poly-extrude 0.13.0 → 0.14.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (68) hide show
  1. package/dist/cylinder.d.ts +11 -0
  2. package/{src → dist}/cylinder.js +108 -111
  3. package/dist/cylinder.js.map +1 -0
  4. package/dist/index.d.ts +7 -0
  5. package/dist/index.js +8 -0
  6. package/dist/index.js.map +1 -0
  7. package/dist/math/Curve.d.ts +41 -0
  8. package/dist/math/Curve.js +142 -0
  9. package/dist/math/Curve.js.map +1 -0
  10. package/dist/math/Interpolations.d.ts +8 -0
  11. package/dist/math/Interpolations.js +48 -0
  12. package/dist/math/Interpolations.js.map +1 -0
  13. package/dist/math/Matrix4.d.ts +8 -0
  14. package/dist/math/Matrix4.js +582 -0
  15. package/dist/math/Matrix4.js.map +1 -0
  16. package/dist/math/QuadraticBezierCurve3.d.ts +10 -0
  17. package/dist/math/QuadraticBezierCurve3.js +22 -0
  18. package/dist/math/QuadraticBezierCurve3.js.map +1 -0
  19. package/dist/math/Quaternion.d.ts +46 -0
  20. package/dist/math/Quaternion.js +415 -0
  21. package/dist/math/Quaternion.js.map +1 -0
  22. package/dist/math/Vector3.d.ts +42 -0
  23. package/dist/math/Vector3.js +403 -0
  24. package/dist/math/Vector3.js.map +1 -0
  25. package/dist/path/PathPoint.d.ts +15 -0
  26. package/dist/path/PathPoint.js +35 -0
  27. package/dist/path/PathPoint.js.map +1 -0
  28. package/dist/path/PathPointList.d.ts +27 -0
  29. package/dist/path/PathPointList.js +212 -0
  30. package/dist/path/PathPointList.js.map +1 -0
  31. package/dist/path.d.ts +11 -0
  32. package/{src → dist}/path.js +334 -360
  33. package/dist/path.js.map +1 -0
  34. package/dist/plane.d.ts +2 -0
  35. package/{src → dist}/plane.js +57 -58
  36. package/dist/plane.js.map +1 -0
  37. package/dist/poly-extrude.js +1286 -1581
  38. package/dist/poly-extrude.js.map +1 -1
  39. package/dist/poly-extrude.min.js +2 -2
  40. package/dist/poly-extrude.mjs +1286 -1581
  41. package/dist/poly-extrude.mjs.map +1 -0
  42. package/dist/polygon.d.ts +9 -0
  43. package/{src → dist}/polygon.js +163 -179
  44. package/dist/polygon.js.map +1 -0
  45. package/dist/polyline.d.ts +24 -0
  46. package/{src → dist}/polyline.js +420 -456
  47. package/dist/polyline.js.map +1 -0
  48. package/dist/tube.d.ts +12 -0
  49. package/{src → dist}/tube.js +124 -142
  50. package/dist/tube.js.map +1 -0
  51. package/dist/type.d.ts +9 -0
  52. package/dist/type.js +2 -0
  53. package/dist/type.js.map +1 -0
  54. package/dist/util.d.ts +20 -0
  55. package/dist/util.js +217 -0
  56. package/dist/util.js.map +1 -0
  57. package/package.json +53 -48
  58. package/readme.md +12 -2
  59. package/src/cylinder.ts +124 -0
  60. package/src/index.ts +7 -0
  61. package/src/path.ts +385 -0
  62. package/src/plane.ts +60 -0
  63. package/src/polygon.ts +189 -0
  64. package/src/polyline.ts +473 -0
  65. package/src/tube.ts +155 -0
  66. package/src/type.ts +9 -0
  67. package/src/{util.js → util.ts} +1 -1
  68. package/index.js +0 -7
@@ -0,0 +1,403 @@
1
+ // import * as MathUtils from './MathUtils.js';
2
+ // code copy from https://github.com/mrdoob/three.js/blob/dev/src/math/Vector3.js
3
+ import { Quaternion } from './Quaternion';
4
+ const _quaternion = new Quaternion();
5
+ class Vector3 {
6
+ constructor(x = 0, y = 0, z = 0) {
7
+ this.x = x;
8
+ this.y = y;
9
+ this.z = z;
10
+ }
11
+ set(x, y, z) {
12
+ if (z === undefined)
13
