poly-extrude 0.13.0 → 0.14.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (68) hide show
  1. package/dist/cylinder.d.ts +11 -0
  2. package/{src → dist}/cylinder.js +108 -111
  3. package/dist/cylinder.js.map +1 -0
  4. package/dist/index.d.ts +7 -0
  5. package/dist/index.js +8 -0
  6. package/dist/index.js.map +1 -0
  7. package/dist/math/Curve.d.ts +41 -0
  8. package/dist/math/Curve.js +142 -0
  9. package/dist/math/Curve.js.map +1 -0
  10. package/dist/math/Interpolations.d.ts +8 -0
  11. package/dist/math/Interpolations.js +48 -0
  12. package/dist/math/Interpolations.js.map +1 -0
  13. package/dist/math/Matrix4.d.ts +8 -0
  14. package/dist/math/Matrix4.js +582 -0
  15. package/dist/math/Matrix4.js.map +1 -0
  16. package/dist/math/QuadraticBezierCurve3.d.ts +10 -0
  17. package/dist/math/QuadraticBezierCurve3.js +22 -0
  18. package/dist/math/QuadraticBezierCurve3.js.map +1 -0
  19. package/dist/math/Quaternion.d.ts +46 -0
  20. package/dist/math/Quaternion.js +415 -0
  21. package/dist/math/Quaternion.js.map +1 -0
  22. package/dist/math/Vector3.d.ts +42 -0
  23. package/dist/math/Vector3.js +403 -0
  24. package/dist/math/Vector3.js.map +1 -0
  25. package/dist/path/PathPoint.d.ts +15 -0
  26. package/dist/path/PathPoint.js +35 -0
  27. package/dist/path/PathPoint.js.map +1 -0
  28. package/dist/path/PathPointList.d.ts +27 -0
  29. package/dist/path/PathPointList.js +212 -0
  30. package/dist/path/PathPointList.js.map +1 -0
  31. package/dist/path.d.ts +11 -0
  32. package/{src → dist}/path.js +334 -360
  33. package/dist/path.js.map +1 -0
  34. package/dist/plane.d.ts +2 -0
  35. package/{src → dist}/plane.js +57 -58
  36. package/dist/plane.js.map +1 -0
  37. package/dist/poly-extrude.js +1286 -1581
  38. package/dist/poly-extrude.js.map +1 -1
  39. package/dist/poly-extrude.min.js +2 -2
  40. package/dist/poly-extrude.mjs +1286 -1581
  41. package/dist/poly-extrude.mjs.map +1 -0
  42. package/dist/polygon.d.ts +9 -0
  43. package/{src → dist}/polygon.js +163 -179
  44. package/dist/polygon.js.map +1 -0
  45. package/dist/polyline.d.ts +24 -0
  46. package/{src → dist}/polyline.js +420 -456
  47. package/dist/polyline.js.map +1 -0
  48. package/dist/tube.d.ts +12 -0
  49. package/{src → dist}/tube.js +124 -142
  50. package/dist/tube.js.map +1 -0
  51. package/dist/type.d.ts +9 -0
  52. package/dist/type.js +2 -0
  53. package/dist/type.js.map +1 -0
  54. package/dist/util.d.ts +20 -0
  55. package/dist/util.js +217 -0
  56. package/dist/util.js.map +1 -0
  57. package/package.json +53 -48
  58. package/readme.md +12 -2
  59. package/src/cylinder.ts +124 -0
  60. package/src/index.ts +7 -0
  61. package/src/path.ts +385 -0
  62. package/src/plane.ts +60 -0
  63. package/src/polygon.ts +189 -0
  64. package/src/polyline.ts +473 -0
  65. package/src/tube.ts +155 -0
  66. package/src/type.ts +9 -0
  67. package/src/{util.js → util.ts} +1 -1
  68. package/index.js +0 -7
@@ -0,0 +1,46 @@
1
+ export class Quaternion {
2
+ static slerpFlat(dst: any, dstOffset: any, src0: any, srcOffset0: any, src1: any, srcOffset1: any, t: any): void;
3
+ static multiplyQuaternionsFlat(dst: any, dstOffset: any, src0: any, srcOffset0: any, src1: any, srcOffset1: any): any;
4
+ constructor(x?: number, y?: number, z?: number, w?: number);
5
+ isQuaternion: boolean;
6
+ _x: number;
7
+ _y: number;
8
+ _z: number;
9
+ _w: number;
10
+ set x(value: number);
11
+ get x(): number;
12
+ set y(value: number);
13
+ get y(): number;
14
+ set z(value: number);
15
+ get z(): number;
16
+ set w(value: number);
17
+ get w(): number;
18
+ set(x: any, y: any, z: any, w: any): this;
19
+ clone(): any;
20
+ copy(quaternion: any): this;
21
+ setFromEuler(euler: any, update?: boolean): this;
22
+ setFromAxisAngle(axis: any, angle: any): this;
23
+ setFromRotationMatrix(m: any): this;
24
+ setFromUnitVectors(vFrom: any, vTo: any): this;
25
+ rotateTowards(q: any, step: any): this;
26
+ identity(): this;
27
+ invert(): this;
28
+ conjugate(): this;
29
+ dot(v: any): number;
30
+ lengthSq(): number;
31
+ length(): number;
32
+ normalize(): this;
33
+ multiply(q: any): this;
