION ValidatePath(path: PathObject) -\u003e ValidationResult:\n \n // Phase 1: Structural Validation\n IF path.segments.length == 0 THEN\n RETURN {valid: false, error: \"EMPTY_PATH\", bps: 100}\n \n IF path.segments.length \u003e MAX_DEPTH (default: 64) THEN\n RETURN {valid: false, error: \"DEPTH_EXCEEDED\", bps: 85}\n \n // Phase 2: Node Connectivity Validation\n FOR i = 0 TO path.segments.length - 1:\n current_node = path.segments[i]\n \n // Existence Check\n IF NOT NodeRegistry.exists(current_node.id) THEN\n RETURN {valid: false, error: \"NODE_NOT_FOUND\", node: i, bps: 95}\n \n // Health Check\n IF current_node.health_score \u003c HEALTH_THRESHOLD (default: 0.7) THEN\n RETURN {valid: false, error: \"UNHEALTHY_NODE\", node: i, bps: 75}\n \n // Edge Validation (for non-terminal nodes)\n IF i \u003c path.segments.length - 1:\n next_node = path.segments[i + 1]\n edge_weight = EdgeMatrix[current_node.id][next_node.id]\n \n IF edge_weight == NULL OR edge_weight == INFINITY THEN\n RETURN {valid: false, error: \"DISCONNECTED_EDGE\", edge: [i, i+1], bps: 90}\n \n IF edge_weight \u003e LATENCY_THRESHOLD (default: 500ms) THEN\n RETURN {valid: false, error: \"LATENCY_VIOLATION\", edge: [i, i+1], bps: 60}\n \n // Phase 3: Cycle Detection (Tortoise-Hare)\n visited = HashSet()\n FOR segment IN path.segments:\n IF visited.contains(segment.id) THEN\n RETURN {valid: false, error: \"CYCLE_DETECTED\", bps: 80}\n visited.add(segment.id)\n \n // Phase 4: Policy Compliance\n policy_result = PolicyEngine.evaluate(path)\n IF NOT policy_result.compliant THEN\n RETURN {valid: false, error: \"POLICY_VIOLATION\", details: policy_result, bps: 70}\n \n // Phase 5: Compute Path Score\n path_score = ComputePathScore(path)\n \n RETURN {valid: true, score: path_score, bps: 0}\n```\n\n### 1.3 Path Score Computation\n\n```\nFUNCTION ComputePathScore(path: PathObject) -\u003e Float:\n \n // Weighted scoring model\n W_latency = 0.35\n W_reliability = 0.30\n W_capacity = 0.20\n W_hops = 0.15\n \n // Latency Score (inverse normalized)\n total_latency = SUM(EdgeMatrix[path.segments[i]][path.segments[i+1]].latency)\n latency_score = 1 - (total_latency / MAX_ACCEPTABLE_LATENCY)\n latency_score = CLAMP(latency_score, 0, 1)\n \n // Reliability Score (product of node reliabilities)\n reliability_score = PRODUCT(path.segments[i].reliability FOR i IN range)\n \n // Capacity Score (minimum bottleneck normalized)\n min_capacity = MIN(EdgeMatrix[path.segments[i]][path.segments[i+1]].capacity)\n capacity_score = min_capacity / BASELINE_CAPACITY\n capacity_score = CLAMP(capacity_score, 0, 1)\n \n // Hop Score (inverse normalized)\n hop_score = 1 - (path.segments.length / MAX_DEPTH)\n \n // Final weighted score\n RETURN (W_latency * latency_score) + \n (W_reliability * reliability_score) + \n (W_capacity * capacity_score) + \n (W_hops * hop_score)\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 BPS Definition\nBPS quantifies operational failure risk on scale 0-100, where:\n- **0-25**: Low risk, recoverable\n- **26-50**: Moderate risk, degraded operation\n- **51-75**: High risk, service impact\n- **76-100**: Critical risk, system failure\n\n### 2.2 BPS Matrix\n\n| Error Code | BPS | Category | MTTR Target | Escalation Level | Auto-Recovery |\n|------------|-----|----------|-------------|------------------|---------------|\n| `EMPTY_PATH` | 100 | Input | N/A | L0 | Reject |\n| `NODE_NOT_FOUND` | 95 | Registry | 30s | L2 | Registry Sync |\n| `DISCONNECTED_EDGE` | 90 | Topology | 60s | L2 | Topology Rebuild |\n| `DEPTH_EXCEEDED` | 85 | Input | N/A | L0 | Reject |\n| `CYCLE_DETECTED` | 80 | Logic | N/A | L1 | Path Recompute |\n| `UNHEALTHY_NODE` | 75 | Health | 120s | L1 | Node Bypass |\n| `POLICY_VIOLATION` | 70 | Compliance | 300s | L3 | Manual Review |\n| `LATENCY_VIOLATION` | 60 | Performance | 180s | L1 | Route Optimization |\n| `CAPACITY_WARNING` | 45 | Performance | 600s | L1 | Load Balancing |\n| `SUBOPTIMAL_PATH` | 30 | Optimization | 900s | L0 | Background Recompute |\n\n### 2.3 BPS Aggregation Formula\n\n```\nFUNCTION AggregateBPS(validation_results: List[ValidationResult]) -\u003e SystemBPS:\n \n IF validation_results.length == 0 THEN\n RETURN 0\n \n // Weighted aggregation with severity amplification\n critical_count = COUNT(r WHERE r.bps \u003e= 76)\n high_count = COUNT(r WHERE r.bps \u003e= 51 AND r.bps \u003c 76)\n \n base_bps = AVG(r.bps FOR r IN validation_results)\n \n // Amplification factor for clustered failures\n amplification = 1 + (0.1 * critical_count) + (0.05 * high_count)\n \n system_bps = MIN(base_bps * amplification, 100)\n \n RETURN {\n score: