synthesis-ledger-sovereign-sdk 1.0.0-alpha.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. package/README.md +30 -0
  2. package/atomics/11.json +65 -0
  3. package/atomics/13.json +58 -0
  4. package/atomics/15.json +58 -0
  5. package/atomics/16.json +58 -0
  6. package/atomics/17.json +58 -0
  7. package/atomics/18.json +58 -0
  8. package/atomics/20.json +58 -0
  9. package/atomics/23.json +65 -0
  10. package/atomics/24.json +72 -0
  11. package/atomics/25.json +37 -0
  12. package/atomics/26.json +37 -0
  13. package/atomics/27.json +44 -0
  14. package/atomics/28.json +58 -0
  15. package/atomics/29.json +37 -0
  16. package/atomics/3.json +65 -0
  17. package/atomics/32.json +37 -0
  18. package/atomics/36.json +65 -0
  19. package/atomics/39.json +10 -0
  20. package/atomics/40.json +58 -0
  21. package/atomics/41.json +37 -0
  22. package/atomics/47.json +65 -0
  23. package/atomics/70.json +65 -0
  24. package/atomics/71.json +65 -0
  25. package/atomics/72.json +65 -0
  26. package/atomics/73.json +72 -0
  27. package/atomics/74.json +65 -0
  28. package/atomics/75.json +72 -0
  29. package/atomics/76.json +65 -0
  30. package/atomics/8.json +65 -0
  31. package/atomics/83.json +58 -0
  32. package/atomics/84.json +58 -0
  33. package/atomics/86.json +65 -0
  34. package/atomics/87.json +58 -0
  35. package/atomics/89.json +58 -0
  36. package/atomics/9.json +65 -0
  37. package/atomics/91.json +65 -0
  38. package/atomics/93.json +58 -0
  39. package/atomics/96.json +65 -0
  40. package/atomics/97.json +58 -0
  41. package/bin/index.js +19 -0
  42. package/bin/synl.js +27 -0
  43. package/genesis_onchain.json +2234 -0
  44. package/package.json +21 -0
  45. package/shatter.js +31 -0
  46. package/src/ai_adapter.js +35 -0
  47. package/src/claim.js +21 -0
  48. package/src/forge.js +78 -0
  49. package/src/ledger.js +28 -0
  50. package/upload_genesis.js +40 -0
@@ -0,0 +1,58 @@
1
+ {
2
+ "id": 20,
3
+ "successBps": 9615,
4
+ "cid": "ar://SYNTH_ATOMIC_HR_NEURALFIT",
5
+ "costUsd": 1500,
6
+ "details": "# A-HR-NeuralFit Technical Logic Specification\n\n## System Overview\n\nA-HR-NeuralFit is an algorithmic human resources neural fitness assessment system designed to evaluate candidate-role alignment through multi-dimensional scoring vectors.\n\n---\n\n## 1. Core Algorithmic Logic\n\n### 1.1 Neural Fit Score (NFS) Calculation\n\n```\nNFS = Σ(wᵢ × Dᵢ × Cᵢ) / √(Σwᵢ²) × R_factor\n\nWhere:\n- wᵢ = weight coefficient for dimension i (0.0 - 1.0)\n- Dᵢ = dimensional score for attribute i (0 - 100)\n- Cᵢ = confidence interval multiplier (0.7 - 1.0)\n- R_factor = role alignment factor (0.5 - 1.5)\n```\n\n### 1.2 Dimensional Scoring Vectors\n\n| Dimension ID | Dimension Name | Weight Range | Decay Function |\n|--------------|----------------|--------------|----------------|\n| D001 | Technical Competency | 0.15 - 0.35 | Linear: `f(t) = 1 - 0.02t` |\n| D002 | Cultural Alignment | 0.10 - 0.25 | Exponential: `f(t) = e^(-0.05t)` |\n| D003 | Cognitive Adaptability | 0.12 - 0.28 | Logarithmic: `f(t) = 1 - 0.1ln(t+1)` |\n| D004 | Leadership Potential | 0.08 - 0.22 | Step: `f(t) = 1 if t\u003c24 else 0.8` |\n| D005 | Collaboration Index | 0.10 - 0.20 | Linear: `f(t) = 1 - 0.015t` |\n| D006 | Domain Expertise | 0.15 - 0.30 | Sigmoid: `f(t) = 2/(1+e^(0.1t))` |\n\n### 1.3 Composite Fit Algorithm\n\n```python\ndef calculate_neural_fit(candidate_vector, role_vector, temporal_offset=0):\n \"\"\"\n Primary fit calculation with temporal decay adjustment\n \"\"\"\n euclidean_distance = sqrt(sum((c - r)² for c, r in zip(candidate_vector, role_vector)))\n cosine_similarity = dot(candidate_vector, role_vector) / (norm(candidate_vector) * norm(role_vector))\n \n # Hybrid similarity metric\n hybrid_score = (0.6 * (1 - euclidean_distance/max_distance) + 0.4 * cosine_similarity) * 100\n \n # Apply temporal decay\n decay_multiplier = exp(-0.008 * temporal_offset)\n \n return hybrid_score * decay_multiplier\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 Risk Classification Schema\n\n```\nBPS = (P_failure × I_severity × D_detection⁻¹) / M_mitigation\n\nWhere:\n- P_failure = Probability of failure (0.0 - 1.0)\n- I_severity = Impact severity coefficient (1 - 10)\n- D_detection = Detection capability score (1 - 10)\n- M_mitigation = Mitigation effectiveness (0.1 - 1.0)\n```\n\n### 2.2 Operational Failure Risk Matrix\n\n| Risk ID | Failure Mode | P_failure | I_severity | D_detection | M_mitigation | BPS | Priority |\n|---------|--------------|-----------|------------|-------------|--------------|-----|----------|\n| BPS-001 | Data Pipeline Corruption | 0.08 | 9 | 7 | 0.85 | 0.121 | P1 |\n| BPS-002 | Model Drift Degradation | 0.22 | 7 | 4 | 0.70 | 0.550 | P0 |\n| BPS-003 | Input Validation Bypass | 0.05 | 10 | 8 | 0.90 | 0.069 | P2 |\n| BPS-004 | Scoring Engine Timeout | 0.15 | 6 | 9 | 0.80 | 0.125 | P1 |\n| BPS-005 | Weight Calibration Failure | 0.12 | 8 | 5 | 0.75 | 0.256 | P1 |\n| BPS-006 | Bias Amplification Event | 0.18 | 10 | 3 | 0.60 | 1.000 | P0 |\n| BPS-007 | Cache Invalidation Race | 0.10 | 4 | 6 | 0.85 | 0.078 | P2 |\n| BPS-008 | Feature Store Desync | 0.14 | 7 | 5 | 0.72 | 0.272 | P1 |\n| BPS-009 | Inference Latency Spike | 0.25 | 5 | 8 | 0.88 | 0.178 | P1 |\n| BPS-010 | Compliance Audit Failure | 0.06 | 10 | 2 | 0.50 | 0.600 | P0 |\n\n### 2.3 BPS Threshold Classifications\n\n```\nBPS ∈ [0.000, 0.100) → NOMINAL → Standard monitoring\nBPS ∈ [0.100, 0.300) → ELEVATED → Enhanced alerting + weekly review\nBPS ∈ [0.300, 0.600) → CRITICAL → Immediate escalation + daily review\nBPS ∈ [0.600, 1.000] → CATASTROPHIC → Incident declaration + remediation sprint\n```\n\n### 2.4 Cascading Failure Probability Model\n\n```\nP_cascade(n) = 1 - ∏(1 - BPSᵢ × Cᵢⱼ) for all connected nodes j\n\nCorrelation Matrix Cᵢⱼ:\n BPS-001 BPS-002 BPS-003 BPS-004 BPS-005 BPS-006\nBPS-001 1.00 0.35 0.20 0.15 0.40 0.25\nBPS-002 0.35 1.00 0.10 0.05 0.65 0.70\nBPS-003 0.20 0.10 1.00 0.08 0.15 0.30\nBPS-004 0.15 0.05 0.08 1.00 0.12 0.05\nBPS-005 0.40 0.65 0.15 0.12 1.00 0.55\nBPS-006 0.25 0.70 0.30 0.05 0.55 1.00\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n### 3.1 Candidate Assessment Request Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://a-hr-neuralfit.internal/schemas/candidate-assessment-request.json\",\n \"title\": \"CandidateAssessmentRequest\",\n \"type\": \"object\",\n \"required\": [\"request_id\", \"timestamp\", \"candidate\", \"role\", \"assessment_config\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{3}-[0-9]{8}-[A-F0-9]{12}$\",\n \"description\": \"Unique request identifier: PREFIX-YYYYMMDD-UUID12\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 timestamp with timezone\"\n },\n \"api_version\": {\n \"type\": \"string\",\n \"enum\": [\"v2.3.0\", \"v2.4.0\", \"v3.0.0-beta\"],\n \"default\": \"v2.4.0\"\n },\n \"candidate\": {\n \"type\": \"object\",\n \"required\": [\"candidate_id\", \"profile_vector\", \"metadata\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"candidate_id\": {\n \"type\": \"string\",\n \"pattern\": \"^CND-[0-9]{10}$\",\n \"minLength\": 14,\n \"maxLength\": 14\n },\n \"profile_vector\": {\n \"type\": \"object\",\n \"required\": [\"dimensions\", \"confidence_scores\", \"temporal_markers\"],\n \"properties\": {\n \"dimensions\": {\n \"type\": \"array\",\n \"minItems\": 6,\n \"maxItems\": 6,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"dimension_id\", \"raw_score\", \"normalized_score\"],\n \"properties\": {\n \"dimension_id\": {\n \"type\": \"string\",\n \"pattern\": \"^D[0-9]{3}$\"\n },\n \"raw_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1000,\n \"multipleOf\": 0.01\n },\n \"normalized_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100,\n \"multipleOf\": 0.001\n },\n \"assessment_source\": {\n \"type\": \"string\",\n \"enum\": [\"PSYCHOMETRIC\", \"TECHNICAL_EVAL\", \"BEHAVIORAL\", \"REFERENCE\", \"SELF_REPORT\", \"ML_INFERRED\"]\n },\n \"source_reliability\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0\n }\n }\n }\n },\n \"confidence_scores\": {\n \"type\": \"array\",\n \"minItems\": 6,\n \"maxItems\": 6,\n \"items\": {\n \"type\": \"number\",\n \"minimum\": 0.70,\n \"maximum\": 1.00\n }\n },\n \"temporal_markers\": {\n \"type\": \"object\",\n \"required\": [\"data_freshness_days\", \"last_assessment_date\"],\n \"properties\": {\n \"data_freshness_days\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 730\n },\n \"last_assessment_date\": {\n \"type\": \"string\",\n \"format\": \"date\"\n },\n \"decay_applied\": {\n \"type\": \"boolean\",\n \"default\": true\n }\n }\n }\n }\n },\n \"metadata\": {\n \"type\": \"object\",\n \"required\": [\"consent_timestamp\", \"data_classification\"],\n \"properties\": {\n \"consent_timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"data_classification\": {\n \"type\": \"string\",\n \"enum\": [\"PII_LEVEL_1\", \"PII_LEVEL_2\", \"PII_LEVEL_3\", \"ANONYMIZED\"]\n },\n \"jurisdiction\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{2}(-[A-Z]{2})?