34
+ premultiply(q: any): this;
35
+ multiplyQuaternions(a: any, b: any): this;
36
+ slerp(qb: any, t: any): this;
37
+ slerpQuaternions(qa: any, qb: any, t: any): this;
38
+ random(): this;
39
+ equals(quaternion: any): boolean;
40
+ fromArray(array: any, offset?: number): this;
41
+ toArray(array?: any[], offset?: number): any[];
42
+ fromBufferAttribute(attribute: any, index: any): this;
43
+ toJSON(): any[];
44
+ _onChange(callback: any): this;
45
+ _onChangeCallback(): void;
46
+ }
@@ -0,0 +1,415 @@
1
+ // code copy from https://github.com/mrdoob/three.js/blob/dev/src/math/Quaternion.js
2
+ // import { clamp } from './MathUtils.js';
3
+ class Quaternion {
4
+ constructor(x = 0, y = 0, z = 0, w = 1) {
5
+ this.isQuaternion = true;
6
+ this._x = x;
7
+ this._y = y;
8
+ this._z = z;
9
+ this._w = w;
10
+ }
11
+ static slerpFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t) {
12
+ // fuzz-free, array-based Quaternion SLERP operation
13
+ let x0 = src0[srcOffset0 + 0], y0 = src0[srcOffset0 + 1], z0 = src0[srcOffset0 + 2], w0 = src0[srcOffset0 + 3];
14
+ const x1 = src1[srcOffset1 + 0], y1 = src1[srcOffset1 + 1], z1 = src1[srcOffset1 + 2], w1 = src1[srcOffset1 + 3];
15
+ if (t === 0) {
16
+ dst[dstOffset + 0] = x0;
17
+ dst[dstOffset + 1] = y0;
18
+ dst[dstOffset + 2] = z0;
19
+ dst[dstOffset + 3] = w0;
20
+ return;
21
+ }
22
+ if (t === 1) {
23
+ dst[dstOffset + 0] = x1;
24
+ dst[dstOffset + 1] = y1;
25
+ dst[dstOffset + 2] = z1;
26
+ dst[dstOffset + 3] = w1;
27
+ return;
28
+ }
29
+ if (w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1) {
30
+ let s = 1 - t;
31
+ const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, dir = (cos >= 0 ? 1 : -1), sqrSin = 1 - cos * cos;
32
+ // Skip the Slerp for tiny steps to avoid numeric problems:
33
+ if (sqrSin > Number.EPSILON) {
34
+ const sin = Math.sqrt(sqrSin), len = Math.atan2(sin, cos * dir);
35
+ s = Math.sin(s * len) / sin;
36
+ t = Math.sin(t * len) / sin;
37
+ }
38
+ const tDir = t * dir;
39
+ x0 = x0 * s + x1 * tDir;
40
+ y0 = y0 * s + y1 * tDir;
41
+ z0 = z0 * s + z1 * tDir;
42
+ w0 = w0 * s + w1 * tDir;
43
+ // Normalize in case we just did a lerp:
44
+ if (s === 1 - t) {
45
+ const f = 1 / Math.sqrt(x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0);
46
+ x0 *= f;
47
+ y0 *= f;
48
+ z0 *= f;
49
+ w0 *= f;
50
+ }
51
+ }
52
+ dst[dstOffset] = x0;
53
+ dst[dstOffset + 1] = y0;
54
+ dst[dstOffset + 2] = z0;
55
+ dst[dstOffset + 3] = w0;
56
+ }
57
+ static multiplyQuaternionsFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1) {
58
+ const x0 = src0[srcOffset0];
59
+ const y0 = src0[srcOffset0 + 1];
60
+ const z0 = src0[srcOffset0 + 2];
61
+ const w0 = src0[srcOffset0 + 3];
62
+ const x1 = src1[srcOffset1];
63
+ const y1 = src1[srcOffset1 + 1];
64
+ const z1 = src1[srcOffset1 + 2];
65
+ const w1 = src1[srcOffset1 + 3];
66
+ dst[dstOffset] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1;
67
+ dst[dstOffset + 1] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1;
68
+ dst[dstOffset + 2] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1;
69
+ dst[dstOffset + 3] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1;
70
+ return dst;
71
+ }
72
+ get x() {
73
+ return this._x;
74
+ }
75
+ set x(value) {
76
+ this._x = value;
77
+ this._onChangeCallback();
78
+ }
79
+ get y() {
80
+ return this._y;
81
+ }
82
+ set y(value) {
83
+ this._y = value;
84
+ this._onChangeCallback();
85
+ }
86
+ get z() {
87
+ return this._z;
88
+ }
89
+ set z(value) {
90
+ this._z = value;
91
+ this._onChangeCallback();
92
+ }
93
+ get w() {
94
+ return this._w;
95
+ }
96
+ set w(value) {
97
+ this._w = value;
98
+ this._onChangeCallback();
99
+ }
100
+ set(x, y, z, w) {
101
+ this._x = x;
102
+ this._y = y;
103
+ this._z = z;
104
+ this._w = w;
105
+ this._onChangeCallback();
106
+ return this;
107
+ }
108
+ clone() {
109
+ return new this.constructor(this._x, this._y, this._z, this._w);
110
+ }
111
+ copy(quaternion) {
112
+ this._x = quaternion.x;
113
+ this._y = quaternion.y;
114
+ this._z = quaternion.z;
115
+ this._w = quaternion.w;
116
+ this._onChangeCallback();
