poly-extrude 0.13.0 → 0.14.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/cylinder.d.ts +11 -0
- package/{src → dist}/cylinder.js +108 -111
- package/dist/cylinder.js.map +1 -0
- package/dist/index.d.ts +7 -0
- package/dist/index.js +8 -0
- package/dist/index.js.map +1 -0
- package/dist/math/Curve.d.ts +41 -0
- package/dist/math/Curve.js +142 -0
- package/dist/math/Curve.js.map +1 -0
- package/dist/math/Interpolations.d.ts +8 -0
- package/dist/math/Interpolations.js +48 -0
- package/dist/math/Interpolations.js.map +1 -0
- package/dist/math/Matrix4.d.ts +8 -0
- package/dist/math/Matrix4.js +582 -0
- package/dist/math/Matrix4.js.map +1 -0
- package/dist/math/QuadraticBezierCurve3.d.ts +10 -0
- package/dist/math/QuadraticBezierCurve3.js +22 -0
- package/dist/math/QuadraticBezierCurve3.js.map +1 -0
- package/dist/math/Quaternion.d.ts +46 -0
- package/dist/math/Quaternion.js +415 -0
- package/dist/math/Quaternion.js.map +1 -0
- package/dist/math/Vector3.d.ts +42 -0
- package/dist/math/Vector3.js +403 -0
- package/dist/math/Vector3.js.map +1 -0
- package/dist/path/PathPoint.d.ts +15 -0
- package/dist/path/PathPoint.js +35 -0
- package/dist/path/PathPoint.js.map +1 -0
- package/dist/path/PathPointList.d.ts +27 -0
- package/dist/path/PathPointList.js +212 -0
- package/dist/path/PathPointList.js.map +1 -0
- package/dist/path.d.ts +11 -0
- package/{src → dist}/path.js +334 -360
- package/dist/path.js.map +1 -0
- package/dist/plane.d.ts +2 -0
- package/{src → dist}/plane.js +57 -58
- package/dist/plane.js.map +1 -0
- package/dist/poly-extrude.js +1286 -1581
- package/dist/poly-extrude.js.map +1 -1
- package/dist/poly-extrude.min.js +2 -2
- package/dist/poly-extrude.mjs +1286 -1581
- package/dist/poly-extrude.mjs.map +1 -0
- package/dist/polygon.d.ts +9 -0
- package/{src → dist}/polygon.js +163 -179
- package/dist/polygon.js.map +1 -0
- package/dist/polyline.d.ts +24 -0
- package/{src → dist}/polyline.js +420 -456
- package/dist/polyline.js.map +1 -0
- package/dist/tube.d.ts +12 -0
- package/{src → dist}/tube.js +124 -142
- package/dist/tube.js.map +1 -0
- package/dist/type.d.ts +9 -0
- package/dist/type.js +2 -0
- package/dist/type.js.map +1 -0
- package/dist/util.d.ts +20 -0
- package/dist/util.js +217 -0
- package/dist/util.js.map +1 -0
- package/package.json +53 -48
- package/readme.md +12 -2
- package/src/cylinder.ts +124 -0
- package/src/index.ts +7 -0
- package/src/path.ts +385 -0
- package/src/plane.ts +60 -0
- package/src/polygon.ts +189 -0
- package/src/polyline.ts +473 -0
- package/src/tube.ts +155 -0
- package/src/type.ts +9 -0
- package/src/{util.js → util.ts} +1 -1
- package/index.js +0 -7
@@ -0,0 +1,46 @@
|
|
1
|
+
export class Quaternion {
|
2
|
+
static slerpFlat(dst: any, dstOffset: any, src0: any, srcOffset0: any, src1: any, srcOffset1: any, t: any): void;
|
3
|
+
static multiplyQuaternionsFlat(dst: any, dstOffset: any, src0: any, srcOffset0: any, src1: any, srcOffset1: any): any;
|
4
|
+
constructor(x?: number, y?: number, z?: number, w?: number);
|
5
|
+
isQuaternion: boolean;
|
6
|
+
_x: number;
|
7
|
+
_y: number;
|
8
|
+
_z: number;
|
9
|
+
_w: number;
|
10
|
+
set x(value: number);
|
11
|
+
get x(): number;
|
12
|
+
set y(value: number);
|
13
|
+
get y(): number;
|
14
|
+
set z(value: number);
|
15
|
+
get z(): number;
|
16
|
+
set w(value: number);
|
17
|
+
get w(): number;
|
18
|
+
set(x: any, y: any, z: any, w: any): this;
|
19
|
+
clone(): any;
|
20
|
+
copy(quaternion: any): this;
|
21
|
+
setFromEuler(euler: any, update?: boolean): this;
|
22
|
+
setFromAxisAngle(axis: any, angle: any): this;
|
23
|
+
setFromRotationMatrix(m: any): this;
|
24
|
+
setFromUnitVectors(vFrom: any, vTo: any): this;
|
25
|
+
rotateTowards(q: any, step: any): this;
|
26
|
+
identity(): this;
|
27
|
+
invert(): this;
|
28
|
+
conjugate(): this;
|
29
|
+
dot(v: any): number;
|
30
|
+
lengthSq(): number;
|
31
|
+
length(): number;
|
32
|
+
normalize(): this;
|
33
|
+
multiply(q: any): this;
|
34
|
+
premultiply(q: any): this;
|
35
|
+
multiplyQuaternions(a: any, b: any): this;
|
36
|
+
slerp(qb: any, t: any): this;
|
37
|
+
slerpQuaternions(qa: any, qb: any, t: any): this;
|
38
|
+
random(): this;
|
39
|
+
equals(quaternion: any): boolean;
|
40
|
+
fromArray(array: any, offset?: number): this;
|
41
|
+
toArray(array?: any[], offset?: number): any[];
|
42
|
+
fromBufferAttribute(attribute: any, index: any): this;
|
43
|
+
toJSON(): any[];
|
44
|
+
_onChange(callback: any): this;