+ z = this.z; // sprite.scale.set(x,y)
14
+ this.x = x;
15
+ this.y = y;
16
+ this.z = z;
17
+ return this;
18
+ }
19
+ // setScalar(scalar) {
20
+ // this.x = scalar;
21
+ // this.y = scalar;
22
+ // this.z = scalar;
23
+ // return this;
24
+ // }
25
+ // setX(x) {
26
+ // this.x = x;
27
+ // return this;
28
+ // }
29
+ // setY(y) {
30
+ // this.y = y;
31
+ // return this;
32
+ // }
33
+ // setZ(z) {
34
+ // this.z = z;
35
+ // return this;
36
+ // }
37
+ // setComponent(index, value) {
38
+ // switch (index) {
39
+ // case 0: this.x = value; break;
40
+ // case 1: this.y = value; break;
41
+ // case 2: this.z = value; break;
42
+ // default: throw new Error('index is out of range: ' + index);
43
+ // }
44
+ // return this;
45
+ // }
46
+ // getComponent(index) {
47
+ // switch (index) {
48
+ // case 0: return this.x;
49
+ // case 1: return this.y;
50
+ // case 2: return this.z;
51
+ // default: throw new Error('index is out of range: ' + index);
52
+ // }
53
+ // }
54
+ clone() {
55
+ return new this.constructor(this.x, this.y, this.z);
56
+ }
57
+ copy(v) {
58
+ this.x = v.x;
59
+ this.y = v.y;
60
+ this.z = v.z;
61
+ return this;
62
+ }
63
+ add(v) {
64
+ this.x += v.x;
65
+ this.y += v.y;
66
+ this.z += v.z;
67
+ return this;
68
+ }
69
+ addScalar(s) {
70
+ this.x += s;
71
+ this.y += s;
72
+ this.z += s;
73
+ return this;
74
+ }
75
+ addVectors(a, b) {
76
+ this.x = a.x + b.x;
77
+ this.y = a.y + b.y;
78
+ this.z = a.z + b.z;
79
+ return this;
80
+ }
81
+ addScaledVector(v, s) {
82
+ this.x += v.x * s;
83
+ this.y += v.y * s;
84
+ this.z += v.z * s;
85
+ return this;
86
+ }
87
+ sub(v) {
88
+ this.x -= v.x;
89
+ this.y -= v.y;
90
+ this.z -= v.z;
91
+ return this;
92
+ }
93
+ subScalar(s) {
94
+ this.x -= s;
95
+ this.y -= s;
96
+ this.z -= s;
97
+ return this;
98
+ }
99
+ subVectors(a, b) {
100
+ this.x = a.x - b.x;
101
+ this.y = a.y - b.y;
102
+ this.z = a.z - b.z;
103
+ return this;
104
+ }
105
+ multiply(v) {
106
+ this.x *= v.x;
107
+ this.y *= v.y;
108
+ this.z *= v.z;
109
+ return this;
110
+ }
111
+ multiplyScalar(scalar) {
112
+ this.x *= scalar;
113
+ this.y *= scalar;
114
+ this.z *= scalar;
115
+ return this;
116
+ }
117
+ multiplyVectors(a, b) {
118
+ this.x = a.x * b.x;
119
+ this.y = a.y * b.y;
120
+ this.z = a.z * b.z;
121
+ return this;
122
+ }
123
+ // applyEuler(euler) {
124
+ // return this.applyQuaternion(_quaternion.setFromEuler(euler));
125
+ // }
126
+ applyAxisAngle(axis, angle) {
127
+ return this.applyQuaternion(_quaternion.setFromAxisAngle(axis, angle));
128
+ }
129
+ // applyMatrix3(m) {
130
+ // const x = this.x, y = this.y, z = this.z;
131
+ // const e = m.elements;
132
+ // this.x = e[0] * x + e[3] * y + e[6] * z;
133
+ // this.y = e[1] * x + e[4] * y + e[7] * z;
134
+ // this.z = e[2] * x + e[5] * y + e[8] * z;
135
+ // return this;
136
+ // }
137
+ // applyNormalMatrix(m) {
138
+ // return this.applyMatrix3(m).normalize();
139
+ // }
140
+ applyMatrix4(m) {
141
+ const x = this.x, y = this.y, z = this.z;
142
+ const e = m.elements;
143
+ const w = 1 / (e[3] * x + e[7] * y + e[11] * z + e[15]);
144
+ this.x = (e[0] * x + e[4] * y + e[8] * z + e[12]) * w;
145
+ this.y = (e[1] * x + e[5] * y + e[9] * z + e[13]) * w;
146
+ this.z = (e[2] * x + e[6] * y + e[10] * z + e[14]) * w;
147
+ return this;
148
+ }
149
+ applyQuaternion(q) {
150
+ const x = this.x, y = this.y, z = this.z;