117
+ return this;
118
+ }
119
+ setFromEuler(euler, update = true) {
120
+ const x = euler._x, y = euler._y, z = euler._z, order = euler._order;
121
+ // http://www.mathworks.com/matlabcentral/fileexchange/
122
+ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
123
+ // content/SpinCalc.m
124
+ const cos = Math.cos;
125
+ const sin = Math.sin;
126
+ const c1 = cos(x / 2);
127
+ const c2 = cos(y / 2);
128
+ const c3 = cos(z / 2);
129
+ const s1 = sin(x / 2);
130
+ const s2 = sin(y / 2);
131
+ const s3 = sin(z / 2);
132
+ switch (order) {
133
+ case 'XYZ':
134
+ this._x = s1 * c2 * c3 + c1 * s2 * s3;
135
+ this._y = c1 * s2 * c3 - s1 * c2 * s3;
136
+ this._z = c1 * c2 * s3 + s1 * s2 * c3;
137
+ this._w = c1 * c2 * c3 - s1 * s2 * s3;
138
+ break;
139
+ case 'YXZ':
140
+ this._x = s1 * c2 * c3 + c1 * s2 * s3;
141
+ this._y = c1 * s2 * c3 - s1 * c2 * s3;
142
+ this._z = c1 * c2 * s3 - s1 * s2 * c3;
143
+ this._w = c1 * c2 * c3 + s1 * s2 * s3;
144
+ break;
145
+ case 'ZXY':
146
+ this._x = s1 * c2 * c3 - c1 * s2 * s3;
147
+ this._y = c1 * s2 * c3 + s1 * c2 * s3;
148
+ this._z = c1 * c2 * s3 + s1 * s2 * c3;
149
+ this._w = c1 * c2 * c3 - s1 * s2 * s3;
150
+ break;
151
+ case 'ZYX':
152
+ this._x = s1 * c2 * c3 - c1 * s2 * s3;
153
+ this._y = c1 * s2 * c3 + s1 * c2 * s3;
154
+ this._z = c1 * c2 * s3 - s1 * s2 * c3;
155
+ this._w = c1 * c2 * c3 + s1 * s2 * s3;
156
+ break;
157
+ case 'YZX':
158
+ this._x = s1 * c2 * c3 + c1 * s2 * s3;
159
+ this._y = c1 * s2 * c3 + s1 * c2 * s3;
160
+ this._z = c1 * c2 * s3 - s1 * s2 * c3;
161
+ this._w = c1 * c2 * c3 - s1 * s2 * s3;
162
+ break;
163
+ case 'XZY':
164
+ this._x = s1 * c2 * c3 - c1 * s2 * s3;
165
+ this._y = c1 * s2 * c3 - s1 * c2 * s3;
166
+ this._z = c1 * c2 * s3 + s1 * s2 * c3;
167
+ this._w = c1 * c2 * c3 + s1 * s2 * s3;
168
+ break;
169
+ default:
170
+ console.warn('THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order);
171
+ }
172
+ if (update === true)
173
+ this._onChangeCallback();
174
+ return this;
175
+ }
176
+ setFromAxisAngle(axis, angle) {
177
+ // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
178
+ // assumes axis is normalized
179
+ const halfAngle = angle / 2, s = Math.sin(halfAngle);
180
+ this._x = axis.x * s;
181
+ this._y = axis.y * s;
182
+ this._z = axis.z * s;
183
+ this._w = Math.cos(halfAngle);
184
+ this._onChangeCallback();
185
+ return this;
186
+ }
187
+ setFromRotationMatrix(m) {
188
+ // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
189
+ // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
190
+ const te = m.elements, m11 = te[0], m12 = te[4], m13 = te[8], m21 = te[1], m22 = te[5], m23 = te[9], m31 = te[2], m32 = te[6], m33 = te[10], trace = m11 + m22 + m33;
191
+ if (trace > 0) {
192
+ const s = 0.5 / Math.sqrt(trace + 1.0);
193
+ this._w = 0.25 / s;
194
+ this._x = (m32 - m23) * s;
195
+ this._y = (m13 - m31) * s;
196
+ this._z = (m21 - m12) * s;
197
+ }
198
+ else if (m11 > m22 && m11 > m33) {
199
+ const s = 2.0 * Math.sqrt(1.0 + m11 - m22 - m33);
200
+ this._w = (m32 - m23) / s;
201
+ this._x = 0.25 * s;
202
+ this._y = (m12 + m21) / s;
203
+ this._z = (m13 + m31) / s;
204
+ }
205
+ else if (m22 > m33) {
206
+ const s = 2.0 * Math.sqrt(1.0 + m22 - m11 - m33);
207
+ this._w = (m13 - m31) / s;
208
+ this._x = (m12 + m21) / s;
209
+ this._y = 0.25 * s;
210
+ this._z = (m23 + m32) / s;
211
+ }
212
+ else {
213
+ const s = 2.0 * Math.sqrt(1.0 + m33 - m11 - m22);
214
+ this._w = (m21 - m12) / s;
215
+ this._x = (m13 + m31) / s;
216
+ this._y = (m23 + m32) / s;
217
+ this._z = 0.25 * s;
218
+ }
219
+ this._onChangeCallback();
220
+ return this;
221
+ }
222
+ setFromUnitVectors(vFrom, vTo) {
223
+ // assumes direction vectors vFrom and vTo are normalized
224
+ let r = vFrom.dot(vTo) + 1;
225
+ if (r < Number.EPSILON) {
226
+ // vFrom and vTo point in opposite directions
227
+ r = 0;
228
+ if (Math.abs(vFrom.x) > Math.abs(vFrom.z)) {
229
+ this._x = -vFrom.y;
230
+ this._y = vFrom.x;
231
+ this._z = 0;
232
+ this._w = r;
233
+ }
234
+ else {
235
+ this._x = 0;
236
+ this._y = -vFrom.z;
237
+ this._z = vFrom.y;
238
+ this._w = r;