|
45
|
+
_onChangeCallback(): void;
|
46
|
+
}
|
@@ -0,0 +1,415 @@
|
|
1
|
+
// code copy from https://github.com/mrdoob/three.js/blob/dev/src/math/Quaternion.js
|
2
|
+
// import { clamp } from './MathUtils.js';
|
3
|
+
class Quaternion {
|
4
|
+
constructor(x = 0, y = 0, z = 0, w = 1) {
|
5
|
+
this.isQuaternion = true;
|
6
|
+
this._x = x;
|
7
|
+
this._y = y;
|
8
|
+
this._z = z;
|
9
|
+
this._w = w;
|
10
|
+
}
|
11
|
+
static slerpFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t) {
|
12
|
+
// fuzz-free, array-based Quaternion SLERP operation
|
13
|
+
let x0 = src0[srcOffset0 + 0], y0 = src0[srcOffset0 + 1], z0 = src0[srcOffset0 + 2], w0 = src0[srcOffset0 + 3];
|
14
|
+
const x1 = src1[srcOffset1 + 0], y1 = src1[srcOffset1 + 1], z1 = src1[srcOffset1 + 2], w1 = src1[srcOffset1 + 3];
|
15
|
+
if (t === 0) {
|
16
|
+
dst[dstOffset + 0] = x0;
|
17
|
+
dst[dstOffset + 1] = y0;
|
18
|
+
dst[dstOffset + 2] = z0;
|
19
|
+
dst[dstOffset + 3] = w0;
|
20
|
+
return;
|
21
|
+
}
|
22
|
+
if (t === 1) {
|
23
|
+
dst[dstOffset + 0] = x1;
|
24
|
+
dst[dstOffset + 1] = y1;
|
25
|
+
dst[dstOffset + 2] = z1;
|
26
|
+
dst[dstOffset + 3] = w1;
|
27
|
+
return;
|
28
|
+
}
|
29
|
+
if (w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1) {
|
30
|
+
let s = 1 - t;
|
31
|
+
const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, dir = (cos >= 0 ? 1 : -1), sqrSin = 1 - cos * cos;
|
32
|
+
// Skip the Slerp for tiny steps to avoid numeric problems:
|
33
|
+
if (sqrSin > Number.EPSILON) {
|
34
|
+
const sin = Math.sqrt(sqrSin), len = Math.atan2(sin, cos * dir);
|
35
|
+
s = Math.sin(s * len) / sin;
|
36
|
+
t = Math.sin(t * len) / sin;
|
37
|
+
}
|
38
|
+
const tDir = t * dir;
|
39
|
+
x0 = x0 * s + x1 * tDir;
|
40
|
+
y0 = y0 * s + y1 * tDir;
|
41
|
+
z0 = z0 * s + z1 * tDir;
|
42
|
+
w0 = w0 * s + w1 * tDir;
|
43
|
+
// Normalize in case we just did a lerp:
|
44
|
+
if (s === 1 - t) {
|
45
|
+
const f = 1 / Math.sqrt(x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0);
|
46
|
+
x0 *= f;
|
47
|
+
y0 *= f;
|
48
|
+
z0 *= f;
|
49
|
+
w0 *= f;
|
50
|
+
}
|
51
|
+
}
|
52
|
+
dst[dstOffset] = x0;
|
53
|
+
dst[dstOffset + 1] = y0;
|
54
|
+
dst[dstOffset + 2] = z0;
|
55
|
+
dst[dstOffset + 3] = w0;
|
56
|
+
}
|
57
|
+
static multiplyQuaternionsFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1) {
|
58
|
+
const x0 = src0[srcOffset0];
|
59
|
+
const y0 = src0[srcOffset0 + 1];
|
60
|
+
const z0 = src0[srcOffset0 + 2];
|
61
|
+
const w0 = src0[srcOffset0 + 3];
|
62
|
+
const x1 = src1[srcOffset1];
|
63
|
+
const y1 = src1[srcOffset1 + 1];
|
64
|
+
const z1 = src1[srcOffset1 + 2];
|
65
|
+
const w1 = src1[srcOffset1 + 3];
|
66
|
+
dst[dstOffset] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1;
|
67
|
+
dst[dstOffset + 1] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1;
|
68
|
+
dst[dstOffset + 2] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1;
|
69
|
+
dst[dstOffset + 3] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1;
|
70
|
+
return dst;
|
71
|
+
}
|
72
|
+
get x() {
|
73
|
+
return this._x;
|
74
|
+
}
|
75
|
+
set x(value) {
|
76
|
+
this._x = value;
|
77
|
+
this._onChangeCallback();
|
78
|
+
}
|
79
|
+
get y() {
|
80
|
+
return this._y;
|
81
|
+
}
|
82
|
+
set y(value) {
|
83
|
+
this._y = value;
|
84
|
+
this._onChangeCallback();
|
85
|
+
}
|
86
|
+
get z() {
|
87
|
+
return this._z;
|
88
|
+
}
|
89
|
+
set z(value) {
|
90
|
+
this._z = value;
|
91
|
+
this._onChangeCallback();
|
92
|
+
}
|
93
|
+
get w() {
|
94
|
+
return this._w;
|
95
|
+
}
|
96
|
+
set w(value) {
|
97
|
+
this._w = value;
|
98
|
+
this._onChangeCallback();
|
99
|
+
}
|
100
|
+
set(x, y, z, w) {
|
101
|
+
this._x = x;
|
102
|
+
this._y = y;
|
103
|
+
this._z = z;
|
104
|
+
this._w = w;
|
105
|
+
this._onChangeCallback();
|
106
|
+
return this;
|
107
|
+
}
|
108
|
+
clone() {
|
109
|
+
return new this.constructor(this._x, this._y, this._z, this._w);
|
110
|
+
}
|
111
|
+
copy(quaternion) {
|
112
|
+
this._x = quaternion.x;
|
113
|
+
this._y = quaternion.y;
|
114
|
+
this._z = quaternion.z;
|
115
|
+
this._w = quaternion.w;
|
116
|
+
this._onChangeCallback();
|
117
|
+
return this;
|
118
|
+
}
|
119
|
+
setFromEuler(euler, update = true) {
|
120
|
+
const x = euler._x, y = euler._y, z = euler._z, order = euler._order;
|
121
|
+
// http://www.mathworks.com/matlabcentral/fileexchange/
|
122
|
+
// 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
|
123
|
+
// content/SpinCalc.m