system_bps,\n critical_failures: critical_count,\n high_failures: high_count,\n recommendation: DeriveRecommendation(system_bps)\n }\n```\n\n### 2.4 BPS Threshold Actions\n\n```\nBPS_THRESHOLDS = {\n 90: {action: \"CIRCUIT_BREAK\", alert: \"P1\", runbook: \"RB-001\"},\n 75: {action: \"SHED_LOAD\", alert: \"P2\", runbook: \"RB-002\"},\n 50: {action: \"ENABLE_FALLBACK\", alert: \"P3\", runbook: \"RB-003\"},\n 25: {action: \"LOG_WARNING\", alert: \"P4\", runbook: \"RB-004\"}\n}\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n### 3.1 PathValidationRequest Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-hc-pathvalidator/request/v1\",\n \"title\": \"A-HC-PathValidator Request\",\n \"type\": \"object\",\n \"required\": [\"request_id\", \"timestamp\", \"path\", \"validation_config\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\",\n \"description\": \"Unique request identifier for tracing\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 request timestamp\"\n },\n \"path\": {\n \"$ref\": \"#/$defs/PathObject\"\n },\n \"validation_config\": {\n \"$ref\": \"#/$defs/ValidationConfig\"\n },\n \"metadata\": {\n \"type\": \"object\",\n \"properties\": {\n \"source_service\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-z][a-z0-9-]{2,62}$\"\n },\n \"priority\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 10\n },\n \"trace_context\": {\n \"type\": \"string\",\n \"pattern\": \"^[0-9a-f]{32}$\"\n }\n }\n }\n },\n \"$defs\": {\n \"PathObject\": {\n \"type\": \"object\",\n \"required\": [\"segments\", \"source\", \"destination\"],\n \"properties\": {\n \"segments\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"maxItems\": 64,\n \"items\": {\n \"$ref\": \"#/$defs/PathSegment\"\n }\n },\n \"source\": {\n \"$ref\": \"#/$defs/NodeIdentifier\"\n },\n \"destination\": {\n \"$ref\": \"#/$defs/NodeIdentifier\"\n },\n \"path_type\": {\n \"type\": \"string\",\n \"enum\": [\"PRIMARY\", \"FALLBACK\", \"EMERGENCY\", \"TEST\"]\n },\n \"ttl_ms\": {\n \"type\": \"integer\",\n \"minimum\": 100,\n \"maximum\": 300000,\n \"default\": 30000\n }\n }\n },\n \"PathSegment\": {\n \"type\": \"object\",\n \"required\": [\"id\", \"type\"],\n \"properties\": {\n \"id\": {\n \"$ref\": \"#/$defs/NodeIdentifier\"\n },\n \"type\": {\n \"type\": \"string\",\n \"enum\": [\"GATEWAY\", \"SERVICE\", \"PROXY\", \"LOAD_BALANCER\", \"DATABASE\", \"CACHE\", \"QUEUE\"]\n },\n \"region\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-z]{2}-[a-z]+-[0-9]$\"\n },\n \"zone\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-z]$\"\n },\n \"weight\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1,\n \"default\": 1\n },\n \"health_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"reliability\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"attributes\": {\n \"type\": \"object\",\n \"additionalProperties\": {\n \"type\": [\"string\", \"number\", \"boolean\"]\n }\n }\n }\n },\n \"NodeIdentifier\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-z0-9][a-z0-9-_.]{0,126}[a-z0-9]$\",\n \"minLength\": 2,\n \"maxLength\": 128\n },\n \"ValidationConfig\": {\n \"type\": \"object\",\n \"properties\": {\n \"max_depth\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 128,\n \"default\": 64\n },\n \"health_threshold\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1,\n \"default\": 0.7\n },\n \"latency_threshold_ms\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 60000,\n \"default\": 500\n },\n \"enable_cycle_detection\": {\n \"type\": \"boolean\",\n \"default\": true\n },\n \"enable_policy_check\": {\n \"type\": \"boolean\",\n \"default\": true\n },\n \"strict_mode\": {\n \"type\": \"boolean\",\n \"default\": false\n },\n \"timeout_ms\": {\n \"type\": \"integer\",\n \"minimum\": 10,\n \"maximum\": 30000,\n \"default\": 5000\n }\n }\n }\n }\n}\n```\n\n### 3.2 PathValidationResponse Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-hc-pathvalidator/response/v1\",\n \"title\": \"A-HC-PathValidator Response\",\n \"type\": \"object\",\n \"required\": [\"request_id\", \"timestamp\", \"valid\", \"bps\"],\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"valid\": {\n \"type\": \"boolean\"\n },\n \"bps\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 100\n },\n \"path_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"errors\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"code\", \"message\", \"severity\"],\n \"properties\": {\n \"code\": {\n \"type\": \"string\",\n \"enum\": [\n \"EMPTY_PATH\",\n \"DEPTH_EXCEEDED\",\n \"NODE_NOT_FOUND\",\n \"UNHEALTHY_NODE\",\n \"DISCONNECTED_EDGE\",\n \"LATENCY_VIOLATION\",\n \"CYCLE_DETECTED\",\n \"POLICY_VIOLATION\",\n \"TIMEOUT\",\n \"INTERNAL_ERROR\"\n ]\n },\n \"message\": {\n \"type\": \"string\"\n },\n \"severity\": {\n \"type\": \"string\",\n \"enum\": [\"CRITICAL\", \"HIGH\", \"MEDIUM\", \"LOW\"]\n },\n \"location\": {\n \"type\": \"object\",\n \"properties\": {\n \"segment_index\": {\"type\": \"integer\"},\n \"node_id\": {\"type\": \"string\"},\n \"edge\": {\n \"type\": \"array\",\n \"items\": {\"type\": \"integer\"},\n \"minItems\": 2,\n \"maxItems\": 2\n }\n }\n }\n }\n }\n },\n \"metrics\": {\n \"type\": \"object\",\n \"properties\": {\n \"validation_duration_ms\": {\"type\": \"number\"},\n \"segments_validated\": {\"type\": \"integer\"},\n \"edges_validated\": {\"type\": \"integer\"},\n \"policies_evaluated\": {\"type\": \"integer\"}\n }\n },\n \"recommendations\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"action\": {\"type\": \"string\"},\n \"priority\": {\"type\": \"integer\"},\n \"runbook_id\": {\"type\": \"string\"}\n }\n }\n }\n }\n}\n```\n\n---\n\n## 4. SRE Metrics Specification\n\n### 4.1 Service Level Indicators (SLIs)\n\n| SLI ID | Metric Name | Formula | Target |\n|--------|-------------|---------|--------|\n| `S",
|
|
7
|
+
"outcome": "A-HC-PathValidator",
|
|
8
|
+
"rType": 0,
|
|
9
|
+
"persona": "HC",
|
|
10
|
+
"primary_model": "Claude-3.5-Reasoning",
|
|
11
|
+
"privacy_tier": "Local-First",
|
|
12
|
+
"sybox_fee_split": {
|
|
13
|
+
"dev": 0.5,
|
|
14
|
+
"curation": 0.4,
|
|
15
|
+
"author": 0.1
|
|
16
|
+
},
|
|
17
|
+
"ticker": "SYNL",
|
|
18
|
+
"audit_cadence": "Weekly",
|
|
19
|
+
"lifecycle": "Genesis-Platinum",
|
|
20
|
+
"global_outputs": [
|
|
21
|
+
"synthesis_id",
|
|
22
|
+
"logic_id",
|
|
23
|
+
"bps_verified",
|
|
24
|
+
"model_stack",
|
|
25
|
+
"processing_ms",
|
|
26
|
+
"timestamp"
|
|
27
|
+
],
|
|
28
|
+
"custom_outputs": [
|
|
29
|
+
{
|
|
30
|
+
"field_name": "path_validity_state",
|
|
31
|
+
"type": "Boolean",
|
|
32
|
+
"description": "Final deterministic verdict on the requested route.",
|
|
33
|
+
"downstream_intent": "Traffic-Controller",
|
|
34
|
+
"bps_sensitivity": "YES"
|
|
35
|
+
},
|
|
36
|
+
{
|
|
37
|
+
"field_name": "topology_bottleneck_ref",
|
|
38
|
+
"type": "Object",
|
|
39
|
+
"description": "Segment ID and metrics for the lowest-performing link (latency/capacity).",
|
|
40
|
+
"downstream_intent": "SRE-Dashboard",
|
|
41
|
+
"bps_sensitivity": "YES"
|
|
42
|
+
},
|
|
43
|
+
{
|
|
44
|
+
"field_name": "cycle_detection_verdict",
|
|
45
|
+
"type": "String",
|
|
46
|
+
"description": "Deterministic status: ACYCLIC or CYCLE_DETECTED.",
|
|
47
|
+
"downstream_intent": "Network-Orch",
|
|
48
|
+
"bps_sensitivity": "YES"
|
|
49
|
+
},
|
|
50
|
+
{
|
|
51
|
+
"field_name": "weighted_score_decomposition",
|
|
52
|
+
"type": "Object",
|
|
53
|
+
"description": "Latency, Reliability, and Hop scores used for the 0.912+ result.",
|
|
54
|
+
"downstream_intent": "Cloud-Architect",
|
|
55
|
+
"bps_sensitivity": "NO"
|
|
56
|
+
},
|
|
57
|
+
{
|
|
58
|
+
"field_name": "revalidation_ttl_ms",
|
|
59
|
+
"type": "Integer",
|
|
60
|
+
"description": "System-calculated time before the current path is considered stale.",
|
|
61
|
+
"downstream_intent": "Cache-Layer",
|
|
62
|
+
"bps_sensitivity": "YES"
|
|
63
|
+
}
|
|
64
|
+
]
|
|
65
|
+
}
|
package/atomics/83.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
1
|
+
{
|
|
2
|
+
"id": 83,
|
|
3
|
+
"successBps": 9812,
|
|
4
|
+
"cid": "ar://SYNTH_ATOMIC_CEO_BOARDSIM",
|
|
5
|
+
"costUsd": 1500,
|
|
6
|
+
"details": "# A-CEO-BoardSim Technical Logic Specification\n\n## 1. System Architecture Overview\n\n```\n┌─────────────────────────────────────────────────────────────────â”\n│ A-CEO-BoardSim Core Engine │\n├─────────────────────────────────────────────────────────────────┤\n│ ┌─────────────┠┌─────────────┠┌─────────────┠│\n│ │ Decision │ │ Stakeholder │ │ Financial │ │\n│ │ Engine │──│ Simulation │──│ Modeling │ │\n│ └─────────────┘ └─────────────┘ └─────────────┘ │\n│ │ │ │ │\n│ â–¼ â–¼ â–¼ │\n│ ┌─────────────────────────────────────────────────┠│\n│ │ BPS (Breakdown Point Score) Matrix │ │\n│ └─────────────────────────────────────────────────┘ │\n│ │ │ │ │\n│ â–¼ â–¼ â–¼ │\n│ ┌─────────────┠┌─────────────┠┌─────────────┠│\n│ │ Risk │ │ Compliance │ │ Performance │ │\n│ │ Aggregator │──│ Validator │──│ Metrics │ │\n│ └─────────────┘ └─────────────┘ └─────────────┘ │\n└─────────────────────────────────────────────────────────────────┘\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 BPS Calculation Formula\n\n```\nBPS_total = Σ(w_i × R_i × S_i × T_i) / N\n\nWhere:\n w_i = Weight factor for risk