239
+ }
240
+ }
241
+ else {
242
+ // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
243
+ this._x = vFrom.y * vTo.z - vFrom.z * vTo.y;
244
+ this._y = vFrom.z * vTo.x - vFrom.x * vTo.z;
245
+ this._z = vFrom.x * vTo.y - vFrom.y * vTo.x;
246
+ this._w = r;
247
+ }
248
+ return this.normalize();
249
+ }
250
+ // angleTo(q) {
251
+ // return 2 * Math.acos(Math.abs(clamp(this.dot(q), -1, 1)));
252
+ // }
253
+ rotateTowards(q, step) {
254
+ const angle = this.angleTo(q);
255
+ if (angle === 0)
256
+ return this;
257
+ const t = Math.min(1, step / angle);
258
+ this.slerp(q, t);
259
+ return this;
260
+ }
261
+ identity() {
262
+ return this.set(0, 0, 0, 1);
263
+ }
264
+ invert() {
265
+ // quaternion is assumed to have unit length
266
+ return this.conjugate();
267
+ }
268
+ conjugate() {
269
+ this._x *= -1;
270
+ this._y *= -1;
271
+ this._z *= -1;
272
+ this._onChangeCallback();
273
+ return this;
274
+ }
275
+ dot(v) {
276
+ return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
277
+ }
278
+ lengthSq() {
279
+ return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
280
+ }
281
+ length() {
282
+ return Math.sqrt(this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w);
283
+ }
284
+ normalize() {
285
+ let l = this.length();
286
+ if (l === 0) {
287
+ this._x = 0;
288
+ this._y = 0;
289
+ this._z = 0;
290
+ this._w = 1;
291
+ }
292
+ else {
293
+ l = 1 / l;
294
+ this._x = this._x * l;
295
+ this._y = this._y * l;
296
+ this._z = this._z * l;
297
+ this._w = this._w * l;
298
+ }
299
+ this._onChangeCallback();
300
+ return this;
301
+ }
302
+ multiply(q) {
303
+ return this.multiplyQuaternions(this, q);
304
+ }
305
+ premultiply(q) {
306
+ return this.multiplyQuaternions(q, this);
307
+ }
308
+ multiplyQuaternions(a, b) {
309
+ // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
310
+ const qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
311
+ const qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;
312
+ this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
313
+ this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
314
+ this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
315
+ this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
316
+ this._onChangeCallback();
317
+ return this;
318
+ }
319
+ slerp(qb, t) {
320
+ if (t === 0)
321
+ return this;
322
+ if (t === 1)
323
+ return this.copy(qb);
324
+ const x = this._x, y = this._y, z = this._z, w = this._w;
325
+ // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
326
+ let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
327
+ if (cosHalfTheta < 0) {
328
+ this._w = -qb._w;
329
+ this._x = -qb._x;
330
+ this._y = -qb._y;
331
+ this._z = -qb._z;
332
+ cosHalfTheta = -cosHalfTheta;
333
+ }
334
+ else {
335
+ this.copy(qb);
336
+ }
337
+ if (cosHalfTheta >= 1.0) {
338
+ this._w = w;
339
+ this._x = x;
340
+ this._y = y;
341
+ this._z = z;
342
+ return this;
343
+ }
344
+ const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;
345
+ if (sqrSinHalfTheta <= Number.EPSILON) {
346
+ const s = 1 - t;
347
+ this._w = s * w + t * this._w;
348
+ this._x = s * x + t * this._x;
349
+ this._y = s * y + t * this._y;
350
+ this._z = s * z + t * this._z;
351
+ this.normalize(); // normalize calls _onChangeCallback()
352
+ return this;
353
+ }
354
+ const sinHalfTheta = Math.sqrt(sqrSinHalfTheta);
355
+ const halfTheta = Math.atan2(sinHalfTheta, cosHalfTheta);
356
+ const ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta, ratioB = Math.sin(t * halfTheta) / sinHalfTheta;
357
+ this._w = (w * ratioA + this._w * ratioB);
358
+ this._x = (x * ratioA + this._x * ratioB);
359
+ this._y = (y * ratioA + this._y * ratioB);
360
+ this._z = (z * ratioA + this._z * ratioB);
361
+ this._onChangeCallback();
362
+ return this;
363
+ }
364
+ slerpQuaternions(qa, qb, t) {
365
+ return this.copy(qa).slerp(qb, t);
366
+ }
367
+ random() {
368
+ // sets this quaternion to a uniform random unit quaternnion
369
+ // Ken Shoemake
370
+ // Uniform random rotations
371
+ // D. Kirk, editor, Graphics Gems III, pages 124-132. Academic Press, New York, 1992.