|
124
|
+
const cos = Math.cos;
|
125
|
+
const sin = Math.sin;
|
126
|
+
const c1 = cos(x / 2);
|
127
|
+
const c2 = cos(y / 2);
|
128
|
+
const c3 = cos(z / 2);
|
129
|
+
const s1 = sin(x / 2);
|
130
|
+
const s2 = sin(y / 2);
|
131
|
+
const s3 = sin(z / 2);
|
132
|
+
switch (order) {
|
133
|
+
case 'XYZ':
|
134
|
+
this._x = s1 * c2 * c3 + c1 * s2 * s3;
|
135
|
+
this._y = c1 * s2 * c3 - s1 * c2 * s3;
|
136
|
+
this._z = c1 * c2 * s3 + s1 * s2 * c3;
|
137
|
+
this._w = c1 * c2 * c3 - s1 * s2 * s3;
|
138
|
+
break;
|
139
|
+
case 'YXZ':
|
140
|
+
this._x = s1 * c2 * c3 + c1 * s2 * s3;
|
141
|
+
this._y = c1 * s2 * c3 - s1 * c2 * s3;
|
142
|
+
this._z = c1 * c2 * s3 - s1 * s2 * c3;
|
143
|
+
this._w = c1 * c2 * c3 + s1 * s2 * s3;
|
144
|
+
break;
|
145
|
+
case 'ZXY':
|
146
|
+
this._x = s1 * c2 * c3 - c1 * s2 * s3;
|
147
|
+
this._y = c1 * s2 * c3 + s1 * c2 * s3;
|
148
|
+
this._z = c1 * c2 * s3 + s1 * s2 * c3;
|
149
|
+
this._w = c1 * c2 * c3 - s1 * s2 * s3;
|
150
|
+
break;
|
151
|
+
case 'ZYX':
|
152
|
+
this._x = s1 * c2 * c3 - c1 * s2 * s3;
|
153
|
+
this._y = c1 * s2 * c3 + s1 * c2 * s3;
|
154
|
+
this._z = c1 * c2 * s3 - s1 * s2 * c3;
|
155
|
+
this._w = c1 * c2 * c3 + s1 * s2 * s3;
|
156
|
+
break;
|
157
|
+
case 'YZX':
|
158
|
+
this._x = s1 * c2 * c3 + c1 * s2 * s3;
|
159
|
+
this._y = c1 * s2 * c3 + s1 * c2 * s3;
|
160
|
+
this._z = c1 * c2 * s3 - s1 * s2 * c3;
|
161
|
+
this._w = c1 * c2 * c3 - s1 * s2 * s3;
|
162
|
+
break;
|
163
|
+
case 'XZY':
|
164
|
+
this._x = s1 * c2 * c3 - c1 * s2 * s3;
|
165
|
+
this._y = c1 * s2 * c3 - s1 * c2 * s3;
|
166
|
+
this._z = c1 * c2 * s3 + s1 * s2 * c3;
|
167
|
+
this._w = c1 * c2 * c3 + s1 * s2 * s3;
|
168
|
+
break;
|
169
|
+
default:
|
170
|
+
console.warn('THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order);
|
171
|
+
}
|
172
|
+
if (update === true)
|
173
|
+
this._onChangeCallback();
|
174
|
+
return this;
|
175
|
+
}
|
176
|
+
setFromAxisAngle(axis, angle) {
|
177
|
+
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
|
178
|
+
// assumes axis is normalized
|
179
|
+
const halfAngle = angle / 2, s = Math.sin(halfAngle);
|
180
|
+
this._x = axis.x * s;
|
181
|
+
this._y = axis.y * s;
|
182
|
+
this._z = axis.z * s;
|
183
|
+
this._w = Math.cos(halfAngle);
|
184
|
+
this._onChangeCallback();
|
185
|
+
return this;
|
186
|
+
}
|
187
|
+
setFromRotationMatrix(m) {
|
188
|
+
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
|
189
|
+
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
|
190
|
+
const te = m.elements, m11 = te[0], m12 = te[4], m13 = te[8], m21 = te[1], m22 = te[5], m23 = te[9], m31 = te[2], m32 = te[6], m33 = te[10], trace = m11 + m22 + m33;
|
191
|
+
if (trace > 0) {
|
192
|
+
const s = 0.5 / Math.sqrt(trace + 1.0);
|
193
|
+
this._w = 0.25 / s;
|
194
|
+
this._x = (m32 - m23) * s;
|
195
|
+
this._y = (m13 - m31) * s;
|
196
|
+
this._z = (m21 - m12) * s;
|
197
|
+
}
|
198
|
+
else if (m11 > m22 && m11 > m33) {
|
199
|
+
const s = 2.0 * Math.sqrt(1.0 + m11 - m22 - m33);
|
200
|
+
this._w = (m32 - m23) / s;
|
201
|
+
this._x = 0.25 * s;
|
202
|
+
this._y = (m12 + m21) / s;
|
203
|
+
this._z = (m13 + m31) / s;
|
204
|
+
}
|
205
|
+
else if (m22 > m33) {
|
206
|
+
const s = 2.0 * Math.sqrt(1.0 + m22 - m11 - m33);
|
207
|
+
this._w = (m13 - m31) / s;
|
208
|
+
this._x = (m12 + m21) / s;
|
209
|
+
this._y = 0.25 * s;
|
210
|
+
this._z = (m23 + m32) / s;
|
211
|
+
}
|
212
|
+
else {
|
213
|
+
const s = 2.0 * Math.sqrt(1.0 + m33 - m11 - m22);
|
214
|
+
this._w = (m21 - m12) / s;
|
215
|
+
this._x = (m13 + m31) / s;
|
216
|
+
this._y = (m23 + m32) / s;
|
217
|
+
this._z = 0.25 * s;
|
218
|
+
}
|
219
|
+
this._onChangeCallback();
|
220
|
+
return this;
|
221
|
+
}
|
222
|
+
setFromUnitVectors(vFrom, vTo) {
|
223
|
+
// assumes direction vectors vFrom and vTo are normalized
|
224
|
+
let r = vFrom.dot(vTo) + 1;
|
225
|
+
if (r < Number.EPSILON) {
|
226
|
+
// vFrom and vTo point in opposite directions
|
227
|
+
r = 0;
|
228
|
+
if (Math.abs(vFrom.x) > Math.abs(vFrom.z)) {
|
229
|
+
this._x = -vFrom.y;
|
230
|
+
this._y = vFrom.x;
|
231
|
+
this._z = 0;
|
232
|
+
this._w = r;
|
233
|
+
}
|
234
|
+
else {
|
235
|
+
this._x = 0;
|
236
|
+
this._y = -vFrom.z;
|
237
|
+
this._z = vFrom.y;
|
238
|
+
this._w = r;
|
239
|
+
}
|
240
|
+
}
|
241
|
+
else {
|
242
|
+
// crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
|
243
|
+
this._x = vFrom.y * vTo.z - vFrom.z * vTo.y;
|
244
|
+