category i (0.0 - 1.0)\n R_i = Raw risk score (1-100)\n S_i = Severity multiplier (1.0 - 5.0)\n T_i = Time decay factor = e^(-λt), λ = 0.1\n N = Normalization constant = Σw_i\n```\n\n### 2.2 BPS Category Matrix\n\n| Category ID | Risk Domain | Weight (w) | Threshold_Warning | Threshold_Critical | Threshold_Breakdown |\n|-------------|-------------|------------|-------------------|--------------------|--------------------|\n| BPS-001 | Liquidity Risk | 0.95 | 45 | 70 | 85 |\n| BPS-002 | Board Alignment | 0.85 | 40 | 65 | 80 |\n| BPS-003 | Regulatory Compliance | 0.90 | 35 | 60 | 75 |\n| BPS-004 | Market Position | 0.75 | 50 | 72 | 88 |\n| BPS-005 | Operational Continuity | 0.88 | 42 | 68 | 82 |\n| BPS-006 | Stakeholder Confidence | 0.80 | 48 | 70 | 85 |\n| BPS-007 | Strategic Execution | 0.82 | 44 | 66 | 80 |\n| BPS-008 | Talent Retention | 0.70 | 55 | 75 | 90 |\n| BPS-009 | Technology Debt | 0.78 | 50 | 73 | 87 |\n| BPS-010 | Supply Chain Resilience | 0.83 | 46 | 69 | 84 |\n\n### 2.3 BPS Severity Multiplier Logic\n\n```python\ndef calculate_severity_multiplier(risk_score: float, category: str) -\u003e float:\n \"\"\"\n S_i calculation based on risk score bands\n \"\"\"\n severity_bands = {\n (0, 25): 1.0,\n (25, 50): 1.5,\n (50, 70): 2.5,\n (70, 85): 3.5,\n (85, 100): 5.0\n }\n \n for (lower, upper), multiplier in severity_bands.items():\n if lower \u003c= risk_score \u003c upper:\n return multiplier\n return 5.0\n```\n\n### 2.4 Composite BPS State Machine\n\n```\n┌──────────────┠BPS \u003c 40 ┌──────────────â”\n│ NOMINAL │◄───────────────│ WARNING │\n│ (Green) │ │ (Yellow) │\n└──────┬───────┘ └──────┬───────┘\n │ │\n │ BPS ≥ 40 │ BPS ≥ 65\n â–¼ â–¼\n┌──────────────┠BPS ≥ 80 ┌──────────────â”\n│ WARNING │───────────────►│ CRITICAL │\n│ (Yellow) │ │ (Red) │\n└──────────────┘ └──────┬───────┘\n │\n │ BPS ≥ 90\n â–¼\n ┌──────────────â”\n │ BREAKDOWN │\n │ (Black) │\n └──────────────┘\n```\n\n---\n\n## 3. JSON Schema Specifications\n\n### 3.1 Simulation Input Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://a-ceo-boardsim.io/schemas/simulation-input.json\",\n \"title\": \"A-CEO-BoardSim Simulation Input\",\n \"type\": \"object\",\n \"required\": [\"simulation_id\", \"timestamp\", \"company_state\", \"board_composition\", \"decision_context\"],\n \"properties\": {\n \"simulation_id\": {\n \"type\": \"string\",\n \"pattern\": \"^SIM-[A-Z0-9]{8}-[0-9]{4}$\",\n \"description\": \"Unique simulation identifier\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"version\": {\n \"type\": \"string\",\n \"pattern\": \"^[0-9]+\\\\.[0-9]+\\\\.[0-9]+$\",\n \"default\": \"1.0.0\"\n },\n \"company_state\": {\n \"type\": \"object\",\n \"required\": [\"financials\", \"market_position\", \"operational_metrics\"],\n \"properties\": {\n \"financials\": {\n \"type\": \"object\",\n \"required\": [\"revenue_ttm\", \"ebitda_margin\", \"cash_runway_months\", \"debt_to_equity\"],\n \"properties\": {\n \"revenue_ttm\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"description\": \"Trailing twelve months revenue in USD\"\n },\n \"ebitda_margin\": {\n \"type\": \"number\",\n \"minimum\": -1.0,\n \"maximum\": 1.0\n },\n \"cash_runway_months\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 120\n },\n \"debt_to_equity\": {\n \"type\": \"number\",\n \"minimum\": 0\n },\n \"burn_rate_monthly\": {\n \"type\": \"number\"\n },\n \"arr\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"description\": \"Annual Recurring Revenue\"\n }\n }\n },\n \"market_position\": {\n \"type\": \"object\",\n \"required\": [\"market_share_pct\", \"competitive_index\", \"tam_penetration\"],\n \"properties\": {\n \"market_share_pct\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100\n },\n \"competitive_index\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100\n },\n \"tam_penetration\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"nps_score\": {\n \"type\": \"integer\",\n \"minimum\": -100,\n \"maximum\": 100\n }\n }\n },\n \"operational_metrics\": {\n \"type\": \"object\",\n \"required\": [\"employee_count\", \"attrition_rate\", \"system_uptime\"],\n \"properties\": {\n \"employee_count\": {\n \"type\": \"integer\",\n \"minimum\": 1\n },\n \"attrition_rate\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"system_uptime\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"incident_mttr_hours\": {\n \"type\": \"number\",\n \"minimum\": 0\n }\n }\n }\n }\n },\n \"board_composition\": {\n \"type\": \"object\",\n \"required\": [\"members\", \"voting_threshold\"],\n \"properties\": {\n \"members\": {\n \"type\": \"array\",\n \"minItems\": 3,\n \"maxItems\": 