151
+ const qx = q.x, qy = q.y, qz = q.z, qw = q.w;
152
+ // calculate quat * vector
153
+ const ix = qw * x + qy * z - qz * y;
154
+ const iy = qw * y + qz * x - qx * z;
155
+ const iz = qw * z + qx * y - qy * x;
156
+ const iw = -qx * x - qy * y - qz * z;
157
+ // calculate result * inverse quat
158
+ this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
159
+ this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
160
+ this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;
161
+ return this;
162
+ }
163
+ // project(camera) {
164
+ // return this.applyMatrix4(camera.matrixWorldInverse).applyMatrix4(camera.projectionMatrix);
165
+ // }
166
+ // unproject(camera) {
167
+ // return this.applyMatrix4(camera.projectionMatrixInverse).applyMatrix4(camera.matrixWorld);
168
+ // }
169
+ // transformDirection(m) {
170
+ // // input: THREE.Matrix4 affine matrix
171
+ // // vector interpreted as a direction
172
+ // const x = this.x, y = this.y, z = this.z;
173
+ // const e = m.elements;
174
+ // this.x = e[0] * x + e[4] * y + e[8] * z;
175
+ // this.y = e[1] * x + e[5] * y + e[9] * z;
176
+ // this.z = e[2] * x + e[6] * y + e[10] * z;
177
+ // return this.normalize();
178
+ // }
179
+ divide(v) {
180
+ this.x /= v.x;
181
+ this.y /= v.y;
182
+ this.z /= v.z;
183
+ return this;
184
+ }
185
+ divideScalar(scalar) {
186
+ return this.multiplyScalar(1 / scalar);
187
+ }
188
+ min(v) {
189
+ this.x = Math.min(this.x, v.x);
190
+ this.y = Math.min(this.y, v.y);
191
+ this.z = Math.min(this.z, v.z);
192
+ return this;
193
+ }
194
+ max(v) {
195
+ this.x = Math.max(this.x, v.x);
196
+ this.y = Math.max(this.y, v.y);
197
+ this.z = Math.max(this.z, v.z);
198
+ return this;
199
+ }
200
+ clamp(min, max) {
201
+ // assumes min < max, componentwise
202
+ this.x = Math.max(min.x, Math.min(max.x, this.x));
203
+ this.y = Math.max(min.y, Math.min(max.y, this.y));
204
+ this.z = Math.max(min.z, Math.min(max.z, this.z));
205
+ return this;
206
+ }
207
+ clampScalar(minVal, maxVal) {
208
+ this.x = Math.max(minVal, Math.min(maxVal, this.x));
209
+ this.y = Math.max(minVal, Math.min(maxVal, this.y));
210
+ this.z = Math.max(minVal, Math.min(maxVal, this.z));
211
+ return this;
212
+ }
213
+ clampLength(min, max) {
214
+ const length = this.length();
215
+ return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
216
+ }
217
+ // floor() {
218
+ // this.x = Math.floor(this.x);
219
+ // this.y = Math.floor(this.y);
220
+ // this.z = Math.floor(this.z);
221
+ // return this;
222
+ // }
223
+ // ceil() {
224
+ // this.x = Math.ceil(this.x);
225
+ // this.y = Math.ceil(this.y);
226
+ // this.z = Math.ceil(this.z);
227
+ // return this;
228
+ // }
229
+ // round() {
230
+ // this.x = Math.round(this.x);
231
+ // this.y = Math.round(this.y);
232
+ // this.z = Math.round(this.z);
233
+ // return this;
234
+ // }
235
+ // roundToZero() {
236
+ // this.x = (this.x < 0) ? Math.ceil(this.x) : Math.floor(this.x);
237
+ // this.y = (this.y < 0) ? Math.ceil(this.y) : Math.floor(this.y);
238
+ // this.z = (this.z < 0) ? Math.ceil(this.z) : Math.floor(this.z);
239
+ // return this;
240
+ // }
241
+ // negate() {
242
+ // this.x = -this.x;
243
+ // this.y = -this.y;
244
+ // this.z = -this.z;
245
+ // return this;
246
+ // }
247
+ dot(v) {
248
+ return this.x * v.x + this.y * v.y + this.z * v.z;
249
+ }
250
+ // TODO lengthSquared?