this._y = vFrom.z * vTo.x - vFrom.x * vTo.z;
|
245
|
+
this._z = vFrom.x * vTo.y - vFrom.y * vTo.x;
|
246
|
+
this._w = r;
|
247
|
+
}
|
248
|
+
return this.normalize();
|
249
|
+
}
|
250
|
+
// angleTo(q) {
|
251
|
+
// return 2 * Math.acos(Math.abs(clamp(this.dot(q), -1, 1)));
|
252
|
+
// }
|
253
|
+
rotateTowards(q, step) {
|
254
|
+
const angle = this.angleTo(q);
|
255
|
+
if (angle === 0)
|
256
|
+
return this;
|
257
|
+
const t = Math.min(1, step / angle);
|
258
|
+
this.slerp(q, t);
|
259
|
+
return this;
|
260
|
+
}
|
261
|
+
identity() {
|
262
|
+
return this.set(0, 0, 0, 1);
|
263
|
+
}
|
264
|
+
invert() {
|
265
|
+
// quaternion is assumed to have unit length
|
266
|
+
return this.conjugate();
|
267
|
+
}
|
268
|
+
conjugate() {
|
269
|
+
this._x *= -1;
|
270
|
+
this._y *= -1;
|
271
|
+
this._z *= -1;
|
272
|
+
this._onChangeCallback();
|
273
|
+
return this;
|
274
|
+
}
|
275
|
+
dot(v) {
|
276
|
+
return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
|
277
|
+
}
|
278
|
+
lengthSq() {
|
279
|
+
return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
|
280
|
+
}
|
281
|
+
length() {
|
282
|
+
return Math.sqrt(this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w);
|
283
|
+
}
|
284
|
+
normalize() {
|
285
|
+
let l = this.length();
|
286
|
+
if (l === 0) {
|
287
|
+
this._x = 0;
|
288
|
+
this._y = 0;
|
289
|
+
this._z = 0;
|
290
|
+
this._w = 1;
|
291
|
+
}
|
292
|
+
else {
|
293
|
+
l = 1 / l;
|
294
|
+
this._x = this._x * l;
|
295
|
+
this._y = this._y * l;
|
296
|
+
this._z = this._z * l;
|
297
|
+
this._w = this._w * l;
|
298
|
+
}
|
299
|
+
this._onChangeCallback();
|
300
|
+
return this;
|
301
|
+
}
|
302
|
+
multiply(q) {
|
303
|
+
return this.multiplyQuaternions(this, q);
|
304
|
+
}
|
305
|
+
premultiply(q) {
|
306
|
+
return this.multiplyQuaternions(q, this);
|
307
|
+
}
|
308
|
+
multiplyQuaternions(a, b) {
|
309
|
+
// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
|
310
|
+
const qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
|
311
|
+
const qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;
|
312
|
+
this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
|
313
|
+
this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
|
314
|
+
this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
|
315
|
+
this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
|
316
|
+
this._onChangeCallback();
|
317
|
+
return this;
|
318
|
+
}
|
319
|
+
slerp(qb, t) {
|
320
|
+
if (t === 0)
|
321
|
+
return this;
|
322
|
+
if (t === 1)
|
323
|
+
return this.copy(qb);
|
324
|
+
const x = this._x, y = this._y, z = this._z, w = this._w;
|
325
|
+
// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
|
326
|
+
let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
|
327
|
+
if (cosHalfTheta < 0) {
|
328
|
+
this._w = -qb._w;
|
329
|
+
this._x = -qb._x;
|
330
|
+
this._y = -qb._y;
|
331
|
+
this._z = -qb._z;
|
332
|
+
cosHalfTheta = -cosHalfTheta;
|
333
|
+
}
|
334
|
+
else {
|
335
|
+
this.copy(qb);
|
336
|
+
}
|
337
|
+
if (cosHalfTheta >= 1.0) {
|
338
|
+
this._w = w;
|
339
|
+
this._x = x;
|
340
|
+
this._y = y;
|
341
|
+
this._z = z;
|
342
|
+
return this;
|
343
|
+
}
|
344
|
+
const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;
|
345
|
+
if (sqrSinHalfTheta <= Number.EPSILON) {
|
346
|
+
const s = 1 - t;
|
347
|
+
this._w = s * w + t * this._w;
|
348
|
+
this._x = s * x + t * this._x;
|
349
|
+
this._y = s * y + t * this._y;
|
350
|
+
this._z = s * z + t * this._z;
|
351
|
+
this.normalize(); // normalize calls _onChangeCallback()
|
352
|
+
return this;
|
353
|
+
}
|
354
|
+
const sinHalfTheta = Math.sqrt(sqrSinHalfTheta);
|
355
|
+
const halfTheta = Math.atan2(sinHalfTheta, cosHalfTheta);
|
356
|
+
const ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta, ratioB = Math.sin(t * halfTheta) / sinHalfTheta;
|
357
|
+
this._w = (w * ratioA + this._w * ratioB);
|
358
|
+
this._x = (x * ratioA + this._x * ratioB);
|
359
|
+
this._y = (y * ratioA + this._y * ratioB);
|
360
|
+
this._z = (z * ratioA + this._z * ratioB);
|
361
|
+
this._onChangeCallback();
|
362
|
+
return this;
|
363
|
+
}
|
364
|
+
slerpQuaternions(qa, qb, t) {
|
365
|
+
return this.copy(qa).slerp(qb, t);
|
366
|
+
}
|
367
|
+
random() {
|
368
|
+
// sets this quaternion to a uniform random unit quaternnion
|
369
|
+
// Ken Shoemake
|
370
|
+
// Uniform random rotations
|
371
|
+
// D. Kirk, editor, Graphics Gems III, pages 124-132. Academic Press, New York, 1992.
