poly-extrude 0.13.0 → 0.14.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/cylinder.d.ts +11 -0
- package/{src → dist}/cylinder.js +108 -111
- package/dist/cylinder.js.map +1 -0
- package/dist/index.d.ts +7 -0
- package/dist/index.js +8 -0
- package/dist/index.js.map +1 -0
- package/dist/math/Curve.d.ts +41 -0
- package/dist/math/Curve.js +142 -0
- package/dist/math/Curve.js.map +1 -0
- package/dist/math/Interpolations.d.ts +8 -0
- package/dist/math/Interpolations.js +48 -0
- package/dist/math/Interpolations.js.map +1 -0
- package/dist/math/Matrix4.d.ts +8 -0
- package/dist/math/Matrix4.js +582 -0
- package/dist/math/Matrix4.js.map +1 -0
- package/dist/math/QuadraticBezierCurve3.d.ts +10 -0
- package/dist/math/QuadraticBezierCurve3.js +22 -0
- package/dist/math/QuadraticBezierCurve3.js.map +1 -0
- package/dist/math/Quaternion.d.ts +46 -0
- package/dist/math/Quaternion.js +415 -0
- package/dist/math/Quaternion.js.map +1 -0
- package/dist/math/Vector3.d.ts +42 -0
- package/dist/math/Vector3.js +403 -0
- package/dist/math/Vector3.js.map +1 -0
- package/dist/path/PathPoint.d.ts +15 -0
- package/dist/path/PathPoint.js +35 -0
- package/dist/path/PathPoint.js.map +1 -0
- package/dist/path/PathPointList.d.ts +27 -0
- package/dist/path/PathPointList.js +212 -0
- package/dist/path/PathPointList.js.map +1 -0
- package/dist/path.d.ts +11 -0
- package/{src → dist}/path.js +334 -360
- package/dist/path.js.map +1 -0
- package/dist/plane.d.ts +2 -0
- package/{src → dist}/plane.js +57 -58
- package/dist/plane.js.map +1 -0
- package/dist/poly-extrude.js +1286 -1581
- package/dist/poly-extrude.js.map +1 -1
- package/dist/poly-extrude.min.js +2 -2
- package/dist/poly-extrude.mjs +1286 -1581
- package/dist/poly-extrude.mjs.map +1 -0
- package/dist/polygon.d.ts +9 -0
- package/{src → dist}/polygon.js +163 -179
- package/dist/polygon.js.map +1 -0
- package/dist/polyline.d.ts +24 -0
- package/{src → dist}/polyline.js +420 -456
- package/dist/polyline.js.map +1 -0
- package/dist/tube.d.ts +12 -0
- package/{src → dist}/tube.js +124 -142
- package/dist/tube.js.map +1 -0
- package/dist/type.d.ts +9 -0
- package/dist/type.js +2 -0
- package/dist/type.js.map +1 -0
- package/dist/util.d.ts +20 -0
- package/dist/util.js +217 -0
- package/dist/util.js.map +1 -0
- package/package.json +53 -48
- package/readme.md +12 -2
- package/src/cylinder.ts +124 -0
- package/src/index.ts +7 -0
- package/src/path.ts +385 -0
- package/src/plane.ts +60 -0
- package/src/polygon.ts +189 -0
- package/src/polyline.ts +473 -0
- package/src/tube.ts +155 -0
- package/src/type.ts +9 -0
- package/src/{util.js → util.ts} +1 -1
- package/index.js +0 -7
@@ -0,0 +1,403 @@
|
|
1
|
+
// import * as MathUtils from './MathUtils.js';
|
2
|
+
// code copy from https://github.com/mrdoob/three.js/blob/dev/src/math/Vector3.js
|
3
|
+
import { Quaternion } from './Quaternion';
|
4
|
+
const _quaternion = new Quaternion();
|
5
|
+
class Vector3 {
|
6
|
+
constructor(x = 0, y = 0, z = 0) {
|
7
|
+
this.x = x;
|
8
|
+
this.y = y;
|
9
|
+
this.z = z;
|
10
|
+
}
|
11
|
+
set(x, y, z) {
|
12
|
+
if (z === undefined)
|
13
|
+
z = this.z; // sprite.scale.set(x,y)
|
14
|
+
this.x = x;
|
15
|
+
this.y = y;
|
16
|
+
this.z = z;
|
17
|
+
return this;
|
18
|
+
}
|
19
|
+
// setScalar(scalar) {
|
20
|
+
// this.x = scalar;
|
21
|
+
// this.y = scalar;
|
22
|
+
// this.z = scalar;
|
23
|
+
// return this;
|
24
|
+
// }
|
25
|
+
// setX(x) {
|
26
|
+
// this.x = x;
|
27
|
+
// return this;
|
28
|
+
// }
|
29
|
+
// setY(y) {
|
30
|
+
// this.y = y;
|
31
|
+
// return this;
|
32
|
+
// }
|
33
|
+
// setZ(z) {
|
34
