eyeling 1.5.41 → 1.6.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,3936 @@
1
+ @prefix : <http://example.org/ultramarine-simpson#> .
2
+
3
+ # ----------------------------------------------------------------------
4
+ # Proof for derived triple:
5
+ # _:b5 :y 4.909297426825682 .
6
+ # It holds because the following instance of the rule body is provable:
7
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
8
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
9
+ # _:b5 :x 2.0 .
10
+ # _:b5 :coef 1.0 .
11
+ # 2.0 math:sin 0.9092974268256817 .
12
+ # (2.0 2.0) math:exponentiation 4 .
13
+ # (0.9092974268256817 4) math:sum 4.909297426825682 .
14
+ # 2.0 math:cos -0.4161468365471424 .
15
+ # (2.0 2.0) math:product 4 .
16
+ # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
17
+ # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
18
+ # (1.0 12.844003497191053) math:sum 13.844003497191053 .
19
+ # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
20
+ # via the schematic forward rule:
21
+ # {
22
+ # :Simpson1 :samples ?ss .
23
+ # ?ss list:member ?s .
24
+ # ?s :x ?x .
25
+ # ?s :coef ?c .
26
+ # ?x math:sin ?sinx .
27
+ # (?x 2.0) math:exponentiation ?x2 .
28
+ # (?sinx ?x2) math:sum ?y .
29
+ # ?x math:cos ?cosx .
30
+ # (2.0 ?x) math:product ?twox .
31
+ # (?cosx ?twox) math:sum ?dy .
32
+ # (?dy 2.0) math:exponentiation ?dy2 .
33
+ # (1.0 ?dy2) math:sum ?onePlus .
34
+ # (?onePlus 0.5) math:exponentiation ?ds .
35
+ # } => {
36
+ # ?s :y ?y .
37
+ # ?s :dy ?dy .
38
+ # ?s :ds ?ds .
39
+ # _:b6 :sample ?s .
40
+ # _:b6 :x ?x .
41
+ # _:b6 :coef ?c .
42
+ # _:b6 :y ?y .
43
+ # _:b6 :dy ?dy .
44
+ # _:b6 :ds ?ds .
45
+ # :Simpson1 :sampleResult _:b6 .
46
+ # } .
47
+ # with substitution (on rule variables):
48
+ # ?c = 1.0
49
+ # ?cosx = -0.4161468365471424
50
+ # ?ds = 3.720753081997118
51
+ # ?dy = 3.5838531634528574
52
+ # ?dy2 = 12.844003497191053
53
+ # ?onePlus = 13.844003497191053
54
+ # ?s = _:b5
55
+ # ?sinx = 0.9092974268256817
56
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
57
+ # ?twox = 4
58
+ # ?x = 2.0
59
+ # ?x2 = 4
60
+ # ?y = 4.909297426825682
61
+ # Therefore the derived triple above is entailed by the rules and facts.
62
+ # ----------------------------------------------------------------------
63
+
64
+ _:b5 :y 4.909297426825682 .
65
+
66
+ # ----------------------------------------------------------------------
67
+ # Proof for derived triple:
68
+ # _:b5 :dy 3.5838531634528574 .
69
+ # It holds because the following instance of the rule body is provable:
70
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
71
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
72
+ # _:b5 :x 2.0 .
73
+ # _:b5 :coef 1.0 .
74
+ # 2.0 math:sin 0.9092974268256817 .
75
+ # (2.0 2.0) math:exponentiation 4 .
76
+ # (0.9092974268256817 4) math:sum 4.909297426825682 .
77
+ # 2.0 math:cos -0.4161468365471424 .
78
+ # (2.0 2.0) math:product 4 .
79
+ # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
80
+ # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
81
+ # (1.0 12.844003497191053) math:sum 13.844003497191053 .
82
+ # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
83
+ # via the schematic forward rule:
84
+ # {
85
+ # :Simpson1 :samples ?ss .
86
+ # ?ss list:member ?s .
87
+ # ?s :x ?x .
88
+ # ?s :coef ?c .
89
+ # ?x math:sin ?sinx .
90
+ # (?x 2.0) math:exponentiation ?x2 .
91
+ # (?sinx ?x2) math:sum ?y .
92
+ # ?x math:cos ?cosx .
93
+ # (2.0 ?x) math:product ?twox .
94
+ # (?cosx ?twox) math:sum ?dy .
95
+ # (?dy 2.0) math:exponentiation ?dy2 .
96
+ # (1.0 ?dy2) math:sum ?onePlus .
97
+ # (?onePlus 0.5) math:exponentiation ?ds .
98
+ # } => {
99
+ # ?s :y ?y .
100
+ # ?s :dy ?dy .
101
+ # ?s :ds ?ds .
102
+ # _:b6 :sample ?s .
103
+ # _:b6 :x ?x .
104
+ # _:b6 :coef ?c .
105
+ # _:b6 :y ?y .
106
+ # _:b6 :dy ?dy .
107
+ # _:b6 :ds ?ds .
108
+ # :Simpson1 :sampleResult _:b6 .
109
+ # } .
110
+ # with substitution (on rule variables):
111
+ # ?c = 1.0
112
+ # ?cosx = -0.4161468365471424
113
+ # ?ds = 3.720753081997118
114
+ # ?dy = 3.5838531634528574
115
+ # ?dy2 = 12.844003497191053
116
+ # ?onePlus = 13.844003497191053
117
+ # ?s = _:b5
118
+ # ?sinx = 0.9092974268256817
119
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
120
+ # ?twox = 4
121
+ # ?x = 2.0
122
+ # ?x2 = 4
123
+ # ?y = 4.909297426825682
124
+ # Therefore the derived triple above is entailed by the rules and facts.
125
+ # ----------------------------------------------------------------------
126
+
127
+ _:b5 :dy 3.5838531634528574 .
128
+
129
+ # ----------------------------------------------------------------------
130
+ # Proof for derived triple:
131
+ # _:b5 :ds 3.720753081997118 .
132
+ # It holds because the following instance of the rule body is provable:
133
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
134
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
135
+ # _:b5 :x 2.0 .
136
+ # _:b5 :coef 1.0 .
137
+ # 2.0 math:sin 0.9092974268256817 .
138
+ # (2.0 2.0) math:exponentiation 4 .
139
+ # (0.9092974268256817 4) math:sum 4.909297426825682 .
140
+ # 2.0 math:cos -0.4161468365471424 .
141
+ # (2.0 2.0) math:product 4 .
142
+ # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
143
+ # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
144
+ # (1.0 12.844003497191053) math:sum 13.844003497191053 .
145
+ # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
146
+ # via the schematic forward rule:
147
+ # {
148
+ # :Simpson1 :samples ?ss .
149
+ # ?ss list:member ?s .
150
+ # ?s :x ?x .
151
+ # ?s :coef ?c .
152
+ # ?x math:sin ?sinx .
153
+ # (?x 2.0) math:exponentiation ?x2 .
154
+ # (?sinx ?x2) math:sum ?y .
155
+ # ?x math:cos ?cosx .
156
+ # (2.0 ?x) math:product ?twox .
157
+ # (?cosx ?twox) math:sum ?dy .
158
+ # (?dy 2.0) math:exponentiation ?dy2 .
159
+ # (1.0 ?dy2) math:sum ?onePlus .
160
+ # (?onePlus 0.5) math:exponentiation ?ds .
161
+ # } => {
162
+ # ?s :y ?y .
163
+ # ?s :dy ?dy .
164
+ # ?s :ds ?ds .
165
+ # _:b6 :sample ?s .
166
+ # _:b6 :x ?x .
167
+ # _:b6 :coef ?c .
168
+ # _:b6 :y ?y .
169
+ # _:b6 :dy ?dy .
170
+ # _:b6 :ds ?ds .
171
+ # :Simpson1 :sampleResult _:b6 .
172
+ # } .
173
+ # with substitution (on rule variables):
174
+ # ?c = 1.0
175
+ # ?cosx = -0.4161468365471424
176
+ # ?ds = 3.720753081997118
177
+ # ?dy = 3.5838531634528574
178
+ # ?dy2 = 12.844003497191053
179
+ # ?onePlus = 13.844003497191053
180
+ # ?s = _:b5
181
+ # ?sinx = 0.9092974268256817
182
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
183
+ # ?twox = 4
184
+ # ?x = 2.0
185
+ # ?x2 = 4
186
+ # ?y = 4.909297426825682
187
+ # Therefore the derived triple above is entailed by the rules and facts.
188
+ # ----------------------------------------------------------------------
189
+
190
+ _:b5 :ds 3.720753081997118 .
191
+
192
+ # ----------------------------------------------------------------------
193
+ # Proof for derived triple:
194
+ # _:sk_0 :sample _:b5 .
195
+ # It holds because the following instance of the rule body is provable:
196
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
197
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
198
+ # _:b5 :x 2.0 .
199
+ # _:b5 :coef 1.0 .
200
+ # 2.0 math:sin 0.9092974268256817 .
201
+ # (2.0 2.0) math:exponentiation 4 .
202
+ # (0.9092974268256817 4) math:sum 4.909297426825682 .
203
+ # 2.0 math:cos -0.4161468365471424 .
204
+ # (2.0 2.0) math:product 4 .
205
+ # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
206
+ # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
207
+ # (1.0 12.844003497191053) math:sum 13.844003497191053 .
208
+ # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
209
+ # via the schematic forward rule:
210
+ # {
211
+ # :Simpson1 :samples ?ss .
212
+ # ?ss list:member ?s .
213
+ # ?s :x ?x .
214
+ # ?s :coef ?c .
215
+ # ?x math:sin ?sinx .
216
+ # (?x 2.0) math:exponentiation ?x2 .
217
+ # (?sinx ?x2) math:sum ?y .
218
+ # ?x math:cos ?cosx .
219
+ # (2.0 ?x) math:product ?twox .
220
+ # (?cosx ?twox) math:sum ?dy .
221
+ # (?dy 2.0) math:exponentiation ?dy2 .
222
+ # (1.0 ?dy2) math:sum ?onePlus .
223
+ # (?onePlus 0.5) math:exponentiation ?ds .
224
+ # } => {
225
+ # ?s :y ?y .
226
+ # ?s :dy ?dy .
227
+ # ?s :ds ?ds .
228
+ # _:b6 :sample ?s .
229
+ # _:b6 :x ?x .
230
+ # _:b6 :coef ?c .
231
+ # _:b6 :y ?y .
232
+ # _:b6 :dy ?dy .
233
+ # _:b6 :ds ?ds .
234
+ # :Simpson1 :sampleResult _:b6 .
235
+ # } .
236
+ # with substitution (on rule variables):
237
+ # ?c = 1.0
238
+ # ?cosx = -0.4161468365471424
239
+ # ?ds = 3.720753081997118
240
+ # ?dy = 3.5838531634528574
241
+ # ?dy2 = 12.844003497191053
242
+ # ?onePlus = 13.844003497191053
243
+ # ?s = _:b5
244
+ # ?sinx = 0.9092974268256817
245
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
246
+ # ?twox = 4
247
+ # ?x = 2.0
248
+ # ?x2 = 4
249
+ # ?y = 4.909297426825682
250
+ # Therefore the derived triple above is entailed by the rules and facts.
251
+ # ----------------------------------------------------------------------
252
+
253
+ _:sk_0 :sample _:b5 .
254
+
255
+ # ----------------------------------------------------------------------
256
+ # Proof for derived triple:
257
+ # _:sk_0 :x 2.0 .
258
+ # It holds because the following instance of the rule body is provable:
259
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
260
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
261
+ # _:b5 :x 2.0 .
262
+ # _:b5 :coef 1.0 .
263
+ # 2.0 math:sin 0.9092974268256817 .
264
+ # (2.0 2.0) math:exponentiation 4 .
265
+ # (0.9092974268256817 4) math:sum 4.909297426825682 .
266
+ # 2.0 math:cos -0.4161468365471424 .
267
+ # (2.0 2.0) math:product 4 .
268
+ # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
269
+ # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
270
+ # (1.0 12.844003497191053) math:sum 13.844003497191053 .
271
+ # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
272
+ # via the schematic forward rule:
273
+ # {
274
+ # :Simpson1 :samples ?ss .
275
+ # ?ss list:member ?s .
276
+ # ?s :x ?x .
277
+ # ?s :coef ?c .
278
+ # ?x math:sin ?sinx .
279
+ # (?x 2.0) math:exponentiation ?x2 .
280
+ # (?sinx ?x2) math:sum ?y .
281
+ # ?x math:cos ?cosx .
282
+ # (2.0 ?x) math:product ?twox .
283
+ # (?cosx ?twox) math:sum ?dy .
284
+ # (?dy 2.0) math:exponentiation ?dy2 .
285
+ # (1.0 ?dy2) math:sum ?onePlus .
286
+ # (?onePlus 0.5) math:exponentiation ?ds .
287
+ # } => {
288
+ # ?s :y ?y .
289
+ # ?s :dy ?dy .
290
+ # ?s :ds ?ds .
291
+ # _:b6 :sample ?s .
292
+ # _:b6 :x ?x .
293
+ # _:b6 :coef ?c .
294
+ # _:b6 :y ?y .
295
+ # _:b6 :dy ?dy .
296
+ # _:b6 :ds ?ds .
297
+ # :Simpson1 :sampleResult _:b6 .
298
+ # } .
299
+ # with substitution (on rule variables):
300
+ # ?c = 1.0
301
+ # ?cosx = -0.4161468365471424
302
+ # ?ds = 3.720753081997118
303
+ # ?dy = 3.5838531634528574
304
+ # ?dy2 = 12.844003497191053
305
+ # ?onePlus = 13.844003497191053
306
+ # ?s = _:b5
307
+ # ?sinx = 0.9092974268256817
308
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
309
+ # ?twox = 4
310
+ # ?x = 2.0
311
+ # ?x2 = 4
312
+ # ?y = 4.909297426825682
313
+ # Therefore the derived triple above is entailed by the rules and facts.
314
+ # ----------------------------------------------------------------------
315
+
316
+ _:sk_0 :x 2.0 .
317
+
318
+ # ----------------------------------------------------------------------
319
+ # Proof for derived triple:
320
+ # _:sk_0 :coef 1.0 .
321
+ # It holds because the following instance of the rule body is provable:
322
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
323
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
324
+ # _:b5 :x 2.0 .
325
+ # _:b5 :coef 1.0 .
326
+ # 2.0 math:sin 0.9092974268256817 .
327
+ # (2.0 2.0) math:exponentiation 4 .
328
+ # (0.9092974268256817 4) math:sum 4.909297426825682 .
329
+ # 2.0 math:cos -0.4161468365471424 .
330
+ # (2.0 2.0) math:product 4 .
331
+ # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
332
+ # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
333
+ # (1.0 12.844003497191053) math:sum 13.844003497191053 .
334
+ # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
335
+ # via the schematic forward rule:
336
+ # {
337
+ # :Simpson1 :samples ?ss .
338
+ # ?ss list:member ?s .
339
+ # ?s :x ?x .
340
+ # ?s :coef ?c .
341
+ # ?x math:sin ?sinx .
342
+ # (?x 2.0) math:exponentiation ?x2 .
343
+ # (?sinx ?x2) math:sum ?y .
344
+ # ?x math:cos ?cosx .
345
+ # (2.0 ?x) math:product ?twox .
346
+ # (?cosx ?twox) math:sum ?dy .
347
+ # (?dy 2.0) math:exponentiation ?dy2 .
348
+ # (1.0 ?dy2) math:sum ?onePlus .
349
+ # (?onePlus 0.5) math:exponentiation ?ds .
350
+ # } => {
351
+ # ?s :y ?y .
352
+ # ?s :dy ?dy .
353
+ # ?s :ds ?ds .
354
+ # _:b6 :sample ?s .
355
+ # _:b6 :x ?x .
356
+ # _:b6 :coef ?c .
357
+ # _:b6 :y ?y .
358
+ # _:b6 :dy ?dy .
359
+ # _:b6 :ds ?ds .
360
+ # :Simpson1 :sampleResult _:b6 .
361
+ # } .
362
+ # with substitution (on rule variables):
363
+ # ?c = 1.0
364
+ # ?cosx = -0.4161468365471424
365
+ # ?ds = 3.720753081997118
366
+ # ?dy = 3.5838531634528574
367
+ # ?dy2 = 12.844003497191053
368
+ # ?onePlus = 13.844003497191053
369
+ # ?s = _:b5
370
+ # ?sinx = 0.9092974268256817
371
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
372
+ # ?twox = 4
373
+ # ?x = 2.0
374
+ # ?x2 = 4
375
+ # ?y = 4.909297426825682
376
+ # Therefore the derived triple above is entailed by the rules and facts.
377
+ # ----------------------------------------------------------------------
378
+
379
+ _:sk_0 :coef 1.0 .
380
+
381
+ # ----------------------------------------------------------------------
382
+ # Proof for derived triple:
383
+ # _:sk_0 :y 4.909297426825682 .
384
+ # It holds because the following instance of the rule body is provable:
385
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
386
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
387
+ # _:b5 :x 2.0 .
388
+ # _:b5 :coef 1.0 .
389
+ # 2.0 math:sin 0.9092974268256817 .
390
+ # (2.0 2.0) math:exponentiation 4 .
391
+ # (0.9092974268256817 4) math:sum 4.909297426825682 .
392
+ # 2.0 math:cos -0.4161468365471424 .
393
+ # (2.0 2.0) math:product 4 .
394
+ # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
395
+ # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
396
+ # (1.0 12.844003497191053) math:sum 13.844003497191053 .
397
+ # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
398
+ # via the schematic forward rule:
399
+ # {
400
+ # :Simpson1 :samples ?ss .
401
+ # ?ss list:member ?s .
402
+ # ?s :x ?x .
403
+ # ?s :coef ?c .
404
+ # ?x math:sin ?sinx .
405
+ # (?x 2.0) math:exponentiation ?x2 .
406
+ # (?sinx ?x2) math:sum ?y .
407
+ # ?x math:cos ?cosx .
408
+ # (2.0 ?x) math:product ?twox .
409
+ # (?cosx ?twox) math:sum ?dy .
410
+ # (?dy 2.0) math:exponentiation ?dy2 .
411
+ # (1.0 ?dy2) math:sum ?onePlus .
412
+ # (?onePlus 0.5) math:exponentiation ?ds .
413
+ # } => {
414
+ # ?s :y ?y .
415
+ # ?s :dy ?dy .
416
+ # ?s :ds ?ds .
417
+ # _:b6 :sample ?s .
418
+ # _:b6 :x ?x .
419
+ # _:b6 :coef ?c .
420
+ # _:b6 :y ?y .
421
+ # _:b6 :dy ?dy .
422
+ # _:b6 :ds ?ds .
423
+ # :Simpson1 :sampleResult _:b6 .
424
+ # } .
425
+ # with substitution (on rule variables):
426
+ # ?c = 1.0
427
+ # ?cosx = -0.4161468365471424
428
+ # ?ds = 3.720753081997118
429
+ # ?dy = 3.5838531634528574
430
+ # ?dy2 = 12.844003497191053
431
+ # ?onePlus = 13.844003497191053
432
+ # ?s = _:b5
433
+ # ?sinx = 0.9092974268256817
434
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
435
+ # ?twox = 4
436
+ # ?x = 2.0
437
+ # ?x2 = 4
438
+ # ?y = 4.909297426825682
439
+ # Therefore the derived triple above is entailed by the rules and facts.
440
+ # ----------------------------------------------------------------------
441
+
442
+ _:sk_0 :y 4.909297426825682 .
443
+
444
+ # ----------------------------------------------------------------------
445
+ # Proof for derived triple:
446
+ # _:sk_0 :dy 3.5838531634528574 .
447
+ # It holds because the following instance of the rule body is provable:
448
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
449
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
450
+ # _:b5 :x 2.0 .
451
+ # _:b5 :coef 1.0 .
452
+ # 2.0 math:sin 0.9092974268256817 .
453
+ # (2.0 2.0) math:exponentiation 4 .
454
+ # (0.9092974268256817 4) math:sum 4.909297426825682 .
455
+ # 2.0 math:cos -0.4161468365471424 .
456
+ # (2.0 2.0) math:product 4 .
457
+ # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
458
+ # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
459
+ # (1.0 12.844003497191053) math:sum 13.844003497191053 .
460
+ # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
461
+ # via the schematic forward rule:
462
+ # {
463
+ # :Simpson1 :samples ?ss .
464
+ # ?ss list:member ?s .
465
+ # ?s :x ?x .
466
+ # ?s :coef ?c .
467
+ # ?x math:sin ?sinx .
468
+ # (?x 2.0) math:exponentiation ?x2 .
469
+ # (?sinx ?x2) math:sum ?y .
470
+ # ?x math:cos ?cosx .
471
+ # (2.0 ?x) math:product ?twox .
472
+ # (?cosx ?twox) math:sum ?dy .
473
+ # (?dy 2.0) math:exponentiation ?dy2 .
474
+ # (1.0 ?dy2) math:sum ?onePlus .
475
+ # (?onePlus 0.5) math:exponentiation ?ds .
476
+ # } => {
477
+ # ?s :y ?y .
478
+ # ?s :dy ?dy .