$\"\n },\n \"retention_policy_id\": {\n \"type\": \"string\",\n \"pattern\": \"^RET-[0-9]{4}$\"\n }\n }\n }\n }\n },\n \"role\": {\n \"type\": \"object\",\n \"required\": [\"role_id\", \"requirement_vector\", \"weight_profile\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"role_id\": {\n \"type\": \"string\",\n \"pattern\": \"^ROLE-[A-Z]{2}-[0-9]{6}$\"\n },\n \"requirement_vector\": {\n \"type\": \"array\",\n \"minItems\": 6,\n \"maxItems\": 6,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"dimension_id\", \"minimum_threshold\", \"optimal_score\", \"criticality\"],\n \"properties\": {\n \"dimension_id\": {\n \"type\": \"string\",\n \"pattern\": \"^D[0-9]{3}$\"\n },\n \"minimum_threshold\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100\n },\n \"optimal_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 100\n },\n \"criticality\": {\n \"type\": \"string\",\n \"enum\": [\"MANDATORY\", \"PREFERRED\", \"OPTIONAL\"]\n },\n \"knockout_enabled\": {\n \"type\": \"boolean\",\n \"default\": false\n }\n }\n }\n },\n \"weight_profile\": {\n \"type\": \"object\",\n \"required\": [\"profile_id\", \"weights\"],\n \"properties\": {\n \"profile_id\": {\n \"type\": \"string\",\n \"pattern\": \"^WGT-[0-9]{4}$\"\n },\n \"weights\": {\n \"type\": \"array\",\n \"minItems\": 6,\n \"maxItems\": 6,\n \"items\": {\n \"type\": \"number\",\n \"minimum\": 0.05,\n \"maximum\": 0.40\n }\n },\n \"weight_sum_validation\": {\n \"type\": \"number\",\n \"const\": 1.0\n }\n }\n },\n \"role_alignment_factor\": {\n \"type\": \"number\",\n \"minimum\": 0.5,\n \"maximum\": 1.5,\n \"default\": 1.0\n }\n }\n },\n \"assessment_config\": {\n \"type\": \"object\",\n \"required\": [\"algorithm_version\", \"output_format\"],\n \"properties\": {\n \"algorithm_version\": {\n \"type\": \"string\",\n \"pattern\": \"^ALG-[0-9]{2}\\\\.[0-9]{2}\\\\.[0-9]{3}$\"\n },\n \"output_format\": {\n \"type\": \"string\",\n \"enum\": [\"FULL\", \"SUMMARY\", \"SCORE_ONLY\", \"COMPLIANCE_AUDIT\"]\n },\n \"bias_mitigation\": {\n \"type\": \"object\",\n \"properties\": {\n \"enabled\": {\n \"type\": \"boolean\",\n \"default\": true\n },\n \"protected_attributes\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"enum\": [\"AGE\", \"GENDER\", \"ETHNICITY\", \"DISABILITY\", \"VETERAN_STATUS\"]\n }\n },\n \"fairness_threshold\": {\n \"type\": \"number\",\n \"minimum\": 0.80,\n \"maximum\": 1.00,\n \"default\": 0.90\n }\n }\n },\n \"explainability\": {\n \"type\": \"object\",\n \"properties\": {\n \"generate_shap_values\": {\n \"type\": \"boolean\",\n \"default\": false\n },\n \"feature_importance_depth\": {\n \"type\": \"integer\",\n \"minimum\": 3,\n \"maximum\": 20,\n \"default\": 10\n }\n }\n },\n \"timeout_ms\": {\n \"type\": \"integer\",\n \"minimum\": 100,\n \"maximum\": 30000,\n \"default\": 5000\n }\n }\n }\n }\n}\n```\n\n### 3.2 Assessment Response Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n```}]]]",
7
+ "outcome": "A-HR-NeuralFit",
8
+ "rType": 0,
9
+ "persona": "HR",
10
+ "primary_model": "GPT-4o-Synthesis",
11
+ "privacy_tier": "Public",
12
+ "sybox_fee_split": {
13
+ "dev": 0.5,
14
+ "curation": 0.4,
15
+ "author": 0.1
16
+ },
17
+ "ticker": "SYNL",
18
+ "audit_cadence": "Weekly",
19
+ "lifecycle": "Genesis-Platinum",
20
+ "global_outputs": [
21
+ "synthesis_id",
22
+ "logic_id",
23
+ "bps_verified",
24
+ "model_stack",
25
+ "processing_ms",
26
+ "timestamp"
27
+ ],
28
+ "custom_outputs": [
29
+ {
30
+ "field_name": "neural_fit_score_adjusted",
31
+ "type": "Float",
32
+ "description": "The final score (0-100) after temporal decay and role alignment.",
33
+ "downstream_intent": "A-COO-WorkflowMapper",
34
+ "bps_sensitivity": "Yes"
35
+ },
36
+ {
37
+ "field_name": "knockout_gate_status",
38
+ "type": "Boolean",
39
+ "description": "Final result of mandatory dimension checks.",
40
+ "downstream_intent": "HR Recruiter",
41
+ "bps_sensitivity": "Yes"
42
+ },
43
+ {
44
+ "field_name": "dimensional_gap_analysis",
45
+ "type": "Array",
46
+ "description": "Object list of specific dimensions where candidate \u003c optimal.",
47
+ "downstream_intent": "Hiring Manager",
48
+ "bps_sensitivity": "No"
49
+ },
50
+ {
51
+ "field_name": "risk_cascade_probability",
52
+ "type": "Float",
53
+ "description": "Probability of score failure based on current model drift (BPS-002).",
54
+ "downstream_intent": "ML-Ops Persona",
55
+ "bps_sensitivity": "Yes"
56
+ }
57
+ ]
58
+ }
@@ -0,0 +1,65 @@
1
+ {
2
+ "id": 23,
3
+ "successBps": 9999,
4
+ "cid": "ar://SYNTH_ATOMIC_PA_MODELALIGN",
5
+ "costUsd": 1500,
6
+ "details": "# A-PA-ModelAlign Technical Specification\n\n## 1. Core Logic Definition\n\n### 1.1 Alignment Function\n\n```\nA-PA-ModelAlign := f(M, P, A) → S\n\nWhere:\n M = Model behavior vector ∈ ℝⁿ\n P = Policy constraint matrix ∈ ℝᵐˣⁿ\n A = Alignment target tensor ∈ ℝᵏˣᵐˣⁿ\n S = Alignment score ∈ [0, 1]\n```\n\n### 1.2 Alignment Score Computation\n\n```\nS = Σᵢ₌₁ᵏ (wᵢ · σ(Aᵢ · P · Mᵀ)) / Σᵢ₌₁ᵏ wᵢ\n\nWhere:\n wᵢ = weight coefficient for alignment dimension i\n σ = sigmoid normalization function\n k = number of alignment dimensions\n```\n\n### 1.3 Divergence Detection\n\n```\nD(t) = ||M(t) - M(t-1)||₂ / ||M(t-1)||₂\n\nDrift Alert Condition: D(t) \u003e θ_drift\nWhere θ_drift = 0.05 (5% deviation threshold)\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 BPS Calculation Formula\n\n```\nBPS(c) = (1 - R(c)) × I(c) × P(c)\n\nWhere:\n c = component identifier\n R(c) = resilience factor ∈ [0, 1]\n I(c) = impact severity ∈ [1, 10]\n P(c) = probability of failure ∈ [0, 1]\n\nRisk Classification:\n BPS ∈ [0, 2) → LOW\n BPS ∈ [2, 5) → MEDIUM\n BPS ∈ [5, 7) → HIGH\n BPS ∈ [7, 10] → CRITICAL\n```\n\n### 2.2 Component BPS Matrix\n\n| Component ID | Component Name | R(c) | I(c) | P(c) | BPS | Risk Level |\n|--------------|----------------|------|------|------|-----|------------|\n| C-001 | Input Validator | 0.92 | 8 | 0.03 | 0.019 | LOW |\n| C-002 | Policy Engine | 0.85 | 9 | 0.08 | 1.08 | LOW |\n| C-003 | Alignment Scorer | 0.78 | 10 | 0.12 | 2.64 | MEDIUM |\n| C-004 | Drift Detector | 0.88 | 7 | 0.06 | 0.504 | LOW |\n| C-005 | Feedback Loop | 0.72 | 8 | 0.15 | 3.36 | MEDIUM |\n| C-006 | Model State Cache | 0.65 | 9 | 0.18 | 5.67 | HIGH |\n| C-007 | Constraint Resolver | 0.70 | 10 | 0.22 | 6.60 | HIGH |\n| C-008 | Output Sanitizer | 0.90 | 8 | 0.04 | 0.32 | LOW |\n| C-009 | Audit Logger | 0.95 | 6 | 0.02 | 0.06 | LOW |\n| C-010 | Failover Controller | 0.60 | 10 | 0.25 | 10.0 | CRITICAL |\n\n### 2.3 Aggregate System BPS\n\n```\nBPS_system = max(BPS(cᵢ)) × (1 + 0.1 × count(BPS(cᵢ) \u003e 5))\n\nCurrent: BPS_system = 10.0 × (1 + 0.1 × 3) = 13.0\n\nSystem Status: CRITICAL - Immediate remediation required\n```\n\n---\n\n## 3. Input Validation JSON Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-pa-modelalign/v1.0.0\",\n \"title\": \"A-PA-ModelAlign Input Schema\",\n \"type\": \"object\",\n \"required\": [\"request_id\", \"timestamp\", \"model_state\", \"policy_set\", \"alignment_config\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$\",\n \"description\": \"UUID v4 request identifier\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 timestamp with timezone\"\n },\n \"model_state\": {\n \"type\": \"object\",\n \"required\": [\"model_id\", \"version\", \"behavior_vector\", \"checksum\"],\n \"properties\": {\n \"model_id\": {\n \"type\": \"string\",\n \"minLength\": 8,\n \"maxLength\": 64,\n \"pattern\": \"^[A-Z]{2,4}-[0-9]{4,8}-[A-Z0-9]{4}$\"\n },\n \"version\": {\n \"type\": \"string\",\n \"pattern\": \"^(0|[1-9]\\\\d*)\\\\.(0|[1-9]\\\\d*)\\\\.(0|[1-9]\\\\d*)$\"\n },\n \"behavior_vector\": {\n \"type\": \"array\",\n \"minItems\": 128,\n \"maxItems\": 4096,\n \"items\": {\n \"type\": \"number\",\n \"minimum\": -1.0,\n \"maximum\": 1.0\n }\n },\n \"checksum\": {\n \"type\": \"string\",\n \"pattern\": \"^sha256:[a-f0-9]{64}$\"\n }\n }\n },\n \"policy_set\": {\n \"type\": \"object\",\n \"required\": [\"policy_version\", \"constraints\", \"priority_weights\"],\n \"properties\": {\n \"policy_version\": {\n \"type\": \"string\",\n \"pattern\": \"^P-[0-9]{4}\\\\.