|
+
// this.z = z;
|
35
|
+
// return this;
|
36
|
+
// }
|
37
|
+
// setComponent(index, value) {
|
38
|
+
// switch (index) {
|
39
|
+
// case 0: this.x = value; break;
|
40
|
+
// case 1: this.y = value; break;
|
41
|
+
// case 2: this.z = value; break;
|
42
|
+
// default: throw new Error('index is out of range: ' + index);
|
43
|
+
// }
|
44
|
+
// return this;
|
45
|
+
// }
|
46
|
+
// getComponent(index) {
|
47
|
+
// switch (index) {
|
48
|
+
// case 0: return this.x;
|
49
|
+
// case 1: return this.y;
|
50
|
+
// case 2: return this.z;
|
51
|
+
// default: throw new Error('index is out of range: ' + index);
|
52
|
+
// }
|
53
|
+
// }
|
54
|
+
clone() {
|
55
|
+
return new this.constructor(this.x, this.y, this.z);
|
56
|
+
}
|
57
|
+
copy(v) {
|
58
|
+
this.x = v.x;
|
59
|
+
this.y = v.y;
|
60
|
+
this.z = v.z;
|
61
|
+
return this;
|
62
|
+
}
|
63
|
+
add(v) {
|
64
|
+
this.x += v.x;
|
65
|
+
this.y += v.y;
|
66
|
+
this.z += v.z;
|
67
|
+
return this;
|
68
|
+
}
|
69
|
+
addScalar(s) {
|
70
|
+
this.x += s;
|
71
|
+
this.y += s;
|
72
|
+
this.z += s;
|
73
|
+
return this;
|
74
|
+
}
|
75
|
+
addVectors(a, b) {
|
76
|
+
this.x = a.x + b.x;
|
77
|
+
this.y = a.y + b.y;
|
78
|
+
this.z = a.z + b.z;
|
79
|
+
return this;
|
80
|
+
}
|
81
|
+
addScaledVector(v, s) {
|
82
|
+
this.x += v.x * s;
|
83
|
+
this.y += v.y * s;
|
84
|
+
this.z += v.z * s;
|
85
|
+
return this;
|
86
|
+
}
|
87
|
+
sub(v) {
|
88
|
+
this.x -= v.x;
|
89
|
+
this.y -= v.y;
|
90
|
+
this.z -= v.z;
|
91
|
+
return this;
|
92
|
+
}
|
93
|
+
subScalar(s) {
|
94
|
+
this.x -= s;
|
95
|
+
this.y -= s;
|
96
|
+
this.z -= s;
|
97
|
+
return this;
|
98
|
+
}
|
99
|
+
subVectors(a, b) {
|
100
|
+
this.x = a.x - b.x;
|
101
|
+
this.y = a.y - b.y;
|
102
|
+
this.z = a.z - b.z;
|
103
|
+
return this;
|
104
|
+
}
|
105
|
+
multiply(v) {
|
106
|
+
this.x *= v.x;
|
107
|
+
this.y *= v.y;
|
108
|
+
this.z *= v.z;
|
109
|
+
return this;
|
110
|
+
}
|
111
|
+
multiplyScalar(scalar) {
|
112
|
+
this.x *= scalar;
|
113
|
+
this.y *= scalar;
|
114
|
+
this.z *= scalar;
|
115
|
+
return this;
|
116
|
+
}
|
117
|
+
multiplyVectors(a, b) {
|
118
|
+
this.x = a.x * b.x;
|
119
|
+
this.y = a.y * b.y;
|
120
|
+
this.z = a.z * b.z;
|
121
|
+
return this;
|
122
|
+
}
|
123
|
+
// applyEuler(euler) {
|
124
|
+
// return this.applyQuaternion(_quaternion.setFromEuler(euler));
|
125
|
+
// }
|
126
|
+
applyAxisAngle(axis, angle) {
|
127
|
+
return this.applyQuaternion(_quaternion.setFromAxisAngle(axis, angle));
|
128
|
+
}
|
129
|
+
// applyMatrix3(m) {
|
130
|
+
// const x = this.x, y = this.y, z = this.z;
|
131
|
+
// const e = m.elements;
|
132
|
+
// this.x = e[0] * x + e[3] * y + e[6] * z;
|
133
|
+
// this.y = e[1] * x + e[4] * y + e[7] * z;
|
134
|
+
// this.z = e[2] * x + e[5] * y + e[8] * z;
|
135
|
+
// return this;
|
136
|
+
// }
|
137
|
+
// applyNormalMatrix(m) {
|
138
|
+
// return this.applyMatrix3(m).normalize();
|
139
|
+
// }
|
140
|
+
applyMatrix4(m) {
|
141
|
+
const x = this.x, y = this.y, z = this.z;
|
142
|
+
const e = m.elements;
|
143
|
+
const w = 1 / (e[3] * x + e[7] * y + e[11] * z + e[15]);
|
144
|
+
this.x = (e[0] * x + e[4] * y + e[8] * z + e[12]) * w;
|
145
|
+
this.y = (e[1] * x + e[5] * y + e[9] * z + e[13]) * w;
|
146
|
+
this.z = (e[2] * x + e[6] * y + e[10] * z + e[14]) * w;
|
147
|
+
return this;
|
148
|
+
}
|
149
|
+
applyQuaternion(q) {
|
150
|
+
const x = this.x, y = this.y, z = this.z;
|
151
|
+
const qx = q.x, qy = q.y, qz = q.z, qw = q.w;
|
152
|
+
// calculate quat * vector
|
153
|
+
const ix = qw * x + qy * z - qz * y;
|
154
|
+