479
+ # ?s :ds ?ds .
480
+ # _:b6 :sample ?s .
481
+ # _:b6 :x ?x .
482
+ # _:b6 :coef ?c .
483
+ # _:b6 :y ?y .
484
+ # _:b6 :dy ?dy .
485
+ # _:b6 :ds ?ds .
486
+ # :Simpson1 :sampleResult _:b6 .
487
+ # } .
488
+ # with substitution (on rule variables):
489
+ # ?c = 1.0
490
+ # ?cosx = -0.4161468365471424
491
+ # ?ds = 3.720753081997118
492
+ # ?dy = 3.5838531634528574
493
+ # ?dy2 = 12.844003497191053
494
+ # ?onePlus = 13.844003497191053
495
+ # ?s = _:b5
496
+ # ?sinx = 0.9092974268256817
497
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
498
+ # ?twox = 4
499
+ # ?x = 2.0
500
+ # ?x2 = 4
501
+ # ?y = 4.909297426825682
502
+ # Therefore the derived triple above is entailed by the rules and facts.
503
+ # ----------------------------------------------------------------------
504
+
505
+ _:sk_0 :dy 3.5838531634528574 .
506
+
507
+ # ----------------------------------------------------------------------
508
+ # Proof for derived triple:
509
+ # _:sk_0 :ds 3.720753081997118 .
510
+ # It holds because the following instance of the rule body is provable:
511
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
512
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
513
+ # _:b5 :x 2.0 .
514
+ # _:b5 :coef 1.0 .
515
+ # 2.0 math:sin 0.9092974268256817 .
516
+ # (2.0 2.0) math:exponentiation 4 .
517
+ # (0.9092974268256817 4) math:sum 4.909297426825682 .
518
+ # 2.0 math:cos -0.4161468365471424 .
519
+ # (2.0 2.0) math:product 4 .
520
+ # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
521
+ # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
522
+ # (1.0 12.844003497191053) math:sum 13.844003497191053 .
523
+ # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
524
+ # via the schematic forward rule:
525
+ # {
526
+ # :Simpson1 :samples ?ss .
527
+ # ?ss list:member ?s .
528
+ # ?s :x ?x .
529
+ # ?s :coef ?c .
530
+ # ?x math:sin ?sinx .
531
+ # (?x 2.0) math:exponentiation ?x2 .
532
+ # (?sinx ?x2) math:sum ?y .
533
+ # ?x math:cos ?cosx .
534
+ # (2.0 ?x) math:product ?twox .
535
+ # (?cosx ?twox) math:sum ?dy .
536
+ # (?dy 2.0) math:exponentiation ?dy2 .
537
+ # (1.0 ?dy2) math:sum ?onePlus .
538
+ # (?onePlus 0.5) math:exponentiation ?ds .
539
+ # } => {
540
+ # ?s :y ?y .
541
+ # ?s :dy ?dy .
542
+ # ?s :ds ?ds .
543
+ # _:b6 :sample ?s .
544
+ # _:b6 :x ?x .
545
+ # _:b6 :coef ?c .
546
+ # _:b6 :y ?y .
547
+ # _:b6 :dy ?dy .
548
+ # _:b6 :ds ?ds .
549
+ # :Simpson1 :sampleResult _:b6 .
550
+ # } .
551
+ # with substitution (on rule variables):
552
+ # ?c = 1.0
553
+ # ?cosx = -0.4161468365471424
554
+ # ?ds = 3.720753081997118
555
+ # ?dy = 3.5838531634528574
556
+ # ?dy2 = 12.844003497191053
557
+ # ?onePlus = 13.844003497191053
558
+ # ?s = _:b5
559
+ # ?sinx = 0.9092974268256817
560
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
561
+ # ?twox = 4
562
+ # ?x = 2.0
563
+ # ?x2 = 4
564
+ # ?y = 4.909297426825682
565
+ # Therefore the derived triple above is entailed by the rules and facts.
566
+ # ----------------------------------------------------------------------
567
+
568
+ _:sk_0 :ds 3.720753081997118 .
569
+
570
+ # ----------------------------------------------------------------------
571
+ # Proof for derived triple:
572
+ # :Simpson1 :sampleResult _:sk_0 .
573
+ # It holds because the following instance of the rule body is provable:
574
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
575
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
576
+ # _:b5 :x 2.0 .
577
+ # _:b5 :coef 1.0 .
578
+ # 2.0 math:sin 0.9092974268256817 .
579
+ # (2.0 2.0) math:exponentiation 4 .
580
+ # (0.9092974268256817 4) math:sum 4.909297426825682 .
581
+ # 2.0 math:cos -0.4161468365471424 .
582
+ # (2.0 2.0) math:product 4 .
583
+ # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
584
+ # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
585
+ # (1.0 12.844003497191053) math:sum 13.844003497191053 .
586
+ # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
587
+ # via the schematic forward rule:
588
+ # {
589
+ # :Simpson1 :samples ?ss .
590
+ # ?ss list:member ?s .
591
+ # ?s :x ?x .
592
+ # ?s :coef ?c .
593
+ # ?x math:sin ?sinx .
594
+ # (?x 2.0) math:exponentiation ?x2 .
595
+ # (?sinx ?x2) math:sum ?y .
596
+ # ?x math:cos ?cosx .
597
+ # (2.0 ?x) math:product ?twox .
598
+ # (?cosx ?twox) math:sum ?dy .
599
+ # (?dy 2.0) math:exponentiation ?dy2 .
600
+ # (1.0 ?dy2) math:sum ?onePlus .
601
+ # (?onePlus 0.5) math:exponentiation ?ds .
602
+ # } => {
603
+ # ?s :y ?y .
604
+ # ?s :dy ?dy .
605
+ # ?s :ds ?ds .
606
+ # _:b6 :sample ?s .
607
+ # _:b6 :x ?x .
608
+ # _:b6 :coef ?c .
609
+ # _:b6 :y ?y .
610
+ # _:b6 :dy ?dy .
611
+ # _:b6 :ds ?ds .
612
+ # :Simpson1 :sampleResult _:b6 .
613
+ # } .
614
+ # with substitution (on rule variables):
615
+ # ?c = 1.0
616
+ # ?cosx = -0.4161468365471424
617
+ # ?ds = 3.720753081997118
618
+ # ?dy = 3.5838531634528574
619
+ # ?dy2 = 12.844003497191053
620
+ # ?onePlus = 13.844003497191053
621
+ # ?s = _:b5
622
+ # ?sinx = 0.9092974268256817
623
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
624
+ # ?twox = 4
625
+ # ?x = 2.0
626
+ # ?x2 = 4
627
+ # ?y = 4.909297426825682
628
+ # Therefore the derived triple above is entailed by the rules and facts.
629
+ # ----------------------------------------------------------------------
630
+
631
+ :Simpson1 :sampleResult _:sk_0 .
632
+
633
+ # ----------------------------------------------------------------------
634
+ # Proof for derived triple:
635
+ # _:b4 :y 3.2474949866040546 .
636
+ # It holds because the following instance of the rule body is provable:
637
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
638
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
639
+ # _:b4 :x 1.5 .
640
+ # _:b4 :coef 4.0 .
641
+ # 1.5 math:sin 0.9974949866040544 .
642
+ # (1.5 2.0) math:exponentiation 2.25 .
643
+ # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
644
+ # 1.5 math:cos 0.0707372016677029 .
645
+ # (2.0 1.5) math:product 3 .
646
+ # (0.0707372016677029 3) math:sum 3.070737201667703 .
647
+ # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
648
+ # (1.0 9.429426961705994) math:sum 10.429426961705994 .
649
+ # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
650
+ # via the schematic forward rule:
651
+ # {
652
+ # :Simpson1 :samples ?ss .
653
+ # ?ss list:member ?s .
654
+ # ?s :x ?x .
655
+ # ?s :coef ?c .
656
+ # ?x math:sin ?sinx .
657
+ # (?x 2.0) math:exponentiation ?x2 .
658
+ # (?sinx ?x2) math:sum ?y .
659
+ # ?x math:cos ?cosx .
660
+ # (2.0 ?x) math:product ?twox .
661
+ # (?cosx ?twox) math:sum ?dy .
662
+ # (?dy 2.0) math:exponentiation ?dy2 .
663
+ # (1.0 ?dy2) math:sum ?onePlus .
664
+ # (?onePlus 0.5) math:exponentiation ?ds .
665
+ # } => {
666
+ # ?s :y ?y .
667
+ # ?s :dy ?dy .
668
+ # ?s :ds ?ds .
669
+ # _:b6 :sample ?s .
670
+ # _:b6 :x ?x .
671
+ # _:b6 :coef ?c .
672
+ # _:b6 :y ?y .
673
+ # _:b6 :dy ?dy .
674
+ # _:b6 :ds ?ds .
675
+ # :Simpson1 :sampleResult _:b6 .
676
+ # } .
677
+ # with substitution (on rule variables):
678
+ # ?c = 4.0
679
+ # ?cosx = 0.0707372016677029
680
+ # ?ds = 3.229462333222977
681
+ # ?dy = 3.070737201667703
682
+ # ?dy2 = 9.429426961705994
683
+ # ?onePlus = 10.429426961705994
684
+ # ?s = _:b4
685
+ # ?sinx = 0.9974949866040544
686
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
687
+ # ?twox = 3
688
+ # ?x = 1.5
689
+ # ?x2 = 2.25
690
+ # ?y = 3.2474949866040546
691
+ # Therefore the derived triple above is entailed by the rules and facts.
692
+ # ----------------------------------------------------------------------
693
+
694
+ _:b4 :y 3.2474949866040546 .
695
+
696
+ # ----------------------------------------------------------------------
697
+ # Proof for derived triple:
698
+ # _:b4 :dy 3.070737201667703 .
699
+ # It holds because the following instance of the rule body is provable:
700
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
701
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
702
+ # _:b4 :x 1.5 .
703
+ # _:b4 :coef 4.0 .
704
+ # 1.5 math:sin 0.9974949866040544 .
705
+ # (1.5 2.0) math:exponentiation 2.25 .
706
+ # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
707
+ # 1.5 math:cos 0.0707372016677029 .
708
+ # (2.0 1.5) math:product 3 .
709
+ # (0.0707372016677029 3) math:sum 3.070737201667703 .
710
+ # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
711
+ # (1.0 9.429426961705994) math:sum 10.429426961705994 .
712
+ # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
713
+ # via the schematic forward rule:
714
+ # {
715
+ # :Simpson1 :samples ?ss .
716
+ # ?ss list:member ?s .
717
+ # ?s :x ?x .
718
+ # ?s :coef ?c .
719
+ # ?x math:sin ?sinx .
720
+ # (?x 2.0) math:exponentiation ?x2 .
721
+ # (?sinx ?x2) math:sum ?y .
722
+ # ?x math:cos ?cosx .
723
+ # (2.0 ?x) math:product ?twox .
724
+ # (?cosx ?twox) math:sum ?dy .
725
+ # (?dy 2.0) math:exponentiation ?dy2 .
726
+ # (1.0 ?dy2) math:sum ?onePlus .
727
+ # (?onePlus 0.5) math:exponentiation ?ds .
728
+ # } => {
729
+ # ?s :y ?y .
730
+ # ?s :dy ?dy .
731
+ # ?s :ds ?ds .
732
+ # _:b6 :sample ?s .
733
+ # _:b6 :x ?x .
734
+ # _:b6 :coef ?c .
735
+ # _:b6 :y ?y .
736
+ # _:b6 :dy ?dy .
737
+ # _:b6 :ds ?ds .
738
+ # :Simpson1 :sampleResult _:b6 .
739
+ # } .
740
+ # with substitution (on rule variables):
741
+ # ?c = 4.0
742
+ # ?cosx = 0.0707372016677029
743
+ # ?ds = 3.229462333222977
744
+ # ?dy = 3.070737201667703
745
+ # ?dy2 = 9.429426961705994
746
+ # ?onePlus = 10.429426961705994
747
+ # ?s = _:b4
748
+ # ?sinx = 0.9974949866040544
749
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
750
+ # ?twox = 3
751
+ # ?x = 1.5
752
+ # ?x2 = 2.25
753
+ # ?y = 3.2474949866040546
754
+ # Therefore the derived triple above is entailed by the rules and facts.
755
+ # ----------------------------------------------------------------------
756
+
757
+ _:b4 :dy 3.070737201667703 .
758
+
759
+ # ----------------------------------------------------------------------
760
+ # Proof for derived triple:
761
+ # _:b4 :ds 3.229462333222977 .
762
+ # It holds because the following instance of the rule body is provable:
763
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
764
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
765
+ # _:b4 :x 1.5 .
766
+ # _:b4 :coef 4.0 .
767
+ # 1.5 math:sin 0.9974949866040544 .
768
+ # (1.5 2.0) math:exponentiation 2.25 .
769
+ # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
770
+ # 1.5 math:cos 0.0707372016677029 .
771
+ # (2.0 1.5) math:product 3 .
772
+ # (0.0707372016677029 3) math:sum 3.070737201667703 .
773
+ # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
774
+ # (1.0 9.429426961705994) math:sum 10.429426961705994 .
775
+ # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
776
+ # via the schematic forward rule:
777
+ # {
778
+ # :Simpson1 :samples ?ss .
779
+ # ?ss list:member ?s .
780
+ # ?s :x ?x .
781
+ # ?s :coef ?c .
782
+ # ?x math:sin ?sinx .
783
+ # (?x 2.0) math:exponentiation ?x2 .
784
+ # (?sinx ?x2) math:sum ?y .
785
+ # ?x math:cos ?cosx .
786
+ # (2.0 ?x) math:product ?twox .
787
+ # (?cosx ?twox) math:sum ?dy .
788
+ # (?dy 2.0) math:exponentiation ?dy2 .
789
+ # (1.0 ?dy2) math:sum ?onePlus .
790
+ # (?onePlus 0.5) math:exponentiation ?ds .
791
+ # } => {
792
+ # ?s :y ?y .
793
+ # ?s :dy ?dy .
794
+ # ?s :ds ?ds .
795
+ # _:b6 :sample ?s .
796
+ # _:b6 :x ?x .
797
+ # _:b6 :coef ?c .
798
+ # _:b6 :y ?y .
799
+ # _:b6 :dy ?dy .
800
+ # _:b6 :ds ?ds .
801
+ # :Simpson1 :sampleResult _:b6 .
802
+ # } .
803
+ # with substitution (on rule variables):
804
+ # ?c = 4.0
805
+ # ?cosx = 0.0707372016677029
806
+ # ?ds = 3.229462333222977
807
+ # ?dy = 3.070737201667703
808
+ # ?dy2 = 9.429426961705994
809
+ # ?onePlus = 10.429426961705994
810
+ # ?s = _:b4
811
+ # ?sinx = 0.9974949866040544
812
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
813
+ # ?twox = 3
814
+ # ?x = 1.5
815
+ # ?x2 = 2.25
816
+ # ?y = 3.2474949866040546
817
+ # Therefore the derived triple above is entailed by the rules and facts.
818
+ # ----------------------------------------------------------------------
819
+
820
+ _:b4 :ds 3.229462333222977 .
821
+
822
+ # ----------------------------------------------------------------------
823
+ # Proof for derived triple:
824
+ # _:sk_1 :sample _:b4 .
825
+ # It holds because the following instance of the rule body is provable:
826
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
827
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
828
+ # _:b4 :x 1.5 .
829
+ # _:b4 :coef 4.0 .
830
+ # 1.5 math:sin 0.9974949866040544 .
831
+ # (1.5 2.0) math:exponentiation 2.25 .
832
+ # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
833
+ # 1.5 math:cos 0.0707372016677029 .
834
+ # (2.0 1.5) math:product 3 .
835
+ # (0.0707372016677029 3) math:sum 3.070737201667703 .
836
+ # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
837
+ # (1.0 9.429426961705994) math:sum 10.429426961705994 .
838
+ # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
839
+ # via the schematic forward rule:
840
+ # {
841
+ # :Simpson1 :samples ?ss .
842
+ # ?ss list:member ?s .
843
+ # ?s :x ?x .
844
+ # ?s :coef ?c .
845
+ # ?x math:sin ?sinx .
846
+ # (?x 2.0) math:exponentiation ?x2 .
847
+ # (?sinx ?x2) math:sum ?y .
848
+ # ?x math:cos ?cosx .
849
+ # (2.0 ?x) math:product ?twox .
850
+ # (?cosx ?twox) math:sum ?dy .
851
+ # (?dy 2.0) math:exponentiation ?dy2 .
852
+ # (1.0 ?dy2) math:sum ?onePlus .
853
+ # (?onePlus 0.5) math:exponentiation ?ds .
854
+ # } => {
855
+ # ?s :y ?y .
856
+ # ?s :dy ?dy .
857
+ # ?s :ds ?ds .
858
+ # _:b6 :sample ?s .
859
+ # _:b6 :x ?x .
860
+ # _:b6 :coef ?c .
861
+ # _:b6 :y ?y .
862
+ # _:b6 :dy ?dy .
863
+ # _:b6 :ds ?ds .
864
+ # :Simpson1 :sampleResult _:b6 .
865
+ # } .
866
+ # with substitution (on rule variables):
867
+ # ?c = 4.0
868
+ # ?cosx = 0.0707372016677029
869
+ # ?ds = 3.229462333222977
870
+ # ?dy = 3.070737201667703
871
+ # ?dy2 = 9.429426961705994
872
+ # ?onePlus = 10.429426961705994
873
+ # ?s = _:b4
874
+ # ?sinx = 0.9974949866040544
875
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
876
+ # ?twox = 3
877
+ # ?x = 1.5
878
+ # ?x2 = 2.25
879
+ # ?y = 3.2474949866040546
880
+ # Therefore the derived triple above is entailed by the rules and facts.
881
+ # ----------------------------------------------------------------------
882
+
883
+ _:sk_1 :sample _:b4 .
884
+
885
+ # ----------------------------------------------------------------------
886
+ # Proof for derived triple:
887
+ # _:sk_1 :x 1.5 .
888
+ # It holds because the following instance of the rule body is provable:
889
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
890
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
891
+ # _:b4 :x 1.5 .
892
+ # _:b4 :coef 4.0 .
893
+ # 1.5 math:sin 0.9974949866040544 .
894
+ # (1.5 2.0) math:exponentiation 2.25 .
895
+ # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
896
+ # 1.5 math:cos 0.0707372016677029 .
897
+ # (2.0 1.5) math:product 3 .
898
+ # (0.0707372016677029 3) math:sum 3.070737201667703 .
899
+ # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
900
+ # (1.0 9.429426961705994) math:sum 10.429426961705994 .
901
+ # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
902
+ # via the schematic forward rule:
903
+ # {
904
+ # :Simpson1 :samples ?ss .
905
+ # ?ss list:member ?s .
906
+ # ?s :x ?x .
907
+ # ?s :coef ?c .
908
+ # ?x math:sin ?sinx .
909
+ # (?x 2.0) math:exponentiation ?x2 .
910
+ # (?sinx ?x2) math:sum ?y .
911
+ # ?x math:cos ?cosx .
912
+ # (2.0 ?x) math:product ?twox .
913
+ # (?cosx ?twox) math:sum ?dy .
914
+ # (?dy 2.0) math:exponentiation ?dy2 .
915
+ # (1.0 ?dy2) math:sum ?onePlus .
916
+ # (?onePlus 0.5) math:exponentiation ?ds .
917
+ # } => {
918
+ # ?s :y ?y .
919
+ # ?s :dy ?dy .
920
+ # ?s :ds ?ds .
921
+ # _:b6 :sample ?s .
922
+ # _:b6 :x ?x .
923
+ # _:b6 :coef ?c .
924
+ # _:b6 :y ?y .
925
+ # _:b6 :dy ?dy .
926
+ # _:b6 :ds ?ds .
927
+ # :Simpson1 :sampleResult _:b6 .
928
+ # } .
929
+ # with substitution (on rule variables):
930
+ # ?c = 4.0
931
+ # ?cosx = 0.0707372016677029
932
+ # ?ds = 3.229462333222977
933
+ # ?dy = 3.070737201667703
934
+ # ?dy2 = 9.429426961705994
935
+ # ?onePlus = 10.429426961705994
936
+ # ?s = _:b4
937
+ # ?sinx = 0.9974949866040544
938
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
939
+ # ?twox = 3
940
+ # ?x = 1.5
941
+ # ?x2 = 2.25
942
+ # ?y = 3.2474949866040546
943
+ # Therefore the derived triple above is entailed by the rules and facts.
944
+ # ----------------------------------------------------------------------
945
+
946
+ _:sk_1 :x 1.5 .
947
+
948
+ # ----------------------------------------------------------------------
949
+ # Proof for derived triple:
950
+ # _:sk_1 :coef 4.0 .
951
+ # It holds because the following instance of the rule body is provable:
952
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
953
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
954
+ # _:b4 :x 1.5 .
955
+ # _:b4 :coef 4.0 .
956
+ # 1.5 math:sin 0.9974949866040544 .
957
+ # (1.5 2.0) math:exponentiation 2.25 .
958
+ # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
959
+ # 1.5 math:cos 0.0707372016677029 .
960
+ # (2.0 1.5) math:product 3 .