|
372
|
+
const theta1 = 2 * Math.PI * Math.random();
|
373
|
+
const theta2 = 2 * Math.PI * Math.random();
|
374
|
+
const x0 = Math.random();
|
375
|
+
const r1 = Math.sqrt(1 - x0);
|
376
|
+
const r2 = Math.sqrt(x0);
|
377
|
+
return this.set(r1 * Math.sin(theta1), r1 * Math.cos(theta1), r2 * Math.sin(theta2), r2 * Math.cos(theta2));
|
378
|
+
}
|
379
|
+
equals(quaternion) {
|
380
|
+
return (quaternion._x === this._x) && (quaternion._y === this._y) && (quaternion._z === this._z) && (quaternion._w === this._w);
|
381
|
+
}
|
382
|
+
fromArray(array, offset = 0) {
|
383
|
+
this._x = array[offset];
|
384
|
+
this._y = array[offset + 1];
|
385
|
+
this._z = array[offset + 2];
|
386
|
+
this._w = array[offset + 3];
|
387
|
+
this._onChangeCallback();
|
388
|
+
return this;
|
389
|
+
}
|
390
|
+
toArray(array = [], offset = 0) {
|
391
|
+
array[offset] = this._x;
|
392
|
+
array[offset + 1] = this._y;
|
393
|
+
array[offset + 2] = this._z;
|
394
|
+
array[offset + 3] = this._w;
|
395
|
+
return array;
|
396
|
+
}
|
397
|
+
fromBufferAttribute(attribute, index) {
|
398
|
+
this._x = attribute.getX(index);
|
399
|
+
this._y = attribute.getY(index);
|
400
|
+
this._z = attribute.getZ(index);
|
401
|
+
this._w = attribute.getW(index);
|
402
|
+
this._onChangeCallback();
|
403
|
+
return this;
|
404
|
+
}
|
405
|
+
toJSON() {
|
406
|
+
return this.toArray();
|
407
|
+
}
|
408
|
+
_onChange(callback) {
|
409
|
+
this._onChangeCallback = callback;
|
410
|
+
return this;
|
411
|
+
}
|
412
|
+
_onChangeCallback() { }
|
413
|
+
}
|
414
|
+
export { Quaternion };
|
415
|
+
//# sourceMappingURL=Quaternion.js.map
|
@@ -0,0 +1 @@
|
|
1
|
+
{"version":3,"file":"Quaternion.js","sourceRoot":"","sources":["../../src/math/Quaternion.js"],"names":[],"mappings":"AAAA,oFAAoF;AAEpF,0CAA0C;AAE1C,MAAM,UAAU;IAEZ,YAAY,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC;QAElC,IAAI,CAAC,YAAY,GAAG,IAAI,CAAC;QAEzB,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;IAEhB,CAAC;IAED,MAAM,CAAC,SAAS,CAAC,GAAG,EAAE,SAAS,EAAE,IAAI,EAAE,UAAU,EAAE,IAAI,EAAE,UAAU,EAAE,CAAC;QAElE,oDAAoD;QAEpD,IAAI,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,EACzB,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,EACzB,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,EACzB,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QAE9B,MAAM,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,EAC3B,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,EACzB,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,EACzB,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QAE9B,IAAI,CAAC,KAAK,CAAC,EAAE,CAAC;YAEV,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;YACxB,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;YACxB,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;YACxB,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;YACxB,OAAO;QAEX,CAAC;QAED,IAAI,CAAC,KAAK,CAAC,EAAE,CAAC;YAEV,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;YACxB,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;YACxB,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;YACxB,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;YACxB,OAAO;QAEX,CAAC;QAED,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,KAAK,EAAE,EAAE,CAAC;YAEnD,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;YACd,MAAM,GAAG,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,EAC7C,GAAG,GAAG,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EACzB,MAAM,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC;YAE3B,2DAA2D;YAC3D,IAAI,MAAM,GAAG,MAAM,CAAC,OAAO,EAAE,CAAC;gBAE1B,MAAM,GAAG,GAAG,IAAI,CAAC,IAAI,CAAC,MAAM,CAAC,EACzB,GAAG,GAAG,IAAI,CAAC,KAAK,CAAC,GAAG,EAAE,GAAG,GAAG,GAAG,CAAC,CAAC;gBAErC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,GAAG,CAAC;gBAC5B,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,GAAG,CAAC;YAEhC,CAAC;YAED,MAAM,IAAI,GAAG,CAAC,GAAG,GAAG,CAAC;YAErB,EAAE,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,IAAI,CAAC;YACxB,EAAE,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,IAAI,CAAC;YACxB,EAAE,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,IAAI,CAAC;YACxB,EAAE,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,IAAI,CAAC;YAExB,wCAAwC;YACxC,IAAI,CAAC,KAAK,CAAC,GAAG,CAAC,EAAE,CAAC;gBAEd,MAAM,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC,CAAC;gBAE/D,EAAE,IAAI,CAAC,CAAC;gBACR,EAAE,IAAI,CAAC,CAAC;gBACR,EAAE,IAAI,CAAC,CAAC;gBACR,EAAE,IAAI,CAAC,CAAC;YAEZ,CAAC;QAEL,CAAC;QAED,GAAG,CAAC,SAAS,CAAC,GAAG,EAAE,CAAC;QACpB,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;QACxB,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;QACxB,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC;IAE5B,CAAC;IAED,MAAM,CAAC,uBAAuB,CAAC,GAAG,EAAE,SAAS,EAAE,IAAI,EAAE,UAAU,EAAE,IAAI,EAAE,UAAU;QAE7E,MAAM,EAAE,GAAG,IAAI,CAAC,UAAU,CAAC,CAAC;QAC5B,MAAM,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QAChC,MAAM,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QAChC,MAAM,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QAEhC,MAAM,EAAE,GAAG,IAAI,CAAC,UAAU,CAAC,CAAC;QAC5B,MAAM,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QAChC,MAAM,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