15,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"member_id\", \"role\", \"voting_weight\", \"alignment_vector\"],\n \"properties\": {\n \"member_id\": {\n \"type\": \"string\",\n \"pattern\": \"^BM-[0-9]{4}$\"\n },\n \"role\": {\n \"type\": \"string\",\n \"enum\": [\"CHAIR\", \"INDEPENDENT\", \"INVESTOR\", \"FOUNDER\", \"EXECUTIVE\", \"OBSERVER\"]\n },\n \"voting_weight\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"alignment_vector\": {\n \"type\": \"object\",\n \"required\": [\"growth_priority\", \"risk_tolerance\", \"exit_timeline\"],\n \"properties\": {\n \"growth_priority\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"risk_tolerance\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"exit_timeline\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 120,\n \"description\": \"Months to preferred exit\"\n },\n \"governance_strictness\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n }\n }\n },\n \"influence_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100\n }\n }\n }\n },\n \"voting_threshold\": {\n \"type\": \"number\",\n \"minimum\": 0.5,\n \"maximum\": 1.0,\n \"description\": \"Required vote percentage for approval\"\n },\n \"quorum_requirement\": {\n \"type\": \"number\",\n \"minimum\": 0.5,\n \"maximum\": 1.0\n }\n }\n },\n \"decision_context\": {\n \"type\": \"object\",\n \"required\": [\"decision_type\", \"options\", \"constraints\"],\n \"properties\": {\n \"decision_type\": {\n \"type\": \"string\",\n \"enum\": [\n \"STRATEGIC_PIVOT\",\n \"FUNDING_ROUND\",\n \"M_AND_A\",\n \"EXECUTIVE_CHANGE\",\n \"MARKET_EXPANSION\",\n \"COST_RESTRUCTURING\",\n \"PRODUCT_LAUNCH\",\n \"PARTNERSHIP\",\n \"REGULATORY_RESPONSE\",\n \"CRISIS_MANAGEMENT\"\n ]\n },\n \"urgency_level\": {\n \"type\": \"string\",\n \"enum\": [\"LOW\", \"MEDIUM\", \"HIGH\", \"CRITICAL\"]\n },\n \"options\": {\n \"type\": \"array\",\n \"minItems\": 2,\n \"maxItems\": 10,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"option_id\", \"description\", \"projected_impact\"],\n \"properties\": {\n \"option_id\": {\n \"type\": \"string\",\n \"pattern\": \"^OPT-[0-9]{3}$\"\n },\n \"description\": {\n \"type\": \"string\",\n \"maxLength\": 500\n },\n \"projected_impact\": {\n \"type\": \"object\",\n \"properties\": {\n \"revenue_delta_pct\": { \"type\": \"number\" },\n \"cost_delta_pct\": { \"type\": \"number\" },\n \"risk_score_delta\": { \"type\": \"number\" },\n \"timeline_months\": { \"type\": \"integer\" },\n \"confidence_interval\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 }\n }\n }\n }\n }\n },\n \"constraints\": {\n \"type\": \"object\",\n \"properties\": {\n \"max_capital_deployment\": { \"type\": \"number\", \"minimum\": 0 },\n \"regulatory_blockers\": { \"type\": \"array\", \"items\": { \"type\": \"string\" } },\n \"timeline_hard_deadline\": { \"type\": \"string\", \"format\": \"date\" },\n \"stakeholder_vetoes\": { \"type\": \"array\", \"items\": { \"type\": \"string\" } }\n }\n }\n }\n },\n \"external_factors\": {\n \"type\": \"object\",\n \"properties\": {\n \"market_volatility_index\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100\n },\n \"regulatory_pressure_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100\n },\n \"competitive_threat_level\": {\n \"type\": \"string\",\n \"enum\": [\"LOW\", \"MODERATE\", \"HIGH\", \"SEVERE\"]\n },\n \"macroeconomic_indicators\": {\n \"type\": \"object\",\n \"properties\": {\n \"interest_rate_environment\": { \"type\": \"string\", \"enum\": [\"RISING\", \"STABLE\", \"FALLING\"] },\n \"gdp_growth_outlook\": { \"type\": \"string\", \"enum\": [\"RECESSION\", \"STAGNANT\", \"MODERATE\", \"STRONG\"] },\n \"sector_sentiment\": { \"type\": \"number\", \"minimum\": -1, \"maximum\": 1 }\n }\n }\n }\n }\n },\n \"additionalProperties\": false\n}\n```\n\n### 3.2 Simulation Output Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://a-ceo-boardsim.io/schemas/simulation-output.json\",\n \"title\": \"A-CEO-BoardSim Simulation Output\",\n \"type\": \"object\",\n \"required\": [\"simulation_id\", \"execution_metadata\", \"bps_analysis\", \"decision_outcome\", \"projections\"],\n \"properties\": {\n \"simulation_id\": {\n \"type\": \"string\",\n \"pattern\": \"^SIM-[A-Z0-9]{8}-[0-9]{4}$\"\n },\n \"execution_metadata\": {\n \"type\": \"object\",\n \"required\": [\"start_time\", \"end_time\", \"iterations\", \"convergence_achieved\"],\n \"properties\": {\n \"start_time\": { \"type\": \"string\", \"format\": \"date-time\" },\n \"end_time\": {\n```}}}}}\n\n## 3. Resilience Layer\n- **Noise_Tolerance**: 0.15\n- **Confidence_Threshold**: 0.85\n- **Logic_Smoothing**: Bayesian",