372
+ const theta1 = 2 * Math.PI * Math.random();
373
+ const theta2 = 2 * Math.PI * Math.random();
374
+ const x0 = Math.random();
375
+ const r1 = Math.sqrt(1 - x0);
376
+ const r2 = Math.sqrt(x0);
377
+ return this.set(r1 * Math.sin(theta1), r1 * Math.cos(theta1), r2 * Math.sin(theta2), r2 * Math.cos(theta2));
378
+ }
379
+ equals(quaternion) {
380
+ return (quaternion._x === this._x) && (quaternion._y === this._y) && (quaternion._z === this._z) && (quaternion._w === this._w);
381
+ }
382
+ fromArray(array, offset = 0) {
383
+ this._x = array[offset];
384
+ this._y = array[offset + 1];
385
+ this._z = array[offset + 2];
386
+ this._w = array[offset + 3];
387
+ this._onChangeCallback();
388
+ return this;
389
+ }
390
+ toArray(array = [], offset = 0) {
391
+ array[offset] = this._x;
392
+ array[offset + 1] = this._y;
393
+ array[offset + 2] = this._z;
394
+ array[offset + 3] = this._w;
395
+ return array;
396
+ }
397
+ fromBufferAttribute(attribute, index) {
398
+ this._x = attribute.getX(index);
399
+ this._y = attribute.getY(index);
400
+ this._z = attribute.getZ(index);
401
+ this._w = attribute.getW(index);
402
+ this._onChangeCallback();
403
+ return this;
404
+ }
405
+ toJSON() {
406
+ return this.toArray();
407
+ }
408
+ _onChange(callback) {
409
+ this._onChangeCallback = callback;
410
+ return this;
411
+ }
412
+ _onChangeCallback() { }
413
+ }
414
+ export { Quaternion };
415
+ //# sourceMappingURL=Quaternion.js.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"Quaternion.js","sourceRoot":"","sources":["../../src/math/Quaternion.js"],"names":[],"mappings":"AAAA,oFAAoF;AAEpF,0CAA0C;AAE1C,MAAM,UAAU;IAEZ,YAAY,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC;QAElC,IAAI,CAAC,YAAY,GAAG,IAAI,CAAC;QAEzB,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;IAEhB,CAAC;IAED,MAAM,CAAC,SAAS,CAAC,GAAG,EAAE,SAAS,EAAE,IAAI,EAAE,UAAU,EAAE,IAAI,EAAE,UAAU,EAAE,CAAC;QAElE,oDAAoD;QAEpD,IAAI,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,EACzB,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,EACzB,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,EACzB,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QAE9B,MAAM,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,EAC3B,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,EACzB,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,EACzB,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QAE9B,IAAI,CAAC,KAAK,CAAC,EAAE,CAAC;YAEV,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;YACxB,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;YACxB,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;YACxB,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;YACxB,OAAO;QAEX,CAAC;QAED,IAAI,CAAC,KAAK,CAAC,EAAE,CAAC;YAEV,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;YACxB,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;YACxB,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;YACxB,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;YACxB,OAAO;QAEX,CAAC;QAED,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,KAAK,EAAE,EAAE,CAAC;YAEnD,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;YACd,MAAM,GAAG,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,EAC7C,GAAG,GAAG,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EACzB,MAAM,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC;YAE3B,2DAA2D;YAC3D,IAAI,MAAM,GAAG,MAAM,CAAC,OAAO,EAAE,CAAC;gBAE1B,MAAM,GAAG,GAAG,IAAI,CAAC,IAAI,CAAC,MAAM,CAAC,EACzB,GAAG,GAAG,IAAI,CAAC,KAAK,CAAC,GAAG,EAAE,GAAG,GAAG,GAAG,CAAC,CAAC;gBAErC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,GAAG,CAAC;gBAC5B,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,GAAG,CAAC;YAEhC,CAAC;YAED,MAAM,IAAI,GAAG,CAAC,GAAG,GAAG,CAAC;YAErB,EAAE,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,IAAI,CAAC;YACxB,EAAE,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,IAAI,CAAC;YACxB,EAAE,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,IAAI,CAAC;YACxB,EAAE,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,IAAI,CAAC;YAExB,wCAAwC;YACxC,IAAI,CAAC,KAAK,CAAC,GAAG,CAAC,EAAE,CAAC;gBAEd,MAAM,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC,CAAC;gBAE/D,EAAE,IAAI,CAAC,CAAC;gBACR,EAAE,IAAI,CAAC,CAAC;gBACR,EAAE,IAAI,CAAC,CAAC;gBACR,EAAE,IAAI,CAAC,CAAC;YAEZ,CAAC;QAEL,CAAC;QAED,GAAG,CAAC,SAAS,CAAC,GAAG,EAAE,CAAC;QACpB,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;QACxB,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;QACxB,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;IAE5B,CAAC;IAED,MAAM,CAAC,uBAAuB,CAAC,GAAG,EAAE,SAAS,EAAE,IAAI,EAAE,UAAU,EAAE,IAAI,EAAE,UAAU;QAE7E,MAAM,EAAE,GAAG,IAAI,CAAC,UAAU,CAAC,CAAC;QAC5B,MAAM,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QAChC,MAAM,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QAChC,MAAM,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QAEhC,MAAM,EAAE,GAAG,IAAI,CAAC,UAAU,CAAC,CAAC;QAC5B,MAAM,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QAChC,MAAM,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QAChC,MAAM,