QAChC,MAAM,EAAE,GAAG,IAAI,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QAEhC,GAAG,CAAC,SAAS,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;QACvD,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;QAC3D,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;QAC3D,GAAG,CAAC,SAAS,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;QAE3D,OAAO,GAAG,CAAC;IAEf,CAAC;IAED,IAAI,CAAC;QAED,OAAO,IAAI,CAAC,EAAE,CAAC;IAEnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAK;QAEP,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;QAChB,IAAI,CAAC,iBAAiB,EAAE,CAAC;IAE7B,CAAC;IAED,IAAI,CAAC;QAED,OAAO,IAAI,CAAC,EAAE,CAAC;IAEnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAK;QAEP,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;QAChB,IAAI,CAAC,iBAAiB,EAAE,CAAC;IAE7B,CAAC;IAED,IAAI,CAAC;QAED,OAAO,IAAI,CAAC,EAAE,CAAC;IAEnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAK;QAEP,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;QAChB,IAAI,CAAC,iBAAiB,EAAE,CAAC;IAE7B,CAAC;IAED,IAAI,CAAC;QAED,OAAO,IAAI,CAAC,EAAE,CAAC;IAEnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAK;QAEP,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;QAChB,IAAI,CAAC,iBAAiB,EAAE,CAAC;IAE7B,CAAC;IAED,GAAG,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC;QAEV,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QAEZ,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,KAAK;QAED,OAAO,IAAI,IAAI,CAAC,WAAW,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC;IAEpE,CAAC;IAED,IAAI,CAAC,UAAU;QAEX,IAAI,CAAC,EAAE,GAAG,UAAU,CAAC,CAAC,CAAC;QACvB,IAAI,CAAC,EAAE,GAAG,UAAU,CAAC,CAAC,CAAC;QACvB,IAAI,CAAC,EAAE,GAAG,UAAU,CAAC,CAAC,CAAC;QACvB,IAAI,CAAC,EAAE,GAAG,UAAU,CAAC,CAAC,CAAC;QAEvB,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,YAAY,CAAC,KAAK,EAAE,MAAM,GAAG,IAAI;QAE7B,MAAM,CAAC,GAAG,KAAK,CAAC,EAAE,EAAE,CAAC,GAAG,KAAK,CAAC,EAAE,EAAE,CAAC,GAAG,KAAK,CAAC,EAAE,EAAE,KAAK,GAAG,KAAK,CAAC,MAAM,CAAC;QAErE,uDAAuD;QACvD,oFAAoF;QACpF,qBAAqB;QAErB,MAAM,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC;QACrB,MAAM,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC;QAErB,MAAM,EAAE,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QACtB,MAAM,EAAE,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QACtB,MAAM,EAAE,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QAEtB,MAAM,EAAE,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QACtB,MAAM,EAAE,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QACtB,MAAM,EAAE,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QAEtB,QAAQ,KAAK,EAAE,CAAC;YAEZ,KAAK,KAAK;gBACN,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,MAAM;YAEV,KAAK,KAAK;gBACN,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,MAAM;YAEV,KAAK,KAAK;gBACN,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,MAAM;YAEV,KAAK,KAAK;gBACN,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,MAAM;YAEV,KAAK,KAAK;gBACN,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,MAAM;YAEV,KAAK,KAAK;gBACN,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;gBACtC,MAAM;YAEV;gBACI,OAAO,CAAC,IAAI,CAAC,kEAAkE,GAAG,KAAK,CAAC,CAAC;QAEjG,CAAC;QAED,IAAI,MAAM,KAAK,IAAI;YAAE,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAE9C,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,gBAAgB,CAAC,IAAI,EAAE,KAAK;QAExB,iGAAiG;QAEjG,6BAA6B;QAE7B,MAAM,SAAS,GAAG,KAAK,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,SAAS,CAAC,CAAC;QAErD,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC;QACrB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC;QACrB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC;QACrB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,SAAS,CAAC,CAAC;QAE9B,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,qBAAqB,CAAC,CAAC;QAEnB,kGAAkG;QAElG,uEAAuE;QAEvE,MAAM,EAAE,GAAG,CAAC,CAAC,QAAQ,EAEjB,GAAG,GAAG,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,GAAG,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,GAAG,EAAE,CAAC,CAAC,CAAC,EACrC,GAAG,GAAG,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,GAAG,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,GAAG,EAAE,CAAC,CAAC,CAAC,EACrC,GAAG,GAAG,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,GAAG,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,GAAG,EAAE,CAAC,EAAE,CAAC,EAEtC,KAAK,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC;QAE5B,IAAI,KAAK,GAAG,CAAC,EAAE,CAAC;YAEZ,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,IAAI,CAAC,KAAK,GAAG,GAAG,CAAC,CAAC;YAEvC,IAAI,CAAC,EAAE,GAAG,IAAI,GAAG,CAAC,CAAC;YACnB,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;QAE9B,CAAC;aAAM,IAAI,GAAG,GAAG,GAAG,IAAI,GAAG,GAAG,GAAG,EAAE,CAAC;YAEhC,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,IAAI,CAAC,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;YAEjD,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,GAAG,CAAC,CAAC;YACnB,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;QAE9B,CAAC;aAAM,IAAI,GAAG,GAAG,GAAG,EAAE,CAAC;YAEnB,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,IAAI,CAAC,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;YAEjD,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,GAAG,CAAC,CAAC;YACnB,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;QAE9B,CAAC;aAAM,CAAC;YAEJ,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,IAAI,CAAC,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;YAEjD,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,GAAG,CAAC,CAAC;QAEvB,CAAC;QAED,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,kBAAkB,CAAC,KAAK,EAAE,GAAG;QAEzB,yDAAyD;QAEzD,IAAI,CAAC,GAAG,KAAK,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;QAE3B,IAAI,CAAC,GAAG,MAAM,CAAC,OAAO,EAAE,CAAC;YAErB,6CAA6C;YAE7C,CAAC,GAAG,CAAC,CAAC;YAEN,IAAI,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC;gBAExC,IAAI,CAAC,EAAE,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC;gBACnB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,CAAC,CAAC;gBAClB,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;gBACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YAEhB,CAAC;iBAAM,CAAC;gBAEJ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;gBACZ,IAAI,CAAC,EAAE,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC;gBACnB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,CAAC,CAAC;gBAClB,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YAEhB,CAAC;QAEL,CAAC;aAAM,CAAC;YAEJ,+EAA+E;YAE/E,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;YAC5C,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;YAC5C,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;YAC5C,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QAEhB,CAAC;QAED,OAAO,IAAI,CAAC,SAAS,EAAE,CAAC;IAE5B,CAAC;IAED,eAAe;IAEf,iEAAiE;IAEjE,IAAI;IAEJ,aAAa,CAAC,CAAC,EAAE,IAAI;QAEjB,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC,CAAC;QAE9B,IAAI,KAAK,KAAK,CAAC;YAAE,OAAO,IAAI,CAAC;QAE7B,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,GAAG,KAAK,CAAC,CAAC;QAEpC,IAAI,CAAC,KAAK,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QAEjB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,QAAQ;QAEJ,OAAO,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;IAEhC,CAAC;IAED,MAAM;QAEF,4CAA4C;QAE5C,OAAO,IAAI,CAAC,SAAS,EAAE,CAAC;IAE5B,CAAC;IAED,SAAS;QAEL,IAAI,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;QACd,IAAI,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;QAEd,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,GAAG,CAAC,CAAC;QAED,OAAO,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC;IAE7E,CAAC;IAED,QAAQ;QAEJ,OAAO,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC;IAEzF,CAAC;IAED,MAAM;QAEF,OAAO,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,CAAC;IAEpG,CAAC;IAED,SAAS;QAEL,IAAI,CAAC,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;QAEtB,IAAI,CAAC,KAAK,CAAC,EAAE,CAAC;YAEV,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QAEhB,CAAC;aAAM,CAAC;YAEJ,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;YAEV,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACtB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACtB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACtB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;QAE1B,CAAC;QAED,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,QAAQ,CAAC,CAAC;QAEN,OAAO,IAAI,CAAC,mBAAmB,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC;IAE7C,CAAC;IAED,WAAW,CAAC,CAAC;QAET,OAAO,IAAI,CAAC,mBAAmB,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC;IAE7C,CAAC;IAED,mBAAmB,CAAC,CAAC,EAAE,CAAC;QAEpB,gGAAgG;QAEhG,MAAM,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,GAAG,GAAG,CAAC,CAAC,EAAE,CAAC;QACrD,MAAM,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,GAAG,GAAG,CAAC,CAAC,EAAE,CAAC;QAErD,IAAI,CAAC,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC;QACxD,IAAI,CAAC,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC;QACxD,IAAI,CAAC,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC;QACxD,IAAI,CAAC,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC;QAExD,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,KAAK,CAAC,EAAE,EAAE,CAAC;QAEP,IAAI,CAAC,KAAK,CAAC;YAAE,OAAO,IAAI,CAAC;QACzB,IAAI,CAAC,KAAK,CAAC;YAAE,OAAO,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;QAElC,MAAM,CAAC,GAAG,IAAI,CAAC,EAAE,EAAE,CAAC,GAAG,IAAI,CAAC,EAAE,EAAE,CAAC,GAAG,IAAI,CAAC,EAAE,EAAE,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAEzD,mFAAmF;QAEnF,IAAI,YAAY,GAAG,CAAC,GAAG,EAAE,CAAC,EAAE,GAAG,CAAC,GAAG,EAAE,CAAC,EAAE,GAAG,CAAC,GAAG,EAAE,CAAC,EAAE,GAAG,CAAC,GAAG,EAAE,CAAC,EAAE,CAAC;QAEjE,IAAI,YAAY,GAAG,CAAC,EAAE,CAAC;YAEnB,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC,EAAE,CAAC;YACjB,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC,EAAE,CAAC;YACjB,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC,EAAE,CAAC;YACjB,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC,EAAE,CAAC;YAEjB,YAAY,GAAG,CAAC,YAAY,CAAC;QAEjC,CAAC;aAAM,CAAC;YAEJ,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;QAElB,CAAC;QAED,IAAI,YAAY,IAAI,GAAG,EAAE,CAAC;YAEtB,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YAEZ,OAAO,IAAI,CAAC;QAEhB,CAAC;QAED,MAAM,eAAe,GAAG,GAAG,GAAG,YAAY,GAAG,YAAY,CAAC;QAE1D,IAAI,eAAe,IAAI,MAAM,CAAC,OAAO,EAAE,CAAC;YAEpC,MAAM,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;YAChB,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;YAC9B,