961
+ # (0.0707372016677029 3) math:sum 3.070737201667703 .
962
+ # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
963
+ # (1.0 9.429426961705994) math:sum 10.429426961705994 .
964
+ # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
965
+ # via the schematic forward rule:
966
+ # {
967
+ # :Simpson1 :samples ?ss .
968
+ # ?ss list:member ?s .
969
+ # ?s :x ?x .
970
+ # ?s :coef ?c .
971
+ # ?x math:sin ?sinx .
972
+ # (?x 2.0) math:exponentiation ?x2 .
973
+ # (?sinx ?x2) math:sum ?y .
974
+ # ?x math:cos ?cosx .
975
+ # (2.0 ?x) math:product ?twox .
976
+ # (?cosx ?twox) math:sum ?dy .
977
+ # (?dy 2.0) math:exponentiation ?dy2 .
978
+ # (1.0 ?dy2) math:sum ?onePlus .
979
+ # (?onePlus 0.5) math:exponentiation ?ds .
980
+ # } => {
981
+ # ?s :y ?y .
982
+ # ?s :dy ?dy .
983
+ # ?s :ds ?ds .
984
+ # _:b6 :sample ?s .
985
+ # _:b6 :x ?x .
986
+ # _:b6 :coef ?c .
987
+ # _:b6 :y ?y .
988
+ # _:b6 :dy ?dy .
989
+ # _:b6 :ds ?ds .
990
+ # :Simpson1 :sampleResult _:b6 .
991
+ # } .
992
+ # with substitution (on rule variables):
993
+ # ?c = 4.0
994
+ # ?cosx = 0.0707372016677029
995
+ # ?ds = 3.229462333222977
996
+ # ?dy = 3.070737201667703
997
+ # ?dy2 = 9.429426961705994
998
+ # ?onePlus = 10.429426961705994
999
+ # ?s = _:b4
1000
+ # ?sinx = 0.9974949866040544
1001
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1002
+ # ?twox = 3
1003
+ # ?x = 1.5
1004
+ # ?x2 = 2.25
1005
+ # ?y = 3.2474949866040546
1006
+ # Therefore the derived triple above is entailed by the rules and facts.
1007
+ # ----------------------------------------------------------------------
1008
+
1009
+ _:sk_1 :coef 4.0 .
1010
+
1011
+ # ----------------------------------------------------------------------
1012
+ # Proof for derived triple:
1013
+ # _:sk_1 :y 3.2474949866040546 .
1014
+ # It holds because the following instance of the rule body is provable:
1015
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1016
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
1017
+ # _:b4 :x 1.5 .
1018
+ # _:b4 :coef 4.0 .
1019
+ # 1.5 math:sin 0.9974949866040544 .
1020
+ # (1.5 2.0) math:exponentiation 2.25 .
1021
+ # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
1022
+ # 1.5 math:cos 0.0707372016677029 .
1023
+ # (2.0 1.5) math:product 3 .
1024
+ # (0.0707372016677029 3) math:sum 3.070737201667703 .
1025
+ # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
1026
+ # (1.0 9.429426961705994) math:sum 10.429426961705994 .
1027
+ # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
1028
+ # via the schematic forward rule:
1029
+ # {
1030
+ # :Simpson1 :samples ?ss .
1031
+ # ?ss list:member ?s .
1032
+ # ?s :x ?x .
1033
+ # ?s :coef ?c .
1034
+ # ?x math:sin ?sinx .
1035
+ # (?x 2.0) math:exponentiation ?x2 .
1036
+ # (?sinx ?x2) math:sum ?y .
1037
+ # ?x math:cos ?cosx .
1038
+ # (2.0 ?x) math:product ?twox .
1039
+ # (?cosx ?twox) math:sum ?dy .
1040
+ # (?dy 2.0) math:exponentiation ?dy2 .
1041
+ # (1.0 ?dy2) math:sum ?onePlus .
1042
+ # (?onePlus 0.5) math:exponentiation ?ds .
1043
+ # } => {
1044
+ # ?s :y ?y .
1045
+ # ?s :dy ?dy .
1046
+ # ?s :ds ?ds .
1047
+ # _:b6 :sample ?s .
1048
+ # _:b6 :x ?x .
1049
+ # _:b6 :coef ?c .
1050
+ # _:b6 :y ?y .
1051
+ # _:b6 :dy ?dy .
1052
+ # _:b6 :ds ?ds .
1053
+ # :Simpson1 :sampleResult _:b6 .
1054
+ # } .
1055
+ # with substitution (on rule variables):
1056
+ # ?c = 4.0
1057
+ # ?cosx = 0.0707372016677029
1058
+ # ?ds = 3.229462333222977
1059
+ # ?dy = 3.070737201667703
1060
+ # ?dy2 = 9.429426961705994
1061
+ # ?onePlus = 10.429426961705994
1062
+ # ?s = _:b4
1063
+ # ?sinx = 0.9974949866040544
1064
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1065
+ # ?twox = 3
1066
+ # ?x = 1.5
1067
+ # ?x2 = 2.25
1068
+ # ?y = 3.2474949866040546
1069
+ # Therefore the derived triple above is entailed by the rules and facts.
1070
+ # ----------------------------------------------------------------------
1071
+
1072
+ _:sk_1 :y 3.2474949866040546 .
1073
+
1074
+ # ----------------------------------------------------------------------
1075
+ # Proof for derived triple:
1076
+ # _:sk_1 :dy 3.070737201667703 .
1077
+ # It holds because the following instance of the rule body is provable:
1078
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1079
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
1080
+ # _:b4 :x 1.5 .
1081
+ # _:b4 :coef 4.0 .
1082
+ # 1.5 math:sin 0.9974949866040544 .
1083
+ # (1.5 2.0) math:exponentiation 2.25 .
1084
+ # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
1085
+ # 1.5 math:cos 0.0707372016677029 .
1086
+ # (2.0 1.5) math:product 3 .
1087
+ # (0.0707372016677029 3) math:sum 3.070737201667703 .
1088
+ # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
1089
+ # (1.0 9.429426961705994) math:sum 10.429426961705994 .
1090
+ # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
1091
+ # via the schematic forward rule:
1092
+ # {
1093
+ # :Simpson1 :samples ?ss .
1094
+ # ?ss list:member ?s .
1095
+ # ?s :x ?x .
1096
+ # ?s :coef ?c .
1097
+ # ?x math:sin ?sinx .
1098
+ # (?x 2.0) math:exponentiation ?x2 .
1099
+ # (?sinx ?x2) math:sum ?y .
1100
+ # ?x math:cos ?cosx .
1101
+ # (2.0 ?x) math:product ?twox .
1102
+ # (?cosx ?twox) math:sum ?dy .
1103
+ # (?dy 2.0) math:exponentiation ?dy2 .
1104
+ # (1.0 ?dy2) math:sum ?onePlus .
1105
+ # (?onePlus 0.5) math:exponentiation ?ds .
1106
+ # } => {
1107
+ # ?s :y ?y .
1108
+ # ?s :dy ?dy .
1109
+ # ?s :ds ?ds .
1110
+ # _:b6 :sample ?s .
1111
+ # _:b6 :x ?x .
1112
+ # _:b6 :coef ?c .
1113
+ # _:b6 :y ?y .
1114
+ # _:b6 :dy ?dy .
1115
+ # _:b6 :ds ?ds .
1116
+ # :Simpson1 :sampleResult _:b6 .
1117
+ # } .
1118
+ # with substitution (on rule variables):
1119
+ # ?c = 4.0
1120
+ # ?cosx = 0.0707372016677029
1121
+ # ?ds = 3.229462333222977
1122
+ # ?dy = 3.070737201667703
1123
+ # ?dy2 = 9.429426961705994
1124
+ # ?onePlus = 10.429426961705994
1125
+ # ?s = _:b4
1126
+ # ?sinx = 0.9974949866040544
1127
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1128
+ # ?twox = 3
1129
+ # ?x = 1.5
1130
+ # ?x2 = 2.25
1131
+ # ?y = 3.2474949866040546
1132
+ # Therefore the derived triple above is entailed by the rules and facts.
1133
+ # ----------------------------------------------------------------------
1134
+
1135
+ _:sk_1 :dy 3.070737201667703 .
1136
+
1137
+ # ----------------------------------------------------------------------
1138
+ # Proof for derived triple:
1139
+ # _:sk_1 :ds 3.229462333222977 .
1140
+ # It holds because the following instance of the rule body is provable:
1141
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1142
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
1143
+ # _:b4 :x 1.5 .
1144
+ # _:b4 :coef 4.0 .
1145
+ # 1.5 math:sin 0.9974949866040544 .
1146
+ # (1.5 2.0) math:exponentiation 2.25 .
1147
+ # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
1148
+ # 1.5 math:cos 0.0707372016677029 .
1149
+ # (2.0 1.5) math:product 3 .
1150
+ # (0.0707372016677029 3) math:sum 3.070737201667703 .
1151
+ # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
1152
+ # (1.0 9.429426961705994) math:sum 10.429426961705994 .
1153
+ # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
1154
+ # via the schematic forward rule:
1155
+ # {
1156
+ # :Simpson1 :samples ?ss .
1157
+ # ?ss list:member ?s .
1158
+ # ?s :x ?x .
1159
+ # ?s :coef ?c .
1160
+ # ?x math:sin ?sinx .
1161
+ # (?x 2.0) math:exponentiation ?x2 .
1162
+ # (?sinx ?x2) math:sum ?y .
1163
+ # ?x math:cos ?cosx .
1164
+ # (2.0 ?x) math:product ?twox .
1165
+ # (?cosx ?twox) math:sum ?dy .
1166
+ # (?dy 2.0) math:exponentiation ?dy2 .
1167
+ # (1.0 ?dy2) math:sum ?onePlus .
1168
+ # (?onePlus 0.5) math:exponentiation ?ds .
1169
+ # } => {
1170
+ # ?s :y ?y .
1171
+ # ?s :dy ?dy .
1172
+ # ?s :ds ?ds .
1173
+ # _:b6 :sample ?s .
1174
+ # _:b6 :x ?x .
1175
+ # _:b6 :coef ?c .
1176
+ # _:b6 :y ?y .
1177
+ # _:b6 :dy ?dy .
1178
+ # _:b6 :ds ?ds .
1179
+ # :Simpson1 :sampleResult _:b6 .
1180
+ # } .
1181
+ # with substitution (on rule variables):
1182
+ # ?c = 4.0
1183
+ # ?cosx = 0.0707372016677029
1184
+ # ?ds = 3.229462333222977
1185
+ # ?dy = 3.070737201667703
1186
+ # ?dy2 = 9.429426961705994
1187
+ # ?onePlus = 10.429426961705994
1188
+ # ?s = _:b4
1189
+ # ?sinx = 0.9974949866040544
1190
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1191
+ # ?twox = 3
1192
+ # ?x = 1.5
1193
+ # ?x2 = 2.25
1194
+ # ?y = 3.2474949866040546
1195
+ # Therefore the derived triple above is entailed by the rules and facts.
1196
+ # ----------------------------------------------------------------------
1197
+
1198
+ _:sk_1 :ds 3.229462333222977 .
1199
+
1200
+ # ----------------------------------------------------------------------
1201
+ # Proof for derived triple:
1202
+ # :Simpson1 :sampleResult _:sk_1 .
1203
+ # It holds because the following instance of the rule body is provable:
1204
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1205
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
1206
+ # _:b4 :x 1.5 .
1207
+ # _:b4 :coef 4.0 .
1208
+ # 1.5 math:sin 0.9974949866040544 .
1209
+ # (1.5 2.0) math:exponentiation 2.25 .
1210
+ # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
1211
+ # 1.5 math:cos 0.0707372016677029 .
1212
+ # (2.0 1.5) math:product 3 .
1213
+ # (0.0707372016677029 3) math:sum 3.070737201667703 .
1214
+ # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
1215
+ # (1.0 9.429426961705994) math:sum 10.429426961705994 .
1216
+ # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
1217
+ # via the schematic forward rule:
1218
+ # {
1219
+ # :Simpson1 :samples ?ss .
1220
+ # ?ss list:member ?s .
1221
+ # ?s :x ?x .
1222
+ # ?s :coef ?c .
1223
+ # ?x math:sin ?sinx .
1224
+ # (?x 2.0) math:exponentiation ?x2 .
1225
+ # (?sinx ?x2) math:sum ?y .
1226
+ # ?x math:cos ?cosx .
1227
+ # (2.0 ?x) math:product ?twox .
1228
+ # (?cosx ?twox) math:sum ?dy .
1229
+ # (?dy 2.0) math:exponentiation ?dy2 .
1230
+ # (1.0 ?dy2) math:sum ?onePlus .
1231
+ # (?onePlus 0.5) math:exponentiation ?ds .
1232
+ # } => {
1233
+ # ?s :y ?y .
1234
+ # ?s :dy ?dy .
1235
+ # ?s :ds ?ds .
1236
+ # _:b6 :sample ?s .
1237
+ # _:b6 :x ?x .
1238
+ # _:b6 :coef ?c .
1239
+ # _:b6 :y ?y .
1240
+ # _:b6 :dy ?dy .
1241
+ # _:b6 :ds ?ds .
1242
+ # :Simpson1 :sampleResult _:b6 .
1243
+ # } .
1244
+ # with substitution (on rule variables):
1245
+ # ?c = 4.0
1246
+ # ?cosx = 0.0707372016677029
1247
+ # ?ds = 3.229462333222977
1248
+ # ?dy = 3.070737201667703
1249
+ # ?dy2 = 9.429426961705994
1250
+ # ?onePlus = 10.429426961705994
1251
+ # ?s = _:b4
1252
+ # ?sinx = 0.9974949866040544
1253
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1254
+ # ?twox = 3
1255
+ # ?x = 1.5
1256
+ # ?x2 = 2.25
1257
+ # ?y = 3.2474949866040546
1258
+ # Therefore the derived triple above is entailed by the rules and facts.
1259
+ # ----------------------------------------------------------------------
1260
+
1261
+ :Simpson1 :sampleResult _:sk_1 .
1262
+
1263
+ # ----------------------------------------------------------------------
1264
+ # Proof for derived triple:
1265
+ # _:b3 :y 1.8414709848078965 .
1266
+ # It holds because the following instance of the rule body is provable:
1267
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1268
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1269
+ # _:b3 :x 1.0 .
1270
+ # _:b3 :coef 2.0 .
1271
+ # 1.0 math:sin 0.8414709848078965 .
1272
+ # (1.0 2.0) math:exponentiation 1 .
1273
+ # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1274
+ # 1.0 math:cos 0.5403023058681398 .
1275
+ # (2.0 1.0) math:product 2 .
1276
+ # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1277
+ # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1278
+ # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1279
+ # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1280
+ # via the schematic forward rule:
1281
+ # {
1282
+ # :Simpson1 :samples ?ss .
1283
+ # ?ss list:member ?s .
1284
+ # ?s :x ?x .
1285
+ # ?s :coef ?c .
1286
+ # ?x math:sin ?sinx .
1287
+ # (?x 2.0) math:exponentiation ?x2 .
1288
+ # (?sinx ?x2) math:sum ?y .
1289
+ # ?x math:cos ?cosx .
1290
+ # (2.0 ?x) math:product ?twox .
1291
+ # (?cosx ?twox) math:sum ?dy .
1292
+ # (?dy 2.0) math:exponentiation ?dy2 .
1293
+ # (1.0 ?dy2) math:sum ?onePlus .
1294
+ # (?onePlus 0.5) math:exponentiation ?ds .
1295
+ # } => {
1296
+ # ?s :y ?y .
1297
+ # ?s :dy ?dy .
1298
+ # ?s :ds ?ds .
1299
+ # _:b6 :sample ?s .
1300
+ # _:b6 :x ?x .
1301
+ # _:b6 :coef ?c .
1302
+ # _:b6 :y ?y .
1303
+ # _:b6 :dy ?dy .
1304
+ # _:b6 :ds ?ds .
1305
+ # :Simpson1 :sampleResult _:b6 .
1306
+ # } .
1307
+ # with substitution (on rule variables):
1308
+ # ?c = 2.0
1309
+ # ?cosx = 0.5403023058681398
1310
+ # ?ds = 2.7300431874237794
1311
+ # ?dy = 2.5403023058681398
1312
+ # ?dy2 = 6.453135805198988
1313
+ # ?onePlus = 7.453135805198988
1314
+ # ?s = _:b3
1315
+ # ?sinx = 0.8414709848078965
1316
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1317
+ # ?twox = 2
1318
+ # ?x = 1.0
1319
+ # ?x2 = 1
1320
+ # ?y = 1.8414709848078965
1321
+ # Therefore the derived triple above is entailed by the rules and facts.
1322
+ # ----------------------------------------------------------------------
1323
+
1324
+ _:b3 :y 1.8414709848078965 .
1325
+
1326
+ # ----------------------------------------------------------------------
1327
+ # Proof for derived triple:
1328
+ # _:b3 :dy 2.5403023058681398 .
1329
+ # It holds because the following instance of the rule body is provable:
1330
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1331
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1332
+ # _:b3 :x 1.0 .
1333
+ # _:b3 :coef 2.0 .
1334
+ # 1.0 math:sin 0.8414709848078965 .
1335
+ # (1.0 2.0) math:exponentiation 1 .
1336
+ # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1337
+ # 1.0 math:cos 0.5403023058681398 .
1338
+ # (2.0 1.0) math:product 2 .
1339
+ # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1340
+ # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1341
+ # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1342
+ # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1343
+ # via the schematic forward rule:
1344
+ # {
1345
+ # :Simpson1 :samples ?ss .
1346
+ # ?ss list:member ?s .
1347
+ # ?s :x ?x .
1348
+ # ?s :coef ?c .
1349
+ # ?x math:sin ?sinx .
1350
+ # (?x 2.0) math:exponentiation ?x2 .
1351
+ # (?sinx ?x2) math:sum ?y .
1352
+ # ?x math:cos ?cosx .
1353
+ # (2.0 ?x) math:product ?twox .
1354
+ # (?cosx ?twox) math:sum ?dy .
1355
+ # (?dy 2.0) math:exponentiation ?dy2 .
1356
+ # (1.0 ?dy2) math:sum ?onePlus .
1357
+ # (?onePlus 0.5) math:exponentiation ?ds .
1358
+ # } => {
1359
+ # ?s :y ?y .
1360
+ # ?s :dy ?dy .
1361
+ # ?s :ds ?ds .
1362
+ # _:b6 :sample ?s .
1363
+ # _:b6 :x ?x .
1364
+ # _:b6 :coef ?c .
1365
+ # _:b6 :y ?y .
1366
+ # _:b6 :dy ?dy .
1367
+ # _:b6 :ds ?ds .
1368
+ # :Simpson1 :sampleResult _:b6 .
1369
+ # } .
1370
+ # with substitution (on rule variables):
1371
+ # ?c = 2.0
1372
+ # ?cosx = 0.5403023058681398
1373
+ # ?ds = 2.7300431874237794
1374
+ # ?dy = 2.5403023058681398
1375
+ # ?dy2 = 6.453135805198988
1376
+ # ?onePlus = 7.453135805198988
1377
+ # ?s = _:b3
1378
+ # ?sinx = 0.8414709848078965
1379
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1380
+ # ?twox = 2
1381
+ # ?x = 1.0
1382
+ # ?x2 = 1
1383
+ # ?y = 1.8414709848078965
1384
+ # Therefore the derived triple above is entailed by the rules and facts.
1385
+ # ----------------------------------------------------------------------
1386
+
1387
+ _:b3 :dy 2.5403023058681398 .
1388
+
1389
+ # ----------------------------------------------------------------------
1390
+ # Proof for derived triple:
1391
+ # _:b3 :ds 2.7300431874237794 .
1392
+ # It holds because the following instance of the rule body is provable:
1393
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1394
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1395
+ # _:b3 :x 1.0 .
1396
+ # _:b3 :coef 2.0 .
1397
+ # 1.0 math:sin 0.8414709848078965 .
1398
+ # (1.0 2.0) math:exponentiation 1 .
1399
+ # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1400
+ # 1.0 math:cos 0.5403023058681398 .
1401
+ # (2.0 1.0) math:product 2 .
1402
+ # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1403
+ # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1404
+ # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1405
+ # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1406
+ # via the schematic forward rule:
1407
+ # {
1408
+ # :Simpson1 :samples ?ss .
1409
+ # ?ss list:member ?s .
1410
+ # ?s :x ?x .
1411
+ # ?s :coef ?c .
1412
+ # ?x math:sin ?sinx .
1413
+ # (?x 2.0) math:exponentiation ?x2 .
1414
+ # (?sinx ?x2) math:sum ?y .
1415
+ # ?x math:cos ?cosx .
1416
+ # (2.0 ?x) math:product ?twox .
1417
+ # (?cosx ?twox) math:sum ?dy .
1418
+ # (?dy 2.0) math:exponentiation ?dy2 .
1419
+ # (1.0 ?dy2) math:sum ?onePlus .
1420
+ # (?onePlus 0.5) math:exponentiation ?ds .
1421
+ # } => {
1422
+ # ?s :y ?y .
1423
+ # ?s :dy ?dy .
1424
+ # ?s :ds ?ds .