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QAEhC,GAAG,CAAC,SAAS,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;QACvD,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;QAC3D,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;QAC3D,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;QAE3D,OAAO,GAAG,CAAC;IAEf,CAAC;IAED,IAAI,CAAC;QAED,OAAO,IAAI,CAAC,EAAE,CAAC;IAEnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAK;QAEP,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;QAChB,IAAI,CAAC,iBAAiB,EAAE,CAAC;IAE7B,CAAC;IAED,IAAI,CAAC;QAED,OAAO,IAAI,CAAC,EAAE,CAAC;IAEnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAK;QAEP,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;QAChB,IAAI,CAAC,iBAAiB,EAAE,CAAC;IAE7B,CAAC;IAED,IAAI,CAAC;QAED,OAAO,IAAI,CAAC,EAAE,CAAC;IAEnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAK;QAEP,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;QAChB,IAAI,CAAC,iBAAiB,EAAE,CAAC;IAE7B,CAAC;IAED,IAAI,CAAC;QAED,OAAO,IAAI,CAAC,EAAE,CAAC;IAEnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAK;QAEP,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;QAChB,IAAI,CAAC,iBAAiB,EAAE,CAAC;IAE7B,CAAC;IAED,GAAG,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC;QAEV,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QAEZ,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,KAAK;QAED,OAAO,IAAI,IAAI,CAAC,WAAW,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC;IAEpE,CAAC;IAED,IAAI,CAAC,UAAU;QAEX,IAAI,CAAC,EAAE,GAAG,UAAU,CAAC,CAAC,CAAC;QACvB,IAAI,CAAC,EAAE,GAAG,UAAU,CAAC,CAAC,CAAC;QACvB,IAAI,CAAC,EAAE,GAAG,UAAU,CAAC,CAAC,CAAC;QACvB,IAAI,CAAC,EAAE,GAAG,UAAU,CAAC,CAAC,CAAC;QAEvB,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,YAAY,CAAC,KAAK,EAAE,MAAM,GAAG,IAAI;QAE7B,MAAM,CAAC,GAAG,KAAK,CAAC,EAAE,EAAE,CAAC,GAAG,KAAK,CAAC,EAAE,EAAE,CAAC,GAAG,KAAK,CAAC,EAAE,EAAE,KAAK,GAAG,KAAK,CAAC,MAAM,CAAC;QAErE,uDAAuD;QACvD,oFAAoF;QACpF,qBAAqB;QAErB,MAAM,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC;QACrB,MAAM,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC;QAErB,MAAM,EAAE,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QACtB,MAAM,EAAE,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QACtB,MAAM,EAAE,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QAEtB,MAAM,EAAE,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QACtB,MAAM,EAAE,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QACtB,MAAM,EAAE,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QAEtB,QAAQ,KAAK,EAAE,CAAC;YAEZ,KAAK,KAAK;gBACN,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,MAAM;YAEV,KAAK,KAAK;gBACN,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,MAAM;YAEV,KAAK,KAAK;gBACN,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,MAAM;YAEV,KAAK,KAAK;gBACN,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,MAAM;YAEV,KAAK,KAAK;gBACN,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,MAAM;YAEV,KAAK,KAAK;gBACN,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,MAAM;YAEV;gBACI,OAAO,CAAC,IAAI,CAAC,kEAAkE,GAAG,KAAK,CAAC,CAAC;QAEjG,CAAC;QAED,IAAI,MAAM,KAAK,IAAI;YAAE,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAE9C,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,gBAAgB,CAAC,IAAI,EAAE,KAAK;QAExB,iGAAiG;QAEjG,6BAA6B;QAE7B,MAAM,SAAS,GAAG,KAAK,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,SAAS,CAAC,CAAC;QAErD,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC;QACrB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC;QACrB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC;QACrB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,SAAS,CAAC,CAAC;QAE9B,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,qBAAqB,CAAC,CAAC;QAEnB,kGAAkG;QAElG,uEAAuE;QAEvE,MAAM,EAAE,GAAG,CAAC,CAAC,QAAQ,EAEjB,GAAG,GAAG,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,GAAG,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,GAAG,EAAE,CAAC,CAAC,CAAC,EACrC,GAAG,GAAG,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,GAAG,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,GAAG,EAAE,CAAC,CAAC,CAAC,EACrC,GAAG,GAAG,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,GAAG,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,GAAG,EAAE,CAAC,EAAE,CAAC,EAEtC,KAAK,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC;QAE5B,IAAI,KAAK,GAAG,CAAC,EAAE,CAAC;YAEZ,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,IAAI,CAAC,KAAK,GAAG,GAAG,CAAC,CAAC;YAEvC,IAAI,CAAC,EAAE,GAAG,IAAI,GAAG,CAAC,CAAC;YACnB,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;QAE9B,CAAC;aAAM,IAAI,GAAG,GAAG,GAAG,IAAI,GAAG,GAAG,GAAG,EAAE,CAAC;YAEhC,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,IAAI,CAAC,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;YAEjD,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,GAAG,CAAC,CAAC;YACnB,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;QAE9B,CAAC;aAAM,IAAI,GAAG,GAAG,GAAG,EAAE,CAAC;YAEnB,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,IAAI,CAAC,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;YAEjD,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,GAAG