const iy = qw * y + qz * x - qx * z;
|
155
|
+
const iz = qw * z + qx * y - qy * x;
|
156
|
+
const iw = -qx * x - qy * y - qz * z;
|
157
|
+
// calculate result * inverse quat
|
158
|
+
this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
|
159
|
+
this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
|
160
|
+
this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;
|
161
|
+
return this;
|
162
|
+
}
|
163
|
+
// project(camera) {
|
164
|
+
// return this.applyMatrix4(camera.matrixWorldInverse).applyMatrix4(camera.projectionMatrix);
|
165
|
+
// }
|
166
|
+
// unproject(camera) {
|
167
|
+
// return this.applyMatrix4(camera.projectionMatrixInverse).applyMatrix4(camera.matrixWorld);
|
168
|
+
// }
|
169
|
+
// transformDirection(m) {
|
170
|
+
// // input: THREE.Matrix4 affine matrix
|
171
|
+
// // vector interpreted as a direction
|
172
|
+
// const x = this.x, y = this.y, z = this.z;
|
173
|
+
// const e = m.elements;
|
174
|
+
// this.x = e[0] * x + e[4] * y + e[8] * z;
|
175
|
+
// this.y = e[1] * x + e[5] * y + e[9] * z;
|
176
|
+
// this.z = e[2] * x + e[6] * y + e[10] * z;
|
177
|
+
// return this.normalize();
|
178
|
+
// }
|
179
|
+
divide(v) {
|
180
|
+
this.x /= v.x;
|
181
|
+
this.y /= v.y;
|
182
|
+
this.z /= v.z;
|
183
|
+
return this;
|
184
|
+
}
|
185
|
+
divideScalar(scalar) {
|
186
|
+
return this.multiplyScalar(1 / scalar);
|
187
|
+
}
|
188
|
+
min(v) {
|
189
|
+
this.x = Math.min(this.x, v.x);
|
190
|
+
this.y = Math.min(this.y, v.y);
|
191
|
+
this.z = Math.min(this.z, v.z);
|
192
|
+
return this;
|
193
|
+
}
|
194
|
+
max(v) {
|
195
|
+
this.x = Math.max(this.x, v.x);
|
196
|
+
this.y = Math.max(this.y, v.y);
|
197
|
+
this.z = Math.max(this.z, v.z);
|
198
|
+
return this;
|
199
|
+
}
|
200
|
+
clamp(min, max) {
|
201
|
+
// assumes min < max, componentwise
|
202
|
+
this.x = Math.max(min.x, Math.min(max.x, this.x));
|
203
|
+
this.y = Math.max(min.y, Math.min(max.y, this.y));
|
204
|
+
this.z = Math.max(min.z, Math.min(max.z, this.z));
|
205
|
+
return this;
|
206
|
+
}
|
207
|
+
clampScalar(minVal, maxVal) {
|
208
|
+
this.x = Math.max(minVal, Math.min(maxVal, this.x));
|
209
|
+
this.y = Math.max(minVal, Math.min(maxVal, this.y));
|
210
|
+
this.z = Math.max(minVal, Math.min(maxVal, this.z));
|
211
|
+
return this;
|
212
|
+
}
|
213
|
+
clampLength(min, max) {
|
214
|
+
const length = this.length();
|
215
|
+
return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
|
216
|
+
}
|
217
|
+
// floor() {
|
218
|
+
// this.x = Math.floor(this.x);
|
219
|
+
// this.y = Math.floor(this.y);
|
220
|
+
// this.z = Math.floor(this.z);
|
221
|
+
// return this;
|
222
|
+
// }
|
223
|
+
// ceil() {
|
224
|
+
// this.x = Math.ceil(this.x);
|
225
|
+
// this.y = Math.ceil(this.y);
|
226
|
+
// this.z = Math.ceil(this.z);
|
227
|
+
// return this;
|
228
|
+
// }
|
229
|
+
// round() {
|
230
|
+
// this.x = Math.round(this.x);
|
231
|
+
// this.y = Math.round(this.y);
|
232
|
+
// this.z = Math.round(this.z);
|
233
|
+
// return this;
|
234
|
+
// }
|
235
|
+
// roundToZero() {
|
236
|
+
// this.x = (this.x < 0) ? Math.ceil(this.x) : Math.floor(this.x);
|
237
|
+
// this.y = (this.y < 0) ? Math.ceil(this.y) : Math.floor(this.y);
|
238
|
+
// this.z = (this.z < 0) ? Math.ceil(this.z) : Math.floor(this.z);
|
239
|
+
// return this;
|
240
|
+
// }
|
241
|
+
// negate() {
|
242
|
+
// this.x = -this.x;
|
243
|
+
// this.y = -this.y;
|
244
|
+
// this.z = -this.z;
|
245
|
+
// return this;
|
246
|
+
// }
|
247
|
+
dot(v) {
|
248
|
+
return this.x * v.x + this.y * v.y + this.z * v.z;
|
249
|
+
}
|
250
|
+
// TODO lengthSquared?