1425
+ # _:b6 :sample ?s .
1426
+ # _:b6 :x ?x .
1427
+ # _:b6 :coef ?c .
1428
+ # _:b6 :y ?y .
1429
+ # _:b6 :dy ?dy .
1430
+ # _:b6 :ds ?ds .
1431
+ # :Simpson1 :sampleResult _:b6 .
1432
+ # } .
1433
+ # with substitution (on rule variables):
1434
+ # ?c = 2.0
1435
+ # ?cosx = 0.5403023058681398
1436
+ # ?ds = 2.7300431874237794
1437
+ # ?dy = 2.5403023058681398
1438
+ # ?dy2 = 6.453135805198988
1439
+ # ?onePlus = 7.453135805198988
1440
+ # ?s = _:b3
1441
+ # ?sinx = 0.8414709848078965
1442
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1443
+ # ?twox = 2
1444
+ # ?x = 1.0
1445
+ # ?x2 = 1
1446
+ # ?y = 1.8414709848078965
1447
+ # Therefore the derived triple above is entailed by the rules and facts.
1448
+ # ----------------------------------------------------------------------
1449
+
1450
+ _:b3 :ds 2.7300431874237794 .
1451
+
1452
+ # ----------------------------------------------------------------------
1453
+ # Proof for derived triple:
1454
+ # _:sk_2 :sample _:b3 .
1455
+ # It holds because the following instance of the rule body is provable:
1456
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1457
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1458
+ # _:b3 :x 1.0 .
1459
+ # _:b3 :coef 2.0 .
1460
+ # 1.0 math:sin 0.8414709848078965 .
1461
+ # (1.0 2.0) math:exponentiation 1 .
1462
+ # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1463
+ # 1.0 math:cos 0.5403023058681398 .
1464
+ # (2.0 1.0) math:product 2 .
1465
+ # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1466
+ # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1467
+ # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1468
+ # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1469
+ # via the schematic forward rule:
1470
+ # {
1471
+ # :Simpson1 :samples ?ss .
1472
+ # ?ss list:member ?s .
1473
+ # ?s :x ?x .
1474
+ # ?s :coef ?c .
1475
+ # ?x math:sin ?sinx .
1476
+ # (?x 2.0) math:exponentiation ?x2 .
1477
+ # (?sinx ?x2) math:sum ?y .
1478
+ # ?x math:cos ?cosx .
1479
+ # (2.0 ?x) math:product ?twox .
1480
+ # (?cosx ?twox) math:sum ?dy .
1481
+ # (?dy 2.0) math:exponentiation ?dy2 .
1482
+ # (1.0 ?dy2) math:sum ?onePlus .
1483
+ # (?onePlus 0.5) math:exponentiation ?ds .
1484
+ # } => {
1485
+ # ?s :y ?y .
1486
+ # ?s :dy ?dy .
1487
+ # ?s :ds ?ds .
1488
+ # _:b6 :sample ?s .
1489
+ # _:b6 :x ?x .
1490
+ # _:b6 :coef ?c .
1491
+ # _:b6 :y ?y .
1492
+ # _:b6 :dy ?dy .
1493
+ # _:b6 :ds ?ds .
1494
+ # :Simpson1 :sampleResult _:b6 .
1495
+ # } .
1496
+ # with substitution (on rule variables):
1497
+ # ?c = 2.0
1498
+ # ?cosx = 0.5403023058681398
1499
+ # ?ds = 2.7300431874237794
1500
+ # ?dy = 2.5403023058681398
1501
+ # ?dy2 = 6.453135805198988
1502
+ # ?onePlus = 7.453135805198988
1503
+ # ?s = _:b3
1504
+ # ?sinx = 0.8414709848078965
1505
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1506
+ # ?twox = 2
1507
+ # ?x = 1.0
1508
+ # ?x2 = 1
1509
+ # ?y = 1.8414709848078965
1510
+ # Therefore the derived triple above is entailed by the rules and facts.
1511
+ # ----------------------------------------------------------------------
1512
+
1513
+ _:sk_2 :sample _:b3 .
1514
+
1515
+ # ----------------------------------------------------------------------
1516
+ # Proof for derived triple:
1517
+ # _:sk_2 :x 1.0 .
1518
+ # It holds because the following instance of the rule body is provable:
1519
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1520
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1521
+ # _:b3 :x 1.0 .
1522
+ # _:b3 :coef 2.0 .
1523
+ # 1.0 math:sin 0.8414709848078965 .
1524
+ # (1.0 2.0) math:exponentiation 1 .
1525
+ # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1526
+ # 1.0 math:cos 0.5403023058681398 .
1527
+ # (2.0 1.0) math:product 2 .
1528
+ # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1529
+ # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1530
+ # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1531
+ # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1532
+ # via the schematic forward rule:
1533
+ # {
1534
+ # :Simpson1 :samples ?ss .
1535
+ # ?ss list:member ?s .
1536
+ # ?s :x ?x .
1537
+ # ?s :coef ?c .
1538
+ # ?x math:sin ?sinx .
1539
+ # (?x 2.0) math:exponentiation ?x2 .
1540
+ # (?sinx ?x2) math:sum ?y .
1541
+ # ?x math:cos ?cosx .
1542
+ # (2.0 ?x) math:product ?twox .
1543
+ # (?cosx ?twox) math:sum ?dy .
1544
+ # (?dy 2.0) math:exponentiation ?dy2 .
1545
+ # (1.0 ?dy2) math:sum ?onePlus .
1546
+ # (?onePlus 0.5) math:exponentiation ?ds .
1547
+ # } => {
1548
+ # ?s :y ?y .
1549
+ # ?s :dy ?dy .
1550
+ # ?s :ds ?ds .
1551
+ # _:b6 :sample ?s .
1552
+ # _:b6 :x ?x .
1553
+ # _:b6 :coef ?c .
1554
+ # _:b6 :y ?y .
1555
+ # _:b6 :dy ?dy .
1556
+ # _:b6 :ds ?ds .
1557
+ # :Simpson1 :sampleResult _:b6 .
1558
+ # } .
1559
+ # with substitution (on rule variables):
1560
+ # ?c = 2.0
1561
+ # ?cosx = 0.5403023058681398
1562
+ # ?ds = 2.7300431874237794
1563
+ # ?dy = 2.5403023058681398
1564
+ # ?dy2 = 6.453135805198988
1565
+ # ?onePlus = 7.453135805198988
1566
+ # ?s = _:b3
1567
+ # ?sinx = 0.8414709848078965
1568
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1569
+ # ?twox = 2
1570
+ # ?x = 1.0
1571
+ # ?x2 = 1
1572
+ # ?y = 1.8414709848078965
1573
+ # Therefore the derived triple above is entailed by the rules and facts.
1574
+ # ----------------------------------------------------------------------
1575
+
1576
+ _:sk_2 :x 1.0 .
1577
+
1578
+ # ----------------------------------------------------------------------
1579
+ # Proof for derived triple:
1580
+ # _:sk_2 :coef 2.0 .
1581
+ # It holds because the following instance of the rule body is provable:
1582
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1583
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1584
+ # _:b3 :x 1.0 .
1585
+ # _:b3 :coef 2.0 .
1586
+ # 1.0 math:sin 0.8414709848078965 .
1587
+ # (1.0 2.0) math:exponentiation 1 .
1588
+ # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1589
+ # 1.0 math:cos 0.5403023058681398 .
1590
+ # (2.0 1.0) math:product 2 .
1591
+ # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1592
+ # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1593
+ # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1594
+ # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1595
+ # via the schematic forward rule:
1596
+ # {
1597
+ # :Simpson1 :samples ?ss .
1598
+ # ?ss list:member ?s .
1599
+ # ?s :x ?x .
1600
+ # ?s :coef ?c .
1601
+ # ?x math:sin ?sinx .
1602
+ # (?x 2.0) math:exponentiation ?x2 .
1603
+ # (?sinx ?x2) math:sum ?y .
1604
+ # ?x math:cos ?cosx .
1605
+ # (2.0 ?x) math:product ?twox .
1606
+ # (?cosx ?twox) math:sum ?dy .
1607
+ # (?dy 2.0) math:exponentiation ?dy2 .
1608
+ # (1.0 ?dy2) math:sum ?onePlus .
1609
+ # (?onePlus 0.5) math:exponentiation ?ds .
1610
+ # } => {
1611
+ # ?s :y ?y .
1612
+ # ?s :dy ?dy .
1613
+ # ?s :ds ?ds .
1614
+ # _:b6 :sample ?s .
1615
+ # _:b6 :x ?x .
1616
+ # _:b6 :coef ?c .
1617
+ # _:b6 :y ?y .
1618
+ # _:b6 :dy ?dy .
1619
+ # _:b6 :ds ?ds .
1620
+ # :Simpson1 :sampleResult _:b6 .
1621
+ # } .
1622
+ # with substitution (on rule variables):
1623
+ # ?c = 2.0
1624
+ # ?cosx = 0.5403023058681398
1625
+ # ?ds = 2.7300431874237794
1626
+ # ?dy = 2.5403023058681398
1627
+ # ?dy2 = 6.453135805198988
1628
+ # ?onePlus = 7.453135805198988
1629
+ # ?s = _:b3
1630
+ # ?sinx = 0.8414709848078965
1631
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1632
+ # ?twox = 2
1633
+ # ?x = 1.0
1634
+ # ?x2 = 1
1635
+ # ?y = 1.8414709848078965
1636
+ # Therefore the derived triple above is entailed by the rules and facts.
1637
+ # ----------------------------------------------------------------------
1638
+
1639
+ _:sk_2 :coef 2.0 .
1640
+
1641
+ # ----------------------------------------------------------------------
1642
+ # Proof for derived triple:
1643
+ # _:sk_2 :y 1.8414709848078965 .
1644
+ # It holds because the following instance of the rule body is provable:
1645
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1646
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1647
+ # _:b3 :x 1.0 .
1648
+ # _:b3 :coef 2.0 .
1649
+ # 1.0 math:sin 0.8414709848078965 .
1650
+ # (1.0 2.0) math:exponentiation 1 .
1651
+ # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1652
+ # 1.0 math:cos 0.5403023058681398 .
1653
+ # (2.0 1.0) math:product 2 .
1654
+ # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1655
+ # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1656
+ # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1657
+ # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1658
+ # via the schematic forward rule:
1659
+ # {
1660
+ # :Simpson1 :samples ?ss .
1661
+ # ?ss list:member ?s .
1662
+ # ?s :x ?x .
1663
+ # ?s :coef ?c .
1664
+ # ?x math:sin ?sinx .
1665
+ # (?x 2.0) math:exponentiation ?x2 .
1666
+ # (?sinx ?x2) math:sum ?y .
1667
+ # ?x math:cos ?cosx .
1668
+ # (2.0 ?x) math:product ?twox .
1669
+ # (?cosx ?twox) math:sum ?dy .
1670
+ # (?dy 2.0) math:exponentiation ?dy2 .
1671
+ # (1.0 ?dy2) math:sum ?onePlus .
1672
+ # (?onePlus 0.5) math:exponentiation ?ds .
1673
+ # } => {
1674
+ # ?s :y ?y .
1675
+ # ?s :dy ?dy .
1676
+ # ?s :ds ?ds .
1677
+ # _:b6 :sample ?s .
1678
+ # _:b6 :x ?x .
1679
+ # _:b6 :coef ?c .
1680
+ # _:b6 :y ?y .
1681
+ # _:b6 :dy ?dy .
1682
+ # _:b6 :ds ?ds .
1683
+ # :Simpson1 :sampleResult _:b6 .
1684
+ # } .
1685
+ # with substitution (on rule variables):
1686
+ # ?c = 2.0
1687
+ # ?cosx = 0.5403023058681398
1688
+ # ?ds = 2.7300431874237794
1689
+ # ?dy = 2.5403023058681398
1690
+ # ?dy2 = 6.453135805198988
1691
+ # ?onePlus = 7.453135805198988
1692
+ # ?s = _:b3
1693
+ # ?sinx = 0.8414709848078965
1694
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1695
+ # ?twox = 2
1696
+ # ?x = 1.0
1697
+ # ?x2 = 1
1698
+ # ?y = 1.8414709848078965
1699
+ # Therefore the derived triple above is entailed by the rules and facts.
1700
+ # ----------------------------------------------------------------------
1701
+
1702
+ _:sk_2 :y 1.8414709848078965 .
1703
+
1704
+ # ----------------------------------------------------------------------
1705
+ # Proof for derived triple:
1706
+ # _:sk_2 :dy 2.5403023058681398 .
1707
+ # It holds because the following instance of the rule body is provable:
1708
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1709
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1710
+ # _:b3 :x 1.0 .
1711
+ # _:b3 :coef 2.0 .
1712
+ # 1.0 math:sin 0.8414709848078965 .
1713
+ # (1.0 2.0) math:exponentiation 1 .
1714
+ # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1715
+ # 1.0 math:cos 0.5403023058681398 .
1716
+ # (2.0 1.0) math:product 2 .
1717
+ # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1718
+ # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1719
+ # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1720
+ # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1721
+ # via the schematic forward rule:
1722
+ # {
1723
+ # :Simpson1 :samples ?ss .
1724
+ # ?ss list:member ?s .
1725
+ # ?s :x ?x .
1726
+ # ?s :coef ?c .
1727
+ # ?x math:sin ?sinx .
1728
+ # (?x 2.0) math:exponentiation ?x2 .
1729
+ # (?sinx ?x2) math:sum ?y .
1730
+ # ?x math:cos ?cosx .
1731
+ # (2.0 ?x) math:product ?twox .
1732
+ # (?cosx ?twox) math:sum ?dy .
1733
+ # (?dy 2.0) math:exponentiation ?dy2 .
1734
+ # (1.0 ?dy2) math:sum ?onePlus .
1735
+ # (?onePlus 0.5) math:exponentiation ?ds .
1736
+ # } => {
1737
+ # ?s :y ?y .
1738
+ # ?s :dy ?dy .
1739
+ # ?s :ds ?ds .
1740
+ # _:b6 :sample ?s .
1741
+ # _:b6 :x ?x .
1742
+ # _:b6 :coef ?c .
1743
+ # _:b6 :y ?y .
1744
+ # _:b6 :dy ?dy .
1745
+ # _:b6 :ds ?ds .
1746
+ # :Simpson1 :sampleResult _:b6 .
1747
+ # } .
1748
+ # with substitution (on rule variables):
1749
+ # ?c = 2.0
1750
+ # ?cosx = 0.5403023058681398
1751
+ # ?ds = 2.7300431874237794
1752
+ # ?dy = 2.5403023058681398
1753
+ # ?dy2 = 6.453135805198988
1754
+ # ?onePlus = 7.453135805198988
1755
+ # ?s = _:b3
1756
+ # ?sinx = 0.8414709848078965
1757
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1758
+ # ?twox = 2
1759
+ # ?x = 1.0
1760
+ # ?x2 = 1
1761
+ # ?y = 1.8414709848078965
1762
+ # Therefore the derived triple above is entailed by the rules and facts.
1763
+ # ----------------------------------------------------------------------
1764
+
1765
+ _:sk_2 :dy 2.5403023058681398 .
1766
+
1767
+ # ----------------------------------------------------------------------
1768
+ # Proof for derived triple:
1769
+ # _:sk_2 :ds 2.7300431874237794 .
1770
+ # It holds because the following instance of the rule body is provable:
1771
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1772
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1773
+ # _:b3 :x 1.0 .
1774
+ # _:b3 :coef 2.0 .
1775
+ # 1.0 math:sin 0.8414709848078965 .
1776
+ # (1.0 2.0) math:exponentiation 1 .
1777
+ # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1778
+ # 1.0 math:cos 0.5403023058681398 .
1779
+ # (2.0 1.0) math:product 2 .
1780
+ # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1781
+ # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1782
+ # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1783
+ # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1784
+ # via the schematic forward rule:
1785
+ # {
1786
+ # :Simpson1 :samples ?ss .
1787
+ # ?ss list:member ?s .
1788
+ # ?s :x ?x .
1789
+ # ?s :coef ?c .
1790
+ # ?x math:sin ?sinx .
1791
+ # (?x 2.0) math:exponentiation ?x2 .
1792
+ # (?sinx ?x2) math:sum ?y .
1793
+ # ?x math:cos ?cosx .
1794
+ # (2.0 ?x) math:product ?twox .
1795
+ # (?cosx ?twox) math:sum ?dy .
1796
+ # (?dy 2.0) math:exponentiation ?dy2 .
1797
+ # (1.0 ?dy2) math:sum ?onePlus .
1798
+ # (?onePlus 0.5) math:exponentiation ?ds .
1799
+ # } => {
1800
+ # ?s :y ?y .
1801
+ # ?s :dy ?dy .
1802
+ # ?s :ds ?ds .
1803
+ # _:b6 :sample ?s .
1804
+ # _:b6 :x ?x .
1805
+ # _:b6 :coef ?c .
1806
+ # _:b6 :y ?y .
1807
+ # _:b6 :dy ?dy .
1808
+ # _:b6 :ds ?ds .
1809
+ # :Simpson1 :sampleResult _:b6 .
1810
+ # } .
1811
+ # with substitution (on rule variables):
1812
+ # ?c = 2.0
1813
+ # ?cosx = 0.5403023058681398
1814
+ # ?ds = 2.7300431874237794
1815
+ # ?dy = 2.5403023058681398
1816
+ # ?dy2 = 6.453135805198988
1817
+ # ?onePlus = 7.453135805198988
1818
+ # ?s = _:b3
1819
+ # ?sinx = 0.8414709848078965
1820
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1821
+ # ?twox = 2
1822
+ # ?x = 1.0
1823
+ # ?x2 = 1
1824
+ # ?y = 1.8414709848078965
1825
+ # Therefore the derived triple above is entailed by the rules and facts.
1826
+ # ----------------------------------------------------------------------
1827
+
1828
+ _:sk_2 :ds 2.7300431874237794 .
1829
+
1830
+ # ----------------------------------------------------------------------
1831
+ # Proof for derived triple:
1832
+ # :Simpson1 :sampleResult _:sk_2 .
1833
+ # It holds because the following instance of the rule body is provable:
1834
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1835
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1836
+ # _:b3 :x 1.0 .
1837
+ # _:b3 :coef 2.0 .
1838
+ # 1.0 math:sin 0.8414709848078965 .
1839
+ # (1.0 2.0) math:exponentiation 1 .
1840
+ # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1841
+ # 1.0 math:cos 0.5403023058681398 .
1842
+ # (2.0 1.0) math:product 2 .
1843
+ # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1844
+ # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1845
+ # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1846
+ # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1847
+ # via the schematic forward rule:
1848
+ # {
1849
+ # :Simpson1 :samples ?ss .
1850
+ # ?ss list:member ?s .
1851
+ # ?s :x ?x .
1852
+ # ?s :coef ?c .
1853
+ # ?x math:sin ?sinx .
1854
+ # (?x 2.0) math:exponentiation ?x2 .
1855
+ # (?sinx ?x2) math:sum ?y .
1856
+ # ?x math:cos ?cosx .
1857
+ # (2.0 ?x) math:product ?twox .
1858
+ # (?cosx ?twox) math:sum ?dy .
1859
+ # (?dy 2.0) math:exponentiation ?dy2 .
1860
+ # (1.0 ?dy2) math:sum ?onePlus .
1861
+ # (?onePlus 0.5) math:exponentiation ?ds .
1862
+ # } => {
1863
+ # ?s :y ?y .
1864
+ # ?s :dy ?dy .
1865
+ # ?s :ds ?ds .
1866
+ # _:b6 :sample ?s .
1867
+ # _:b6 :x ?x .
1868
+ # _:b6 :coef ?c .
1869
+ # _:b6 :y ?y .
1870
+ # _:b6 :dy ?dy .
1871
+ # _:b6 :ds ?ds .
1872
+ # :Simpson1 :sampleResult _:b6 .
1873
+ # } .
1874
+ # with substitution (on rule variables):
1875
+ # ?c = 2.0
1876
+ # ?cosx = 0.5403023058681398
1877
+ # ?ds = 2.7300431874237794
1878
+ # ?dy = 2.5403023058681398
1879
+ # ?dy2 = 6.453135805198988
1880
+ # ?onePlus = 7.453135805198988
1881
+ # ?s = _:b3
1882
+ # ?sinx = 0.8414709848078965
1883
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1884
+ # ?twox = 2
1885
+ # ?x = 1.0
1886
+ # ?x2 = 1
1887
+ # ?y = 1.8414709848078965
1888
+ # Therefore the derived triple above is entailed by the rules and facts.
1889
+ # ----------------------------------------------------------------------
1890
+
1891
+ :Simpson1 :sampleResult _:sk_2 .
1892
+
1893
+ # ----------------------------------------------------------------------
1894
+ # Proof for derived triple:
1895
+ # _:b2 :y 0.729425538604203 .
1896
+ # It holds because the following instance of the rule body is provable:
1897
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1898
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
1899
+ # _:b2 :x 0.5 .
1900
+ # _:b2 :coef 4.0 .
1901
+ # 0.5 math:sin 0.479425538604203 .
1902
+ # (0.5 2.0) math:exponentiation 0.25 .