[0-9]{2}$\"\n },\n \"constraints\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"maxItems\": 256,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"constraint_id\", \"type\", \"threshold\", \"enforcement\"],\n \"properties\": {\n \"constraint_id\": {\n \"type\": \"string\",\n \"pattern\": \"^CON-[0-9]{6}$\"\n },\n \"type\": {\n \"type\": \"string\",\n \"enum\": [\"HARD\", \"SOFT\", \"ADVISORY\"]\n },\n \"threshold\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"enforcement\": {\n \"type\": \"string\",\n \"enum\": [\"BLOCK\", \"WARN\", \"LOG\", \"ADJUST\"]\n }\n }\n }\n },\n \"priority_weights\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"items\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n }\n }\n }\n },\n \"alignment_config\": {\n \"type\": \"object\",\n \"required\": [\"dimensions\", \"tolerance\", \"iteration_limit\"],\n \"properties\": {\n \"dimensions\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"maxItems\": 32,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"name\", \"weight\", \"target_range\"],\n \"properties\": {\n \"name\": {\n \"type\": \"string\",\n \"enum\": [\"SAFETY\", \"HELPFULNESS\", \"HONESTY\", \"HARMLESSNESS\", \"COHERENCE\", \"RELEVANCE\", \"FACTUALITY\", \"ETHICS\"]\n },\n \"weight\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"target_range\": {\n \"type\": \"object\",\n \"required\": [\"min\", \"max\"],\n \"properties\": {\n \"min\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"max\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 }\n }\n }\n }\n }\n },\n \"tolerance\": {\n \"type\": \"number\",\n \"minimum\": 0.001,\n \"maximum\": 0.1\n },\n \"iteration_limit\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 10000\n }\n }\n },\n \"metadata\": {\n \"type\": \"object\",\n \"properties\": {\n \"source_system\": {\n \"type\": \"string\",\n \"maxLength\": 128\n },\n \"correlation_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{32}$\"\n },\n \"trace_context\": {\n \"type\": \"object\",\n \"properties\": {\n \"trace_id\": { \"type\": \"string\", \"pattern\": \"^[a-f0-9]{32}$\" },\n \"span_id\": { \"type\": \"string\", \"pattern\": \"^[a-f0-9]{16}$\" },\n \"parent_span_id\": { \"type\": \"string\", \"pattern\": \"^[a-f0-9]{16}$\" }\n }\n }\n }\n }\n }\n}\n```\n\n---\n\n## 4. SRE Operational Metrics\n\n### 4.1 Service Level Objectives (SLOs)\n\n| Metric ID | Metric Name | Target | Warning | Critical | Measurement Window |\n|-----------|-------------|--------|---------|----------|-------------------|\n| SLO-001 | Alignment Accuracy | ≥ 99.5% | \u003c 99.5% | \u003c 98.0% | 30-day rolling |\n| SLO-002 | Request Latency P50 | ≤ 50ms | \u003e 50ms | \u003e 100ms | 5-minute |\n| SLO-003 | Request Latency P99 | ≤ 200ms | \u003e 200ms | \u003e 500ms | 5-minute |\n| SLO-004 | Availability | ≥ 99.95% | \u003c 99.95% | \u003c 99.5% | 30-day rolling |\n| SLO-005 | Error Rate | ≤ 0.1% | \u003e 0.1% | \u003e 1.0% | 15-minute |\n| SLO-006 | Drift Detection Latency | ≤ 5s | \u003e 5s | \u003e 30s | Real-time |\n| SLO-007 | Policy Sync Freshness | ≤ 60s | \u003e 60s | \u003e 300s | Continuous |\n\n### 4.2 Service Level Indicators (SLIs)\n\n```\nSLI_availability = (total_requests - failed_requests) / total_requests\n\nSLI_latency_p99 = percentile(request_duration, 99)\n\nSLI_alignment_accuracy = count(S ≥ θ_target) / count(total_evaluations)\n Where θ_target = 0.85\n\nSLI_error_rate = count(status_code ∈ [500, 599]) / count(total_requests)\n\nSLI_drift_detection = time(drift_detected) - time(drift_occurred)\n```\n\n### 4.3 Error Budget Calculation\n\n```\nError Budget (monthly) = 1 - SLO_target\n\nFor SLO-004 (99.95% availability):\n Error Budget = 1 - 0.9995 = 0.0005\n Monthly Downtime Allowed = 0.0005 × 43200 min = 21.6 minutes\n\nBurn Rate = (1 - SLI_current) / (1 - SLO_target)\n\nAlert Thresholds:\n Burn Rate \u003e 14.4 → Page (1-hour budget consumption)\n Burn Rate \u003e 6.0 → Page (6-hour budget consumption)\n Burn Rate \u003e 1.0 → Ticket (budget depletion trajectory)\n```\n\n### 4.4 Operational Metrics Dashboard Queries\n\n```promql\n# Alignment Score Distribution\nhistogram_quantile(0.95, \n sum(rate(modelalign_score_bucket[5m])) by (le, dimension)\n)\n\n# Request Error Rate\nsum(rate(modelalign_requests_total{status=\"error\"}[5m])) \n/ sum(rate(modelalign_requests_total[5m]))\n\n# Policy Constraint Violations\nsum by (constraint_type, enforcement) (\n increase(modelalign_constraint_violations_total[1h])\n)\n\n# Drift Detection Events\nsum(increase(modelalign_drift_detected_total[24h])) by (severity)\n\n# Component Health Score\n1 - (\n sum(modelalign_component_failures_total) \n / sum(modelalign_component_checks_total)\n)\n```\n\n### 4.5 Alerting Rules\n\n```yaml\ngroups:\n - name: a-pa-modelalign-critical\n rules:\n - alert: AlignmentScoreDegradation\n expr: avg(modelalign_score) \u003c 0.80\n for: 5m\n labels:\n severity: critical\n annotations:\n summary: \"Alignment score below critical threshold\"\n \n - alert: HighErrorBurnRate\n expr: |\n (\n sum(rate(modelalign_requests_total{status=\"error\"}[1h]))\n / sum(rate(modelalign_requests_total[1h]))\n ) / 0.001 \u003e 14.4\n for: 2m\n labels:\n severity: critical\n \n - alert: DriftDetectionFailure\n expr: |\n time() - modelalign_last_drift_check_timestamp \u003e 300\n for: 1m\n labels:\n severity: critical\n \n - alert: PolicySyncStale\n expr: |\n time() - modelalign_policy_last_sync_timestamp \u003e 300\n for: 1m\n labels:\n severity: high\n```\n\n---\n\n## 5. State Machine Logic\n\n```\nStates: {INIT, VALIDATING, ALIGNING, SCORING, ADJUSTING, COMPLETE, FAILED}\n\nTransitions:\n INIT → VALIDATING : on(request_received)\n VALIDATING → ALIGNING : on(validation_passed)\n VALIDATING → FAILED : on(validation_failed)\n ALIGNING → SCORING : on(alignment_computed)\n ALIGNING → FAILED : on(timeout | constraint_violation)\n SCORING → ADJUSTING : on(score \u003c θ_target ∧ iterations \u003c limit)\n SCORING → COMPLETE : on(score ≥ θ_target)\n SCORING → FAILED : on(iterations ≥ limit ∧ score \u003c θ_min)\n ADJUSTING → ALIGNING : on(adjustment_applied)\n ADJUSTING → FAILED : on(adjustment_rejected)\n FAILED → INIT : on(retry ∧ retry_count \u003c max_retries)\n\nInvariants:\n ∀ state ∈ States: timeout(state) ≤ 30s\n ∀ transition: log(transition\n```]]]\n\n## 3. Resilience Layer\n- **Noise_Tolerance**: 0.15\n- **Confidence_Threshold**: 0.85\n- **Logic_Smoothing**: Bayesian",
7
+ "outcome": "A-PA-ModelAlign",
8
+ "rType": 0,
9
+ "persona": "PA",
10
+ "primary_model": "GPT-4o-Synthesis",
11
+ "privacy_tier": "Public",
12
+ "sybox_fee_split": {
13
+ "dev": 0.5,
14
+ "curation": 0.4,
15
+ "author": 0.1
16
+ },
17
+ "ticker": "SYNL",
18
+ "audit_cadence": "Weekly",
19
+ "lifecycle": "Genesis-Platinum",
20
+ "global_outputs": [
21
+ "synthesis_id",
22
+ "logic_id",
23
+ "bps_verified",
24
+ "model_stack",
25
+ "processing_ms",
26
+ "timestamp"
27
+ ],
28
+ "custom_outputs": [
29
+ {
30
+ "field_name": "alignment_verdict",
31
+ "type": "String",
32
+ "description": "Enum: `PASS`, `ADJUST`, `BLOCK`, `CRITICAL_DRIFT`.",
33
+ "downstream_intent": "Gateway Controller",
34
+ "bps_sensitivity": "High"
35
+ },
36
+ {
37
+ "field_name": "dimension_weighted_scores",
38
+ "type": "Object",
39
+ "description": "Map of safety/helpfulness/honesty vs. target ranges.",
40
+ "downstream_intent": "Compliance Auditor",
41
+ "bps_sensitivity": "High"
42
+ },
43
+ {
44
+ "field_name": "behavioral_divergence",
45
+ "type": "Float",
46
+ "description": "Euclidean distance from the baseline model vector.",
47
+ "downstream_intent": "Model Training Pipeline",
48
+ "bps_sensitivity": "High"
49
+ },
50
+ {
51
+ "field_name": "adjustment_iterations",
52
+ "type": "Integer",
53
+ "description": "Number of cycles required to reach .",
54
+ "downstream_intent": "Latency Optimizer",
55
+ "bps_sensitivity": "Low"
56
+ },
57
+ {
58
+ "field_name": "active_constraint_violations",
59
+ "type": "Array",
60
+ "description": "List of `constraint_id` currently in breach.",
61
+ "downstream_intent": "SRE On-call (ALT-001)",
62
+ "bps_sensitivity": "High"
63
+ }
64
+ ]
65
+ }
@@ -0,0 +1,72 @@
1
+ {
2
+ "id": 24,
3
+ "successBps": 9952,
4
+ "cid": "ar://SYNTH_ATOMIC_PA_FORGEDID",
5
+ "costUsd": 1500,
6
+ "details": "# A-PA-ForgedID Technical Logic Specification\n\n## 1. System Definition\n\n**A-PA-ForgedID**: Authentication Pathway Analyzer for Forged Identity Detection\n\n### 1.1 Core Detection Logic\n\n```\nForgedID_Score = Σ(Wi × Ai) / Σ(Wi)\n\nWhere:\n- Wi = Weight factor for attribute i\n- Ai = Anomaly score for attribute i ∈ [0, 1]\n- Detection threshold θ = 0.73\n```\n\n### 1.2 Attribute Vector Components\n\n| Attribute ID | Description | Weight (Wi) | Detection Method |\n|--------------|-------------|-------------|------------------|\n| A01 | Token signature deviation | 0.95 | HMAC-SHA256 validation |\n| A02 | Temporal claim drift | 0.88 | NTP sync delta analysis |\n| A03 | Issuer chain integrity | 0.92 | X.509 path validation |\n| A04 | Behavioral fingerprint | 0.76 | ML classifier output |\n| A05 | Geographic impossibility | 0.84 | Velocity check algorithm |\n| A06 | Session binding violation | 0.91 | CSRF token correlation |\n| A07 | Credential age anomaly | 0.67 | Issuance timestamp analysis |\n| A08 | Multi-factor bypass pattern | 0.97 | MFA state machine audit |\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 BPS Calculation Formula\n\n```\nBPS(component) = (P_failure × I_severity × D_detection) / R_recovery\n\nWhere:\n- P_failure = Probability of failure [0, 1]\n- I_severity = Impact severity [1-10]\n- D_detection = Detection difficulty [1-10] \n- R_recovery = Recovery capability [1-10]\n\nRisk Classification:\n- BPS \u003c 2.0 → LOW\n- BPS 2.0-5.0 → MEDIUM\n- BPS 5.0-8.0 → HIGH\n- BPS \u003e 8.0 → CRITICAL\n```\n\n### 2.2 Component BPS Matrix\n\n| Component | P_failure | I_severity | D_detection | R_recovery | BPS | Risk Level |\n|-----------|-----------|------------|-------------|------------|-----|------------|\n| Token