251
+ lengthSq() {
252
+ return this.x * this.x + this.y * this.y + this.z * this.z;
253
+ }
254
+ length() {
255
+ return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
256
+ }
257
+ // manhattanLength() {
258
+ // return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z);
259
+ // }
260
+ normalize() {
261
+ return this.divideScalar(this.length() || 1);
262
+ }
263
+ setLength(length) {
264
+ return this.normalize().multiplyScalar(length);
265
+ }
266
+ lerp(v, alpha) {
267
+ this.x += (v.x - this.x) * alpha;
268
+ this.y += (v.y - this.y) * alpha;
269
+ this.z += (v.z - this.z) * alpha;
270
+ return this;
271
+ }
272
+ lerpVectors(v1, v2, alpha) {
273
+ this.x = v1.x + (v2.x - v1.x) * alpha;
274
+ this.y = v1.y + (v2.y - v1.y) * alpha;
275
+ this.z = v1.z + (v2.z - v1.z) * alpha;
276
+ return this;
277
+ }
278
+ cross(v) {
279
+ return this.crossVectors(this, v);
280
+ }
281
+ crossVectors(a, b) {
282
+ const ax = a.x, ay = a.y, az = a.z;
283
+ const bx = b.x, by = b.y, bz = b.z;
284
+ this.x = ay * bz - az * by;
285
+ this.y = az * bx - ax * bz;
286
+ this.z = ax * by - ay * bx;
287
+ return this;
288
+ }
289
+ // projectOnVector(v) {
290
+ // const denominator = v.lengthSq();
291
+ // if (denominator === 0) return this.set(0, 0, 0);
292
+ // const scalar = v.dot(this) / denominator;
293
+ // return this.copy(v).multiplyScalar(scalar);
294
+ // }
295
+ // projectOnPlane(planeNormal) {
296
+ // _vector.copy(this).projectOnVector(planeNormal);
297
+ // return this.sub(_vector);
298
+ // }
299
+ // reflect(normal) {
300
+ // // reflect incident vector off plane orthogonal to normal
301
+ // // normal is assumed to have unit length
302
+ // return this.sub(_vector.copy(normal).multiplyScalar(2 * this.dot(normal)));
303
+ // }
304
+ // angleTo(v) {
305
+ // const denominator = Math.sqrt(this.lengthSq() * v.lengthSq());
306
+ // if (denominator === 0) return Math.PI / 2;
307
+ // const theta = this.dot(v) / denominator;
308
+ // // clamp, to handle numerical problems
309
+ // return Math.acos(MathUtils.clamp(theta, -1, 1));
310
+ // }
311
+ distanceTo(v) {
312
+ return Math.sqrt(this.distanceToSquared(v));
313
+ }
314
+ // distanceToSquared(v) {
315
+ // const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z;
316
+ // return dx * dx + dy * dy + dz * dz;
317
+ // }
318
+ // manhattanDistanceTo(v) {
319
+ // return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) + Math.abs(this.z - v.z);
320
+ // }
321
+ // setFromSpherical(s) {
322
+ // return this.setFromSphericalCoords(s.radius, s.phi, s.theta);
323
+ // }
324
+ // setFromSphericalCoords(radius, phi, theta) {
325
+ // const sinPhiRadius = Math.sin(phi) * radius;
326
+ // this.x = sinPhiRadius * Math.sin(theta);
327
+ // this.y = Math.cos(phi) * radius;
328
+ // this.z = sinPhiRadius * Math.cos(theta);
329
+ // return this;
330
+ // }
331
+ // setFromCylindrical(c) {
332
+ // return this.setFromCylindricalCoords(c.radius, c.theta, c.y);
333
+ // }
334
+ // setFromCylindricalCoords(radius, theta, y) {
335
+ // this.x = radius * Math.sin(theta);
336
+ // this.y = y;
337
+ // this.z = radius * Math.cos(theta);
338
+ // return this;
339
+ // }
340
+ // setFromMatrixPosition(m) {
341
+ // const e = m.elements;
342
+ // this.x = e[12];
343
+ // this.y = e[13];
344
+ // this.z = e[14];
345
+ // return this;
346
+ // }
347
+ // setFromMatrixScale(m) {
348
+ // const sx = this.setFromMatrixColumn(m, 0).length();
349
+ // const sy = this.setFromMatrixColumn(m, 1).length();
350
+ // const sz = this.setFromMatrixColumn(m, 2).length();
351
+ // this.x = sx;
352
+ // this.y = sy;
353
+ // this.z = sz;
354
+ // return this;
355
+ // }
356
+ // setFromMatrixColumn(m, index) {
357
+ // return this.fromArray(m.elements, index * 4);
358
+ // }
359
+ // setFromMatrix3Column(m, index) {
360
+ // return this.fromArray(m.elements, index * 3);
361
+ // }
362
+ // setFromEuler(e) {
363
+ // this.x = e._x;
364
+ // this.y = e._y;
365
+ // this.z = e._z;
366
+ // return this;
367
+ // }
368
+ // setFromColor(c) {
369
+ // this.x = c.r;
370
+ // this.y = c.g;
371
+ // this.z = c.b;
372
+ // return this;
373
+ // }
374
+ equals(v) {
375