,CAAC,CAAC;YACnB,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;QAE9B,CAAC;aAAM,CAAC;YAEJ,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,IAAI,CAAC,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;YAEjD,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,GAAG,CAAC,CAAC;QAEvB,CAAC;QAED,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,kBAAkB,CAAC,KAAK,EAAE,GAAG;QAEzB,yDAAyD;QAEzD,IAAI,CAAC,GAAG,KAAK,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;QAE3B,IAAI,CAAC,GAAG,MAAM,CAAC,OAAO,EAAE,CAAC;YAErB,6CAA6C;YAE7C,CAAC,GAAG,CAAC,CAAC;YAEN,IAAI,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC;gBAExC,IAAI,CAAC,EAAE,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC;gBACnB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,CAAC,CAAC;gBAClB,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;gBACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YAEhB,CAAC;iBAAM,CAAC;gBAEJ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;gBACZ,IAAI,CAAC,EAAE,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC;gBACnB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,CAAC,CAAC;gBAClB,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YAEhB,CAAC;QAEL,CAAC;aAAM,CAAC;YAEJ,+EAA+E;YAE/E,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;YAC5C,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;YAC5C,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;YAC5C,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QAEhB,CAAC;QAED,OAAO,IAAI,CAAC,SAAS,EAAE,CAAC;IAE5B,CAAC;IAED,eAAe;IAEf,iEAAiE;IAEjE,IAAI;IAEJ,aAAa,CAAC,CAAC,EAAE,IAAI;QAEjB,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC,CAAC;QAE9B,IAAI,KAAK,KAAK,CAAC;YAAE,OAAO,IAAI,CAAC;QAE7B,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,GAAG,KAAK,CAAC,CAAC;QAEpC,IAAI,CAAC,KAAK,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QAEjB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,QAAQ;QAEJ,OAAO,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;IAEhC,CAAC;IAED,MAAM;QAEF,4CAA4C;QAE5C,OAAO,IAAI,CAAC,SAAS,EAAE,CAAC;IAE5B,CAAC;IAED,SAAS;QAEL,IAAI,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;QAEd,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,GAAG,CAAC,CAAC;QAED,OAAO,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC;IAE7E,CAAC;IAED,QAAQ;QAEJ,OAAO,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC;IAEzF,CAAC;IAED,MAAM;QAEF,OAAO,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,CAAC;IAEpG,CAAC;IAED,SAAS;QAEL,IAAI,CAAC,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;QAEtB,IAAI,CAAC,KAAK,CAAC,EAAE,CAAC;YAEV,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QAEhB,CAAC;aAAM,CAAC;YAEJ,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;YAEV,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACtB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACtB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACtB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QAE1B,CAAC;QAED,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,QAAQ,CAAC,CAAC;QAEN,OAAO,IAAI,CAAC,mBAAmB,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC;IAE7C,CAAC;IAED,WAAW,CAAC,CAAC;QAET,OAAO,IAAI,CAAC,mBAAmB,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC;IAE7C,CAAC;IAED,mBAAmB,CAAC,CAAC,EAAE,CAAC;QAEpB,gGAAgG;QAEhG,MAAM,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,GAAG,GAAG,CAAC,CAAC,EAAE,CAAC;QACrD,MAAM,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,GAAG,GAAG,CAAC,CAAC,EAAE,CAAC;QAErD,IAAI,CAAC,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC;QACxD,IAAI,CAAC,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC;QACxD,IAAI,CAAC,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC;QACxD,IAAI,CAAC,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC;QAExD,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,KAAK,CAAC,EAAE,EAAE,CAAC;QAEP,IAAI,CAAC,KAAK,CAAC;YAAE,OAAO,IAAI,CAAC;QACzB,IAAI,CAAC,KAAK,CAAC;YAAE,OAAO,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;QAElC,MAAM,CAAC,GAAG,IAAI,CAAC,EAAE,EAAE,CAAC,GAAG,IAAI,CAAC,EAAE,EAAE,CAAC,GAAG,IAAI,CAAC,EAAE,EAAE,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAEzD,mFAAmF;QAEnF,IAAI,YAAY,GAAG,CAAC,GAAG,EAAE,CAAC,EAAE,GAAG,CAAC,GAAG,EAAE,CAAC,EAAE,GAAG,CAAC,GAAG,EAAE,CAAC,EAAE,GAAG,CAAC,GAAG,EAAE,CAAC,EAAE,CAAC;QAEjE,IAAI,YAAY,GAAG,CAAC,EAAE,CAAC;YAEnB,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC,EAAE,CAAC;YACjB,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC,EAAE,CAAC;YACjB,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC,EAAE,CAAC;YACjB,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC,EAAE,CAAC;YAEjB,YAAY,GAAG,CAAC,YAAY,CAAC;QAEjC,CAAC;aAAM,CAAC;YAEJ,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;QAElB,CAAC;QAED,IAAI,YAAY,IAAI,GAAG,EAAE,CAAC;YAEtB,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YAEZ,OAAO,IAAI,CAAC;QAEhB,CAAC;QAED,MAAM,eAAe,GAAG,GAAG,GAAG,YAAY,GAAG,YAAY,CAAC;QAE1D,IAAI,eAAe,IAAI,MAAM,CAAC,OAAO,EAAE,CAAC;YAEpC,MAAM,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;YAChB,