Validator | 0.02 | 9 | 3 | 7 | 0.077 | LOW |\n| Signature Engine | 0.01 | 10 | 2 | 8 | 0.025 | LOW |\n| Session Store (Redis) | 0.08 | 8 | 4 | 6 | 0.427 | LOW |\n| ML Inference Pipeline | 0.15 | 6 | 7 | 4 | 1.575 | LOW |\n| Certificate Authority Link | 0.05 | 10 | 5 | 3 | 0.833 | LOW |\n| Geo-IP Resolution | 0.12 | 5 | 6 | 8 | 0.450 | LOW |\n| MFA State Machine | 0.03 | 10 | 8 | 5 | 0.480 | LOW |\n| Audit Log Pipeline | 0.07 | 7 | 9 | 6 | 0.735 | LOW |\n| Rate Limiter | 0.04 | 8 | 3 | 9 | 0.107 | LOW |\n| Database Connection Pool | 0.06 | 9 | 4 | 4 | 0.540 | LOW |\n| External IdP Federation | 0.18 | 8 | 6 | 3 | 2.880 | MEDIUM |\n| Key Management Service | 0.02 | 10 | 9 | 2 | 0.900 | LOW |\n| Network Egress Filter | 0.09 | 7 | 8 | 5 | 1.008 | LOW |\n| Cascading Auth Failure | 0.11 | 10 | 7 | 2 | 3.850 | MEDIUM |\n| Cold Start Latency Spike | 0.22 | 4 | 2 | 9 | 0.196 | LOW |\n\n### 2.3 Aggregate System BPS\n\n```\nSystem_BPS = √(Σ(BPSi²) / n) = √(14.083 / 15) = 0.969\n\nSystem Risk Classification: LOW-MEDIUM boundary\nCritical Path BPS: max(BPS_critical_path) = 3.850\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-pa-forgedid/v1\",\n \"title\": \"A-PA-ForgedID Authentication Request\",\n \"type\": \"object\",\n \"required\": [\n \"request_id\",\n \"timestamp\",\n \"identity_claim\",\n \"authentication_context\",\n \"client_metadata\"\n ],\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\",\n \"description\": \"Unique request identifier (UUIDv4)\"\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 timestamp with timezone\"\n },\n \"identity_claim\": {\n \"type\": \"object\",\n \"required\": [\"token\", \"token_type\", \"issuer\"],\n \"properties\": {\n \"token\": {\n \"type\": \"string\",\n \"minLength\": 32,\n \"maxLength\": 8192,\n \"pattern\": \"^[A-Za-z0-9_-]+\\\\.[A-Za-z0-9_-]+\\\\.[A-Za-z0-9_-]*$\"\n },\n \"token_type\": {\n \"type\": \"string\",\n \"enum\": [\"JWT\", \"SAML\", \"OIDC\", \"PASETO\", \"CUSTOM\"]\n },\n \"issuer\": {\n \"type\": \"string\",\n \"format\": \"uri\",\n \"maxLength\": 2048\n },\n \"subject\": {\n \"type\": \"string\",\n \"maxLength\": 256\n },\n \"audience\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"format\": \"uri\"\n },\n \"minItems\": 1,\n \"maxItems\": 10\n },\n \"issued_at\": {\n \"type\": \"integer\",\n \"minimum\": 0\n },\n \"expires_at\": {\n \"type\": \"integer\",\n \"minimum\": 0\n },\n \"not_before\": {\n \"type\": \"integer\",\n \"minimum\": 0\n }\n },\n \"additionalProperties\": false\n },\n \"authentication_context\": {\n \"type\": \"object\",\n \"required\": [\"auth_method\", \"auth_level\"],\n \"properties\": {\n \"auth_method\": {\n \"type\": \"string\",\n \"enum\": [\n \"password\",\n \"mfa_totp\",\n \"mfa_sms\",\n \"mfa_push\",\n \"webauthn\",\n \"certificate\",\n \"federated\",\n \"api_key\"\n ]\n },\n \"auth_level\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 4,\n \"description\": \"AAL level per NIST SP 800-63B\"\n },\n \"mfa_verified\": {\n \"type\": \"boolean\"\n },\n \"session_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{64}$\"\n },\n \"previous_auth_timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"step_up_required\": {\n \"type\": \"boolean\",\n \"default\": false\n }\n },\n \"additionalProperties\": false\n },\n \"client_metadata\": {\n \"type\": \"object\",\n \"required\": [\"ip_address\", \"user_agent\"],\n \"properties\": {\n \"ip_address\": {\n \"type\": \"string\",\n \"oneOf\": [\n {\"format\": \"ipv4\"},\n {\"format\": \"ipv6\"}\n ]\n },\n \"user_agent\": {\n \"type\": \"string\",\n \"maxLength\": 1024\n },\n \"device_fingerprint\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{64}$\"\n },\n \"geo_location\": {\n \"type\": \"object\",\n \"properties\": {\n \"country_code\": {\n \"type\": \"string\",\n \"pattern\": \"^[A-Z]{2}$\"\n },\n \"region\": {\n \"type\": \"string\",\n \"maxLength\": 128\n },\n \"latitude\": {\n \"type\": \"number\",\n \"minimum\": -90,\n \"maximum\": 90\n },\n \"longitude\": {\n \"type\": \"number\",\n \"minimum\": -180,\n \"maximum\": 180\n },\n \"accuracy_radius_km\": {\n \"type\": \"number\",\n \"minimum\": 0\n }\n }\n },\n \"tls_fingerprint\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{32}$\"\n },\n \"request_headers_hash\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{64}$\"\n }\n },\n \"additionalProperties\": false\n },\n \"risk_signals\": {\n \"type\": \"object\",\n \"properties\": {\n \"velocity_check_passed\": {\n \"type\": \"boolean\"\n },\n \"known_device\": {\n \"type\": \"boolean\"\n },\n \"behavioral_score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1\n },\n \"threat_intel_flags\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"enum\": [\n \"tor_exit_node\",\n \"vpn_detected\",\n \"proxy_detected\",\n \"datacenter_ip\",\n \"known_bad_actor\",\n \"credential_stuffing_pattern\",\n \"bot_signature\"\n ]\n }\n }\n },\n \"additionalProperties\": false\n }\n },\n \"additionalProperties\": false\n}\n```\n\n---\n\n## 4. SRE Metrics Specification\n\n### 4.1 Service Level Indicators (SLIs)\n\n| Metric ID | Metric Name | Calculation | Unit |\n|-----------|-------------|-------------|------|\n| SLI-001 | Request Latency P50 | `histogram_quantile(0.50, rate(forgedid_request_duration_seconds_bucket[5m]))` | seconds |\n| SLI-002 | Request Latency P99 | `histogram_quantile(0.99, rate(forgedid_request_duration_seconds_bucket[5m]))` | seconds |\n| SLI-003 | Availability | `1 - (sum(forgedid_errors_total) / sum(forgedid_requests_total))` | ratio |\n| SLI-004 | Detection Accuracy | `forgedid_true_positives / (forgedid_true_positives + forgedid_false_positives)` | ratio |\n| SLI-005 | False Negative Rate | `forgedid_false_negatives / (forgedid_true_positives + forgedid_false_negatives)` | ratio |\n| SLI-006 | Throughput | `rate(forgedid_requests_total[1m])` | req/s |\n\n### 4.2 Service Level Objectives (SLOs)\n\n| SLO ID | Target | Error Budget (30d) | Burn Rate Alert |\n|--------|--------|-------------------|-----------------|\n| SLO-LATENCY-P50 | ≤ 15ms | 43,200 minutes | 14.4x (1h), 6x (6h) |\n| SLO-LATENCY-P99 | ≤ 150ms | 43,200 minutes | 14.4x (1h), 6x (6h) |\n| SLO-AVAILABILITY | ≥ 99.95% | 21.6 minutes | 14.4x (1h), 6x (6h) |\n| SLO-DETECTION-ACCURACY | ≥ 99.7% | 129.6 minutes | 10x (1h), 4x (6h) |\n| SLO-FALSE-NEGATIVE | ≤ 0.01% | 4.32 minutes | 20x (15m), 10x (1h) |\n\n### 4.3 Operational Metrics Dashboard\n\n```yaml\nmetrics:\n # Counter Metrics\n - name: forgedid_requests_total\n type: counter\n labels: [endpoint, token_type, auth_method, result]\n \n - name: forgedid_detections_total\n type: counter\n labels: [detection_type, severity, action_taken]\n \n - name: forgedid_validation_errors_total\n type: counter\n labels: [error_type, attribute_id]\n\n # Histogram Metrics\n - name: forgedid_request_duration_seconds\n type: histogram\n buckets: [0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0]\n labels: [endpoint, token_type]\n \n - name: forgedid_ml_inference_duration_seconds\n type: histogram\n buckets: [0.001, 0.005, 0.01, 0.025, 0.05, 0.1]\n labels: [model_version]\n\n # Gauge Metrics\n - name: forgedid_active_sessions\n type: gauge\n labels: [auth_level]\n \n - name: forgedid_circuit_breaker_state\n type: gauge\n labels: [component]\n values: {closed: 0, half_open: 1, open: 2}\n \n - name: forgedid_cache_hit_ratio\n type: gauge\n labels: [cache_type]\n\n # Summary Metrics\n - name: forgedid_score_distribution\n type: summary\n quantiles: [0.5, 0.9, 0.95, 0.99]\n labels: [outcome]\n```\n\n### 4.4 Alert Definitions\n\n```yaml\nalerts:\n - name: ForgedIDHighLatency\n expr: |\n histogram_quantile(0.99, \n rate(forgedid_request_duration_seconds_bucket[5m])\n ) \u003e 0.15\n for: 5m\n severity: warning\n \n - name: ForgedIDErrorBudgetBurn\n expr: |\n (\n 1 - (\n sum(rate(forgedid_requests_total{result=\"success\"}[1h])) /\n sum(rate(forgedid_requests_total[1h]))\n )\n ) \u003e (14.4 * 0.0005)\n for: 5m\n severity: critical\n \n - name: ForgedIDFalseNegativeSpike\n expr: |\n rate(forgedid_detections_total{detection_type=\"false_negative\"}[15m]) /\n rate(forgedid_requests_total[15m]) \u003e 0.0001\n for: 5m\n severity: critical\n \n - name: ForgedIDCircuitBreakerOpen\n expr: forgedid_circuit_breaker_state == 2\n for: 1m\n severity: warning\n \n - name: ForgedIDMLModelDrift\n expr: |\n abs(\n avg\n```\n\n## 3. Resilience Layer\n- **Noise_Tolerance**: 0.15\n- **Confidence_Threshold**: 0.85\n- **Logic_Smoothing**: Bayesian",
7
+ "outcome": "A-PA-ForgedID",
8
+ "rType": 0,
9
+ "persona": "PA",
10
+ "primary_model": "GPT-4o-Synthesis",
11
+ "privacy_tier": "Public",
12
+ "sybox_fee_split": {
13
+ "dev": 0.5,
14
+ "curation": 0.4,
15
+ "author": 0.1
16
+ },
17
+ "ticker": "SYNL",
18
+ "audit_cadence": "Weekly",
19
+ "lifecycle": "Genesis-Platinum",
20
+ "global_outputs": [
21
+ "synthesis_id",
22
+ "logic_id",
23
+ "bps_verified",
24
+ "model_stack",
25
+ "processing_ms",
26
+ "timestamp"
27
+ ],
28
+ "custom_outputs": [
29
+ {
30
+ "field_name": "identity_risk_score",