+ return ((v.x === this.x) && (v.y === this.y) && (v.z === this.z));
376
+ }
377
+ fromArray(array, offset = 0) {
378
+ this.x = array[offset];
379
+ this.y = array[offset + 1];
380
+ this.z = array[offset + 2];
381
+ return this;
382
+ }
383
+ // toArray(array = [], offset = 0) {
384
+ // array[offset] = this.x;
385
+ // array[offset + 1] = this.y;
386
+ // array[offset + 2] = this.z;
387
+ // return array;
388
+ // }
389
+ // fromBufferAttribute(attribute, index) {
390
+ // this.x = attribute.getX(index);
391
+ // this.y = attribute.getY(index);
392
+ // this.z = attribute.getZ(index);
393
+ // return this;
394
+ // }
395
+ random() {
396
+ this.x = Math.random();
397
+ this.y = Math.random();
398
+ this.z = Math.random();
399
+ return this;
400
+ }
401
+ }
402
+ export { Vector3 };
403
+ //# sourceMappingURL=Vector3.js.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"Vector3.js","sourceRoot":"","sources":["../../src/math/Vector3.js"],"names":[],"mappings":"AAAA,+CAA+C;AAC/C,iFAAiF;AAEjF,OAAO,EAAE,UAAU,EAAE,MAAM,cAAc,CAAC;AAE1C,MAAM,WAAW,GAAG,IAAI,UAAU,EAAE,CAAC;AAErC,MAAM,OAAO;IAET,YAAY,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC;QAC3B,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC;QACX,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC;QACX,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC;IAEf,CAAC;IAED,GAAG,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC;QAEP,IAAI,CAAC,KAAK,SAAS;YAAE,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC,wBAAwB;QAEzD,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC;QACX,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC;QACX,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC;QAEX,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,sBAAsB;IAEtB,uBAAuB;IACvB,uBAAuB;IACvB,uBAAuB;IAEvB,mBAAmB;IAEnB,IAAI;IAEJ,YAAY;IAEZ,kBAAkB;IAElB,mBAAmB;IAEnB,IAAI;IAEJ,YAAY;IAEZ,kBAAkB;IAElB,mBAAmB;IAEnB,IAAI;IAEJ,YAAY;IAEZ,kBAAkB;IAElB,mBAAmB;IAEnB,IAAI;IAEJ,+BAA+B;IAE/B,uBAAuB;IAEvB,yCAAyC;IACzC,yCAAyC;IACzC,yCAAyC;IACzC,uEAAuE;IAEvE,QAAQ;IAER,mBAAmB;IAEnB,IAAI;IAEJ,wBAAwB;IAExB,uBAAuB;IAEvB,iCAAiC;IACjC,iCAAiC;IACjC,iCAAiC;IACjC,uEAAuE;IAEvE,QAAQ;IAER,IAAI;IAEJ,KAAK;QAED,OAAO,IAAI,IAAI,CAAC,WAAW,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC;IAExD,CAAC;IAED,IAAI,CAAC,CAAC;QAEF,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QACb,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QACb,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QAEb,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,GAAG,CAAC,CAAC;QAED,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QAEd,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,SAAS,CAAC,CAAC;QAEP,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC;QACZ,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC;QACZ,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC;QAEZ,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,UAAU,CAAC,CAAC,EAAE,CAAC;QAEX,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QACnB,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QACnB,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QAEnB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,eAAe,CAAC,CAAC,EAAE,CAAC;QAEhB,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;QAClB,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;QAClB,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;QAElB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,GAAG,CAAC,CAAC;QAED,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QAEd,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,SAAS,CAAC,CAAC;QAEP,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC;QACZ,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC;QACZ,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC;QAEZ,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,UAAU,CAAC,CAAC,EAAE,CAAC;QAEX,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QACnB,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QACnB,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QAEnB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,QAAQ,CAAC,CAAC;QAEN,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QAEd,