|
251
|
+
lengthSq() {
|
252
|
+
return this.x * this.x + this.y * this.y + this.z * this.z;
|
253
|
+
}
|
254
|
+
length() {
|
255
|
+
return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
|
256
|
+
}
|
257
|
+
// manhattanLength() {
|
258
|
+
// return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z);
|
259
|
+
// }
|
260
|
+
normalize() {
|
261
|
+
return this.divideScalar(this.length() || 1);
|
262
|
+
}
|
263
|
+
setLength(length) {
|
264
|
+
return this.normalize().multiplyScalar(length);
|
265
|
+
}
|
266
|
+
lerp(v, alpha) {
|
267
|
+
this.x += (v.x - this.x) * alpha;
|
268
|
+
this.y += (v.y - this.y) * alpha;
|
269
|
+
this.z += (v.z - this.z) * alpha;
|
270
|
+
return this;
|
271
|
+
}
|
272
|
+
lerpVectors(v1, v2, alpha) {
|
273
|
+
this.x = v1.x + (v2.x - v1.x) * alpha;
|
274
|
+
this.y = v1.y + (v2.y - v1.y) * alpha;
|
275
|
+
this.z = v1.z + (v2.z - v1.z) * alpha;
|
276
|
+
return this;
|
277
|
+
}
|
278
|
+
cross(v) {
|
279
|
+
return this.crossVectors(this, v);
|
280
|
+
}
|
281
|
+
crossVectors(a, b) {
|
282
|
+
const ax = a.x, ay = a.y, az = a.z;
|
283
|
+
const bx = b.x, by = b.y, bz = b.z;
|
284
|
+
this.x = ay * bz - az * by;
|
285
|
+
this.y = az * bx - ax * bz;
|
286
|
+
this.z = ax * by - ay * bx;
|
287
|
+
return this;
|
288
|
+
}
|
289
|
+
// projectOnVector(v) {
|
290
|
+
// const denominator = v.lengthSq();
|
291
|
+
// if (denominator === 0) return this.set(0, 0, 0);
|
292
|
+
// const scalar = v.dot(this) / denominator;
|
293
|
+
// return this.copy(v).multiplyScalar(scalar);
|
294
|
+
// }
|
295
|
+
// projectOnPlane(planeNormal) {
|
296
|
+
// _vector.copy(this).projectOnVector(planeNormal);
|
297
|
+
// return this.sub(_vector);
|
298
|
+
// }
|
299
|
+
// reflect(normal) {
|
300
|
+
// // reflect incident vector off plane orthogonal to normal
|
301
|
+
// // normal is assumed to have unit length
|
302
|
+
// return this.sub(_vector.copy(normal).multiplyScalar(2 * this.dot(normal)));
|
303
|
+
// }
|
304
|
+
// angleTo(v) {
|
305
|
+
// const denominator = Math.sqrt(this.lengthSq() * v.lengthSq());
|
306
|
+
// if (denominator === 0) return Math.PI / 2;
|
307
|
+
// const theta = this.dot(v) / denominator;
|
308
|
+
// // clamp, to handle numerical problems
|
309
|
+
// return Math.acos(MathUtils.clamp(theta, -1, 1));
|
310
|
+
// }
|
311
|
+
distanceTo(v) {
|
312
|
+
return Math.sqrt(this.distanceToSquared(v));
|
313
|
+
}
|
314
|
+
// distanceToSquared(v) {
|
315
|
+
// const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z;
|
316
|
+
// return dx * dx + dy * dy + dz * dz;
|
317
|
+
// }
|
318
|
+
// manhattanDistanceTo(v) {
|
319
|
+
// return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) + Math.abs(this.z - v.z);
|
320
|
+
// }
|
321
|
+
// setFromSpherical(s) {
|
322
|
+
// return this.setFromSphericalCoords(s.radius, s.phi, s.theta);
|
323
|
+
// }
|
324
|
+
// setFromSphericalCoords(radius, phi, theta) {
|
325
|
+
// const sinPhiRadius = Math.sin(phi) * radius;
|
326
|
+
// this.x = sinPhiRadius * Math.sin(theta);
|
327
|
+
// this.y = Math.cos(phi) * radius;
|
328
|
+
// this.z = sinPhiRadius * Math.cos(theta);
|
329
|
+
// return this;
|
330
|
+
// }
|
331
|
+
// setFromCylindrical(c) {
|
332
|
+
// return this.setFromCylindricalCoords(c.radius, c.theta, c.y);
|
333
|
+
// }
|
334
|
+
// setFromCylindricalCoords(radius, theta, y) {
|
335
|
+
// this.x = radius * Math.sin(theta);
|
336
|
+
// this.y = y;
|
337
|
+
// this.z = radius * Math.cos(theta);
|
338
|
+
// return this;
|
339
|
+
// }
|
340
|
+
// setFromMatrixPosition(m) {
|
341
|
+
// const e = m.elements;
|
342
|
+
// this.x = e[12];
|
343
|
+
// this.y = e[13];
|
344
|
+
// this.z = e[14];
|
345
|
+
// return this;
|
346
|
+
// }
|
347
|
+
// setFromMatrixScale(m) {
|
348
|
+
// const sx = this.setFromMatrixColumn(m, 0).length();
|
349
|
+
// const sy = this.setFromMatrixColumn(m, 1).length();
|
350
|
+
// const sz = this.setFromMatrixColumn(m, 2).length();
|
351
|
+
// this.x = sx;
|
352
|
+
// this.y = sy;
|
353
|
+
// this.z = sz;
|
354
|
+
// return this;
|
355
|
+
// }
|
356
|
+
// setFromMatrixColumn(m, index) {
|
357
|
+
// return this.fromArray(m.elements, index * 4);
|
358
|
+
// }
|
359
|
+
// setFromMatrix3Column(m, index) {
|
360
|
+
// return this.fromArray(m.elements, index * 3);
|
361
|
+
// }
|
362
|
+
// setFromEuler(e) {
|
363