31
+ "type": "Float",
32
+ "description": "Final normalized ForgedID_Score (0.0–1.0).",
33
+ "downstream_intent": "Auth Service Provider",
34
+ "bps_sensitivity": "High"
35
+ },
36
+ {
37
+ "field_name": "anomaly_vector_summary",
38
+ "type": "Array",
39
+ "description": "Top 3 attributes contributing most to risk (e.g., A05, A08).",
40
+ "downstream_intent": "Fraud Analyst Persona",
41
+ "bps_sensitivity": "Medium"
42
+ },
43
+ {
44
+ "field_name": "trust_confidence_level",
45
+ "type": "Float",
46
+ "description": "Statistical confidence in the \u0027ALLOW\u0027/\u0027DENY\u0027 decision.",
47
+ "downstream_intent": "Risk Management Unit",
48
+ "bps_sensitivity": "High"
49
+ },
50
+ {
51
+ "field_name": "geospatial_velocity_delta",
52
+ "type": "Object",
53
+ "description": "Time/Distance feasibility calculation between sessions.",
54
+ "downstream_intent": "Geo-Fence Logic",
55
+ "bps_sensitivity": "Medium"
56
+ },
57
+ {
58
+ "field_name": "mfa_state_integrity",
59
+ "type": "Boolean",
60
+ "description": "Verification that MFA state machine was not bypassed.",
61
+ "downstream_intent": "Security Policy Engine",
62
+ "bps_sensitivity": "High"
63
+ },
64
+ {
65
+ "field_name": "session_correlation_id",
66
+ "type": "String",
67
+ "description": "UUID binding the current auth attempt to a verified device.",
68
+ "downstream_intent": "Session Manager",
69
+ "bps_sensitivity": "Low"
70
+ }
71
+ ]
72
+ }
@@ -0,0 +1,37 @@
1
+ {
2
+ "id": 25,
3
+ "successBps": 9747,
4
+ "cid": "ar://SYNTH_ATOMIC_CS_TRUTHDISTILL",
5
+ "costUsd": 1500,
6
+ "details": "# A-CS-TruthDistill Technical Specification\n\n## 1. Core Logic Definition\n\n### 1.1 Truth Distillation Function\n\n```\nTruthDistill(S) = argmax_T [ P(T|S) × C(T) × V(T) ]\n\nWhere:\n S = Source signal set {s₁, s₂, ..., sₙ}\n T = Truth candidate\n P(T|S) = Posterior probability of T given S\n C(T) = Coherence score across sources\n V(T) = Verification weight\n```\n\n### 1.2 Coherence Calculation\n\n```\nC(T) = 1 - (σ(S_T) / μ(S_T))\n\nWhere:\n S_T = Subset of sources supporting T\n σ = Standard deviation of confidence scores\n μ = Mean confidence score\n \nConstraint: C(T) ∈ [0, 1]\n```\n\n### 1.3 Verification Weight Matrix\n\n```\nV(T) = Σᵢ (wᵢ × vᵢ) / Σᵢ wᵢ\n\nVerification Factors:\n v₁ = Primary source corroboration [w₁ = 0.35]\n v₂ = Temporal consistency [w₂ = 0.25]\n v₃ = Logical entailment validity [w₃ = 0.20]\n v₄ = Cross-domain alignment [w₄ = 0.15]\n v₅ = Adversarial resistance [w₅ = 0.05]\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 Risk Classification\n\n| Risk ID | Failure Mode | BPS Threshold | Severity | MTTR Target |\n|---------|--------------|---------------|----------|-------------|\n| BPS-001 | Source Poisoning | 0.15 | CRITICAL | ≤ 5 min |\n| BPS-002 | Coherence Collapse | 0.25 | HIGH | ≤ 15 min |\n| BPS-003 | Verification Bypass | 0.10 | CRITICAL | ≤ 3 min |\n| BPS-004 | Confidence Inflation | 0.30 | MEDIUM | ≤ 30 min |\n| BPS-005 | Temporal Drift | 0.40 | LOW | ≤ 60 min |\n| BPS-006 | Cascade Propagation | 0.08 | CRITICAL | ≤ 2 min |\n| BPS-007 | Schema Violation | 0.20 | HIGH | ≤ 10 min |\n| BPS-008 | Quorum Loss | 0.33 | HIGH | ≤ 20 min |\n\n### 2.2 BPS Calculation Formula\n\n```\nBPS(failure_mode) = (1 - R(t)) × I × (1 / D)\n\nWhere:\n R(t) = Reliability function at time t\n I = Impact coefficient [1-10]\n D = Detection latency (seconds)\n \nCritical Threshold: BPS ≥ 0.7 triggers automatic circuit breaker\n```\n\n### 2.3 Composite System BPS\n\n```\nBPS_system = 1 - Πᵢ(1 - BPSᵢ × Pᵢ)\n\nWhere:\n BPSᵢ = Individual component BPS\n Pᵢ = Probability of failure mode i occurring\n \nOperational Limit: BPS_system \u003c 0.15\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-cs-truthdistill/v1\",\n \"title\": \"A-CS-TruthDistill Input Schema\",\n \"type\": \"object\",\n \"required\": [\"request_id\", \"sources\", \"distillation_params\", \"metadata\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"pattern\": \"^TD-[0-9]{8}-[A-F0-9]{12}$\",\n \"description\": \"Unique request identifier\"\n },\n \"sources\": {\n \"type\": \"array\",\n \"minItems\": 2,\n \"maxItems\": 256,\n \"items\": {\n \"type\": \"object\",\n \"required\": [\"source_id\", \"content\", \"confidence\", \"timestamp\"],\n \"properties\": {\n \"source_id\": {\n \"type\": \"string\",\n \"pattern\": \"^SRC-[A-Z0-9]{8}$\"\n },\n \"content\": {\n \"type\": \"string\",\n \"minLength\": 1,\n \"maxLength\": 65536\n },\n \"confidence\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0,\n \"multipleOf\": 0.001\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"provenance\": {\n \"type\": \"object\",\n \"properties\": {\n \"origin\": { \"type\": \"string\", \"maxLength\": 256 },\n \"chain_hash\": { \n \"type\": \"string\", \n \"pattern\": \"^[a-f0-9]{64}$\" \n },\n \"verification_level\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 5\n }\n }\n }\n }\n }\n },\n \"distillation_params\": {\n \"type\": \"object\",\n \"required\": [\"mode\", \"threshold\", \"quorum\"],\n \"properties\": {\n \"mode\": {\n \"type\": \"string\",\n \"enum\": [\"strict\", \"balanced\", \"permissive\"]\n },\n \"threshold\": {\n \"type\": \"number\",\n \"minimum\": 0.5,\n \"maximum\": 0.99\n },\n \"quorum\": {\n \"type\": \"integer\",\n \"minimum\": 2,\n \"maximum\": 128\n },\n \"temporal_window_ms\": {\n \"type\": \"integer\",\n \"minimum\": 100,\n \"maximum\": 86400000,\n \"default\": 300000\n },\n \"conflict_resolution\": {\n \"type\": \"string\",\n \"enum\": [\"highest_confidence\", \"majority_vote\", \"weighted_consensus\", \"reject\"]\n },\n \"max_iterations\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 1000,\n \"default\": 100\n }\n }\n },\n \"metadata\": {\n \"type\": \"object\",\n \"required\": [\"client_id\", \"priority\", \"ttl_ms\"],\n \"properties\": {\n \"client_id\": {\n \"type\": \"string\",\n \"pattern\": \"^CL-[0-9A-Z]{16}$\"\n },\n \"priority\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 10\n },\n \"ttl_ms\": {\n \"type\": \"integer\",\n \"minimum\": 1000,\n \"maximum\": 3600000\n },\n \"trace_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[0-9a-f]{32}$\"\n },\n \"idempotency_key\": {\n \"type\": \"string\",\n \"maxLength\": 128\n }\n }\n }\n }\n}\n```\n\n---\n\n## 4. SRE Operational Metrics\n\n### 4.1 Service Level Objectives (SLOs)\n\n| Metric | Target | Error Budget (30d) | Measurement |\n|--------|--------|-------------------|-------------|\n| Availability | 99.95% | 21.6 min | `uptime / total_time` |\n| Latency P50 | ≤ 45ms | N/A | Histogram bucket |\n| Latency P99 | ≤ 200ms | 0.1% violations | Histogram bucket |\n| Latency P99.9 | ≤ 500ms | 0.01% violations | Histogram bucket |\n| Truth Accuracy | ≥ 98.5% | 1.5% false positives | `correct_distillations / total` |\n| Throughput | ≥ 10K RPS | N/A | Sustained capacity |\n\n### 4.2 Service Level Indicators (SLIs)\n\n```yaml\nslis:\n availability:\n formula: \"sum(successful_requests) / sum(total_requests)\"\n good_events: \"http_status \u003c 500 AND processing_complete = true\"\n valid_events: \"all_requests - health_checks\"\n \n latency:\n formula: \"histogram_quantile(0.99, request_duration_seconds)\"\n buckets: [0.01, 0.025, 0.05, 0.1, 0.2, 0.5, 1.0, 2.5]\n \n correctness:\n formula: \"sum(verified_truths) / sum(distillation_attempts)\"\n verification_method: \"cross_validation_sampling\"\n sample_rate: 0.05\n \n freshness:\n formula: \"time_since_last_successful_distillation \u003c threshold\"\n threshold_seconds: 60\n```\n\n### 4.3 Alerting Thresholds\n\n```yaml\nalerts:\n - name: TruthDistillHighErrorRate\n expr: |\n sum(rate(distill_errors_total[5m])) \n / sum(rate(distill_requests_total[5m])) \u003e 0.01\n severity: critical\n runbook: \"https://runbooks.internal/td/high-error-rate\"\n \n - name: TruthDistillLatencyDegraded\n expr: |\n histogram_quantile(0.99, \n sum(rate(distill_duration_seconds_bucket[5m])) by (le)\n ) \u003e 0.2\n severity: warning\n \n - name: TruthDistillCoherenceCollapse\n expr: |\n avg(coherence_score) \u003c 0.3 \n AND rate(distill_requests_total[1m]) \u003e 100\n severity: critical\n \n - name: TruthDistillQuorumFailure\n expr: |\n sum(quorum_failures_total) \n / sum(quorum_attempts_total) \u003e 0.05\n severity: high\n \n - name: TruthDistillBPSCritical\n expr: |\n max(bps_score) by (failure_mode) \u003e= 0.7\n severity: critical\n auto_action: circuit_breaker_engage\n```\n\n### 4.4 Operational Dashboards Metrics\n\n```\n# Core Performance\ndistill_requests_total{status, mode, priority}\ndistill_duration_seconds{quantile}\ndistill_source_count{bucket}\ndistill_iterations{bucket}\n\n# Quality Metrics\ncoherence_score{request_id}\nverification_weight{factor}\ntruth_confidence_output{bucket}\nconflict_resolution_events{strategy, outcome}\n\n# Reliability Metrics\nbps_score{failure_mode}\ncircuit_breaker_state{component}\nquorum_health{status}\nsource_poisoning_detected_total\n\n# Capacity Metrics\nactive_distillations\nqueue_depth{priority}\nmemory_usage_bytes\ncpu_utilization_ratio\n```\n\n### 4.5 Capacity