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,cAAc,CAAC,MAAM;QAEjB,IAAI,CAAC,CAAC,IAAI,MAAM,CAAC;QACjB,IAAI,CAAC,CAAC,IAAI,MAAM,CAAC;QACjB,IAAI,CAAC,CAAC,IAAI,MAAM,CAAC;QAEjB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,eAAe,CAAC,CAAC,EAAE,CAAC;QAEhB,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QACnB,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QACnB,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QAEnB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,sBAAsB;IAEtB,oEAAoE;IAEpE,IAAI;IAEJ,cAAc,CAAC,IAAI,EAAE,KAAK;QAEtB,OAAO,IAAI,CAAC,eAAe,CAAC,WAAW,CAAC,gBAAgB,CAAC,IAAI,EAAE,KAAK,CAAC,CAAC,CAAC;IAE3E,CAAC;IAED,oBAAoB;IAEpB,gDAAgD;IAChD,4BAA4B;IAE5B,+CAA+C;IAC/C,+CAA+C;IAC/C,+CAA+C;IAE/C,mBAAmB;IAEnB,IAAI;IAEJ,yBAAyB;IAEzB,+CAA+C;IAE/C,IAAI;IAEJ,YAAY,CAAC,CAAC;QAEV,MAAM,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;QACzC,MAAM,CAAC,GAAG,CAAC,CAAC,QAAQ,CAAC;QAErB,MAAM,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QAExD,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC;QACtD,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC;QACtD,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC;QAEvD,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,eAAe,CAAC,CAAC;QAEb,MAAM,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;QACzC,MAAM,EAAE,GAAG,CAAC,CAAC,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC;QAE7C,0BAA0B;QAE1B,MAAM,EAAE,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;QACpC,MAAM,EAAE,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;QACpC,MAAM,EAAE,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;QACpC,MAAM,EAAE,GAAG,CAAC,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;QAErC,kCAAkC;QAElC,IAAI,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,CAAC;QAClD,IAAI,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,CAAC;QAClD,IAAI,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,CAAC;QAElD,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,oBAAoB;IAEpB,iGAAiG;IAEjG,IAAI;IAEJ,sBAAsB;IAEtB,iGAAiG;IAEjG,IAAI;IAEJ,0BAA0B;IAE1B,4CAA4C;IAC5C,2CAA2C;IAE3C,gDAAgD;IAChD,4BAA4B;IAE5B,+CAA+C;IAC/C,+CAA+C;IAC/C,gDAAgD;IAEhD,+BAA+B;IAE/B,IAAI;IAEJ,MAAM,CAAC,CAAC;QAEJ,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QAEd,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,YAAY,CAAC,MAAM;QAEf,OAAO,IAAI,CAAC,cAAc,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC;IAE3C,CAAC;IAED,GAAG,CAAC,CAAC;QAED,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;QAC/B,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;QAC/B,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;QAE/B,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,GAAG,CAAC,CAAC;QAED,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;QAC/B,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;QAC/B,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;QAE/B,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,KAAK,CAAC,GAAG,EAAE,GAAG;QAEV,mCAAmC;QAEnC,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;QAClD,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;QAClD,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;QAElD,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,WAAW,CAAC,MAAM,EAAE,MAAM;QAEtB,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,MAAM,EAAE,IAAI,CAAC,GAAG,CAAC,MAAM,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;QACpD,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,MAAM,EAAE,IAAI,CAAC,GAAG,CAAC,MAAM,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;QACpD,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,MAAM,EAAE,IAAI,CAAC,GAAG,CAAC,MAAM,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;QAEpD,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,WAAW,CAAC,GAAG,EAAE,GAAG;QAEhB,MAAM,MAAM,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;QAE7B,OAAO,IAAI,CAAC,YAAY,CAAC,MAAM,IAAI,CAAC,CAAC,CAAC,cAAc,CAAC,IAAI,CAAC,GAAG,CAAC,GAAG,EAAE,IAAI,CAAC,GAAG,CAAC,GAAG,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC;IAE/F,CAAC;IAED,YAAY;IAEZ,mCAAmC;IACnC,mCAAmC;IACnC,mCAAmC;IAEnC,mBAAmB;IAEnB,IAAI;IAEJ,WAAW;IAEX,kCAAkC;IAClC,kCAAkC;IAClC,kCAAkC;IAElC,mBAAmB;IAEnB,IAAI;IAEJ,YAAY;IAEZ,mCAAmC;IACnC,mCAAmC;IACnC,mCAAmC;IAEnC,mBAAmB;IAEnB,IAAI;IAEJ,kBAAkB;IAElB,sEAAsE;IACtE,sEAAsE;IACtE,sEAAsE;IAEtE,mBAAmB;IAEnB,IAAI;IAEJ,aAAa;IAEb,wBAAwB;IACxB,wBAAwB;IACxB,wBAAwB;IAExB,mBAAmB;IAEnB,IAAI;IAEJ,GAAG,CAAC,CAAC;QAED,OAAO,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;IAEtD,CAAC;IAED,sBAAsB;IAEtB,QAAQ;QAEJ,OAAO,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;IAE/D,CAAC;IAED,MAAM;QAEF,OAAO,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;IAE1E,CAAC;IAED,sBAAsB;IAEtB,qEAAqE;IAErE,IAAI;IAEJ,SAAS;QAEL,OAAO,IAAI,CAAC,YAAY,CAAC,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,CAAC,CAAC;IAEjD,CAAC;IAED,SAAS,CAAC,MAAM;QAEZ,OAAO,IAAI,CAAC,SAAS,EAAE,CAAC,cAAc,CAAC,MAAM,CAAC,CAAC;IAEnD,CAAC;IAED,IAAI,CAAC,CAAC,EAAE,KAAK;QAET,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC;QACjC,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC;QACjC,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC;QAEjC,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,WAAW,CAAC,EAAE,EAAE,EAAE,EAAE,KAAK;QAErB,IAAI,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC;QACtC,IAAI,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC;QACtC,IAAI,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC;QAEtC,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,KAAK,CAAC,CAAC;QAEH,OAAO,IAAI,CAAC,YAAY,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC;IAEtC,CAAC;IAED,YAAY,CAAC,CAAC,EAAE,CAAC;QAEb,MAAM,EAAE,GAAG,CAAC,CAAC,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC;QACnC,MAAM,EAAE,GAAG,CAAC,CAAC,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC;QAEnC,IAAI,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;QAC3B,IAAI,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;QAC3B,IAAI,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;QAE3B,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,uBAAuB;IAEvB,wCAAwC;IAExC,uDAAuD;IAEvD,gDAAgD;IAEhD,kDAAkD;IAElD,IAAI;IAEJ,gCAAgC;IAEhC,uDAAuD;IAEvD,gCAAgC;IAEhC,IAAI;IAEJ,oBAAoB;IAEpB,gEAAgE;IAChE,+CAA+C;IAE/C,kFAAkF;IAElF,IAAI;IAEJ,eAAe;IAEf,qEAAqE;IAErE,iDAAiD;IAEjD,+CAA+C;IAE/C,6CAA6C;IAE7C,uDAAuD;IAEvD,IAAI;IAEJ,UAAU,CAAC,CAAC;QAER,OAAO,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,iBAAiB,CAAC,CAAC,CAAC,CAAC,CAAC;IAEhD,CAAC;IAED,yBAAyB;IAEzB,qEAAqE;IAErE,0CAA0C;IAE1C,IAAI;IAEJ,2BAA2B;IAE3B,uFAAuF;IAEvF,IAAI;IAEJ,wBAAwB;IAExB,oEAAoE;IAEpE,IAAI;IAEJ,+CAA+C;IAE/C,mDAAmD;IAEnD,+CAA+C;IAC/C,uCAAuC;IACvC,+CAA+C;IAE/C,mBAAmB;IAEnB,IAAI;IAEJ,0BAA0B;IAE1B,oEAAoE;IAEpE,IAAI;IAEJ,+CAA+C;IAE/C,yCAAyC;IACzC,kBAAkB;IAClB,yCAAyC;IAEzC,mBAAmB;IAEnB,IAAI;IAEJ,6BAA6B;IAE7B,4BAA4B;IAE5B,sBAAsB;IACtB,sBAAsB;IACtB,sBAAsB;IAEtB,mBAAmB;IAEnB,IAAI;IAEJ,0BAA0B;IAE1B,0DAA0D;IAC1D,0DAA0D;IAC1D,0DAA0D;IAE1D,mBAAmB;IACnB,mBAAmB;IACnB,mBAAmB;IAEnB,mBAAmB;IAEnB,IAAI;IAEJ,kCAAkC;IAElC,oDAAoD;IAEpD,IAAI;IAEJ,mCAAmC;IAEnC,oDAAoD;IAEpD,IAAI;IAEJ,oBAAoB;IAEpB,qBAAqB;IACrB,qBAAqB;IACrB,qBAAqB;IAErB,mBAAmB;IAEnB,IAAI;IAEJ,oBAAoB;IAEpB,oBAAoB;IACpB,oBAAoB;IACpB,oBAAoB;IAEpB,mBAAmB;IAEnB,IAAI;IAEJ,MAAM,CAAC,CAAC;QAEJ,OAAO,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,IAAI,CAAC,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,KAAK,IAAI,CAAC,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,KAAK,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;IAEtE,CAAC;IAED,SAAS,CAAC,KAAK,EAAE,MAAM,GAAG,CAAC;QAEvB,IAAI,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC;QACvB,IAAI,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;QAE3B,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,oCAAoC;IAEpC,8BAA8B;IAC9B,kCAAkC;IAClC,kCAAkC;IAElC,oBAAoB;IAEpB,IAAI;IAEJ,0CAA0C;IAE1C,sCAAsC;IACtC,sCAAsC;IACtC,sCAAsC;IAEtC,mBAAmB;IAEnB,IAAI;IAEJ,MAAM;QAEF,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;QACvB,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;QACvB,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;QAEvB,OAAO,IAAI,CAAC;IAEhB,CAAC;CAkBJ;AAED,OAAO,EAAE,OAAO,EAAE,CAAC"}
@@ -0,0 +1,15 @@
1
+ /**
2
+ * PathPoint
3
+ */
4
+ export class PathPoint {
5
+ pos: Vector3;
6
+ dir: Vector3;
7
+ right: Vector3;
8
+ up: Vector3;
9
+ dist: number;
10
+ widthScale: number;
11
+ sharp: boolean;
12
+ lerpPathPoints(p1: any, p2: any, alpha: any): void;