1903
+ # (0.479425538604203 0.25) math:sum 0.729425538604203 .
1904
+ # 0.5 math:cos 0.8775825618903728 .
1905
+ # (2.0 0.5) math:product 1 .
1906
+ # (0.8775825618903728 1) math:sum 1.8775825618903728 .
1907
+ # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
1908
+ # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
1909
+ # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
1910
+ # via the schematic forward rule:
1911
+ # {
1912
+ # :Simpson1 :samples ?ss .
1913
+ # ?ss list:member ?s .
1914
+ # ?s :x ?x .
1915
+ # ?s :coef ?c .
1916
+ # ?x math:sin ?sinx .
1917
+ # (?x 2.0) math:exponentiation ?x2 .
1918
+ # (?sinx ?x2) math:sum ?y .
1919
+ # ?x math:cos ?cosx .
1920
+ # (2.0 ?x) math:product ?twox .
1921
+ # (?cosx ?twox) math:sum ?dy .
1922
+ # (?dy 2.0) math:exponentiation ?dy2 .
1923
+ # (1.0 ?dy2) math:sum ?onePlus .
1924
+ # (?onePlus 0.5) math:exponentiation ?ds .
1925
+ # } => {
1926
+ # ?s :y ?y .
1927
+ # ?s :dy ?dy .
1928
+ # ?s :ds ?ds .
1929
+ # _:b6 :sample ?s .
1930
+ # _:b6 :x ?x .
1931
+ # _:b6 :coef ?c .
1932
+ # _:b6 :y ?y .
1933
+ # _:b6 :dy ?dy .
1934
+ # _:b6 :ds ?ds .
1935
+ # :Simpson1 :sampleResult _:b6 .
1936
+ # } .
1937
+ # with substitution (on rule variables):
1938
+ # ?c = 4.0
1939
+ # ?cosx = 0.8775825618903728
1940
+ # ?ds = 2.12727907823934
1941
+ # ?dy = 1.8775825618903728
1942
+ # ?dy2 = 3.5253162767148156
1943
+ # ?onePlus = 4.525316276714816
1944
+ # ?s = _:b2
1945
+ # ?sinx = 0.479425538604203
1946
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1947
+ # ?twox = 1
1948
+ # ?x = 0.5
1949
+ # ?x2 = 0.25
1950
+ # ?y = 0.729425538604203
1951
+ # Therefore the derived triple above is entailed by the rules and facts.
1952
+ # ----------------------------------------------------------------------
1953
+
1954
+ _:b2 :y 0.729425538604203 .
1955
+
1956
+ # ----------------------------------------------------------------------
1957
+ # Proof for derived triple:
1958
+ # _:b2 :dy 1.8775825618903728 .
1959
+ # It holds because the following instance of the rule body is provable:
1960
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1961
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
1962
+ # _:b2 :x 0.5 .
1963
+ # _:b2 :coef 4.0 .
1964
+ # 0.5 math:sin 0.479425538604203 .
1965
+ # (0.5 2.0) math:exponentiation 0.25 .
1966
+ # (0.479425538604203 0.25) math:sum 0.729425538604203 .
1967
+ # 0.5 math:cos 0.8775825618903728 .
1968
+ # (2.0 0.5) math:product 1 .
1969
+ # (0.8775825618903728 1) math:sum 1.8775825618903728 .
1970
+ # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
1971
+ # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
1972
+ # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
1973
+ # via the schematic forward rule:
1974
+ # {
1975
+ # :Simpson1 :samples ?ss .
1976
+ # ?ss list:member ?s .
1977
+ # ?s :x ?x .
1978
+ # ?s :coef ?c .
1979
+ # ?x math:sin ?sinx .
1980
+ # (?x 2.0) math:exponentiation ?x2 .
1981
+ # (?sinx ?x2) math:sum ?y .
1982
+ # ?x math:cos ?cosx .
1983
+ # (2.0 ?x) math:product ?twox .
1984
+ # (?cosx ?twox) math:sum ?dy .
1985
+ # (?dy 2.0) math:exponentiation ?dy2 .
1986
+ # (1.0 ?dy2) math:sum ?onePlus .
1987
+ # (?onePlus 0.5) math:exponentiation ?ds .
1988
+ # } => {
1989
+ # ?s :y ?y .
1990
+ # ?s :dy ?dy .
1991
+ # ?s :ds ?ds .
1992
+ # _:b6 :sample ?s .
1993
+ # _:b6 :x ?x .
1994
+ # _:b6 :coef ?c .
1995
+ # _:b6 :y ?y .
1996
+ # _:b6 :dy ?dy .
1997
+ # _:b6 :ds ?ds .
1998
+ # :Simpson1 :sampleResult _:b6 .
1999
+ # } .
2000
+ # with substitution (on rule variables):
2001
+ # ?c = 4.0
2002
+ # ?cosx = 0.8775825618903728
2003
+ # ?ds = 2.12727907823934
2004
+ # ?dy = 1.8775825618903728
2005
+ # ?dy2 = 3.5253162767148156
2006
+ # ?onePlus = 4.525316276714816
2007
+ # ?s = _:b2
2008
+ # ?sinx = 0.479425538604203
2009
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2010
+ # ?twox = 1
2011
+ # ?x = 0.5
2012
+ # ?x2 = 0.25
2013
+ # ?y = 0.729425538604203
2014
+ # Therefore the derived triple above is entailed by the rules and facts.
2015
+ # ----------------------------------------------------------------------
2016
+
2017
+ _:b2 :dy 1.8775825618903728 .
2018
+
2019
+ # ----------------------------------------------------------------------
2020
+ # Proof for derived triple:
2021
+ # _:b2 :ds 2.12727907823934 .
2022
+ # It holds because the following instance of the rule body is provable:
2023
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2024
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2025
+ # _:b2 :x 0.5 .
2026
+ # _:b2 :coef 4.0 .
2027
+ # 0.5 math:sin 0.479425538604203 .
2028
+ # (0.5 2.0) math:exponentiation 0.25 .
2029
+ # (0.479425538604203 0.25) math:sum 0.729425538604203 .
2030
+ # 0.5 math:cos 0.8775825618903728 .
2031
+ # (2.0 0.5) math:product 1 .
2032
+ # (0.8775825618903728 1) math:sum 1.8775825618903728 .
2033
+ # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
2034
+ # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
2035
+ # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
2036
+ # via the schematic forward rule:
2037
+ # {
2038
+ # :Simpson1 :samples ?ss .
2039
+ # ?ss list:member ?s .
2040
+ # ?s :x ?x .
2041
+ # ?s :coef ?c .
2042
+ # ?x math:sin ?sinx .
2043
+ # (?x 2.0) math:exponentiation ?x2 .
2044
+ # (?sinx ?x2) math:sum ?y .
2045
+ # ?x math:cos ?cosx .
2046
+ # (2.0 ?x) math:product ?twox .
2047
+ # (?cosx ?twox) math:sum ?dy .
2048
+ # (?dy 2.0) math:exponentiation ?dy2 .
2049
+ # (1.0 ?dy2) math:sum ?onePlus .
2050
+ # (?onePlus 0.5) math:exponentiation ?ds .
2051
+ # } => {
2052
+ # ?s :y ?y .
2053
+ # ?s :dy ?dy .
2054
+ # ?s :ds ?ds .
2055
+ # _:b6 :sample ?s .
2056
+ # _:b6 :x ?x .
2057
+ # _:b6 :coef ?c .
2058
+ # _:b6 :y ?y .
2059
+ # _:b6 :dy ?dy .
2060
+ # _:b6 :ds ?ds .
2061
+ # :Simpson1 :sampleResult _:b6 .
2062
+ # } .
2063
+ # with substitution (on rule variables):
2064
+ # ?c = 4.0
2065
+ # ?cosx = 0.8775825618903728
2066
+ # ?ds = 2.12727907823934
2067
+ # ?dy = 1.8775825618903728
2068
+ # ?dy2 = 3.5253162767148156
2069
+ # ?onePlus = 4.525316276714816
2070
+ # ?s = _:b2
2071
+ # ?sinx = 0.479425538604203
2072
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2073
+ # ?twox = 1
2074
+ # ?x = 0.5
2075
+ # ?x2 = 0.25
2076
+ # ?y = 0.729425538604203
2077
+ # Therefore the derived triple above is entailed by the rules and facts.
2078
+ # ----------------------------------------------------------------------
2079
+
2080
+ _:b2 :ds 2.12727907823934 .
2081
+
2082
+ # ----------------------------------------------------------------------
2083
+ # Proof for derived triple:
2084
+ # _:sk_3 :sample _:b2 .
2085
+ # It holds because the following instance of the rule body is provable:
2086
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2087
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2088
+ # _:b2 :x 0.5 .
2089
+ # _:b2 :coef 4.0 .
2090
+ # 0.5 math:sin 0.479425538604203 .
2091
+ # (0.5 2.0) math:exponentiation 0.25 .
2092
+ # (0.479425538604203 0.25) math:sum 0.729425538604203 .
2093
+ # 0.5 math:cos 0.8775825618903728 .
2094
+ # (2.0 0.5) math:product 1 .
2095
+ # (0.8775825618903728 1) math:sum 1.8775825618903728 .
2096
+ # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
2097
+ # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
2098
+ # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
2099
+ # via the schematic forward rule:
2100
+ # {
2101
+ # :Simpson1 :samples ?ss .
2102
+ # ?ss list:member ?s .
2103
+ # ?s :x ?x .
2104
+ # ?s :coef ?c .
2105
+ # ?x math:sin ?sinx .
2106
+ # (?x 2.0) math:exponentiation ?x2 .
2107
+ # (?sinx ?x2) math:sum ?y .
2108
+ # ?x math:cos ?cosx .
2109
+ # (2.0 ?x) math:product ?twox .
2110
+ # (?cosx ?twox) math:sum ?dy .
2111
+ # (?dy 2.0) math:exponentiation ?dy2 .
2112
+ # (1.0 ?dy2) math:sum ?onePlus .
2113
+ # (?onePlus 0.5) math:exponentiation ?ds .
2114
+ # } => {
2115
+ # ?s :y ?y .
2116
+ # ?s :dy ?dy .
2117
+ # ?s :ds ?ds .
2118
+ # _:b6 :sample ?s .
2119
+ # _:b6 :x ?x .
2120
+ # _:b6 :coef ?c .
2121
+ # _:b6 :y ?y .
2122
+ # _:b6 :dy ?dy .
2123
+ # _:b6 :ds ?ds .
2124
+ # :Simpson1 :sampleResult _:b6 .
2125
+ # } .
2126
+ # with substitution (on rule variables):
2127
+ # ?c = 4.0
2128
+ # ?cosx = 0.8775825618903728
2129
+ # ?ds = 2.12727907823934
2130
+ # ?dy = 1.8775825618903728
2131
+ # ?dy2 = 3.5253162767148156
2132
+ # ?onePlus = 4.525316276714816
2133
+ # ?s = _:b2
2134
+ # ?sinx = 0.479425538604203
2135
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2136
+ # ?twox = 1
2137
+ # ?x = 0.5
2138
+ # ?x2 = 0.25
2139
+ # ?y = 0.729425538604203
2140
+ # Therefore the derived triple above is entailed by the rules and facts.
2141
+ # ----------------------------------------------------------------------
2142
+
2143
+ _:sk_3 :sample _:b2 .
2144
+
2145
+ # ----------------------------------------------------------------------
2146
+ # Proof for derived triple:
2147
+ # _:sk_3 :x 0.5 .
2148
+ # It holds because the following instance of the rule body is provable:
2149
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2150
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2151
+ # _:b2 :x 0.5 .
2152
+ # _:b2 :coef 4.0 .
2153
+ # 0.5 math:sin 0.479425538604203 .
2154
+ # (0.5 2.0) math:exponentiation 0.25 .
2155
+ # (0.479425538604203 0.25) math:sum 0.729425538604203 .
2156
+ # 0.5 math:cos 0.8775825618903728 .
2157
+ # (2.0 0.5) math:product 1 .
2158
+ # (0.8775825618903728 1) math:sum 1.8775825618903728 .
2159
+ # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
2160
+ # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
2161
+ # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
2162
+ # via the schematic forward rule:
2163
+ # {
2164
+ # :Simpson1 :samples ?ss .
2165
+ # ?ss list:member ?s .
2166
+ # ?s :x ?x .
2167
+ # ?s :coef ?c .
2168
+ # ?x math:sin ?sinx .
2169
+ # (?x 2.0) math:exponentiation ?x2 .
2170
+ # (?sinx ?x2) math:sum ?y .
2171
+ # ?x math:cos ?cosx .
2172
+ # (2.0 ?x) math:product ?twox .
2173
+ # (?cosx ?twox) math:sum ?dy .
2174
+ # (?dy 2.0) math:exponentiation ?dy2 .
2175
+ # (1.0 ?dy2) math:sum ?onePlus .
2176
+ # (?onePlus 0.5) math:exponentiation ?ds .
2177
+ # } => {
2178
+ # ?s :y ?y .
2179
+ # ?s :dy ?dy .
2180
+ # ?s :ds ?ds .
2181
+ # _:b6 :sample ?s .
2182
+ # _:b6 :x ?x .
2183
+ # _:b6 :coef ?c .
2184
+ # _:b6 :y ?y .
2185
+ # _:b6 :dy ?dy .
2186
+ # _:b6 :ds ?ds .
2187
+ # :Simpson1 :sampleResult _:b6 .
2188
+ # } .
2189
+ # with substitution (on rule variables):
2190
+ # ?c = 4.0
2191
+ # ?cosx = 0.8775825618903728
2192
+ # ?ds = 2.12727907823934
2193
+ # ?dy = 1.8775825618903728
2194
+ # ?dy2 = 3.5253162767148156
2195
+ # ?onePlus = 4.525316276714816
2196
+ # ?s = _:b2
2197
+ # ?sinx = 0.479425538604203
2198
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2199
+ # ?twox = 1
2200
+ # ?x = 0.5
2201
+ # ?x2 = 0.25
2202
+ # ?y = 0.729425538604203
2203
+ # Therefore the derived triple above is entailed by the rules and facts.
2204
+ # ----------------------------------------------------------------------
2205
+
2206
+ _:sk_3 :x 0.5 .
2207
+
2208
+ # ----------------------------------------------------------------------
2209
+ # Proof for derived triple:
2210
+ # _:sk_3 :coef 4.0 .
2211
+ # It holds because the following instance of the rule body is provable:
2212
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2213
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2214
+ # _:b2 :x 0.5 .
2215
+ # _:b2 :coef 4.0 .
2216
+ # 0.5 math:sin 0.479425538604203 .
2217
+ # (0.5 2.0) math:exponentiation 0.25 .
2218
+ # (0.479425538604203 0.25) math:sum 0.729425538604203 .
2219
+ # 0.5 math:cos 0.8775825618903728 .
2220
+ # (2.0 0.5) math:product 1 .
2221
+ # (0.8775825618903728 1) math:sum 1.8775825618903728 .
2222
+ # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
2223
+ # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
2224
+ # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
2225
+ # via the schematic forward rule:
2226
+ # {
2227
+ # :Simpson1 :samples ?ss .
2228
+ # ?ss list:member ?s .
2229
+ # ?s :x ?x .
2230
+ # ?s :coef ?c .
2231
+ # ?x math:sin ?sinx .
2232
+ # (?x 2.0) math:exponentiation ?x2 .
2233
+ # (?sinx ?x2) math:sum ?y .
2234
+ # ?x math:cos ?cosx .
2235
+ # (2.0 ?x) math:product ?twox .
2236
+ # (?cosx ?twox) math:sum ?dy .
2237
+ # (?dy 2.0) math:exponentiation ?dy2 .
2238
+ # (1.0 ?dy2) math:sum ?onePlus .
2239
+ # (?onePlus 0.5) math:exponentiation ?ds .
2240
+ # } => {
2241
+ # ?s :y ?y .
2242
+ # ?s :dy ?dy .
2243
+ # ?s :ds ?ds .
2244
+ # _:b6 :sample ?s .
2245
+ # _:b6 :x ?x .
2246
+ # _:b6 :coef ?c .
2247
+ # _:b6 :y ?y .
2248
+ # _:b6 :dy ?dy .
2249
+ # _:b6 :ds ?ds .
2250
+ # :Simpson1 :sampleResult _:b6 .
2251
+ # } .
2252
+ # with substitution (on rule variables):
2253
+ # ?c = 4.0
2254
+ # ?cosx = 0.8775825618903728
2255
+ # ?ds = 2.12727907823934
2256
+ # ?dy = 1.8775825618903728
2257
+ # ?dy2 = 3.5253162767148156
2258
+ # ?onePlus = 4.525316276714816
2259
+ # ?s = _:b2
2260
+ # ?sinx = 0.479425538604203
2261
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2262
+ # ?twox = 1
2263
+ # ?x = 0.5
2264
+ # ?x2 = 0.25
2265
+ # ?y = 0.729425538604203
2266
+ # Therefore the derived triple above is entailed by the rules and facts.
2267
+ # ----------------------------------------------------------------------
2268
+
2269
+ _:sk_3 :coef 4.0 .
2270
+
2271
+ # ----------------------------------------------------------------------
2272
+ # Proof for derived triple:
2273
+ # _:sk_3 :y 0.729425538604203 .
2274
+ # It holds because the following instance of the rule body is provable:
2275
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2276
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2277
+ # _:b2 :x 0.5 .
2278
+ # _:b2 :coef 4.0 .
2279
+ # 0.5 math:sin 0.479425538604203 .
2280
+ # (0.5 2.0) math:exponentiation 0.25 .
2281
+ # (0.479425538604203 0.25) math:sum 0.729425538604203 .
2282
+ # 0.5 math:cos 0.8775825618903728 .
2283
+ # (2.0 0.5) math:product 1 .
2284
+ # (0.8775825618903728 1) math:sum 1.8775825618903728 .
2285
+ # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
2286
+ # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
2287
+ # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
2288
+ # via the schematic forward rule:
2289
+ # {
2290
+ # :Simpson1 :samples ?ss .
2291
+ # ?ss list:member ?s .
2292
+ # ?s :x ?x .
2293
+ # ?s :coef ?c .
2294
+ # ?x math:sin ?sinx .
2295
+ # (?x 2.0) math:exponentiation ?x2 .
2296
+ # (?sinx ?x2) math:sum ?y .
2297
+ # ?x math:cos ?cosx .
2298
+ # (2.0 ?x) math:product ?twox .
2299
+ # (?cosx ?twox) math:sum ?dy .
2300
+ # (?dy 2.0) math:exponentiation ?dy2 .
2301
+ # (1.0 ?dy2) math:sum ?onePlus .
2302
+ # (?onePlus 0.5) math:exponentiation ?ds .
2303
+ # } => {
2304
+ # ?s :y ?y .
2305
+ # ?s :dy ?dy .
2306
+ # ?s :ds ?ds .
2307
+ # _:b6 :sample ?s .
2308
+ # _:b6 :x ?x .
2309
+ # _:b6 :coef ?c .
2310
+ # _:b6 :y ?y .
2311
+ # _:b6 :dy ?dy .
2312
+ # _:b6 :ds ?ds .
2313
+ # :Simpson1 :sampleResult _:b6 .
2314
+ # } .
2315
+ # with substitution (on rule variables):
2316
+ # ?c = 4.0
2317
+ # ?cosx = 0.8775825618903728
2318
+ # ?ds = 2.12727907823934
2319
+ # ?dy = 1.8775825618903728
2320
+ # ?dy2 = 3.5253162767148156
2321
+ # ?onePlus = 4.525316276714816
2322
+ # ?s = _:b2
2323
+ # ?sinx = 0.479425538604203
2324
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2325
+ # ?twox = 1
2326
+ # ?x = 0.5
2327
+ # ?x2 = 0.25
2328
+ # ?y = 0.729425538604203
2329
+ # Therefore the derived triple above is entailed by the rules and facts.
2330
+ # ----------------------------------------------------------------------
2331
+
2332
+ _:sk_3 :y 0.729425538604203 .
2333
+
2334
+ # ----------------------------------------------------------------------
2335
+ # Proof for derived triple:
2336
+ # _:sk_3 :dy 1.8775825618903728 .
2337
+ # It holds because the following instance of the rule body is provable:
2338
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2339
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2340
+ # _:b2 :x 0.5 .
2341
+ # _:b2 :coef 4.0 .
2342
+ # 0.5 math:sin 0.479425538604203 .
2343
+ # (0.5 2.0) math:exponentiation 0.25 .
2344
+ # (0.479425538604203 0.25) math:sum 0.729425538604203 .
2345
+ # 0.5 math:cos 0.8775825618903728 .
2346
+ # (2.0 0.5) math:product 1 .
2347
+ # (0.8775825618903728 1) math:sum 1.8775825618903728 .
2348
+ # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
2349
+ # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
2350
+ # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
2351
+ # via the schematic forward rule:
2352
+ # {
2353
+ # :Simpson1 :samples ?ss .
2354
+ # ?ss list:member ?s .
2355
+ # ?s :x ?x .
2356
+ # ?s :coef ?c .
2357
+ # ?x math:sin ?sinx .
2358
+ # (?x 2.0) math:exponentiation ?x2 .