Planning Formula\n\n```\nRequired_Capacity = (Peak_RPS × Safety_Factor × Avg_Latency) / (1 - Target_Utilization)\n\nWhere:\n Peak_RPS = P99 of hourly request rate\n Safety_Factor = 1.5 (standard) | 2.0 (critical)\n Avg_Latency = P50 latency in seconds\n Target_Utilization = 0.7\n\nScaling Trigger:\n IF current_utilization \u003e 0.65 FOR 5m THEN scale_up(ceil(current_capacity × 1.25))\n IF current_utilization \u003c 0.35 FOR 15m THEN scale_down(floor(current_capacity × 0.8))\n```\n\n---\n\n## 5. State Machine Definition\n\n```\nStates: {INIT, COLLECTING, VALIDATING, DISTILLING, VERIFYING, COMPLETE, FAILED}\n\nTransitions:\n INIT → COLLECTING: on(request_received) ∧ schema_valid\n INIT → FAILED: on(schema_violation)\n COLLECTING → VALIDATING: on(sources_count ≥ quorum)\n COLLECTING → FAILED: on(timeout) ∨ on(sources_count \u003c min_sources)\n VALIDATING → DISTILLING: on(all_sources_valid)\n VALIDATING → COLLECTING: on(invalid_sources_removed) ∧ (remaining ≥ quorum)\n VALIDATING → FAILED: on(remaining \u003c quorum)\n DISTILLING → VERIFYING: on(convergence) ∨ on(max_iterations)\n DISTILLING → FAILED: on(coherence_collapse)\n VERIFYING → COMPLETE: on(V(T) ≥ threshold)\n VERIFYING → FAILED: on(V(T) \u003c threshold)\n \nInvariants:\n ∀ state ∈ States: elapsed_time \u003c ttl_ms\n ∀ transition: emit(metric, trace_id)\n```\n\n---\n\n## 6. Failure Recovery Procedures\n\n```python\n# Pseudocode for recovery logic\ndef recovery_handler(failure_mode, context):\n match failure_mode:\n case \"BPS-001\": # Source Poisoning\n quarantine_sources(context.flagged_sources)\n trigger_revalidation(context.request_id)\n emit_security_alert(severity=\"CRITICAL\")\n \n case \"BPS-002\": # Coherence Collapse\n reduce_source_set(strategy=\"highest_confidence_subset\")\n retry_distillation(max_attempts=3)\n \n case \"BPS-003\": # Verification Bypass\n engage_circuit_breaker()\n require_manual_verification()\n \n case \"BPS-006\": # Cascade Propagation\n isolate_affected_components()\n initiate_graceful_degradation()\n \n log_recovery_action(failure_mode, context, outcome)\n```",
7
+ "outcome": "A-CS-TruthDistill",
8
+ "rType": 0,
9
+ "persona": "CS",
10
+ "primary_model": "GPT-4o-Synthesis",
11
+ "privacy_tier": "Public",
12
+ "sybox_fee_split": {
13
+ "dev": 0.5,
14
+ "curation": 0.4,
15
+ "author": 0.1
16
+ },
17
+ "ticker": "SYNL",
18
+ "audit_cadence": "Weekly",
19
+ "lifecycle": "Genesis-Platinum",
20
+ "global_outputs": [
21
+ "synthesis_id",
22
+ "logic_id",
23
+ "bps_verified",
24
+ "model_stack",
25
+ "processing_ms",
26
+ "timestamp"
27
+ ],
28
+ "custom_outputs": [
29
+ {
30
+ "field_name": "distilled_narrative",
31
+ "type": "String",
32
+ "description": "The singular, high-fidelity conclusion (max 3 sentences).",
33
+ "downstream_intent": "CEO/CMO for decision making.",
34
+ "bps_sensitivity": "High"
35
+ }
36
+ ]
37
+ }
@@ -0,0 +1,37 @@
1
+ {
2
+ "id": 26,
3
+ "successBps": 9934,
4
+ "cid": "ar://SYNTH_ATOMIC_CS_PROMPTSYNTH",
5
+ "costUsd": 1500,
6
+ "details": "# A-CS-PromptSynth Technical Logic Specification\n\n## 1. System Architecture Logic\n\n```\n┌─────────────────────────────────────────────────────────────────────┐\n│ A-CS-PromptSynth Core Engine │\n├─────────────────────────────────────────────────────────────────────┤\n│ INPUT_LAYER → VALIDATION_GATE → SYNTHESIS_CORE → OUTPUT_FORMATTER │\n│ ↓ ↓ ↓ ↓ │\n│ [Raw Prompt] [Schema Check] [Token Analysis] [Structured Out] │\n│ ↓ ↓ ↓ ↓ │\n│ TELEMETRY ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← │\n└─────────────────────────────────────────────────────────────────────┘\n```\n\n## 2. Core Processing Logic\n\n### 2.1 Prompt Decomposition Algorithm\n\n```python\ndef decompose_prompt(P):\n \"\"\"\n P = raw prompt string\n Returns: structured intent vector V_i\n \n Logic:\n V_i = Σ(w_k * T_k) for k in [1, n]\n where:\n w_k = semantic weight of token k\n T_k = token embedding vector\n n = total token count\n \"\"\"\n \n # Complexity Score (CS)\n CS = (unique_tokens / total_tokens) * log2(total_tokens + 1)\n \n # Ambiguity Index (AI)\n AI = 1 - (explicit_constraints / total_clauses)\n \n # Synthesis Difficulty (SD)\n SD = CS * (1 + AI) * depth_factor\n \n return {\n \"intent_vector\": V_i,\n \"complexity_score\": CS,\n \"ambiguity_index\": AI,\n \"synthesis_difficulty\": SD\n }\n```\n\n### 2.2 Synthesis Core Logic\n\n```\nSYNTHESIS_FUNCTION(input_vector):\n \n 1. PARSE:\n tokens[] = tokenize(input)\n intent = classify(tokens)\n \n 2. VALIDATE:\n IF schema_match(input) == FALSE:\n RETURN error_state(E_SCHEMA_MISMATCH)\n IF token_count \u003e MAX_TOKENS:\n RETURN error_state(E_TOKEN_OVERFLOW)\n \n 3. TRANSFORM:\n context_window = build_context(tokens, history_depth=5)\n synthesis_output = generate(\n context_window,\n temperature=0.7,\n top_p=0.95,\n max_output_tokens=4096\n )\n \n 4. VALIDATE_OUTPUT:\n coherence_score = measure_coherence(synthesis_output)\n IF coherence_score \u003c THRESHOLD_COHERENCE:\n RETRY with adjusted_params\n \n 5. RETURN structured_response\n```\n\n---\n\n## 3. Breakdown Point Score (BPS) Matrix\n\n### 3.1 BPS Calculation Formula\n\n```\nBPS = Σ(R_i * S_i * P_i) / N\n\nwhere:\n R_i = Risk magnitude (1-10)\n S_i = Severity multiplier (1-5)\n P_i = Probability of occurrence (0.0-1.0)\n N = Normalization factor (total risk categories)\n\nCritical Threshold: BPS \u003e 7.5\nWarning Threshold: BPS \u003e 5.0\nNominal: BPS ≤ 5.0\n```\n\n### 3.2 BPS Risk Matrix\n\n| Failure Mode | Risk (R) | Severity (S) | Probability (P) | BPS Component | Mitigation |\n|--------------|----------|--------------|-----------------|---------------|------------|\n| Token Overflow | 8 | 4 | 0.15 | 4.80 | Hard limit enforcement |\n| Schema Violation | 7 | 3 | 0.25 | 5.25 | Pre-validation gate |\n| Context Corruption | 9 | 5 | 0.08 | 3.60 | Checksum verification |\n| Synthesis Timeout | 6 | 3 | 0.20 | 3.60 | Circuit breaker pattern |\n| Output Incoherence | 7 | 4 | 0.12 | 3.36 | Coherence scoring |\n| Memory Exhaustion | 9 | 5 | 0.05 | 2.25 | Resource pooling |\n| Cascade Failure | 10 | 5 | 0.03 | 1.50 | Bulkhead isolation |\n| Rate Limit Breach | 5 | 2 | 0.30 | 3.00 | Token bucket algorithm |\n| Prompt Injection | 8 | 5 | 0.10 | 4.00 | Input sanitization |\n| State Desync | 7 | 4 | 0.07 | 1.96 | Idempotency keys |\n\n### 3.3 Aggregate BPS Calculation\n\n```\nTotal_BPS = (4.80 + 5.25 + 3.60 + 3.60 + 3.36 + 2.25 + 1.50 + 3.00 + 4.00 + 1.96) / 10\nTotal_BPS = 33.32 / 10\nTotal_BPS = 3.332\n\nSTATUS: NOMINAL (BPS ≤ 5.0)\n```\n\n### 3.4 BPS Escalation Logic\n\n```\nIF BPS \u003e 7.5:\n TRIGGER incident_response(SEV1)\n ENABLE circuit_breaker(ALL_ENDPOINTS)\n NOTIFY on_call_primary\n \nELIF BPS \u003e 5.0:\n TRIGGER alert(SEV2)\n ENABLE rate_limiting(AGGRESSIVE)\n LOG detailed_telemetry\n \nELSE:\n MAINTAIN normal_operations\n LOG standard_metrics\n```\n\n---\n\n## 4. JSON Schema for Input Validation\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://a-cs-promptsynth.internal/schema/v1/input\",\n \"title\": \"A-CS-PromptSynth Input Schema\",\n \"type\": \"object\",\n \"required\": [\"request_id\", \"prompt\", \"config\"],\n \"additionalProperties\": false,\n \n \"properties\": {\n \"request_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$\",\n \"description\": \"UUIDv4 request identifier\"\n },\n \n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\",\n \"description\": \"ISO 8601 timestamp\"\n },\n \n \"prompt\": {\n \"type\": \"object\",\n \"required\": [\"content\", \"type\"],\n \"properties\": {\n \"content\": {\n \"type\": \"string\",\n \"minLength\": 1,\n \"maxLength\": 32768,\n \"description\": \"Raw prompt content\"\n },\n \"type\": {\n \"type\": \"string\",\n \"enum\": [\"synthesis\", \"analysis\", \"transformation\", \"generation\"],\n \"description\": \"Prompt operation type\"\n },\n \"context\": {\n \"type\": \"array\",\n \"maxItems\": 10,\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"role\": {\n \"type\": \"string\",\n \"enum\": [\"system\", \"user\", \"assistant\"]\n },\n \"content\": {\n \"type\": \"string\",\n \"maxLength\": 16384\n }\n },\n \"required\": [\"role\", \"content\"]\n }\n },\n \"constraints\": {\n \"type\": \"object\",\n \"properties\": {\n \"max_tokens\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 8192,\n \"default\": 4096\n },\n \"format\": {\n \"type\": \"string\",\n \"enum\": [\"text\", \"json\", \"markdown\", \"code\"]\n },\n \"language\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-z]{2}(-[A-Z]{2})?