13
+ copy(source: any): void;
14
+ }
15
+ import { Vector3 } from '../math/Vector3';
@@ -0,0 +1,35 @@
1
+ /* eslint-disable no-tabs */
2
+ // code copy from https://github.com/shawn0326/three.path/blob/master/src/PathPoint.js
3
+ import { Vector3 } from '../math/Vector3';
4
+ /**
5
+ * PathPoint
6
+ */
7
+ class PathPoint {
8
+ constructor() {
9
+ this.pos = new Vector3();
10
+ this.dir = new Vector3();
11
+ this.right = new Vector3();
12
+ this.up = new Vector3(); // normal
13
+ this.dist = 0; // distance from start
14
+ this.widthScale = 1; // for corner
15
+ this.sharp = false; // marks as sharp corner
16
+ }
17
+ lerpPathPoints(p1, p2, alpha) {
18
+ this.pos.lerpVectors(p1.pos, p2.pos, alpha);
19
+ this.dir.lerpVectors(p1.dir, p2.dir, alpha);
20
+ this.up.lerpVectors(p1.up, p2.up, alpha);
21
+ this.right.lerpVectors(p1.right, p2.right, alpha);
22
+ this.dist = (p2.dist - p1.dist) * alpha + p1.dist;
23
+ this.widthScale = (p2.widthScale - p1.widthScale) * alpha + p1.widthScale;
24
+ }
25
+ copy(source) {
26
+ this.pos.copy(source.pos);
27
+ this.dir.copy(source.dir);
28
+ this.up.copy(source.up);
29
+ this.right.copy(source.right);
30
+ this.dist = source.dist;
31
+ this.widthScale = source.widthScale;
32
+ }
33
+ }
34
+ export { PathPoint };
35
+ //# sourceMappingURL=PathPoint.js.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"PathPoint.js","sourceRoot":"","sources":["../../src/path/PathPoint.js"],"names":[],"mappings":"AAAA,4BAA4B;AAE5B,sFAAsF;AAEtF,OAAO,EAAE,OAAO,EAAE,MAAM,iBAAiB,CAAC;AAE1C;;GAEG;AACH,MAAM,SAAS;IACd;QACC,IAAI,CAAC,GAAG,GAAG,IAAI,OAAO,EAAE,CAAC;QACzB,IAAI,CAAC,GAAG,GAAG,IAAI,OAAO,EAAE,CAAC;QACzB,IAAI,CAAC,KAAK,GAAG,IAAI,OAAO,EAAE,CAAC;QAC3B,IAAI,CAAC,EAAE,GAAG,IAAI,OAAO,EAAE,CAAC,CAAC,SAAS;QAClC,IAAI,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC,sBAAsB;QACrC,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC,aAAa;QAClC,IAAI,CAAC,KAAK,GAAG,KAAK,CAAC,CAAC,wBAAwB;IAC7C,CAAC;IAED,cAAc,CAAC,EAAE,EAAE,EAAE,EAAE,KAAK;QAC3B,IAAI,CAAC,GAAG,CAAC,WAAW,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,GAAG,EAAE,KAAK,CAAC,CAAC;QAC5C,IAAI,CAAC,GAAG,CAAC,WAAW,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,GAAG,EAAE,KAAK,CAAC,CAAC;QAC5C,IAAI,CAAC,EAAE,CAAC,WAAW,CAAC,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,KAAK,CAAC,CAAC;QACzC,IAAI,CAAC,KAAK,CAAC,WAAW,CAAC,EAAE,CAAC,KAAK,EAAE,EAAE,CAAC,KAAK,EAAE,KAAK,CAAC,CAAC;QAClD,IAAI,CAAC,IAAI,GAAG,CAAC,EAAE,CAAC,IAAI,GAAG,EAAE,CAAC,IAAI,CAAC,GAAG,KAAK,GAAG,EAAE,CAAC,IAAI,CAAC;QAClD,IAAI,CAAC,UAAU,GAAG,CAAC,EAAE,CAAC,UAAU,GAAG,EAAE,CAAC,UAAU,CAAC,GAAG,KAAK,GAAG,EAAE,CAAC,UAAU,CAAC;IAC3E,CAAC;IAED,IAAI,CAAC,MAAM;QACV,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC;QAC1B,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC;QAC1B,IAAI,CAAC,EAAE,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QACxB,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,MAAM,CAAC,KAAK,CAAC,CAAC;QAC9B,IAAI,CAAC,IAAI,GAAG,MAAM,CAAC,IAAI,CAAC;QACxB,IAAI,CAAC,UAAU,GAAG,MAAM,CAAC,UAAU,CAAC;IACrC,CAAC;CAED;AAED,OAAO,EAAE,SAAS,EAAE,CAAC"}
@@ -0,0 +1,27 @@
1
+ /**
2
+ * PathPointList
3
+ * input points to generate a PathPoint list
4
+ */
5
+ export class PathPointList {
6
+ array: any[];
7
+ count: number;
8
+ /**
9
+ * Set points
10
+ * @param {THREE.Vector3[]} points key points array
11
+ * @param {number} cornerRadius? the corner radius. set 0 to disable round corner. default is 0.1
12
+ * @param {number} cornerSplit? the corner split. default is 10.
13
+ * @param {number} up? force up. default is auto up (calculate by tangent).
14
+ * @param {boolean} close? close path. default is false.
15
+ */
16
+ set(points: THREE.Vector3[], cornerRadius?: number, cornerSplit?: number, up?: number, close?: boolean): void;
17
+ /**
18
+ * Get distance of this path
19
+ * @return {number}
20
+ */
21
+ distance(): number;
22
+ _getByIndex(index: any): any;
23
+ _start(current: any, next: any, up: any): void;
24
+ _end(current: any): void;
25
+ _corner(current: any, next: any, cornerRadius: any, cornerSplit: any, up: any): void;
26
+ _sharpCorner(current: any, next: any, up: any, dirType?: number, sharp?: boolean): void;
27
+ }