|
+
// this.x = e._x;
|
364
|
+
// this.y = e._y;
|
365
|
+
// this.z = e._z;
|
366
|
+
// return this;
|
367
|
+
// }
|
368
|
+
// setFromColor(c) {
|
369
|
+
// this.x = c.r;
|
370
|
+
// this.y = c.g;
|
371
|
+
// this.z = c.b;
|
372
|
+
// return this;
|
373
|
+
// }
|
374
|
+
equals(v) {
|
375
|
+
return ((v.x === this.x) && (v.y === this.y) && (v.z === this.z));
|
376
|
+
}
|
377
|
+
fromArray(array, offset = 0) {
|
378
|
+
this.x = array[offset];
|
379
|
+
this.y = array[offset + 1];
|
380
|
+
this.z = array[offset + 2];
|
381
|
+
return this;
|
382
|
+
}
|
383
|
+
// toArray(array = [], offset = 0) {
|
384
|
+
// array[offset] = this.x;
|
385
|
+
// array[offset + 1] = this.y;
|
386
|
+
// array[offset + 2] = this.z;
|
387
|
+
// return array;
|
388
|
+
// }
|
389
|
+
// fromBufferAttribute(attribute, index) {
|
390
|
+
// this.x = attribute.getX(index);
|
391
|
+
// this.y = attribute.getY(index);
|
392
|
+
// this.z = attribute.getZ(index);
|
393
|
+
// return this;
|
394
|
+
// }
|
395
|
+
random() {
|
396
|
+
this.x = Math.random();
|
397
|
+
this.y = Math.random();
|
398
|
+
this.z = Math.random();
|
399
|
+
return this;
|
400
|
+
}
|
401
|
+
}
|
402
|
+
export { Vector3 };
|
403
|
+
//# sourceMappingURL=Vector3.js.map
|
@@ -0,0 +1 @@
|
|
1
|
+
{"version":3,"file":"Vector3.js","sourceRoot":"","sources":["../../src/math/Vector3.js"],"names":[],"mappings":"AAAA,+CAA+C;AAC/C,iFAAiF;AAEjF,OAAO,EAAE,UAAU,EAAE,MAAM,cAAc,CAAC;AAE1C,MAAM,WAAW,GAAG,IAAI,UAAU,EAAE,CAAC;AAErC,MAAM,OAAO;IAET,YAAY,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC;QAC3B,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC;QACX,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC;QACX,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC;IAEf,CAAC;IAED,GAAG,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC;QAEP,IAAI,CAAC,KAAK,SAAS;YAAE,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC,wBAAwB;QAEzD,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC;QACX,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC;QACX,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC;QAEX,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,sBAAsB;IAEtB,uBAAuB;IACvB,uBAAuB;IACvB,uBAAuB;IAEvB,mBAAmB;IAEnB,IAAI;IAEJ,YAAY;IAEZ,kBAAkB;IAElB,mBAAmB;IAEnB,IAAI;IAEJ,YAAY;IAEZ,kBAAkB;IAElB,mBAAmB;IAEnB,IAAI;IAEJ,YAAY;IAEZ,kBAAkB;IAElB,mBAAmB;IAEnB,IAAI;IAEJ,+BAA+B;IAE/B,uBAAuB;IAEvB,yCAAyC;IACzC,yCAAyC;IACzC,yCAAyC;IACzC,uEAAuE;IAEvE,QAAQ;IAER,mBAAmB;IAEnB,IAAI;IAEJ,wBAAwB;IAExB,uBAAuB;IAEvB,iCAAiC;IACjC,iCAAiC;IACjC,iCAAiC;IACjC,uEAAuE;IAEvE,QAAQ;IAER,IAAI;IAEJ,KAAK;QAED,OAAO,IAAI,IAAI,CAAC,WAAW,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC;IAExD,CAAC;IAED,IAAI,CAAC,CAAC;QAEF,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QACb,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QACb,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QAEb,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,GAAG,CAAC,CAAC;QAED,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QAEd,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,SAAS,CAAC,CAAC;QAEP,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC;QACZ,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC;QACZ,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC;QAEZ,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,UAAU,CAAC,CAAC,EAAE,CAAC;QAEX,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QACnB,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QACnB,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QAEnB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,eAAe,CAAC,CAAC,EAAE,CAAC;QAEhB,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;QAClB,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;QAClB,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;QAElB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,GAAG,CAAC,CAAC;QAED,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QAEd,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,SAAS,CAAC,CAAC;QAEP,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC;QACZ,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC;QACZ,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC;QAEZ,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,UAAU,CAAC,CAAC,EAAE,CAAC;QAEX,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QACnB,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