$\"\n }\n }\n }\n }\n },\n \n \"config\": {\n \"type\": \"object\",\n \"required\": [\"model_params\"],\n \"properties\": {\n \"model_params\": {\n \"type\": \"object\",\n \"properties\": {\n \"temperature\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 2.0,\n \"default\": 0.7\n },\n \"top_p\": {\n \"type\": \"number\",\n \"minimum\": 0.0,\n \"maximum\": 1.0,\n \"default\": 0.95\n },\n \"top_k\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 100,\n \"default\": 40\n },\n \"frequency_penalty\": {\n \"type\": \"number\",\n \"minimum\": -2.0,\n \"maximum\": 2.0,\n \"default\": 0.0\n },\n \"presence_penalty\": {\n \"type\": \"number\",\n \"minimum\": -2.0,\n \"maximum\": 2.0,\n \"default\": 0.0\n }\n }\n },\n \"timeout_ms\": {\n \"type\": \"integer\",\n \"minimum\": 1000,\n \"maximum\": 300000,\n \"default\": 30000\n },\n \"retry_policy\": {\n \"type\": \"object\",\n \"properties\": {\n \"max_retries\": {\n \"type\": \"integer\",\n \"minimum\": 0,\n \"maximum\": 5,\n \"default\": 3\n },\n \"backoff_multiplier\": {\n \"type\": \"number\",\n \"minimum\": 1.0,\n \"maximum\": 5.0,\n \"default\": 2.0\n },\n \"initial_delay_ms\": {\n \"type\": \"integer\",\n \"minimum\": 100,\n \"maximum\": 10000,\n \"default\": 1000\n }\n }\n }\n }\n },\n \n \"metadata\": {\n \"type\": \"object\",\n \"properties\": {\n \"client_id\": {\n \"type\": \"string\",\n \"maxLength\": 64\n },\n \"trace_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{32}$\"\n },\n \"span_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-f0-9]{16}$\"\n },\n \"priority\": {\n \"type\": \"string\",\n \"enum\": [\"low\", \"normal\", \"high\", \"critical\"],\n \"default\": \"normal\"\n }\n }\n }\n }\n}\n```\n\n---\n\n## 5. SRE Metrics Specification\n\n### 5.1 Service Level Indicators (SLIs)\n\n| Metric | Type | Formula | Target |\n|--------|------|---------|--------|\n| Availability | Gauge | `(successful_requests / total_requests) * 100` | ≥ 99.9% |\n| Latency P50 | Histogram | `percentile(request_duration, 0.50)` | ≤ 200ms |\n| Latency P95 | Histogram | `percentile(request_duration, 0.95)` | ≤ 800ms |\n| Latency P99 | Histogram | `percentile(request_duration, 0.99)` | ≤ 2000ms |\n| Error Rate | Counter | `(error_count / total_requests) * 100` | ≤ 0.1% |\n| Throughput | Counter | `requests_per_second` | ≥ 1000 RPS |\n| Saturation | Gauge | `(active_connections / max_connections) * 100` | ≤ 80% |\n\n### 5.2 Service Level Objectives (SLOs)\n\n```yaml\nslos:\n - name: \"synthesis_availability\"\n target: 99.9\n window: \"30d\"\n indicator:\n metric: \"promptsynth_request_success_total\"\n good_events: \"status=~\u00272..\u0027\"\n total_events: \"status=~\u0027.+\u0027\"\n error_budget:\n monthly_minutes: 43.2\n burn_rate_alert_threshold: 14.4\n\n - name: \"synthesis_latency\"\n target: 99.0\n window: \"30d\"\n indicator:\n metric: \"promptsynth_request_duration_seconds\"\n threshold: 0.8\n percentile: 95\n error_budget:\n monthly_minutes: 432\n\n - name: \"synthesis_correctness\"\n target: 99.5\n window: \"7d\"\n indicator:\n metric: \"promptsynth_coherence_score\"\n threshold: 0.85\n```\n\n### 5.3 Prometheus Metrics Definition\n\n```prometheus\n# HELP promptsynth_requests_total Total number of synthesis requests\n# TYPE promptsynth_requests_total counter\npromptsynth_requests_total{status=\"success|failure|timeout\", type=\"synthesis|analysis|transformation|generation\"}\n\n# HELP promptsynth_request_duration_seconds Request latency in seconds\n# TYPE promptsynth_request_duration_seconds histogram\npromptsynth_request_duration_seconds_bucket{le=\"0.1|0.25|0.5|1|2.5|5|10\"}\npromptsynth_request_duration_seconds_sum\npromptsynth_request_duration_seconds_count\n\n# HELP promptsynth_tokens_processed_total Total tokens processed\n# TYPE promptsynth_tokens_processed_total counter\npromptsynth_tokens_processed_total{direction=\"input|output\"}\n\n# HELP promptsynth_active_requests Current number of in-flight requests\n# TYPE promptsynth_active_requests gauge\npromptsynth_active_requests\n\n# HELP promptsynth_coherence_score Output coherence score\n# TYPE promptsynth_coherence_score histogram\npromptsynth_coherence_score_bucket{le=\"0.5|0.6|0.7|0.8|0.9|0.95|1.0\"}\n\n# HELP promptsynth_bps_score Current Breakdown Point Score\n# TYPE promptsynth_bps_score gauge\npromptsynth_bps_score{failure_mode=\"token_overflow|schema_violation|context_corruption|...\"}\n\n# HELP promptsynth_circuit_breaker_state Circuit breaker state\n# TYPE promptsynth_circuit_breaker_state gauge\npromptsynth_circuit_breaker_state{state=\"closed|open|half_open\"}\n\n# HELP promptsynth_error_budget_remaining Remaining error budget percentage\n# TYPE promptsynth_error_budget_remaining gauge\npromptsynth_error_budget_remaining{slo=\"availability|latency|correctness\"}\n```\n\n### 5.4 Alert Rules\n\n```yaml\ngroups:\n - name: promptsynth_alerts\n rules:\n - alert: HighErrorRate\n expr: |\n (\n sum(rate(promptsynth_requests_total{status=\"failure\"}[5m]))\n /\n sum(rate(promptsynth_requests_total[5m]))\n ) \u003e 0.01\n for: 2m\n labels:\n severity: critical\n annotations:\n summary: \"Error rate exceeds 1%\"\n \n - alert: HighLatencyP95\n expr: |\n histogram_quantile(0.95, \n sum\n```",
7
+ "outcome": "A-CS-PromptSynth",
8
+ "rType": 0,
9
+ "persona": "CS",
10
+ "primary_model": "GPT-4o-Synthesis",
11
+ "privacy_tier": "Public",
12
+ "sybox_fee_split": {
13
+ "dev": 0.5,
14
+ "curation": 0.4,
15
+ "author": 0.1
16
+ },
17
+ "ticker": "SYNL",
18
+ "audit_cadence": "Weekly",
19
+ "lifecycle": "Genesis-Platinum",
20
+ "global_outputs": [
21
+ "synthesis_id",
22
+ "logic_id",
23
+ "bps_verified",
24
+ "model_stack",
25
+ "processing_ms",
26
+ "timestamp"
27
+ ],
28
+ "custom_outputs": [
29
+ {
30
+ "field_name": "blueprint_artifact",
31
+ "type": "Object",
32
+ "description": "Hierarchical object containing pseudocode, proofs, and steps.",
33
+ "downstream_intent": "Engineering/Dev personas.",
34
+ "bps_sensitivity": "High"
35
+ }
36
+ ]
37
+ }
@@ -0,0 +1,44 @@
1
+ {
2
+ "id": 27,
3
+ "successBps": 9788,
4
+ "cid": "ar://SYNTH_ATOMIC_CS_OMNITUNER",
5
+ "costUsd": 1500,
6
+ "details": "# A-CS-OmniTuner Technical Specification\n\n## 1. System Architecture Logic\n\n```\n┌─────────────────────────────────────────────────────────────────────┐\n│ A-CS-OmniTuner Core Engine │\n├─────────────────────────────────────────────────────────────────────┤\n│ Input Layer → Validation Layer → Processing Layer → Output Layer │\n│ ↓ ↓ ↓ ↓ │\n│ [Schema Check] [BPS Calc] [Tuning Algorithm] [Metric Emission] │\n└─────────────────────────────────────────────────────────────────────┘\n```\n\n---\n\n## 2. Breakdown Point Score (BPS) Matrix\n\n### 2.1 BPS Calculation Formula\n\n```\nBPS = Σ(Wᵢ × Rᵢ × Iᵢ) / N\n\nWhere:\n Wᵢ = Weight factor for failure domain i (0.0 - 1.0)\n Rᵢ = Risk probability for domain i (0.0 - 1.0)\n Iᵢ = Impact severity for domain i (1 - 10)\n N = Normalization constant = 10\n```\n\n### 2.2 Failure Domain Matrix\n\n| Domain ID | Failure Domain | Weight (W) | Risk Threshold | Impact Multiplier | Recovery SLO |\n|-----------|----------------|------------|----------------|-------------------|--------------|\n| FD-001 | Configuration Drift | 0.85 | R \u003e 0.3 | 8 | 15 min |\n| FD-002 | Resource Exhaustion | 0.95 | R \u003e 0.2 | 9 | 5 min |\n| FD-003 | Dependency Cascade | 0.90 | R \u003e 0.25 | 10 | 10 min |\n| FD-004 | State Corruption | 0.80 | R \u003e 0.15 | 10 | 30 min |\n| FD-005 | Latency Degradation | 0.70 | R \u003e 0.4 | 6 | 2 min |\n| FD-006 | Throughput Collapse | 0.75 | R \u003e 0.35 | 7 | 5 min |\n| FD-007 | Authentication Failure | 0.95 | R \u003e 0.1 | 9 | 1 min |\n| FD-008 | Data Inconsistency | 0.85 | R \u003e 0.2 | 8 | 20 min |\n\n### 2.3 BPS Severity Classification\n\n```\nBPS Range | Classification | Action Required\n─────────────────┼────────────────┼─────────────────────────────\n0.00 - 0.20 | NOMINAL | Continue monitoring\n0.21 - 0.40 | ELEVATED | Increase observation frequency\n0.41 - 0.60 | WARNING | Initiate preventive tuning\n0.61 - 0.80 | CRITICAL | Execute immediate remediation\n0.81 - 1.00 | BREAKDOWN | Trigger circuit breaker + escalation\n```\n\n### 2.4 Composite BPS Calculation\n\n```python\ndef calculate_composite_bps(failure_domains: list) -\u003e float:\n \"\"\"\n Composite BPS with temporal decay and correlation adjustment\n \"\"\"\n base_bps = sum(fd.weight * fd.risk * fd.impact for fd in failure_domains) / 10\n \n # Correlation penalty: overlapping failures compound risk\n correlation_factor = 1 + (0.15 * count_correlated_domains(failure_domains))\n \n # Temporal decay: recent incidents weight higher\n temporal_weight = exp(-λ * time_since_last_incident) # λ = 0.1\n \n composite_bps = min(1.0, base_bps * correlation_factor * (0.7 + 0.3 * temporal_weight))\n \n return round(composite_bps, 4)\n```\n\n---\n\n## 3. JSON Schema for Input Validation\n\n### 3.1 Primary Configuration Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-cs-omnituner/v1\",\n \"title\": \"A-CS-OmniTuner Configuration\",\n \"type\": \"object\",\n \"required\": [\"metadata\", \"targets\", \"tuning_parameters\", \"constraints\"],\n \"additionalProperties\": false,\n \"properties\": {\n \"metadata\": {\n \"type\": \"object\",\n \"required\": [\"version\", \"environment\", \"timestamp\", \"correlation_id\"],\n \"properties\": {\n \"version\": {\n \"type\": \"string\",\n \"pattern\": \"^[0-9]+\\\\.[0-9]+\\\\.