2359
+ # (?sinx ?x2) math:sum ?y .
2360
+ # ?x math:cos ?cosx .
2361
+ # (2.0 ?x) math:product ?twox .
2362
+ # (?cosx ?twox) math:sum ?dy .
2363
+ # (?dy 2.0) math:exponentiation ?dy2 .
2364
+ # (1.0 ?dy2) math:sum ?onePlus .
2365
+ # (?onePlus 0.5) math:exponentiation ?ds .
2366
+ # } => {
2367
+ # ?s :y ?y .
2368
+ # ?s :dy ?dy .
2369
+ # ?s :ds ?ds .
2370
+ # _:b6 :sample ?s .
2371
+ # _:b6 :x ?x .
2372
+ # _:b6 :coef ?c .
2373
+ # _:b6 :y ?y .
2374
+ # _:b6 :dy ?dy .
2375
+ # _:b6 :ds ?ds .
2376
+ # :Simpson1 :sampleResult _:b6 .
2377
+ # } .
2378
+ # with substitution (on rule variables):
2379
+ # ?c = 4.0
2380
+ # ?cosx = 0.8775825618903728
2381
+ # ?ds = 2.12727907823934
2382
+ # ?dy = 1.8775825618903728
2383
+ # ?dy2 = 3.5253162767148156
2384
+ # ?onePlus = 4.525316276714816
2385
+ # ?s = _:b2
2386
+ # ?sinx = 0.479425538604203
2387
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2388
+ # ?twox = 1
2389
+ # ?x = 0.5
2390
+ # ?x2 = 0.25
2391
+ # ?y = 0.729425538604203
2392
+ # Therefore the derived triple above is entailed by the rules and facts.
2393
+ # ----------------------------------------------------------------------
2394
+
2395
+ _:sk_3 :dy 1.8775825618903728 .
2396
+
2397
+ # ----------------------------------------------------------------------
2398
+ # Proof for derived triple:
2399
+ # _:sk_3 :ds 2.12727907823934 .
2400
+ # It holds because the following instance of the rule body is provable:
2401
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2402
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2403
+ # _:b2 :x 0.5 .
2404
+ # _:b2 :coef 4.0 .
2405
+ # 0.5 math:sin 0.479425538604203 .
2406
+ # (0.5 2.0) math:exponentiation 0.25 .
2407
+ # (0.479425538604203 0.25) math:sum 0.729425538604203 .
2408
+ # 0.5 math:cos 0.8775825618903728 .
2409
+ # (2.0 0.5) math:product 1 .
2410
+ # (0.8775825618903728 1) math:sum 1.8775825618903728 .
2411
+ # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
2412
+ # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
2413
+ # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
2414
+ # via the schematic forward rule:
2415
+ # {
2416
+ # :Simpson1 :samples ?ss .
2417
+ # ?ss list:member ?s .
2418
+ # ?s :x ?x .
2419
+ # ?s :coef ?c .
2420
+ # ?x math:sin ?sinx .
2421
+ # (?x 2.0) math:exponentiation ?x2 .
2422
+ # (?sinx ?x2) math:sum ?y .
2423
+ # ?x math:cos ?cosx .
2424
+ # (2.0 ?x) math:product ?twox .
2425
+ # (?cosx ?twox) math:sum ?dy .
2426
+ # (?dy 2.0) math:exponentiation ?dy2 .
2427
+ # (1.0 ?dy2) math:sum ?onePlus .
2428
+ # (?onePlus 0.5) math:exponentiation ?ds .
2429
+ # } => {
2430
+ # ?s :y ?y .
2431
+ # ?s :dy ?dy .
2432
+ # ?s :ds ?ds .
2433
+ # _:b6 :sample ?s .
2434
+ # _:b6 :x ?x .
2435
+ # _:b6 :coef ?c .
2436
+ # _:b6 :y ?y .
2437
+ # _:b6 :dy ?dy .
2438
+ # _:b6 :ds ?ds .
2439
+ # :Simpson1 :sampleResult _:b6 .
2440
+ # } .
2441
+ # with substitution (on rule variables):
2442
+ # ?c = 4.0
2443
+ # ?cosx = 0.8775825618903728
2444
+ # ?ds = 2.12727907823934
2445
+ # ?dy = 1.8775825618903728
2446
+ # ?dy2 = 3.5253162767148156
2447
+ # ?onePlus = 4.525316276714816
2448
+ # ?s = _:b2
2449
+ # ?sinx = 0.479425538604203
2450
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2451
+ # ?twox = 1
2452
+ # ?x = 0.5
2453
+ # ?x2 = 0.25
2454
+ # ?y = 0.729425538604203
2455
+ # Therefore the derived triple above is entailed by the rules and facts.
2456
+ # ----------------------------------------------------------------------
2457
+
2458
+ _:sk_3 :ds 2.12727907823934 .
2459
+
2460
+ # ----------------------------------------------------------------------
2461
+ # Proof for derived triple:
2462
+ # :Simpson1 :sampleResult _:sk_3 .
2463
+ # It holds because the following instance of the rule body is provable:
2464
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2465
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2466
+ # _:b2 :x 0.5 .
2467
+ # _:b2 :coef 4.0 .
2468
+ # 0.5 math:sin 0.479425538604203 .
2469
+ # (0.5 2.0) math:exponentiation 0.25 .
2470
+ # (0.479425538604203 0.25) math:sum 0.729425538604203 .
2471
+ # 0.5 math:cos 0.8775825618903728 .
2472
+ # (2.0 0.5) math:product 1 .
2473
+ # (0.8775825618903728 1) math:sum 1.8775825618903728 .
2474
+ # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
2475
+ # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
2476
+ # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
2477
+ # via the schematic forward rule:
2478
+ # {
2479
+ # :Simpson1 :samples ?ss .
2480
+ # ?ss list:member ?s .
2481
+ # ?s :x ?x .
2482
+ # ?s :coef ?c .
2483
+ # ?x math:sin ?sinx .
2484
+ # (?x 2.0) math:exponentiation ?x2 .
2485
+ # (?sinx ?x2) math:sum ?y .
2486
+ # ?x math:cos ?cosx .
2487
+ # (2.0 ?x) math:product ?twox .
2488
+ # (?cosx ?twox) math:sum ?dy .
2489
+ # (?dy 2.0) math:exponentiation ?dy2 .
2490
+ # (1.0 ?dy2) math:sum ?onePlus .
2491
+ # (?onePlus 0.5) math:exponentiation ?ds .
2492
+ # } => {
2493
+ # ?s :y ?y .
2494
+ # ?s :dy ?dy .
2495
+ # ?s :ds ?ds .
2496
+ # _:b6 :sample ?s .
2497
+ # _:b6 :x ?x .
2498
+ # _:b6 :coef ?c .
2499
+ # _:b6 :y ?y .
2500
+ # _:b6 :dy ?dy .
2501
+ # _:b6 :ds ?ds .
2502
+ # :Simpson1 :sampleResult _:b6 .
2503
+ # } .
2504
+ # with substitution (on rule variables):
2505
+ # ?c = 4.0
2506
+ # ?cosx = 0.8775825618903728
2507
+ # ?ds = 2.12727907823934
2508
+ # ?dy = 1.8775825618903728
2509
+ # ?dy2 = 3.5253162767148156
2510
+ # ?onePlus = 4.525316276714816
2511
+ # ?s = _:b2
2512
+ # ?sinx = 0.479425538604203
2513
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2514
+ # ?twox = 1
2515
+ # ?x = 0.5
2516
+ # ?x2 = 0.25
2517
+ # ?y = 0.729425538604203
2518
+ # Therefore the derived triple above is entailed by the rules and facts.
2519
+ # ----------------------------------------------------------------------
2520
+
2521
+ :Simpson1 :sampleResult _:sk_3 .
2522
+
2523
+ # ----------------------------------------------------------------------
2524
+ # Proof for derived triple:
2525
+ # _:b1 :y 0 .
2526
+ # It holds because the following instance of the rule body is provable:
2527
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2528
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2529
+ # _:b1 :x 0.0 .
2530
+ # _:b1 :coef 1.0 .
2531
+ # 0.0 math:sin 0 .
2532
+ # (0.0 2.0) math:exponentiation 0 .
2533
+ # (0 0) math:sum 0 .
2534
+ # 0.0 math:cos 1 .
2535
+ # (2.0 0.0) math:product 0 .
2536
+ # (1 0) math:sum 1 .
2537
+ # (1 2.0) math:exponentiation 1 .
2538
+ # (1.0 1) math:sum 2 .
2539
+ # (2 0.5) math:exponentiation 1.4142135623730951 .
2540
+ # via the schematic forward rule:
2541
+ # {
2542
+ # :Simpson1 :samples ?ss .
2543
+ # ?ss list:member ?s .
2544
+ # ?s :x ?x .
2545
+ # ?s :coef ?c .
2546
+ # ?x math:sin ?sinx .
2547
+ # (?x 2.0) math:exponentiation ?x2 .
2548
+ # (?sinx ?x2) math:sum ?y .
2549
+ # ?x math:cos ?cosx .
2550
+ # (2.0 ?x) math:product ?twox .
2551
+ # (?cosx ?twox) math:sum ?dy .
2552
+ # (?dy 2.0) math:exponentiation ?dy2 .
2553
+ # (1.0 ?dy2) math:sum ?onePlus .
2554
+ # (?onePlus 0.5) math:exponentiation ?ds .
2555
+ # } => {
2556
+ # ?s :y ?y .
2557
+ # ?s :dy ?dy .
2558
+ # ?s :ds ?ds .
2559
+ # _:b6 :sample ?s .
2560
+ # _:b6 :x ?x .
2561
+ # _:b6 :coef ?c .
2562
+ # _:b6 :y ?y .
2563
+ # _:b6 :dy ?dy .
2564
+ # _:b6 :ds ?ds .
2565
+ # :Simpson1 :sampleResult _:b6 .
2566
+ # } .
2567
+ # with substitution (on rule variables):
2568
+ # ?c = 1.0
2569
+ # ?cosx = 1
2570
+ # ?ds = 1.4142135623730951
2571
+ # ?dy = 1
2572
+ # ?dy2 = 1
2573
+ # ?onePlus = 2
2574
+ # ?s = _:b1
2575
+ # ?sinx = 0
2576
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2577
+ # ?twox = 0
2578
+ # ?x = 0.0
2579
+ # ?x2 = 0
2580
+ # ?y = 0
2581
+ # Therefore the derived triple above is entailed by the rules and facts.
2582
+ # ----------------------------------------------------------------------
2583
+
2584
+ _:b1 :y 0 .
2585
+
2586
+ # ----------------------------------------------------------------------
2587
+ # Proof for derived triple:
2588
+ # _:b1 :dy 1 .
2589
+ # It holds because the following instance of the rule body is provable:
2590
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2591
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2592
+ # _:b1 :x 0.0 .
2593
+ # _:b1 :coef 1.0 .
2594
+ # 0.0 math:sin 0 .
2595
+ # (0.0 2.0) math:exponentiation 0 .
2596
+ # (0 0) math:sum 0 .
2597
+ # 0.0 math:cos 1 .
2598
+ # (2.0 0.0) math:product 0 .
2599
+ # (1 0) math:sum 1 .
2600
+ # (1 2.0) math:exponentiation 1 .
2601
+ # (1.0 1) math:sum 2 .
2602
+ # (2 0.5) math:exponentiation 1.4142135623730951 .
2603
+ # via the schematic forward rule:
2604
+ # {
2605
+ # :Simpson1 :samples ?ss .
2606
+ # ?ss list:member ?s .
2607
+ # ?s :x ?x .
2608
+ # ?s :coef ?c .
2609
+ # ?x math:sin ?sinx .
2610
+ # (?x 2.0) math:exponentiation ?x2 .
2611
+ # (?sinx ?x2) math:sum ?y .
2612
+ # ?x math:cos ?cosx .
2613
+ # (2.0 ?x) math:product ?twox .
2614
+ # (?cosx ?twox) math:sum ?dy .
2615
+ # (?dy 2.0) math:exponentiation ?dy2 .
2616
+ # (1.0 ?dy2) math:sum ?onePlus .
2617
+ # (?onePlus 0.5) math:exponentiation ?ds .
2618
+ # } => {
2619
+ # ?s :y ?y .
2620
+ # ?s :dy ?dy .
2621
+ # ?s :ds ?ds .
2622
+ # _:b6 :sample ?s .
2623
+ # _:b6 :x ?x .
2624
+ # _:b6 :coef ?c .
2625
+ # _:b6 :y ?y .
2626
+ # _:b6 :dy ?dy .
2627
+ # _:b6 :ds ?ds .
2628
+ # :Simpson1 :sampleResult _:b6 .
2629
+ # } .
2630
+ # with substitution (on rule variables):
2631
+ # ?c = 1.0
2632
+ # ?cosx = 1
2633
+ # ?ds = 1.4142135623730951
2634
+ # ?dy = 1
2635
+ # ?dy2 = 1
2636
+ # ?onePlus = 2
2637
+ # ?s = _:b1
2638
+ # ?sinx = 0
2639
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2640
+ # ?twox = 0
2641
+ # ?x = 0.0
2642
+ # ?x2 = 0
2643
+ # ?y = 0
2644
+ # Therefore the derived triple above is entailed by the rules and facts.
2645
+ # ----------------------------------------------------------------------
2646
+
2647
+ _:b1 :dy 1 .
2648
+
2649
+ # ----------------------------------------------------------------------
2650
+ # Proof for derived triple:
2651
+ # _:b1 :ds 1.4142135623730951 .
2652
+ # It holds because the following instance of the rule body is provable:
2653
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2654
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2655
+ # _:b1 :x 0.0 .
2656
+ # _:b1 :coef 1.0 .
2657
+ # 0.0 math:sin 0 .
2658
+ # (0.0 2.0) math:exponentiation 0 .
2659
+ # (0 0) math:sum 0 .
2660
+ # 0.0 math:cos 1 .
2661
+ # (2.0 0.0) math:product 0 .
2662
+ # (1 0) math:sum 1 .
2663
+ # (1 2.0) math:exponentiation 1 .
2664
+ # (1.0 1) math:sum 2 .
2665
+ # (2 0.5) math:exponentiation 1.4142135623730951 .
2666
+ # via the schematic forward rule:
2667
+ # {
2668
+ # :Simpson1 :samples ?ss .
2669
+ # ?ss list:member ?s .
2670
+ # ?s :x ?x .
2671
+ # ?s :coef ?c .
2672
+ # ?x math:sin ?sinx .
2673
+ # (?x 2.0) math:exponentiation ?x2 .
2674
+ # (?sinx ?x2) math:sum ?y .
2675
+ # ?x math:cos ?cosx .
2676
+ # (2.0 ?x) math:product ?twox .
2677
+ # (?cosx ?twox) math:sum ?dy .
2678
+ # (?dy 2.0) math:exponentiation ?dy2 .
2679
+ # (1.0 ?dy2) math:sum ?onePlus .
2680
+ # (?onePlus 0.5) math:exponentiation ?ds .
2681
+ # } => {
2682
+ # ?s :y ?y .
2683
+ # ?s :dy ?dy .
2684
+ # ?s :ds ?ds .
2685
+ # _:b6 :sample ?s .
2686
+ # _:b6 :x ?x .
2687
+ # _:b6 :coef ?c .
2688
+ # _:b6 :y ?y .
2689
+ # _:b6 :dy ?dy .
2690
+ # _:b6 :ds ?ds .
2691
+ # :Simpson1 :sampleResult _:b6 .
2692
+ # } .
2693
+ # with substitution (on rule variables):
2694
+ # ?c = 1.0
2695
+ # ?cosx = 1
2696
+ # ?ds = 1.4142135623730951
2697
+ # ?dy = 1
2698
+ # ?dy2 = 1
2699
+ # ?onePlus = 2
2700
+ # ?s = _:b1
2701
+ # ?sinx = 0
2702
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2703
+ # ?twox = 0
2704
+ # ?x = 0.0
2705
+ # ?x2 = 0
2706
+ # ?y = 0
2707
+ # Therefore the derived triple above is entailed by the rules and facts.
2708
+ # ----------------------------------------------------------------------
2709
+
2710
+ _:b1 :ds 1.4142135623730951 .
2711
+
2712
+ # ----------------------------------------------------------------------
2713
+ # Proof for derived triple:
2714
+ # _:sk_4 :sample _:b1 .
2715
+ # It holds because the following instance of the rule body is provable:
2716
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2717
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2718
+ # _:b1 :x 0.0 .
2719
+ # _:b1 :coef 1.0 .
2720
+ # 0.0 math:sin 0 .
2721
+ # (0.0 2.0) math:exponentiation 0 .
2722
+ # (0 0) math:sum 0 .
2723
+ # 0.0 math:cos 1 .
2724
+ # (2.0 0.0) math:product 0 .
2725
+ # (1 0) math:sum 1 .
2726
+ # (1 2.0) math:exponentiation 1 .
2727
+ # (1.0 1) math:sum 2 .
2728
+ # (2 0.5) math:exponentiation 1.4142135623730951 .
2729
+ # via the schematic forward rule:
2730
+ # {
2731
+ # :Simpson1 :samples ?ss .
2732
+ # ?ss list:member ?s .
2733
+ # ?s :x ?x .
2734
+ # ?s :coef ?c .
2735
+ # ?x math:sin ?sinx .
2736
+ # (?x 2.0) math:exponentiation ?x2 .
2737
+ # (?sinx ?x2) math:sum ?y .
2738
+ # ?x math:cos ?cosx .
2739
+ # (2.0 ?x) math:product ?twox .
2740
+ # (?cosx ?twox) math:sum ?dy .
2741
+ # (?dy 2.0) math:exponentiation ?dy2 .
2742
+ # (1.0 ?dy2) math:sum ?onePlus .
2743
+ # (?onePlus 0.5) math:exponentiation ?ds .
2744
+ # } => {
2745
+ # ?s :y ?y .
2746
+ # ?s :dy ?dy .
2747
+ # ?s :ds ?ds .
2748
+ # _:b6 :sample ?s .
2749
+ # _:b6 :x ?x .
2750
+ # _:b6 :coef ?c .
2751
+ # _:b6 :y ?y .
2752
+ # _:b6 :dy ?dy .
2753
+ # _:b6 :ds ?ds .
2754
+ # :Simpson1 :sampleResult _:b6 .
2755
+ # } .
2756
+ # with substitution (on rule variables):
2757
+ # ?c = 1.0
2758
+ # ?cosx = 1
2759
+ # ?ds = 1.4142135623730951
2760
+ # ?dy = 1
2761
+ # ?dy2 = 1
2762
+ # ?onePlus = 2
2763
+ # ?s = _:b1
2764
+ # ?sinx = 0
2765
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2766
+ # ?twox = 0
2767
+ # ?x = 0.0
2768
+ # ?x2 = 0
2769
+ # ?y = 0
2770
+ # Therefore the derived triple above is entailed by the rules and facts.
2771
+ # ----------------------------------------------------------------------
2772
+
2773
+ _:sk_4 :sample _:b1 .
2774
+
2775
+ # ----------------------------------------------------------------------
2776
+ # Proof for derived triple:
2777
+ # _:sk_4 :x 0.0 .
2778
+ # It holds because the following instance of the rule body is provable:
2779
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2780
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2781
+ # _:b1 :x 0.0 .
2782
+ # _:b1 :coef 1.0 .
2783
+ # 0.0 math:sin 0 .
2784
+ # (0.0 2.0) math:exponentiation 0 .
2785
+ # (0 0) math:sum 0 .
2786
+ # 0.0 math:cos 1 .
2787
+ # (2.0 0.0) math:product 0 .
2788
+ # (1 0) math:sum 1 .
2789
+ # (1 2.0) math:exponentiation 1 .
2790
+ # (1.0 1) math:sum 2 .
2791
+ # (2 0.5) math:exponentiation 1.4142135623730951 .
2792
+ # via the schematic forward rule:
2793
+ # {
2794
+ # :Simpson1 :samples ?ss .
2795
+ # ?ss list:member ?s .
2796
+ # ?s :x ?x .
2797
+ # ?s :coef ?c .
2798
+ # ?x math:sin ?sinx .
2799
+ # (?x 2.0) math:exponentiation ?x2 .
2800
+ # (?sinx ?x2) math:sum ?y .
2801
+ # ?x math:cos ?cosx .
2802
+ # (2.0 ?x) math:product ?twox .
2803
+ # (?cosx ?twox) math:sum ?dy .
2804
+ # (?dy 2.0) math:exponentiation ?dy2 .
2805
+ # (1.0 ?dy2) math:sum ?onePlus .
2806
+ # (?onePlus 0.5) math:exponentiation ?ds .
2807
+ # } => {
2808
+ # ?s :y ?y .
2809
+ # ?s :dy ?dy .
2810
+ # ?s :ds ?ds .
2811
+ # _:b6 :sample ?s .
2812
+ # _:b6 :x ?x .
2813
+ # _:b6 :coef ?c .
2814
+ # _:b6 :y ?y .
2815
+ # _:b6 :dy ?dy .
2816
+ # _:b6 :ds ?ds .
2817
+ # :Simpson1 :sampleResult _:b6 .
2818
+ # } .