QACnB,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QAEnB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,QAAQ,CAAC,CAAC;QAEN,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QAEd,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,cAAc,CAAC,MAAM;QAEjB,IAAI,CAAC,CAAC,IAAI,MAAM,CAAC;QACjB,IAAI,CAAC,CAAC,IAAI,MAAM,CAAC;QACjB,IAAI,CAAC,CAAC,IAAI,MAAM,CAAC;QAEjB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,eAAe,CAAC,CAAC,EAAE,CAAC;QAEhB,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QACnB,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QACnB,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QAEnB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,sBAAsB;IAEtB,oEAAoE;IAEpE,IAAI;IAEJ,cAAc,CAAC,IAAI,EAAE,KAAK;QAEtB,OAAO,IAAI,CAAC,eAAe,CAAC,WAAW,CAAC,gBAAgB,CAAC,IAAI,EAAE,KAAK,CAAC,CAAC,CAAC;IAE3E,CAAC;IAED,oBAAoB;IAEpB,gDAAgD;IAChD,4BAA4B;IAE5B,+CAA+C;IAC/C,+CAA+C;IAC/C,+CAA+C;IAE/C,mBAAmB;IAEnB,IAAI;IAEJ,yBAAyB;IAEzB,+CAA+C;IAE/C,IAAI;IAEJ,YAAY,CAAC,CAAC;QAEV,MAAM,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;QACzC,MAAM,CAAC,GAAG,CAAC,CAAC,QAAQ,CAAC;QAErB,MAAM,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QAExD,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC;QACtD,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC;QACtD,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC;QAEvD,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,eAAe,CAAC,CAAC;QAEb,MAAM,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;QACzC,MAAM,EAAE,GAAG,CAAC,CAAC,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC;QAE7C,0BAA0B;QAE1B,MAAM,EAAE,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;QACpC,MAAM,EAAE,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;QACpC,MAAM,EAAE,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;QACpC,MAAM,EAAE,GAAG,CAAC,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;QAErC,kCAAkC;QAElC,IAAI,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,CAAC;QAClD,IAAI,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,CAAC;QAClD,IAAI,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,CAAC;QAElD,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,oBAAoB;IAEpB,iGAAiG;IAEjG,IAAI;IAEJ,sBAAsB;IAEtB,iGAAiG;IAEjG,IAAI;IAEJ,0BAA0B;IAE1B,4CAA4C;IAC5C,2CAA2C;IAE3C,gDAAgD;IAChD,4BAA4B;IAE5B,+CAA+C;IAC/C,+CAA+C;IAC/C,gDAAgD;IAEhD,+BAA+B;IAE/B,IAAI;IAEJ,MAAM,CAAC,CAAC;QAEJ,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QAEd,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,YAAY,CAAC,MAAM;QAEf,OAAO,IAAI,CAAC,cAAc,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC;IAE3C,CAAC;IAED,GAAG,CAAC,CAAC;QAED,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;QAC/B,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;QAC/B,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;QAE/B,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,GAAG,CAAC,CAAC;QAED,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;QAC/B,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;QAC/B,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;QAE/B,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,KAAK,CAAC,GAAG,EAAE,GAAG;QAEV,mCAAmC;QAEnC,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;QAClD,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;QAClD,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;QAElD,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,WAAW,CAAC,MAAM,EAAE,MAAM;QAEtB,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,MAAM,EAAE,IAAI,CAAC,GAAG,CAAC,MAAM,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;QACpD,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,MAAM,EAAE,IAAI,CAAC,GAAG,CAAC,MAAM,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;QACpD,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,MAAM,EAAE,IAAI,CAAC,GAAG,CAAC,MAAM,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;QAEpD,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,WAAW,CAAC,GAAG,EAAE,GAAG;QAEhB,MAAM,MAAM,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;QAE7B,OAAO,IAAI,CAAC,YAAY,CAAC,MAAM,IAAI,CAAC,CAAC,CAAC,cAAc,CAAC,IAAI,CAAC,GAAG,CAAC,GAAG,EAAE,IAAI,CAAC,GAAG,CAAC,GAAG,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC;IAE/F,CAAC;IAED,YAAY;IAEZ,mCAAmC;IACnC,mCAAmC;IACnC,mCAAmC;IAEnC,mBAAmB;IAEnB,IAAI;IAEJ,WAAW;IAEX,kCAAkC;IAClC,kCAAkC;IAClC,kCAAkC;IAElC,mBAAmB;IAEnB,IAAI;IAEJ,YAAY;IAEZ,mCAAmC;IACnC,mCAAmC;IACnC,mCAAmC;IAEnC,mBAAmB;IAEnB,IAAI;IAEJ,kBAAkB;IAElB,sEAAsE;IACtE,sEAAsE;IACtE,sEAAsE;IAEtE,mBAAmB;IAEnB,IAAI;IAEJ,aAAa;IAEb,wBAAwB;IACxB,wBAAwB;IACxB,wBAAwB;IAExB,mBAAmB;IAEnB,IAAI;IAEJ,GAAG,CAAC,CAAC;QAED,OAAO,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;IAEtD,CAAC;IAED,sBAAsB;IAEtB,QAAQ;QAEJ,OAAO,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;IAE/D,CAAC;IAED,MAAM;QAEF,OAAO,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;IAE1E,CAAC;IAED,sBAAsB;IAEtB,qEAAqE;IAErE,IAAI;IAEJ,SAAS;QAEL,OAAO,IAAI,CAAC,YAAY,CAAC,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,CAAC,CAAC;IAEjD,CAAC;IAED,SAAS,CAAC,MAAM;QAEZ,OAAO,IAAI,CAAC,SAAS,EAAE,CAAC,cAAc,CAAC,MAAM,CAAC,CAAC;IAEnD,CAAC;IAED,IAAI,CAAC,CAAC,EAAE,KAAK;QAET,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC;QACjC,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC;QACjC,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC;QAEjC,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,WAAW,CAAC,EAAE,EAAE,EAAE,EAAE,KAAK;QAErB,IAAI,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC;QACtC,IAAI,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC;QACtC,IAAI,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC;QAEtC,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,KAAK,CAAC,CAAC;QAEH,OAAO,IAAI,CAAC,YAAY,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC;IAEtC,CAAC;IAED,YAAY,CAAC,CAAC,EAAE,CAAC;QAEb,MAAM,EAAE,GAAG,CAAC,CAAC,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC;QACnC,MAAM,EAAE,GAAG,CAAC,CAAC,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC;QAEnC,IAAI,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;QAC3B,IAAI,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;QAC3B,IAAI,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;QAE3B,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,uBAAuB;IAEvB,wCAAwC;IAExC,uDAAuD;IAEvD,gDAAgD;IAEhD,kDAAkD;IAElD,IAAI;IAEJ,gCAAgC;IAEhC,uDAAuD;IAEvD,gCAAgC;IAEhC,IAAI;IAEJ,oBAAoB;IAEpB,gEAAgE;IAChE,+CAA+C;IAE/C,kFAAkF;IAElF,IAAI;IAEJ,eAAe;IAEf,qEAAqE;IAErE,iDAAiD;IAEjD,+CAA+C;IAE/C,6CAA6C;IAE7C,uDAAuD;IAEvD,IAAI;IAEJ,UAAU,CAAC,CAAC;QAER,OAAO,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,iBAAiB,CAAC,CAAC,CAAC,CAAC,CAAC;IAEhD,CAAC;IAED,yBAAyB;IAEzB,qEAAqE;IAErE,0CAA0C;IAE1C,IAAI;IAEJ,2BAA2B;IAE3B,uFAAuF;IAEvF,IAAI;IAEJ,wBAAwB;IAExB,oEAAoE;IAEpE,IAAI;IAEJ,+CAA+C;IAE/C,mDAAmD;IAEnD,+CAA+C;IAC/C,uCAAuC;IACvC,+CAA+C;IAE/C,mBAAmB;IAEnB,IAAI;IAEJ,0BAA0B;IAE1B,oEAAoE;IAEpE,IAAI;IAEJ,+CAA+C;IAE/C,yCAAyC;IACzC,kBAAkB;IAClB,yCAAyC;IAEzC,mBAAmB;IAEnB,IAAI;IAEJ,6BAA6B;IAE7B,4BAA4B;IAE5B,sBAAsB;IACtB,sBAAsB;IACtB,sBAAsB;IAEtB,mBAAmB;IAEnB,IAAI;IAEJ,0BAA0B;IAE1B,0DAA0D;IAC1D,0DAA0D;IAC1D,0DAA0D;IAE1D,mBAAmB;IACnB,mBAAmB;IACnB,mBAAmB;IAEnB,mBAAmB;IAEnB,IAAI;IAEJ,kCAAkC;IAElC,oDAAoD;IAEpD,IAAI;IAEJ,mCAAmC;IAEnC,oDAAoD;IAEpD,IAAI;IAEJ,oBAAoB;IAEpB,qBAAqB;IACrB,qBAAqB;IACrB,qBAAqB;IAErB,mBAAmB;IAEnB,IAAI;IAEJ,oBAAoB;IAEpB,oBAAoB;IACpB,oBAAoB;IACpB,oBAAoB;IAEpB,mBAAmB;IAEnB,IAAI;IAEJ,MAAM,CAAC,CAAC;QAEJ,OAAO,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,IAAI,CAAC,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,KAAK,IAAI,CAAC,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,KAAK,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;IAEtE,CAAC;IAED,SAAS,CAAC,KAAK,EAAE,MAAM,GAAG,CAAC;QAEvB,IAAI,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC;QACvB,IAAI,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;QAE3B,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,oCAAoC;IAEpC,8BAA8B;IAC9B,kCAAkC;IAClC,kCAAkC;IAElC,oBAAoB;IAEpB,IAAI;IAEJ,0CAA0C;IAE1C,sCAAsC;IACtC,sCAAsC;IACtC,sCAAsC;IAEtC,mBAAmB;IAEnB,IAAI;IAEJ,MAAM;QAEF,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;QACvB,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;QACvB,IAAI,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;QAEvB,OAAO,IAAI,CAAC;IAEhB,CAAC;CAkBJ;AAED,OAAO,EAAE,OAAO,EAAE,CAAC"}
|
@@ -0,0 +1,15 @@
|
|
1
|
+
/**
|
2
|
+
* PathPoint
|
3
|
+
*/
|
4
|
+
export class PathPoint {
|
5
|
+
pos: Vector3;
|
6
|
+
dir: Vector3;
|
7
|
+
right: Vector3;
|
8
|
+
up: Vector3;
|
9
|
+
dist: number;
|
10
|
+
widthScale: number;
|
11
|
+
sharp: boolean;
|
12
|
+
lerpPathPoints(p1: any, p2: any, alpha: any): void;
|
13
|
+
copy(source: any): void;
|
14
|
+
}
|
15
|
+