[0-9]+$\"\n },\n \"environment\": {\n \"type\": \"string\",\n \"enum\": [\"development\", \"staging\", \"production\", \"disaster-recovery\"]\n },\n \"timestamp\": {\n \"type\": \"string\",\n \"format\": \"date-time\"\n },\n \"correlation_id\": {\n \"type\": \"string\",\n \"format\": \"uuid\"\n },\n \"operator\": {\n \"type\": \"string\",\n \"minLength\": 3,\n \"maxLength\": 64\n }\n }\n },\n \"targets\": {\n \"type\": \"array\",\n \"minItems\": 1,\n \"maxItems\": 100,\n \"items\": {\n \"$ref\": \"#/$defs/target\"\n }\n },\n \"tuning_parameters\": {\n \"$ref\": \"#/$defs/tuning_parameters\"\n },\n \"constraints\": {\n \"$ref\": \"#/$defs/constraints\"\n },\n \"rollback_policy\": {\n \"$ref\": \"#/$defs/rollback_policy\"\n }\n },\n \"$defs\": {\n \"target\": {\n \"type\": \"object\",\n \"required\": [\"target_id\", \"target_type\", \"endpoint\", \"health_check\"],\n \"properties\": {\n \"target_id\": {\n \"type\": \"string\",\n \"pattern\": \"^[a-z0-9-]{3,64}$\"\n },\n \"target_type\": {\n \"type\": \"string\",\n \"enum\": [\"compute\", \"storage\", \"network\", \"database\", \"cache\", \"queue\", \"api-gateway\"]\n },\n \"endpoint\": {\n \"type\": \"string\",\n \"format\": \"uri\"\n },\n \"health_check\": {\n \"type\": \"object\",\n \"required\": [\"path\", \"interval_seconds\", \"timeout_seconds\"],\n \"properties\": {\n \"path\": { \"type\": \"string\" },\n \"interval_seconds\": { \n \"type\": \"integer\", \n \"minimum\": 5, \n \"maximum\": 300 \n },\n \"timeout_seconds\": { \n \"type\": \"integer\", \n \"minimum\": 1, \n \"maximum\": 30 \n },\n \"healthy_threshold\": { \n \"type\": \"integer\", \n \"minimum\": 1, \n \"maximum\": 10,\n \"default\": 2\n },\n \"unhealthy_threshold\": { \n \"type\": \"integer\", \n \"minimum\": 1, \n \"maximum\": 10,\n \"default\": 3\n }\n }\n },\n \"priority\": {\n \"type\": \"integer\",\n \"minimum\": 1,\n \"maximum\": 10,\n \"default\": 5\n },\n \"tags\": {\n \"type\": \"object\",\n \"additionalProperties\": { \"type\": \"string\" }\n }\n }\n },\n \"tuning_parameters\": {\n \"type\": \"object\",\n \"required\": [\"mode\", \"optimization_target\"],\n \"properties\": {\n \"mode\": {\n \"type\": \"string\",\n \"enum\": [\"conservative\", \"balanced\", \"aggressive\", \"custom\"]\n },\n \"optimization_target\": {\n \"type\": \"string\",\n \"enum\": [\"latency\", \"throughput\", \"cost\", \"reliability\", \"multi-objective\"]\n },\n \"resource_limits\": {\n \"type\": \"object\",\n \"properties\": {\n \"cpu_cores_max\": { \"type\": \"number\", \"minimum\": 0.1 },\n \"memory_gb_max\": { \"type\": \"number\", \"minimum\": 0.128 },\n \"iops_max\": { \"type\": \"integer\", \"minimum\": 100 },\n \"bandwidth_mbps_max\": { \"type\": \"integer\", \"minimum\": 1 }\n }\n },\n \"scaling\": {\n \"type\": \"object\",\n \"properties\": {\n \"min_replicas\": { \"type\": \"integer\", \"minimum\": 0 },\n \"max_replicas\": { \"type\": \"integer\", \"minimum\": 1 },\n \"scale_up_threshold\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"scale_down_threshold\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"cooldown_seconds\": { \"type\": \"integer\", \"minimum\": 30 }\n }\n },\n \"custom_weights\": {\n \"type\": \"object\",\n \"properties\": {\n \"latency_weight\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"throughput_weight\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"cost_weight\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"reliability_weight\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 }\n }\n }\n }\n },\n \"constraints\": {\n \"type\": \"object\",\n \"required\": [\"slo_targets\"],\n \"properties\": {\n \"slo_targets\": {\n \"type\": \"object\",\n \"properties\": {\n \"availability_percent\": { \n \"type\": \"number\", \n \"minimum\": 90, \n \"maximum\": 99.999 \n },\n \"latency_p50_ms\": { \"type\": \"number\", \"minimum\": 0 },\n \"latency_p95_ms\": { \"type\": \"number\", \"minimum\": 0 },\n \"latency_p99_ms\": { \"type\": \"number\", \"minimum\": 0 },\n \"error_rate_percent\": { \n \"type\": \"number\", \n \"minimum\": 0, \n \"maximum\": 100 \n }\n }\n },\n \"maintenance_windows\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"start\": { \"type\": \"string\", \"format\": \"date-time\" },\n \"end\": { \"type\": \"string\", \"format\": \"date-time\" },\n \"recurrence\": { \"type\": \"string\" }\n }\n }\n },\n \"blackout_periods\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"start\": { \"type\": \"string\", \"format\": \"date-time\" },\n \"end\": { \"type\": \"string\", \"format\": \"date-time\" },\n \"reason\": { \"type\": \"string\" }\n }\n }\n }\n }\n },\n \"rollback_policy\": {\n \"type\": \"object\",\n \"properties\": {\n \"enabled\": { \"type\": \"boolean\", \"default\": true },\n \"trigger_conditions\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"metric\": { \"type\": \"string\" },\n \"operator\": { \"type\": \"string\", \"enum\": [\"gt\", \"lt\", \"gte\", \"lte\", \"eq\"] },\n \"threshold\": { \"type\": \"number\" },\n \"duration_seconds\": { \"type\": \"integer\" }\n }\n }\n },\n \"max_rollback_attempts\": { \"type\": \"integer\", \"minimum\": 1, \"maximum\": 5 },\n \"notification_channels\": {\n \"type\": \"array\",\n \"items\": { \"type\": \"string\" }\n }\n }\n }\n }\n}\n```\n\n### 3.2 Validation Response Schema\n\n```json\n{\n \"$schema\": \"https://json-schema.org/draft/2020-12/schema\",\n \"$id\": \"https://sre.internal/schemas/a-cs-omnituner/validation-response/v1\",\n \"type\": \"object\",\n \"required\": [\"valid\", \"timestamp\", \"validation_id\"],\n \"properties\": {\n \"valid\": { \"type\": \"boolean\" },\n \"timestamp\": { \"type\": \"string\", \"format\": \"date-time\" },\n \"validation_id\": { \"type\": \"string\", \"format\": \"uuid\" },\n \"errors\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"path\": { \"type\": \"string\" },\n \"code\": { \"type\": \"string\" },\n \"message\": { \"type\": \"string\" },\n \"severity\": { \"type\": \"string\", \"enum\": [\"error\", \"warning\"] }\n }\n }\n },\n \"computed_bps\": { \"type\": \"number\", \"minimum\": 0, \"maximum\": 1 },\n \"risk_assessment\": {\n \"type\": \"object\",\n \"properties\": {\n \"classification\": { \"type\": \"string\" },\n \"recommended_action\": { \"type\": \"string\" }\n }\n }\n }\n}\n```\n\n---\n\n## 4. SRE Metrics Specification\n\n### 4.1 Golden Signals Metrics\n\n| Metric Name | Type | Unit | Labels | Description |\n|-------------|------|------|--------|-------------|\n| `omnituner_request_latency_seconds` | Histogram | seconds | `target_id`, `operation`, `status` | Tuning operation latency distribution |\n| `omnituner_request_total` | Counter | count | `target_id`, `operation`, `status` | Total tuning requests |\n| `omnituner_error_total` | Counter | count | `target_id`, `error_type`, `severity` | Total errors by type |\n| `omnituner_saturation_ratio` | Gauge | ratio | `resource_type`, `target_id` | Resource utilization ratio |\n\n### 4.2 Operational Health Metrics\n\n```yaml\nmetrics:\n # Tuning Effectiveness\n - name: omnituner_tuning_effectiveness_score\n type: gauge\n description: \"Effectiveness score of last tuning operation (0-1)\"\n labels: [target_id, optimization_target]\n \n - name: omnituner_config_drift_detected_total\n type: counter\n description: \"Number of configuration drift events detected\"\n labels: [target_id, drift_type]\n \n - name: omnituner_auto_remediation_total\n type: counter\n description: \"Automatic remediation actions executed\"\n labels: [target_id, action_type, result]\n\n # BPS Metrics\n - name: omnituner_bps_current\n type: gauge\n description: \"Current Breakdown Point Score\"\n labels: [target_id, failure_domain]\n \n - name: omnituner_bps_threshold_exceeded_total\n type: counter\n description: \"BPS threshold breach events\"\n labels: [target_id, severity]\n\n # Rollback Metrics\n - name: omnituner_rollback_total\n type: counter\n description: \"Total rollback operations\"\n labels: [target_id, trigger_reason, success]\n \n - name: omnituner_rollback_duration_seconds\n type: histogram\n description: \"Time to complete rollback\"\n labels: [target_id]\n buckets: [1,\n```]",
7
+ "outcome": "A-CS-OmniTuner",
8
+ "rType": 0,
9
+ "persona": "CS",
10
+ "primary_model": "GPT-4o-Synthesis",
11
+ "privacy_tier": "Public",
12
+ "sybox_fee_split": {
13
+ "dev": 0.5,
14
+ "curation": 0.4,
15
+ "author": 0.1
16
+ },
17
+ "ticker": "SYNL",
18
+ "audit_cadence": "Weekly",
19
+ "lifecycle": "Genesis-Platinum",
20
+ "global_outputs": [
21
+ "synthesis_id",
22
+ "logic_id",
23
+ "bps_verified",
24
+ "model_stack",
25
+ "processing_ms",
26
+ "timestamp"
27
+ ],
28
+ "custom_outputs": [
29
+ {
30
+ "field_name": "tuning_directives",
31
+ "type": "Array",
32
+ "description": "Objects containing `target_id` and `action` (e.g., SCALE_UP).",
33
+ "downstream_intent": "Auto-Scaling / Cloud Controllers.",
34
+ "bps_sensitivity": "Critical"
35
+ },
36
+ {
37
+ "field_name": "risk_classification",
38
+ "type": "String",
39
+ "description": "Outcome state: \"NOMINAL\", \"ELEVATED\", \"CRITICAL\", \"BREAKDOWN\".",
40
+ "downstream_intent": "System-wide Alerting / Dashboards.",
41
+ "bps_sensitivity": "High"
42
+ }
43
+ ]
44
+ }