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;YAC9B,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;YAC9B,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;YAE9B,IAAI,CAAC,SAAS,EAAE,CAAC,CAAC,sCAAsC;YAExD,OAAO,IAAI,CAAC;QAEhB,CAAC;QAED,MAAM,YAAY,GAAG,IAAI,CAAC,IAAI,CAAC,eAAe,CAAC,CAAC;QAChD,MAAM,SAAS,GAAG,IAAI,CAAC,KAAK,CAAC,YAAY,EAAE,YAAY,CAAC,CAAC;QACzD,MAAM,MAAM,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,SAAS,CAAC,GAAG,YAAY,EACvD,MAAM,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,SAAS,CAAC,GAAG,YAAY,CAAC;QAEpD,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,MAAM,GAAG,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QAC1C,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,MAAM,GAAG,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QAC1C,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,MAAM,GAAG,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QAC1C,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,MAAM,GAAG,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QAE1C,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,gBAAgB,CAAC,EAAE,EAAE,EAAE,EAAE,CAAC;QAEtB,OAAO,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,KAAK,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC;IAEtC,CAAC;IAED,MAAM;QAEF,4DAA4D;QAE5D,eAAe;QACf,2BAA2B;QAC3B,qFAAqF;QAErF,MAAM,MAAM,GAAG,CAAC,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;QAC3C,MAAM,MAAM,GAAG,CAAC,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;QAE3C,MAAM,EAAE,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;QACzB,MAAM,EAAE,GAAG,IAAI,CAAC,IAAI,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC;QAC7B,MAAM,EAAE,GAAG,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;QAEzB,OAAO,IAAI,CAAC,GAAG,CACX,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,MAAM,CAAC,EACrB,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,MAAM,CAAC,EACrB,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,MAAM,CAAC,EACrB,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,MAAM,CAAC,CACxB,CAAC;IAEN,CAAC;IAED,MAAM,CAAC,UAAU;QAEb,OAAO,CAAC,UAAU,CAAC,EAAE,KAAK,IAAI,CAAC,EAAE,CAAC,IAAI,CAAC,UAAU,CAAC,EAAE,KAAK,IAAI,CAAC,EAAE,CAAC,IAAI,CAAC,UAAU,CAAC,EAAE,KAAK,IAAI,CAAC,EAAE,CAAC,IAAI,CAAC,UAAU,CAAC,EAAE,KAAK,IAAI,CAAC,EAAE,CAAC,CAAC;IAEpI,CAAC;IAED,SAAS,CAAC,KAAK,EAAE,MAAM,GAAG,CAAC;QAEvB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC;QACxB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;QAC5B,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;QAC5B,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;QAE5B,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,OAAO,CAAC,KAAK,GAAG,EAAE,EAAE,MAAM,GAAG,CAAC;QAE1B,KAAK,CAAC,MAAM,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QACxB,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAC5B,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAC5B,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAE5B,OAAO,KAAK,CAAC;IAEjB,CAAC;IAED,mBAAmB,CAAC,SAAS,EAAE,KAAK;QAEhC,IAAI,CAAC,EAAE,GAAG,SAAS,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC;QAChC,IAAI,CAAC,EAAE,GAAG,SAAS,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC;QAChC,IAAI,CAAC,EAAE,GAAG,SAAS,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC;QAChC,IAAI,CAAC,EAAE,GAAG,SAAS,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC;QAEhC,IAAI,CAAC,iBAAiB,EAAE,CAAC;QAEzB,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,MAAM;QAEF,OAAO,IAAI,CAAC,OAAO,EAAE,CAAC;IAE1B,CAAC;IAED,SAAS,CAAC,QAAQ;QAEd,IAAI,CAAC,iBAAiB,GAAG,QAAQ,CAAC;QAElC,OAAO,IAAI,CAAC;IAEhB,CAAC;IAED,iBAAiB,KAAK,CAAC;CAW1B;AAED,OAAO,EAAE,UAAU,EAAE,CAAC"}
|
@@ -0,0 +1,42 @@
|
|
1
|
+
export class Vector3 {
|
2
|
+
constructor(x?: number, y?: number, z?: number);
|
3
|
+
x: number;
|
4
|
+
y: number;
|
5
|
+
z: number;
|
6
|
+
set(x: any, y: any, z: any): this;
|
7
|
+
clone(): any;
|
8
|
+
copy(v: any): this;
|
9
|
+
add(v: any): this;
|
10
|
+
addScalar(s: any): this;
|
11
|
+
addVectors(a: any, b: any): this;
|
12
|
+
addScaledVector(v: any, s: any): this;
|
13
|
+
sub(v: any): this;
|
14
|
+
subScalar(s: any): this;
|
15
|
+
subVectors(a: any, b: any): this;
|
16
|
+
multiply(v: any): this;
|
17
|
+
multiplyScalar(scalar: any): this;
|
18
|
+
multiplyVectors(a: any, b: any): this;
|
19
|
+
applyAxisAngle(axis: any, angle: any): this;
|
20
|
+
applyMatrix4(m: any): this;
|
21
|
+
applyQuaternion(q: any): this;
|
22
|
+
divide(v: any): this;
|
23
|
+
divideScalar(scalar: any): this;
|
24
|
+
min(v: any): this;
|
25
|
+
max(v: any): this;
|
26
|
+
clamp(min: any, max: any): this;
|
27
|
+
clampScalar(minVal: any, maxVal: any): this;
|
28
|
+
clampLength(min: any, max: any): this;
|
29
|
+
dot(v: any): number;
|
30
|
+
lengthSq(): number;
|
31
|
+
length(): number;
|
32
|
+
normalize(): this;
|
33
|
+
setLength(length: any): this;
|
34
|
+
lerp(v: any, alpha: any): this;
|
35
|
+
lerpVectors(v1: any, v2: any, alpha: any): this;
|
36
|
+
cross(v: any): this;
|
37
|
+
crossVectors(a: any, b: any): this;
|
38
|
+
distanceTo(v: any): number;
|
39
|
+
equals(v: any): boolean;
|
40
|
+
fromArray(array: any, offset?: number): this;
|
41
|
+
random(): this;
|
42
|
+
}
|