import { Vector3 } from '../math/Vector3';
|
@@ -0,0 +1,35 @@
|
|
1
|
+
/* eslint-disable no-tabs */
|
2
|
+
// code copy from https://github.com/shawn0326/three.path/blob/master/src/PathPoint.js
|
3
|
+
import { Vector3 } from '../math/Vector3';
|
4
|
+
/**
|
5
|
+
* PathPoint
|
6
|
+
*/
|
7
|
+
class PathPoint {
|
8
|
+
constructor() {
|
9
|
+
this.pos = new Vector3();
|
10
|
+
this.dir = new Vector3();
|
11
|
+
this.right = new Vector3();
|
12
|
+
this.up = new Vector3(); // normal
|
13
|
+
this.dist = 0; // distance from start
|
14
|
+
this.widthScale = 1; // for corner
|
15
|
+
this.sharp = false; // marks as sharp corner
|
16
|
+
}
|
17
|
+
lerpPathPoints(p1, p2, alpha) {
|
18
|
+
this.pos.lerpVectors(p1.pos, p2.pos, alpha);
|
19
|
+
this.dir.lerpVectors(p1.dir, p2.dir, alpha);
|
20
|
+
this.up.lerpVectors(p1.up, p2.up, alpha);
|
21
|
+
this.right.lerpVectors(p1.right, p2.right, alpha);
|
22
|
+
this.dist = (p2.dist - p1.dist) * alpha + p1.dist;
|
23
|
+
this.widthScale = (p2.widthScale - p1.widthScale) * alpha + p1.widthScale;
|
24
|
+
}
|
25
|
+
copy(source) {
|
26
|
+
this.pos.copy(source.pos);
|
27
|
+
this.dir.copy(source.dir);
|
28
|
+
this.up.copy(source.up);
|
29
|
+
this.right.copy(source.right);
|
30
|
+
this.dist = source.dist;
|
31
|
+
this.widthScale = source.widthScale;
|
32
|
+
}
|
33
|
+
}
|
34
|
+
export { PathPoint };
|
35
|
+
//# sourceMappingURL=PathPoint.js.map
|
@@ -0,0 +1 @@
|
|
1
|
+
{"version":3,"file":"PathPoint.js","sourceRoot":"","sources":["../../src/path/PathPoint.js"],"names":[],"mappings":"AAAA,4BAA4B;AAE5B,sFAAsF;AAEtF,OAAO,EAAE,OAAO,EAAE,MAAM,iBAAiB,CAAC;AAE1C;;GAEG;AACH,MAAM,SAAS;IACd;QACC,IAAI,CAAC,GAAG,GAAG,IAAI,OAAO,EAAE,CAAC;QACzB,IAAI,CAAC,GAAG,GAAG,IAAI,OAAO,EAAE,CAAC;QACzB,IAAI,CAAC,KAAK,GAAG,IAAI,OAAO,EAAE,CAAC;QAC3B,IAAI,CAAC,EAAE,GAAG,IAAI,OAAO,EAAE,CAAC,CAAC,SAAS;QAClC,IAAI,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC,sBAAsB;QACrC,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC,aAAa;QAClC,IAAI,CAAC,KAAK,GAAG,KAAK,CAAC,CAAC,wBAAwB;IAC7C,CAAC;IAED,cAAc,CAAC,EAAE,EAAE,EAAE,EAAE,KAAK;QAC3B,IAAI,CAAC,GAAG,CAAC,WAAW,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,GAAG,EAAE,KAAK,CAAC,CAAC;QAC5C,IAAI,CAAC,GAAG,CAAC,WAAW,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,GAAG,EAAE,KAAK,CAAC,CAAC;QAC5C,IAAI,CAAC,EAAE,CAAC,WAAW,CAAC,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,KAAK,CAAC,CAAC;QACzC,IAAI,CAAC,KAAK,CAAC,WAAW,CAAC,EAAE,CAAC,KAAK,EAAE,EAAE,CAAC,KAAK,EAAE,KAAK,CAAC,CAAC;QAClD,IAAI,CAAC,IAAI,GAAG,CAAC,EAAE,CAAC,IAAI,GAAG,EAAE,CAAC,IAAI,CAAC,GAAG,KAAK,GAAG,EAAE,CAAC,IAAI,CAAC;QAClD,IAAI,CAAC,UAAU,GAAG,CAAC,EAAE,CAAC,UAAU,GAAG,EAAE,CAAC,UAAU,CAAC,GAAG,KAAK,GAAG,EAAE,CAAC,UAAU,CAAC;IAC3E,CAAC;IAED,IAAI,CAAC,MAAM;QACV,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC;QAC1B,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC;QAC1B,IAAI,CAAC,EAAE,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QACxB,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,MAAM,CAAC,KAAK,CAAC,CAAC;QAC9B,IAAI,CAAC,IAAI,GAAG,MAAM,CAAC,IAAI,CAAC;QACxB,IAAI,CAAC,UAAU,GAAG,MAAM,CAAC,UAAU,CAAC;IACrC,CAAC;CAED;AAED,OAAO,EAAE,SAAS,EAAE,CAAC"}
|
@@ -0,0 +1,27 @@
|
|
1
|
+
/**
|
2
|
+
* PathPointList
|
3
|
+
* input points to generate a PathPoint list
|
4
|
+
*/
|
5
|
+
export class PathPointList {
|
6
|
+
array: any[];
|
7
|
+
count: number;
|
8
|
+
/**
|
9
|
+
* Set points
|
10
|
+
* @param {THREE.Vector3[]} points key points array
|
11
|
+
* @param {number} cornerRadius? the corner radius. set 0 to disable round corner. default is 0.1
|
12
|
+
* @param {number} cornerSplit? the corner split. default is 10.
|
13
|
+
* @param {number} up? force up. default is auto up (calculate by tangent).
|
14
|
+
* @param {boolean} close? close path. default is false.
|
15
|
+
*/
|
16
|
+
set(points: THREE.Vector3[], cornerRadius?: number, cornerSplit?: number, up?: number, close?: boolean): void;
|
17
|
+
/**
|
18
|
+
* Get distance of this path
|
19
|
+
* @return {number}
|
20
|
+
*/
|
21
|
+
distance(): number;
|
22
|
+
_getByIndex(index: any): any;
|
23
|
+
_start(current: any, next: any, up: any): void;
|
24
|
+
_end(current: any): void;
|
25
|
+
_corner(current: any, next: any, cornerRadius: any, cornerSplit: any, up: any): void;
|
26
|
+
_sharpCorner(current: any, next: any, up: any, dirType?: number, sharp?: boolean): void;
|
27
|
+
}
|