2819
+ # with substitution (on rule variables):
2820
+ # ?c = 1.0
2821
+ # ?cosx = 1
2822
+ # ?ds = 1.4142135623730951
2823
+ # ?dy = 1
2824
+ # ?dy2 = 1
2825
+ # ?onePlus = 2
2826
+ # ?s = _:b1
2827
+ # ?sinx = 0
2828
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2829
+ # ?twox = 0
2830
+ # ?x = 0.0
2831
+ # ?x2 = 0
2832
+ # ?y = 0
2833
+ # Therefore the derived triple above is entailed by the rules and facts.
2834
+ # ----------------------------------------------------------------------
2835
+
2836
+ _:sk_4 :x 0.0 .
2837
+
2838
+ # ----------------------------------------------------------------------
2839
+ # Proof for derived triple:
2840
+ # _:sk_4 :coef 1.0 .
2841
+ # It holds because the following instance of the rule body is provable:
2842
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2843
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2844
+ # _:b1 :x 0.0 .
2845
+ # _:b1 :coef 1.0 .
2846
+ # 0.0 math:sin 0 .
2847
+ # (0.0 2.0) math:exponentiation 0 .
2848
+ # (0 0) math:sum 0 .
2849
+ # 0.0 math:cos 1 .
2850
+ # (2.0 0.0) math:product 0 .
2851
+ # (1 0) math:sum 1 .
2852
+ # (1 2.0) math:exponentiation 1 .
2853
+ # (1.0 1) math:sum 2 .
2854
+ # (2 0.5) math:exponentiation 1.4142135623730951 .
2855
+ # via the schematic forward rule:
2856
+ # {
2857
+ # :Simpson1 :samples ?ss .
2858
+ # ?ss list:member ?s .
2859
+ # ?s :x ?x .
2860
+ # ?s :coef ?c .
2861
+ # ?x math:sin ?sinx .
2862
+ # (?x 2.0) math:exponentiation ?x2 .
2863
+ # (?sinx ?x2) math:sum ?y .
2864
+ # ?x math:cos ?cosx .
2865
+ # (2.0 ?x) math:product ?twox .
2866
+ # (?cosx ?twox) math:sum ?dy .
2867
+ # (?dy 2.0) math:exponentiation ?dy2 .
2868
+ # (1.0 ?dy2) math:sum ?onePlus .
2869
+ # (?onePlus 0.5) math:exponentiation ?ds .
2870
+ # } => {
2871
+ # ?s :y ?y .
2872
+ # ?s :dy ?dy .
2873
+ # ?s :ds ?ds .
2874
+ # _:b6 :sample ?s .
2875
+ # _:b6 :x ?x .
2876
+ # _:b6 :coef ?c .
2877
+ # _:b6 :y ?y .
2878
+ # _:b6 :dy ?dy .
2879
+ # _:b6 :ds ?ds .
2880
+ # :Simpson1 :sampleResult _:b6 .
2881
+ # } .
2882
+ # with substitution (on rule variables):
2883
+ # ?c = 1.0
2884
+ # ?cosx = 1
2885
+ # ?ds = 1.4142135623730951
2886
+ # ?dy = 1
2887
+ # ?dy2 = 1
2888
+ # ?onePlus = 2
2889
+ # ?s = _:b1
2890
+ # ?sinx = 0
2891
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2892
+ # ?twox = 0
2893
+ # ?x = 0.0
2894
+ # ?x2 = 0
2895
+ # ?y = 0
2896
+ # Therefore the derived triple above is entailed by the rules and facts.
2897
+ # ----------------------------------------------------------------------
2898
+
2899
+ _:sk_4 :coef 1.0 .
2900
+
2901
+ # ----------------------------------------------------------------------
2902
+ # Proof for derived triple:
2903
+ # _:sk_4 :y 0 .
2904
+ # It holds because the following instance of the rule body is provable:
2905
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2906
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2907
+ # _:b1 :x 0.0 .
2908
+ # _:b1 :coef 1.0 .
2909
+ # 0.0 math:sin 0 .
2910
+ # (0.0 2.0) math:exponentiation 0 .
2911
+ # (0 0) math:sum 0 .
2912
+ # 0.0 math:cos 1 .
2913
+ # (2.0 0.0) math:product 0 .
2914
+ # (1 0) math:sum 1 .
2915
+ # (1 2.0) math:exponentiation 1 .
2916
+ # (1.0 1) math:sum 2 .
2917
+ # (2 0.5) math:exponentiation 1.4142135623730951 .
2918
+ # via the schematic forward rule:
2919
+ # {
2920
+ # :Simpson1 :samples ?ss .
2921
+ # ?ss list:member ?s .
2922
+ # ?s :x ?x .
2923
+ # ?s :coef ?c .
2924
+ # ?x math:sin ?sinx .
2925
+ # (?x 2.0) math:exponentiation ?x2 .
2926
+ # (?sinx ?x2) math:sum ?y .
2927
+ # ?x math:cos ?cosx .
2928
+ # (2.0 ?x) math:product ?twox .
2929
+ # (?cosx ?twox) math:sum ?dy .
2930
+ # (?dy 2.0) math:exponentiation ?dy2 .
2931
+ # (1.0 ?dy2) math:sum ?onePlus .
2932
+ # (?onePlus 0.5) math:exponentiation ?ds .
2933
+ # } => {
2934
+ # ?s :y ?y .
2935
+ # ?s :dy ?dy .
2936
+ # ?s :ds ?ds .
2937
+ # _:b6 :sample ?s .
2938
+ # _:b6 :x ?x .
2939
+ # _:b6 :coef ?c .
2940
+ # _:b6 :y ?y .
2941
+ # _:b6 :dy ?dy .
2942
+ # _:b6 :ds ?ds .
2943
+ # :Simpson1 :sampleResult _:b6 .
2944
+ # } .
2945
+ # with substitution (on rule variables):
2946
+ # ?c = 1.0
2947
+ # ?cosx = 1
2948
+ # ?ds = 1.4142135623730951
2949
+ # ?dy = 1
2950
+ # ?dy2 = 1
2951
+ # ?onePlus = 2
2952
+ # ?s = _:b1
2953
+ # ?sinx = 0
2954
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2955
+ # ?twox = 0
2956
+ # ?x = 0.0
2957
+ # ?x2 = 0
2958
+ # ?y = 0
2959
+ # Therefore the derived triple above is entailed by the rules and facts.
2960
+ # ----------------------------------------------------------------------
2961
+
2962
+ _:sk_4 :y 0 .
2963
+
2964
+ # ----------------------------------------------------------------------
2965
+ # Proof for derived triple:
2966
+ # _:sk_4 :dy 1 .
2967
+ # It holds because the following instance of the rule body is provable:
2968
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2969
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2970
+ # _:b1 :x 0.0 .
2971
+ # _:b1 :coef 1.0 .
2972
+ # 0.0 math:sin 0 .
2973
+ # (0.0 2.0) math:exponentiation 0 .
2974
+ # (0 0) math:sum 0 .
2975
+ # 0.0 math:cos 1 .
2976
+ # (2.0 0.0) math:product 0 .
2977
+ # (1 0) math:sum 1 .
2978
+ # (1 2.0) math:exponentiation 1 .
2979
+ # (1.0 1) math:sum 2 .
2980
+ # (2 0.5) math:exponentiation 1.4142135623730951 .
2981
+ # via the schematic forward rule:
2982
+ # {
2983
+ # :Simpson1 :samples ?ss .
2984
+ # ?ss list:member ?s .
2985
+ # ?s :x ?x .
2986
+ # ?s :coef ?c .
2987
+ # ?x math:sin ?sinx .
2988
+ # (?x 2.0) math:exponentiation ?x2 .
2989
+ # (?sinx ?x2) math:sum ?y .
2990
+ # ?x math:cos ?cosx .
2991
+ # (2.0 ?x) math:product ?twox .
2992
+ # (?cosx ?twox) math:sum ?dy .
2993
+ # (?dy 2.0) math:exponentiation ?dy2 .
2994
+ # (1.0 ?dy2) math:sum ?onePlus .
2995
+ # (?onePlus 0.5) math:exponentiation ?ds .
2996
+ # } => {
2997
+ # ?s :y ?y .
2998
+ # ?s :dy ?dy .
2999
+ # ?s :ds ?ds .
3000
+ # _:b6 :sample ?s .
3001
+ # _:b6 :x ?x .
3002
+ # _:b6 :coef ?c .
3003
+ # _:b6 :y ?y .
3004
+ # _:b6 :dy ?dy .
3005
+ # _:b6 :ds ?ds .
3006
+ # :Simpson1 :sampleResult _:b6 .
3007
+ # } .
3008
+ # with substitution (on rule variables):
3009
+ # ?c = 1.0
3010
+ # ?cosx = 1
3011
+ # ?ds = 1.4142135623730951
3012
+ # ?dy = 1
3013
+ # ?dy2 = 1
3014
+ # ?onePlus = 2
3015
+ # ?s = _:b1
3016
+ # ?sinx = 0
3017
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3018
+ # ?twox = 0
3019
+ # ?x = 0.0
3020
+ # ?x2 = 0
3021
+ # ?y = 0
3022
+ # Therefore the derived triple above is entailed by the rules and facts.
3023
+ # ----------------------------------------------------------------------
3024
+
3025
+ _:sk_4 :dy 1 .
3026
+
3027
+ # ----------------------------------------------------------------------
3028
+ # Proof for derived triple:
3029
+ # _:sk_4 :ds 1.4142135623730951 .
3030
+ # It holds because the following instance of the rule body is provable:
3031
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
3032
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
3033
+ # _:b1 :x 0.0 .
3034
+ # _:b1 :coef 1.0 .
3035
+ # 0.0 math:sin 0 .
3036
+ # (0.0 2.0) math:exponentiation 0 .
3037
+ # (0 0) math:sum 0 .
3038
+ # 0.0 math:cos 1 .
3039
+ # (2.0 0.0) math:product 0 .
3040
+ # (1 0) math:sum 1 .
3041
+ # (1 2.0) math:exponentiation 1 .
3042
+ # (1.0 1) math:sum 2 .
3043
+ # (2 0.5) math:exponentiation 1.4142135623730951 .
3044
+ # via the schematic forward rule:
3045
+ # {
3046
+ # :Simpson1 :samples ?ss .
3047
+ # ?ss list:member ?s .
3048
+ # ?s :x ?x .
3049
+ # ?s :coef ?c .
3050
+ # ?x math:sin ?sinx .
3051
+ # (?x 2.0) math:exponentiation ?x2 .
3052
+ # (?sinx ?x2) math:sum ?y .
3053
+ # ?x math:cos ?cosx .
3054
+ # (2.0 ?x) math:product ?twox .
3055
+ # (?cosx ?twox) math:sum ?dy .
3056
+ # (?dy 2.0) math:exponentiation ?dy2 .
3057
+ # (1.0 ?dy2) math:sum ?onePlus .
3058
+ # (?onePlus 0.5) math:exponentiation ?ds .
3059
+ # } => {
3060
+ # ?s :y ?y .
3061
+ # ?s :dy ?dy .
3062
+ # ?s :ds ?ds .
3063
+ # _:b6 :sample ?s .
3064
+ # _:b6 :x ?x .
3065
+ # _:b6 :coef ?c .
3066
+ # _:b6 :y ?y .
3067
+ # _:b6 :dy ?dy .
3068
+ # _:b6 :ds ?ds .
3069
+ # :Simpson1 :sampleResult _:b6 .
3070
+ # } .
3071
+ # with substitution (on rule variables):
3072
+ # ?c = 1.0
3073
+ # ?cosx = 1
3074
+ # ?ds = 1.4142135623730951
3075
+ # ?dy = 1
3076
+ # ?dy2 = 1
3077
+ # ?onePlus = 2
3078
+ # ?s = _:b1
3079
+ # ?sinx = 0
3080
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3081
+ # ?twox = 0
3082
+ # ?x = 0.0
3083
+ # ?x2 = 0
3084
+ # ?y = 0
3085
+ # Therefore the derived triple above is entailed by the rules and facts.
3086
+ # ----------------------------------------------------------------------
3087
+
3088
+ _:sk_4 :ds 1.4142135623730951 .
3089
+
3090
+ # ----------------------------------------------------------------------
3091
+ # Proof for derived triple:
3092
+ # :Simpson1 :sampleResult _:sk_4 .
3093
+ # It holds because the following instance of the rule body is provable:
3094
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
3095
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
3096
+ # _:b1 :x 0.0 .
3097
+ # _:b1 :coef 1.0 .
3098
+ # 0.0 math:sin 0 .
3099
+ # (0.0 2.0) math:exponentiation 0 .
3100
+ # (0 0) math:sum 0 .
3101
+ # 0.0 math:cos 1 .
3102
+ # (2.0 0.0) math:product 0 .
3103
+ # (1 0) math:sum 1 .
3104
+ # (1 2.0) math:exponentiation 1 .
3105
+ # (1.0 1) math:sum 2 .
3106
+ # (2 0.5) math:exponentiation 1.4142135623730951 .
3107
+ # via the schematic forward rule:
3108
+ # {
3109
+ # :Simpson1 :samples ?ss .
3110
+ # ?ss list:member ?s .
3111
+ # ?s :x ?x .
3112
+ # ?s :coef ?c .
3113
+ # ?x math:sin ?sinx .
3114
+ # (?x 2.0) math:exponentiation ?x2 .
3115
+ # (?sinx ?x2) math:sum ?y .
3116
+ # ?x math:cos ?cosx .
3117
+ # (2.0 ?x) math:product ?twox .
3118
+ # (?cosx ?twox) math:sum ?dy .
3119
+ # (?dy 2.0) math:exponentiation ?dy2 .
3120
+ # (1.0 ?dy2) math:sum ?onePlus .
3121
+ # (?onePlus 0.5) math:exponentiation ?ds .
3122
+ # } => {
3123
+ # ?s :y ?y .
3124
+ # ?s :dy ?dy .
3125
+ # ?s :ds ?ds .
3126
+ # _:b6 :sample ?s .
3127
+ # _:b6 :x ?x .
3128
+ # _:b6 :coef ?c .
3129
+ # _:b6 :y ?y .
3130
+ # _:b6 :dy ?dy .
3131
+ # _:b6 :ds ?ds .
3132
+ # :Simpson1 :sampleResult _:b6 .
3133
+ # } .
3134
+ # with substitution (on rule variables):
3135
+ # ?c = 1.0
3136
+ # ?cosx = 1
3137
+ # ?ds = 1.4142135623730951
3138
+ # ?dy = 1
3139
+ # ?dy2 = 1
3140
+ # ?onePlus = 2
3141
+ # ?s = _:b1
3142
+ # ?sinx = 0
3143
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3144
+ # ?twox = 0
3145
+ # ?x = 0.0
3146
+ # ?x2 = 0
3147
+ # ?y = 0
3148
+ # Therefore the derived triple above is entailed by the rules and facts.
3149
+ # ----------------------------------------------------------------------
3150
+
3151
+ :Simpson1 :sampleResult _:sk_4 .
3152
+
3153
+ # ----------------------------------------------------------------------
3154
+ # Proof for derived triple:
3155
+ # :Simpson1 :sumWY 24.499921497274507 .
3156
+ # It holds because the following instance of the rule body is provable:
3157
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
3158
+ # (?wy {
3159
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3160
+ # ?s :coef ?c .
3161
+ # ?s :y ?y .
3162
+ # (?c ?y) math:product ?wy .
3163
+ # } (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)) log:collectAllIn ?_b1 .
3164
+ # (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0) math:sum 24.499921497274507 .
3165
+ # (?wxy {
3166
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3167
+ # ?s :coef ?c .
3168
+ # ?s :x ?x .
3169
+ # ?s :y ?y .
3170
+ # (?x ?y) math:product ?xy .
3171
+ # (?c ?xy) math:product ?wxy .
3172
+ # } (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)) log:collectAllIn ?_b2 .
3173
+ # (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0) math:sum 34.445357820099886 .
3174
+ # (?wy2 {
3175
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3176
+ # ?s :coef ?c .
3177
+ # ?s :y ?y .
3178
+ # (?y 2.0) math:exponentiation ?y2 .
3179
+ # (?c ?y2) math:product ?wy2 .
3180
+ # } (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)) log:collectAllIn ?_b3 .
3181
+ # (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0) math:sum 75.19637321836198 .
3182
+ # (?wds {
3183
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3184
+ # ?s :coef ?c .
3185
+ # ?s :ds ?ds .
3186
+ # (?c ?ds) math:product ?wds .
3187
+ # } (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)) log:collectAllIn ?_b4 .
3188
+ # (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951) math:sum 32.02201866506704 .
3189
+ # via the schematic forward rule:
3190
+ # {
3191
+ # :Simpson1 :samples ?ss .
3192
+ # (?wy {
3193
+ # ?ss list:member ?s .
3194
+ # ?s :coef ?c .
3195
+ # ?s :y ?y .
3196
+ # (?c ?y) math:product ?wy .
3197
+ # } ?wys) log:collectAllIn ?_b1 .
3198
+ # ?wys math:sum ?sumWY .
3199
+ # (?wxy {
3200
+ # ?ss list:member ?s .
3201
+ # ?s :coef ?c .
3202
+ # ?s :x ?x .
3203
+ # ?s :y ?y .
3204
+ # (?x ?y) math:product ?xy .
3205
+ # (?c ?xy) math:product ?wxy .
3206
+ # } ?wxys) log:collectAllIn ?_b2 .
3207
+ # ?wxys math:sum ?sumWXY .
3208
+ # (?wy2 {
3209
+ # ?ss list:member ?s .
3210
+ # ?s :coef ?c .
3211
+ # ?s :y ?y .
3212
+ # (?y 2.0) math:exponentiation ?y2 .
3213
+ # (?c ?y2) math:product ?wy2 .
3214
+ # } ?wy2s) log:collectAllIn ?_b3 .
3215
+ # ?wy2s math:sum ?sumWY2 .
3216
+ # (?wds {
3217
+ # ?ss list:member ?s .
3218
+ # ?s :coef ?c .
3219
+ # ?s :ds ?ds .
3220
+ # (?c ?ds) math:product ?wds .
3221
+ # } ?wdss) log:collectAllIn ?_b4 .
3222
+ # ?wdss math:sum ?sumWDS .
3223
+ # } => {
3224
+ # :Simpson1 :sumWY ?sumWY .
3225
+ # :Simpson1 :sumWXY ?sumWXY .
3226
+ # :Simpson1 :sumWY2 ?sumWY2 .
3227
+ # :Simpson1 :sumWDS ?sumWDS .
3228
+ # } .
3229
+ # with substitution (on rule variables):
3230
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3231
+ # ?sumWDS = 32.02201866506704
3232
+ # ?sumWXY = 34.445357820099886
3233
+ # ?sumWY = 24.499921497274507
3234
+ # ?sumWY2 = 75.19637321836198
3235
+ # ?wdss = (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)
3236
+ # ?wxys = (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)
3237
+ # ?wy2s = (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)
3238
+ # ?wys = (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)
3239
+ # Therefore the derived triple above is entailed by the rules and facts.
3240
+ # ----------------------------------------------------------------------
3241
+
3242
+ :Simpson1 :sumWY 24.499921497274507 .
3243
+
3244
+ # ----------------------------------------------------------------------
3245
+ # Proof for derived triple:
3246
+ # :Simpson1 :sumWXY 34.445357820099886 .
3247
+ # It holds because the following instance of the rule body is provable:
3248
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
3249
+ # (?wy {
3250
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3251
+ # ?s :coef ?c .
3252
+ # ?s :y ?y .
3253
+ # (?c ?y) math:product ?wy .
3254
+ # } (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)) log:collectAllIn ?_b1 .
3255
+ # (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0) math:sum 24.499921497274507 .
3256
+ # (?wxy {
3257
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3258
+ # ?s :coef ?c .
3259
+ # ?s :x ?x .
3260
+ # ?s :y ?y .
3261
+ # (?x ?y) math:product ?xy .
3262
+ # (?c ?xy) math:product ?wxy .
3263
+ # } (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)) log:collectAllIn ?_b2 .
3264
+ # (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0) math:sum 34.445357820099886 .
3265
+ # (?wy2 {
3266
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3267
+ # ?s :coef ?c .
3268
+ # ?s :y ?y .
3269
+ # (?y 2.0) math:exponentiation ?y2 .
3270
+ # (?c ?y2) math:product ?wy2 .
3271
+ # } (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)) log:collectAllIn ?_b3 .
3272
+ # (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0) math:sum 75.19637321836198 .
3273
+ # (?wds {
3274
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3275
+ # ?s :coef ?c .
3276
+ # ?s :ds ?ds .
3277
+ # (?c ?ds) math:product ?wds .
3278
+ # } (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)) log:collectAllIn ?_b4 .
3279
+ # (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951) math:sum 32.02201866506704 .
3280
+ # via the schematic forward rule:
3281
+ # {
3282
+ # :Simpson1 :samples ?ss .
3283
+ # (?wy {
3284
+ # ?ss list:member ?s .
3285
+ # ?s :coef ?c .
3286
+ # ?s :y ?y .
3287
+ # (?c ?y) math:product ?wy .
3288
+ # } ?wys) log:collectAllIn ?_b1 .