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;YAC9B,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;YAC9B,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;YAC9B,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;YAE9B,IAAI,CAAC,SAAS,EAAE,CAAC,CAAC,sCAAsC;YAExD,OAAO,IAAI,CAAC;QAEhB,CAAC;QAED,MAAM,YAAY,GAAG,IAAI,CAAC,IAAI,CAAC,eAAe,CAAC,CAAC;QAChD,MAAM,SAAS,GAAG,IAAI,CAAC,KAAK,CAAC,YAAY,EAAE,YAAY,CAAC,CAAC;QACzD,MAAM,MAAM,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,SAAS,CAAC,GAAG,YAAY,EACvD,MAAM,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,SAAS,CAAC,GAAG,YAAY,CAAC;QAEpD,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,MAAM,GAAG,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QAC1C,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,MAAM,GAAG,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QAC1C,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,MAAM,GAAG,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QAC1C,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,MAAM,GAAG,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QAE1C,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,gBAAgB,CAAC,EAAE,EAAE,EAAE,EAAE,CAAC;QAEtB,OAAO,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,KAAK,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC;IAEtC,CAAC;IAED,MAAM;QAEF,4DAA4D;QAE5D,eAAe;QACf,2BAA2B;QAC3B,qFAAqF;QAErF,MAAM,MAAM,GAAG,CAAC,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;QAC3C,MAAM,MAAM,GAAG,CAAC,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;QAE3C,MAAM,EAAE,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;QACzB,MAAM,EAAE,GAAG,IAAI,CAAC,IAAI,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC;QAC7B,MAAM,EAAE,GAAG,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;QAEzB,OAAO,IAAI,CAAC,GAAG,CACX,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,MAAM,CAAC,EACrB,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,MAAM,CAAC,EACrB,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,MAAM,CAAC,EACrB,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,MAAM,CAAC,CACxB,CAAC;IAEN,CAAC;IAED,MAAM,CAAC,UAAU;QAEb,OAAO,CAAC,UAAU,CAAC,EAAE,KAAK,IAAI,CAAC,EAAE,CAAC,IAAI,CAAC,UAAU,CAAC,EAAE,KAAK,IAAI,CAAC,EAAE,CAAC,IAAI,CAAC,UAAU,CAAC,EAAE,KAAK,IAAI,CAAC,EAAE,CAAC,IAAI,CAAC,UAAU,CAAC,EAAE,KAAK,IAAI,CAAC,EAAE,CAAC,CAAC;IAEpI,CAAC;IAED,SAAS,CAAC,KAAK,EAAE,MAAM,GAAG,CAAC;QAEvB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC;QACxB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;QAC5B,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;QAC5B,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;QAE5B,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,OAAO,CAAC,KAAK,GAAG,EAAE,EAAE,MAAM,GAAG,CAAC;QAE1B,KAAK,CAAC,MAAM,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QACxB,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAC5B,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAC5B,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAE5B,OAAO,KAAK,CAAC;IAEjB,CAAC;IAED,mBAAmB,CAAC,SAAS,EAAE,KAAK;QAEhC,IAAI,CAAC,EAAE,GAAG,SAAS,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC;QAChC,IAAI,CAAC,EAAE,GAAG,SAAS,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC;QAChC,IAAI,CAAC,EAAE,GAAG,SAAS,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC;QAChC,IAAI,CAAC,EAAE,GAAG,SAAS,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC;QAEhC,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,MAAM;QAEF,OAAO,IAAI,CAAC,OAAO,EAAE,CAAC;IAE1B,CAAC;IAED,SAAS,CAAC,QAAQ;QAEd,IAAI,CAAC,iBAAiB,GAAG,QAAQ,CAAC;QAElC,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,iBAAiB,KAAK,CAAC;CAW1B;AAED,OAAO,EAAE,UAAU,EAAE,CAAC"}
@@ -0,0 +1,42 @@
1
+ export class Vector3 {
2
+ constructor(x?: number, y?: number, z?: number);
3
+ x: number;
4
+ y: number;
5
+ z: number;
6
+ set(x: any, y: any, z: any): this;
7
+ clone(): any;
8
+ copy(v: any): this;
9
+ add(v: any): this;
10
+ addScalar(s: any): this;
11
+ addVectors(a: any, b: any): this;
12
+ addScaledVector(v: any, s: any): this;
13
+ sub(v: any): this;
14
+ subScalar(s: any): this;
15
+ subVectors(a: any, b: any): this;
16
+ multiply(v: any): this;
17
+ multiplyScalar(scalar: any): this;
18
+ multiplyVectors(a: any, b: any): this;
19
+ applyAxisAngle(axis: any, angle: any): this;
20
+ applyMatrix4(m: any): this;
21
+ applyQuaternion(q: any): this;
22
+ divide(v: any): this;
23
+ divideScalar(scalar: any): this;
24
+ min(v: any): this;
25
+ max(v: any): this;
26
+ clamp(min: any, max: any): this;
27
+ clampScalar(minVal: any, maxVal: any): this;
28
+ clampLength(min: any, max: any): this;
29
+ dot(v: any): number;
30
+ lengthSq(): number;
31
+ length(): number;
32
+ normalize(): this;
33
+ setLength(length: any): this;
34
+ lerp(v: any, alpha: any): this;
35
+ lerpVectors(v1: any, v2: any, alpha: any): this;
36
+ cross(v: any): this;
37
+ crossVectors(a: any, b: any): this;
38
+ distanceTo(v: any): number;
39
+ equals(v: any): boolean;
40
+ fromArray(array: any, offset?: number): this;
41
+ random(): this;
42
+ }