|
|
7
|
+
"outcome": "A-CEO-BoardSim",
|
|
8
|
+
"rType": 0,
|
|
9
|
+
"persona": "CEO",
|
|
10
|
+
"primary_model": "GPT-4o-Synthesis",
|
|
11
|
+
"privacy_tier": "Public",
|
|
12
|
+
"sybox_fee_split": {
|
|
13
|
+
"dev": 0.5,
|
|
14
|
+
"curation": 0.4,
|
|
15
|
+
"author": 0.1
|
|
16
|
+
},
|
|
17
|
+
"ticker": "SYNL",
|
|
18
|
+
"audit_cadence": "Weekly",
|
|
19
|
+
"lifecycle": "Genesis-Platinum",
|
|
20
|
+
"global_outputs": [
|
|
21
|
+
"synthesis_id",
|
|
22
|
+
"logic_id",
|
|
23
|
+
"bps_verified",
|
|
24
|
+
"model_stack",
|
|
25
|
+
"processing_ms",
|
|
26
|
+
"timestamp"
|
|
27
|
+
],
|
|
28
|
+
"custom_outputs": [
|
|
29
|
+
{
|
|
30
|
+
"field_name": "alignment_variance_matrix",
|
|
31
|
+
"type": "Object",
|
|
32
|
+
"description": "Delta vectors between Founder, Investor, and Chair priorities",
|
|
33
|
+
"downstream_intent": "A-CEO-PivotOracle",
|
|
34
|
+
"bps_sensitivity": "High"
|
|
35
|
+
},
|
|
36
|
+
{
|
|
37
|
+
"field_name": "simulated_outcome_verdict",
|
|
38
|
+
"type": "String",
|
|
39
|
+
"description": "Highest probability success path (e.g., \"OPT-001: Vertical Expansion\")",
|
|
40
|
+
"downstream_intent": "Executive Dashboard",
|
|
41
|
+
"bps_sensitivity": "Medium"
|
|
42
|
+
},
|
|
43
|
+
{
|
|
44
|
+
"field_name": "liquidity_event_probability",
|
|
45
|
+
"type": "Float",
|
|
46
|
+
"description": "Projected risk of \"Black\" state BPS based on burn vs. runway",
|
|
47
|
+
"downstream_intent": "A-CFO-TreasuryBot",
|
|
48
|
+
"bps_sensitivity": "High"
|
|
49
|
+
},
|
|
50
|
+
{
|
|
51
|
+
"field_name": "stakeholder_veto_flags",
|
|
52
|
+
"type": "Array",
|
|
53
|
+
"description": "Identifiers for board members likely to block specific options",
|
|
54
|
+
"downstream_intent": "A-CEO-GapDetector",
|
|
55
|
+
"bps_sensitivity": "Medium"
|
|
56
|
+
}
|
|
57
|
+
]
|
|
58
|
+
}
|
package/atomics/84.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
1
|
+
{
|
|
2
|
+
"id": 84,
|
|
3
|
+
"successBps": 9999,
|
|
4
|
+
"cid": "ar://SYNTH_ATOMIC_CEO_PIVOTORACLE",
|
|
5
|
+
"costUsd": 1500,
|
|
6
|
+
"details": "# A-CEO-PivotOracle Technical Specification\n\n## System Overview\n\nA-CEO-PivotOracle is a decision-support system for evaluating strategic pivot opportunities against operational stability thresholds.\n\n---\n\n## 1. Breakdown Point Score (BPS) Matrix\n\n### 1.1 BPS Calculation Formula\n\n```\nBPS = Σ(Wáµ¢ × Ráµ¢ × Iáµ¢) / N\n\nWhere:\n- Wáµ¢ = Weight factor for risk category i (0.0 - 1.0)\n- Ráµ¢ = Risk probability for category i (0.0 - 1.0)\n- Iáµ¢ = Impact severity for category i (1 - 10)\n- N = Normalization constant (sum of all weights × 10)\n```\n\n### 1.2 Risk Category Weights\n\n| Category ID | Risk Category | Weight (Wáµ¢) | Threshold |\n|-------------|---------------|-------------|-----------|\n| RC-001 | Revenue Continuity | 0.25 | BPS ≤ 6.0 |\n| RC-002 | Talent Retention | 0.15 | BPS ≤ 7.0 |\n| RC-003 | Technical Debt Accumulation | 0.20 | BPS ≤ 5.5 |\n| RC-004 | Market Timing Risk | 0.15 | BPS ≤ 7.5 |\n| RC-005 | Capital Runway Depletion | 0.25 | BPS ≤ 4.0 |\n\n### 1.3 BPS Severity Classification\n\n```\nBPS ∈ [0.0, 3.0) → GREEN → Proceed with pivot\nBPS ∈ [3.0, 5.5) → YELLOW → Proceed with mitigation plan\nBPS ∈ [5.5, 7.5) → ORANGE → Delay pivot, address risks\nBPS ∈ [7.5, 10.0] → RED → Abort pivot consideration\n```\n\n### 1.4 Composite BPS Matrix\n\n```\n┌─────────────────────────────────────────────────────────────────â”\n│ IMPACT SEVERITY (I) │\n├─────────┬───────┬───────┬───────┬───────┬───────┬───────┬──────┤\n│ P(R) │ 1-2 │ 3-4 │ 5-6 │ 7-8 │ 9-10 │ ZONE │ ACT │\n├─────────┼───────┼───────┼───────┼───────┼───────┼───────┼──────┤\n│ 0.0-0.2 │ 0.2 │ 0.6 │ 1.0 │ 1.4 │ 1.8 │ GREEN │ GO │\n│ 0.2-0.4 │ 0.8 │ 1.6 │ 2.4 │ 3.2 │ 4.0 │ GREEN │ GO │\n│ 0.4-0.6 │ 1.5 │ 3.0 │ 4.5 │ 6.0 │ 7.5 │ YELLOW│ MIT │\n│ 0.6-0.8 │ 2.4 │ 4.8 │ 7.2 │ 9.6 │ 10.0 │ ORANGE│ HOLD │\n│ 0.8-1.0 │ 3.6 │ 7.2 │ 10.0 │ 10.0 │ 10.0 │ RED │ STOP │\n└─────────┴───────┴───────┴───────┴───────┴───────┴───────┴──────┘\n```\n\n---\n\n## 2. JSON Schema for Input Validation\n\n### 2.1 Primary Request Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://pivot-oracle.internal/schemas/pivot-request.json\",\n \"title\": \"PivotOracleRequest\",\n \"type\": \"object\",\n \"required\": [\n \"request_id\",\n \"timestamp\",\n \"pivot_context\",\n \"risk_assessment\",\n \"financial_metrics\",\n \"operational_state\"\n ],\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"pattern\": \"^PVT-[0-9]{4}-[A-Z]{3}-[0-9]{6}$\",\n \"description\": \"Unique pivot request identifier\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"pivot_context\": {\n \"$ref\": \"#/$defs/PivotContext\"\n },\n \"risk_assessment\": {\n \"$ref\": \"#/$defs/RiskAssessment\"\n },\n \"financial_metrics\": {\n \"$ref\": \"#/$defs/FinancialMetrics\"\n },\n \"operational_state\": {\n \"$ref\": \"#/$defs/OperationalState\"\n }\n },\n \"$defs\": {\n \"PivotContext\": {\n \"type\": \"object\",\n \"required\": [\"pivot_type\", \"target_market\", \"timeline_days\", \"confidence_score\"],\n \"properties\": {\n \"pivot_type\": {\n \"type\": \"string\",\n \"enum\": [\"MARKET\", \"PRODUCT\", \"TECHNOLOGY\", \"BUSINESS_MODEL\", \"CHANNEL\", \"CUSTOMER_SEGMENT\"]\n },\n \"target_market\": {\n \"type\": \"string\",\n \"minLength\": 3,\n \"maxLength\": 128\n },\n \"timeline_days\": {\n \"type\": \"integer\",\n \"minimum\": 30,\n \"maximum\": 730\n },\n \"confidence_score\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n },\n \"reversibility_index\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0,\n \"default\": 0.5\n }\n }\n },\n \"RiskAssessment\": {\n \"type\": \"object\",\n \"required\": [\"categories\"],\n \"properties\": {\n \"categories\": {\n \"type\": \"array\",\n \"minItems\": 5,\n \"maxItems\": 5,\n \"items\": {\n \"$ref\": \"#/$defs/RiskCategory\"\n }\n },\n \"correlation_matrix\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"number\",\n \"minimum\": -1.0,\n \"maximum\": 1.0\n }\n }\n }\n }\n },\n \"RiskCategory\": {\n \"type\": \"object\",\n \"required\": [\"category_id\", \"probability\", \"impact\", \"mitigation_readiness\"],\n \"properties\": {\n \"category_id\": {\n \"type\": \"string\",\n \"pattern\": \"^RC-[0-9]{3}$\"\n },\n \"probability\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n },\n \"impact\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 10\n },\n \"mitigation_readiness\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n },\n \"time_to_manifest_days\": {\n \"type\": \"integer\",\n \"minimum\": 1\n }\n }\n },\n \"FinancialMetrics\": {\n \"type\": \"object\",\n \"required\": [\"runway_months\", \"burn_rate\", \"revenue_current\", \"revenue_projected\"],\n \"properties\": {\n \"runway_months\": {\n \"type\": \"number\",\n \"minimum\": 0\n },\n \"burn_rate\": {\n \"type\": \"number\",\n \"minimum\": 0\n },\n \"revenue_current\": {\n \"type\": \"number\",\n \"minimum\": 0\n },\n \"revenue_projected\": {\n \"type\": \"number\"\n },\n \"pivot_cost_estimate\": {\n \"type\": \"number\",\n \"minimum\": 0\n },\n \"opportunity_cost_monthly\": {\n \"type\": \"number\",\n \"minimum\": 0\n }\n }\n },\n \"OperationalState\": {\n \"type\": \"object\",\n \"required\": [\"team_size\", \"system_stability\", \"technical_debt_ratio\"],\n \"properties\": {\n \"team_size\": {\n \"type\": \"integer\",\n \"minimum\": 1\n },\n \"system_stability\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n },\n \"technical_debt_ratio\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n },\n \"deployment_frequency_daily\": {\n \"type\": \"number\",\n \"minimum\": 0\n },\n \"mttr_hours\": {\n \"type\": \"number\",\n \"minimum\": 0\n },\n \"change_failure_rate\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n }\n }\n }\n }\n}\n```\n\n### 2.2 Response Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://pivot-oracle.internal/schemas/pivot-response.json\",\n \"title\": \"PivotOracleResponse\",\n \"type\": \"object\",\n \"required\": [\"request_id\", \"timestamp\", \"verdict\", \"bps_composite\", \"sre_metrics\", \"recommendations\"],\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"verdict\": {\n \"type\": \"string\",\n \"enum\": [\"PROCEED\", \"PROCEED_WITH_MITIGATION\", \"DELAY\", \"ABORT\"]\n },\n \"bps_composite\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 10.0\n },\n \"bps_breakdown\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"category_id\": { \"type\": \"string\" },\n \"bps_contribution\": { \"type\": \"number\" },\n \"threshold_status\": { \"type\": \"string\", \"enum\": [\"PASS\", \"WARN\", \"FAIL\"] }\n }\n }\n },\n \"sre_metrics\": {\n \"$ref\": \"#/$defs/SREMetricsOutput\"\n },\n \"recommendations\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"priority\": { \"type\": \"integer\", \"minimum\": 1, \"maximum\": 5 },\n \"action\": { \"type\": \"string\" },\n \"expected_bps_reduction\": { \"type\": \"number\" },\n \"effort_days\": { \"type\": \"integer\" }\n }\n }\n },\n \"confidence_interval\": {\n \"type\": \"object\",\n \"properties\": {\n \"lower_bound\": { \"type\": \"number\" },\n \"upper_bound\": { \"type\": \"number\" },\n \"confidence_level\": { \"type\": \"number\" }\n }\n }\n },\n \"$defs\": {\n \"SREMetricsOutput\": {\n \"type\": \"object\",\n \"properties\": {\n \"pivot_readiness_score\": { \"type\": \"number\" },\n \"operational_risk_index\": { \"type\": \"number\" },\n \"recovery_capability_score\": { \"type\": \"number\" },\n \"slo_impact_projection\": { \"type\": \"object\" }\n }\n }\n }\n}\n```\n\n---\n\n## 3. SRE Metrics for Operational Success\n\n### 3.1 Core SLI/SLO Definitions\n\n| Metric ID | Metric Name | SLI Definition | SLO Target | Error Budget |\n|-----------|-------------|----------------|------------|--------------|\n| SRE-001 | Pivot Decision Latency | P99 response time for oracle query | ≤ 500ms | 0.1% |\n| SRE-002 | Decision Accuracy | Correct predictions / Total predictions | ≥ 85% | 15% |\n| SRE-003 | System Availability | Uptime / Total time | ≥ 99.9% | 0.1% |\n| SRE-004 | Data Freshness | Age of input data at decision time | ≤ 1 hour | 5% |\n| SRE-005 | Rollback Success Rate | Successful rollbacks / Attempted rollbacks | ≥ 99% | 1% |\n\n### 3.2 Pivot-Specific Operational Metrics\n\n```\n┌────────────────────────────────────────────────────────────────────────â”\n│ PIVOT OPERATIONAL METRICS │\n├──────────────────────┬─────────────────────────────────────────────────┤\n│ METRIC │ FORMULA │\n├──────────────────────┼─────────────────────────────────────────────────┤\n│ Pivot Readiness │ PRS = (1 - TDR) × SS × (1 - CFR) × DF_norm │\n│ Score (PRS) │ Where: TDR = Tech Debt Ratio │\n│ │ SS = System Stability │\n│ │ CFR = Change Failure Rate │\n│ │ DF_norm = Deployment Freq / 10 │\n├──────────────────────┼─────────────────────────────────────────────────┤\n│ Operational Risk │ ORI = (MTTR / 24) × CFR × (1 - SS) │\n│ Index (ORI) │ Target: ORI \u003c 0.15 │\n├──────────────────────┼─────────────────────────────────────────────────┤\n│ Recovery Capability │ RCS = (1 - (MTTR / MTTR_max)) × RR × (1 - ORI) │\n│ Score (RCS) │ Where: RR = Reversibility Index │\n│ │ MTTR_max = 72 hours │\n├──────────────────────┼─────────────────────────────────────────────────┤\n│ Pivot Velocity │ PV = Timeline_days / (BPS × (1 + ORI)) │\n│ Index (PVI) │ Higher = Better execution speed │\n├──────────────────────┼─────────────────────────────────────────────────┤\n│ Financial Stress │ FSI = (Pivot_cost + (Burn × Timeline_months)) │\n│ Index (FSI) │ / (Runway_months × Burn) │\n│ │ Target: FSI \u003c 0.6 │\n└──────────────────────┴─────────────────────────────────────────────────┘\n```\n\n### 3.3 Threshold Gates\n\n```python\n# Gate Logic Pseudocode\ndef evaluate_pivot_gates(metrics: dict) -\u003e tuple[bool, list[str]]:\n gates = {\n \"G1_RUNWAY\": metrics[\"runway_months\"] \u003e= 6,\n \"G2_STABILITY\": metrics[\"\n```}]]]]\n\n## 3. Resilience Layer\n- **Noise_Tolerance**: 0.15\n- **Confidence_Threshold**: 0.85\n- **Logic_Smoothing**: Bayesian",
|
|
7
|
+
"outcome": "A-CEO-PivotOracle",
|
|
8
|
+
"rType": 0,
|
|
9
|
+
"persona": "CEO",
|
|
10
|
+
"primary_model": "GPT-4o-Synthesis",
|
|
11
|
+
"privacy_tier": "Public",
|
|
12
|
+
"sybox_fee_split": {
|
|
13
|
+
"dev": 0.5,
|
|
14
|
+
"curation": 0.4,
|
|
15
|
+
"author": 0.1
|
|
16
|
+
},
|
|
17
|
+
"ticker": "SYNL",
|
|
18
|
+
"audit_cadence": "Weekly",
|
|
19
|
+
"lifecycle": "Genesis-Platinum",
|
|
20
|
+
"global_outputs": [
|
|
21
|
+
"synthesis_id",
|
|
22
|
+
"logic_id",
|
|
23
|
+
"bps_verified",
|
|
24
|
+
"model_stack",
|
|
25
|
+
"processing_ms",
|
|
26
|
+
"timestamp"
|
|
27
|
+
],
|
|
28
|
+
"custom_outputs": [
|
|
29
|
+
{
|
|
30
|
+
"field_name": "pivot_directive_verdict",
|
|
31
|
+
"type": "String",
|
|
32
|
+
"description": "Finite state output: `PROCEED`, `MITIGATE`, `DELAY`, or `ABORT`",
|
|
33
|
+
"downstream_intent": "Synthesis Ledger Root",
|
|
34
|
+
"bps_sensitivity": "High"
|
|
35
|
+
},
|
|
36
|
+
{
|
|
37
|
+
"field_name": "gate_compliance_results",
|
|
38
|
+
"type": "Object",
|
|
39
|
+
"description": "Boolean pass/fail states for G1-G5 (Runway, Tech Debt, etc.)",
|
|
40
|
+
"downstream_intent": "A-CTO-Infraspective",
|
|
41
|
+
"bps_sensitivity": "High"
|
|
42
|
+
},
|
|
43
|
+
{
|
|
44
|
+
"field_name": "reversibility_index_delta",
|
|
45
|
+
"type": "Float",
|
|
46
|
+
"description": "Quantitative measure of \"lock-in\" risk for the chosen pivot",
|
|
47
|
+
"downstream_intent": "A-CEO-BoardSim",
|
|
48
|
+
"bps_sensitivity": "Medium"
|
|
49
|
+
},
|
|
50
|
+
{
|
|
51
|
+
"field_name": "mitigation_priority_stack",
|
|
52
|
+
"type": "Array",
|
|
53
|
+
"description": "Sequence of actions required to reduce BPS to Green/Yellow",
|
|
54
|
+
"downstream_intent": "A-COO-WorkflowMapper",
|
|
55
|
+
"bps_sensitivity": "Medium"
|
|
56
|
+
}
|
|
57
|
+
]
|
|
58
|
+
}
|