3289
+ # ?wys math:sum ?sumWY .
3290
+ # (?wxy {
3291
+ # ?ss list:member ?s .
3292
+ # ?s :coef ?c .
3293
+ # ?s :x ?x .
3294
+ # ?s :y ?y .
3295
+ # (?x ?y) math:product ?xy .
3296
+ # (?c ?xy) math:product ?wxy .
3297
+ # } ?wxys) log:collectAllIn ?_b2 .
3298
+ # ?wxys math:sum ?sumWXY .
3299
+ # (?wy2 {
3300
+ # ?ss list:member ?s .
3301
+ # ?s :coef ?c .
3302
+ # ?s :y ?y .
3303
+ # (?y 2.0) math:exponentiation ?y2 .
3304
+ # (?c ?y2) math:product ?wy2 .
3305
+ # } ?wy2s) log:collectAllIn ?_b3 .
3306
+ # ?wy2s math:sum ?sumWY2 .
3307
+ # (?wds {
3308
+ # ?ss list:member ?s .
3309
+ # ?s :coef ?c .
3310
+ # ?s :ds ?ds .
3311
+ # (?c ?ds) math:product ?wds .
3312
+ # } ?wdss) log:collectAllIn ?_b4 .
3313
+ # ?wdss math:sum ?sumWDS .
3314
+ # } => {
3315
+ # :Simpson1 :sumWY ?sumWY .
3316
+ # :Simpson1 :sumWXY ?sumWXY .
3317
+ # :Simpson1 :sumWY2 ?sumWY2 .
3318
+ # :Simpson1 :sumWDS ?sumWDS .
3319
+ # } .
3320
+ # with substitution (on rule variables):
3321
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3322
+ # ?sumWDS = 32.02201866506704
3323
+ # ?sumWXY = 34.445357820099886
3324
+ # ?sumWY = 24.499921497274507
3325
+ # ?sumWY2 = 75.19637321836198
3326
+ # ?wdss = (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)
3327
+ # ?wxys = (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)
3328
+ # ?wy2s = (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)
3329
+ # ?wys = (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)
3330
+ # Therefore the derived triple above is entailed by the rules and facts.
3331
+ # ----------------------------------------------------------------------
3332
+
3333
+ :Simpson1 :sumWXY 34.445357820099886 .
3334
+
3335
+ # ----------------------------------------------------------------------
3336
+ # Proof for derived triple:
3337
+ # :Simpson1 :sumWY2 75.19637321836198 .
3338
+ # It holds because the following instance of the rule body is provable:
3339
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
3340
+ # (?wy {
3341
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3342
+ # ?s :coef ?c .
3343
+ # ?s :y ?y .
3344
+ # (?c ?y) math:product ?wy .
3345
+ # } (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)) log:collectAllIn ?_b1 .
3346
+ # (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0) math:sum 24.499921497274507 .
3347
+ # (?wxy {
3348
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3349
+ # ?s :coef ?c .
3350
+ # ?s :x ?x .
3351
+ # ?s :y ?y .
3352
+ # (?x ?y) math:product ?xy .
3353
+ # (?c ?xy) math:product ?wxy .
3354
+ # } (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)) log:collectAllIn ?_b2 .
3355
+ # (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0) math:sum 34.445357820099886 .
3356
+ # (?wy2 {
3357
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3358
+ # ?s :coef ?c .
3359
+ # ?s :y ?y .
3360
+ # (?y 2.0) math:exponentiation ?y2 .
3361
+ # (?c ?y2) math:product ?wy2 .
3362
+ # } (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)) log:collectAllIn ?_b3 .
3363
+ # (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0) math:sum 75.19637321836198 .
3364
+ # (?wds {
3365
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3366
+ # ?s :coef ?c .
3367
+ # ?s :ds ?ds .
3368
+ # (?c ?ds) math:product ?wds .
3369
+ # } (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)) log:collectAllIn ?_b4 .
3370
+ # (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951) math:sum 32.02201866506704 .
3371
+ # via the schematic forward rule:
3372
+ # {
3373
+ # :Simpson1 :samples ?ss .
3374
+ # (?wy {
3375
+ # ?ss list:member ?s .
3376
+ # ?s :coef ?c .
3377
+ # ?s :y ?y .
3378
+ # (?c ?y) math:product ?wy .
3379
+ # } ?wys) log:collectAllIn ?_b1 .
3380
+ # ?wys math:sum ?sumWY .
3381
+ # (?wxy {
3382
+ # ?ss list:member ?s .
3383
+ # ?s :coef ?c .
3384
+ # ?s :x ?x .
3385
+ # ?s :y ?y .
3386
+ # (?x ?y) math:product ?xy .
3387
+ # (?c ?xy) math:product ?wxy .
3388
+ # } ?wxys) log:collectAllIn ?_b2 .
3389
+ # ?wxys math:sum ?sumWXY .
3390
+ # (?wy2 {
3391
+ # ?ss list:member ?s .
3392
+ # ?s :coef ?c .
3393
+ # ?s :y ?y .
3394
+ # (?y 2.0) math:exponentiation ?y2 .
3395
+ # (?c ?y2) math:product ?wy2 .
3396
+ # } ?wy2s) log:collectAllIn ?_b3 .
3397
+ # ?wy2s math:sum ?sumWY2 .
3398
+ # (?wds {
3399
+ # ?ss list:member ?s .
3400
+ # ?s :coef ?c .
3401
+ # ?s :ds ?ds .
3402
+ # (?c ?ds) math:product ?wds .
3403
+ # } ?wdss) log:collectAllIn ?_b4 .
3404
+ # ?wdss math:sum ?sumWDS .
3405
+ # } => {
3406
+ # :Simpson1 :sumWY ?sumWY .
3407
+ # :Simpson1 :sumWXY ?sumWXY .
3408
+ # :Simpson1 :sumWY2 ?sumWY2 .
3409
+ # :Simpson1 :sumWDS ?sumWDS .
3410
+ # } .
3411
+ # with substitution (on rule variables):
3412
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3413
+ # ?sumWDS = 32.02201866506704
3414
+ # ?sumWXY = 34.445357820099886
3415
+ # ?sumWY = 24.499921497274507
3416
+ # ?sumWY2 = 75.19637321836198
3417
+ # ?wdss = (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)
3418
+ # ?wxys = (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)
3419
+ # ?wy2s = (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)
3420
+ # ?wys = (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)
3421
+ # Therefore the derived triple above is entailed by the rules and facts.
3422
+ # ----------------------------------------------------------------------
3423
+
3424
+ :Simpson1 :sumWY2 75.19637321836198 .
3425
+
3426
+ # ----------------------------------------------------------------------
3427
+ # Proof for derived triple:
3428
+ # :Simpson1 :sumWDS 32.02201866506704 .
3429
+ # It holds because the following instance of the rule body is provable:
3430
+ # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
3431
+ # (?wy {
3432
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3433
+ # ?s :coef ?c .
3434
+ # ?s :y ?y .
3435
+ # (?c ?y) math:product ?wy .
3436
+ # } (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)) log:collectAllIn ?_b1 .
3437
+ # (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0) math:sum 24.499921497274507 .
3438
+ # (?wxy {
3439
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3440
+ # ?s :coef ?c .
3441
+ # ?s :x ?x .
3442
+ # ?s :y ?y .
3443
+ # (?x ?y) math:product ?xy .
3444
+ # (?c ?xy) math:product ?wxy .
3445
+ # } (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)) log:collectAllIn ?_b2 .
3446
+ # (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0) math:sum 34.445357820099886 .
3447
+ # (?wy2 {
3448
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3449
+ # ?s :coef ?c .
3450
+ # ?s :y ?y .
3451
+ # (?y 2.0) math:exponentiation ?y2 .
3452
+ # (?c ?y2) math:product ?wy2 .
3453
+ # } (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)) log:collectAllIn ?_b3 .
3454
+ # (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0) math:sum 75.19637321836198 .
3455
+ # (?wds {
3456
+ # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3457
+ # ?s :coef ?c .
3458
+ # ?s :ds ?ds .
3459
+ # (?c ?ds) math:product ?wds .
3460
+ # } (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)) log:collectAllIn ?_b4 .
3461
+ # (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951) math:sum 32.02201866506704 .
3462
+ # via the schematic forward rule:
3463
+ # {
3464
+ # :Simpson1 :samples ?ss .
3465
+ # (?wy {
3466
+ # ?ss list:member ?s .
3467
+ # ?s :coef ?c .
3468
+ # ?s :y ?y .
3469
+ # (?c ?y) math:product ?wy .
3470
+ # } ?wys) log:collectAllIn ?_b1 .
3471
+ # ?wys math:sum ?sumWY .
3472
+ # (?wxy {
3473
+ # ?ss list:member ?s .
3474
+ # ?s :coef ?c .
3475
+ # ?s :x ?x .
3476
+ # ?s :y ?y .
3477
+ # (?x ?y) math:product ?xy .
3478
+ # (?c ?xy) math:product ?wxy .
3479
+ # } ?wxys) log:collectAllIn ?_b2 .
3480
+ # ?wxys math:sum ?sumWXY .
3481
+ # (?wy2 {
3482
+ # ?ss list:member ?s .
3483
+ # ?s :coef ?c .
3484
+ # ?s :y ?y .
3485
+ # (?y 2.0) math:exponentiation ?y2 .
3486
+ # (?c ?y2) math:product ?wy2 .
3487
+ # } ?wy2s) log:collectAllIn ?_b3 .
3488
+ # ?wy2s math:sum ?sumWY2 .
3489
+ # (?wds {
3490
+ # ?ss list:member ?s .
3491
+ # ?s :coef ?c .
3492
+ # ?s :ds ?ds .
3493
+ # (?c ?ds) math:product ?wds .
3494
+ # } ?wdss) log:collectAllIn ?_b4 .
3495
+ # ?wdss math:sum ?sumWDS .
3496
+ # } => {
3497
+ # :Simpson1 :sumWY ?sumWY .
3498
+ # :Simpson1 :sumWXY ?sumWXY .
3499
+ # :Simpson1 :sumWY2 ?sumWY2 .
3500
+ # :Simpson1 :sumWDS ?sumWDS .
3501
+ # } .
3502
+ # with substitution (on rule variables):
3503
+ # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3504
+ # ?sumWDS = 32.02201866506704
3505
+ # ?sumWXY = 34.445357820099886
3506
+ # ?sumWY = 24.499921497274507
3507
+ # ?sumWY2 = 75.19637321836198
3508
+ # ?wdss = (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)
3509
+ # ?wxys = (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)
3510
+ # ?wy2s = (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)
3511
+ # ?wys = (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)
3512
+ # Therefore the derived triple above is entailed by the rules and facts.
3513
+ # ----------------------------------------------------------------------
3514
+
3515
+ :Simpson1 :sumWDS 32.02201866506704 .
3516
+
3517
+ # ----------------------------------------------------------------------
3518
+ # Proof for derived triple:
3519
+ # :Simpson1 :areaUnderCurve 4.083320249545751 .
3520
+ # It holds because the following instance of the rule body is provable:
3521
+ # :Simpson1 :h 0.5 .
3522
+ # :Simpson1 :sumWY 24.499921497274507 .
3523
+ # :Simpson1 :sumWXY 34.445357820099886 .
3524
+ # :Simpson1 :sumWY2 75.19637321836198 .
3525
+ # :Simpson1 :sumWDS 32.02201866506704 .
3526
+ # (0.5 3.0) math:quotient 0.16666666666666666 .
3527
+ # (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
3528
+ # (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
3529
+ # (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
3530
+ # (0.5 12.532728869726997) math:product 6.266364434863498 .
3531
+ # (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
3532
+ # (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
3533
+ # (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
3534
+ # via the schematic forward rule:
3535
+ # {
3536
+ # :Simpson1 :h ?h .
3537
+ # :Simpson1 :sumWY ?sumWY .
3538
+ # :Simpson1 :sumWXY ?sumWXY .
3539
+ # :Simpson1 :sumWY2 ?sumWY2 .
3540
+ # :Simpson1 :sumWDS ?sumWDS .
3541
+ # (?h 3.0) math:quotient ?fac .
3542
+ # (?fac ?sumWY) math:product ?A .
3543
+ # (?fac ?sumWXY) math:product ?My .
3544
+ # (?fac ?sumWY2) math:product ?Iy2 .
3545
+ # (0.5 ?Iy2) math:product ?Mx .
3546
+ # (?fac ?sumWDS) math:product ?L .
3547
+ # (?My ?A) math:quotient ?xbar .
3548
+ # (?Mx ?A) math:quotient ?ybar .
3549
+ # } => {
3550
+ # :Simpson1 :areaUnderCurve ?A .
3551
+ # :Simpson1 :arcLength ?L .
3552
+ # :Simpson1 :momentAboutY ?My .
3553
+ # :Simpson1 :momentAboutX ?Mx .
3554
+ # _:b7 :xbar ?xbar .
3555
+ # _:b7 :ybar ?ybar .
3556
+ # :Simpson1 :centroid _:b7 .
3557
+ # } .
3558
+ # with substitution (on rule variables):
3559
+ # ?A = 4.083320249545751
3560
+ # ?Iy2 = 12.532728869726997
3561
+ # ?L = 5.337003110844506
3562
+ # ?Mx = 6.266364434863498
3563
+ # ?My = 5.740892970016647
3564
+ # ?fac = 0.16666666666666666
3565
+ # ?h = 0.5
3566
+ # ?sumWDS = 32.02201866506704
3567
+ # ?sumWXY = 34.445357820099886
3568
+ # ?sumWY = 24.499921497274507
3569
+ # ?sumWY2 = 75.19637321836198
3570
+ # ?xbar = 1.405937477143825
3571
+ # ?ybar = 1.5346247788330099
3572
+ # Therefore the derived triple above is entailed by the rules and facts.
3573
+ # ----------------------------------------------------------------------
3574
+
3575
+ :Simpson1 :areaUnderCurve 4.083320249545751 .
3576
+
3577
+ # ----------------------------------------------------------------------
3578
+ # Proof for derived triple:
3579
+ # :Simpson1 :arcLength 5.337003110844506 .
3580
+ # It holds because the following instance of the rule body is provable:
3581
+ # :Simpson1 :h 0.5 .
3582
+ # :Simpson1 :sumWY 24.499921497274507 .
3583
+ # :Simpson1 :sumWXY 34.445357820099886 .
3584
+ # :Simpson1 :sumWY2 75.19637321836198 .
3585
+ # :Simpson1 :sumWDS 32.02201866506704 .
3586
+ # (0.5 3.0) math:quotient 0.16666666666666666 .
3587
+ # (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
3588
+ # (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
3589
+ # (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
3590
+ # (0.5 12.532728869726997) math:product 6.266364434863498 .
3591
+ # (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
3592
+ # (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
3593
+ # (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
3594
+ # via the schematic forward rule:
3595
+ # {
3596
+ # :Simpson1 :h ?h .
3597
+ # :Simpson1 :sumWY ?sumWY .
3598
+ # :Simpson1 :sumWXY ?sumWXY .
3599
+ # :Simpson1 :sumWY2 ?sumWY2 .
3600
+ # :Simpson1 :sumWDS ?sumWDS .
3601
+ # (?h 3.0) math:quotient ?fac .
3602
+ # (?fac ?sumWY) math:product ?A .
3603
+ # (?fac ?sumWXY) math:product ?My .
3604
+ # (?fac ?sumWY2) math:product ?Iy2 .
3605
+ # (0.5 ?Iy2) math:product ?Mx .
3606
+ # (?fac ?sumWDS) math:product ?L .
3607
+ # (?My ?A) math:quotient ?xbar .
3608
+ # (?Mx ?A) math:quotient ?ybar .
3609
+ # } => {
3610
+ # :Simpson1 :areaUnderCurve ?A .
3611
+ # :Simpson1 :arcLength ?L .
3612
+ # :Simpson1 :momentAboutY ?My .
3613
+ # :Simpson1 :momentAboutX ?Mx .
3614
+ # _:b7 :xbar ?xbar .
3615
+ # _:b7 :ybar ?ybar .
3616
+ # :Simpson1 :centroid _:b7 .
3617
+ # } .
3618
+ # with substitution (on rule variables):
3619
+ # ?A = 4.083320249545751
3620
+ # ?Iy2 = 12.532728869726997
3621
+ # ?L = 5.337003110844506
3622
+ # ?Mx = 6.266364434863498
3623
+ # ?My = 5.740892970016647
3624
+ # ?fac = 0.16666666666666666
3625
+ # ?h = 0.5
3626
+ # ?sumWDS = 32.02201866506704
3627
+ # ?sumWXY = 34.445357820099886
3628
+ # ?sumWY = 24.499921497274507
3629
+ # ?sumWY2 = 75.19637321836198
3630
+ # ?xbar = 1.405937477143825
3631
+ # ?ybar = 1.5346247788330099
3632
+ # Therefore the derived triple above is entailed by the rules and facts.
3633
+ # ----------------------------------------------------------------------
3634
+
3635
+ :Simpson1 :arcLength 5.337003110844506 .
3636
+
3637
+ # ----------------------------------------------------------------------
3638
+ # Proof for derived triple:
3639
+ # :Simpson1 :momentAboutY 5.740892970016647 .
3640
+ # It holds because the following instance of the rule body is provable:
3641
+ # :Simpson1 :h 0.5 .
3642
+ # :Simpson1 :sumWY 24.499921497274507 .
3643
+ # :Simpson1 :sumWXY 34.445357820099886 .
3644
+ # :Simpson1 :sumWY2 75.19637321836198 .
3645
+ # :Simpson1 :sumWDS 32.02201866506704 .
3646
+ # (0.5 3.0) math:quotient 0.16666666666666666 .
3647
+ # (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
3648
+ # (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
3649
+ # (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
3650
+ # (0.5 12.532728869726997) math:product 6.266364434863498 .
3651
+ # (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
3652
+ # (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
3653
+ # (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
3654
+ # via the schematic forward rule:
3655
+ # {
3656
+ # :Simpson1 :h ?h .
3657
+ # :Simpson1 :sumWY ?sumWY .
3658
+ # :Simpson1 :sumWXY ?sumWXY .
3659
+ # :Simpson1 :sumWY2 ?sumWY2 .
3660
+ # :Simpson1 :sumWDS ?sumWDS .
3661
+ # (?h 3.0) math:quotient ?fac .
3662
+ # (?fac ?sumWY) math:product ?A .
3663
+ # (?fac ?sumWXY) math:product ?My .
3664
+ # (?fac ?sumWY2) math:product ?Iy2 .
3665
+ # (0.5 ?Iy2) math:product ?Mx .
3666
+ # (?fac ?sumWDS) math:product ?L .
3667
+ # (?My ?A) math:quotient ?xbar .
3668
+ # (?Mx ?A) math:quotient ?ybar .
3669
+ # } => {
3670
+ # :Simpson1 :areaUnderCurve ?A .
3671
+ # :Simpson1 :arcLength ?L .
3672
+ # :Simpson1 :momentAboutY ?My .
3673
+ # :Simpson1 :momentAboutX ?Mx .
3674
+ # _:b7 :xbar ?xbar .
3675
+ # _:b7 :ybar ?ybar .
3676
+ # :Simpson1 :centroid _:b7 .
3677
+ # } .
3678
+ # with substitution (on rule variables):
3679
+ # ?A = 4.083320249545751
3680
+ # ?Iy2 = 12.532728869726997
3681
+ # ?L = 5.337003110844506
3682
+ # ?Mx = 6.266364434863498
3683
+ # ?My = 5.740892970016647
3684
+ # ?fac = 0.16666666666666666
3685
+ # ?h = 0.5
3686
+ # ?sumWDS = 32.02201866506704
3687
+ # ?sumWXY = 34.445357820099886
3688
+ # ?sumWY = 24.499921497274507
3689
+ # ?sumWY2 = 75.19637321836198
3690
+ # ?xbar = 1.405937477143825
3691
+ # ?ybar = 1.5346247788330099
3692
+ # Therefore the derived triple above is entailed by the rules and facts.
3693
+ # ----------------------------------------------------------------------
3694
+
3695
+ :Simpson1 :momentAboutY 5.740892970016647 .
3696
+
3697
+ # ----------------------------------------------------------------------
3698
+ # Proof for derived triple:
3699
+ # :Simpson1 :momentAboutX 6.266364434863498 .
3700
+ # It holds because the following instance of the rule body is provable:
3701
+ # :Simpson1 :h 0.5 .
3702
+ # :Simpson1 :sumWY 24.499921497274507 .
3703
+ # :Simpson1 :sumWXY 34.445357820099886 .
3704
+ # :Simpson1 :sumWY2 75.19637321836198 .
3705
+ # :Simpson1 :sumWDS 32.02201866506704 .
3706
+ # (0.5 3.0) math:quotient 0.16666666666666666 .
3707
+ # (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
3708
+ # (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
3709
+ # (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
3710
+ # (0.5 12.532728869726997) math:product 6.266364434863498 .
3711
+ # (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
3712
+ # (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
3713
+ # (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
3714
+ # via the schematic forward rule:
3715
+ # {
3716
+ # :Simpson1 :h ?h .
3717
+ # :Simpson1 :sumWY ?sumWY .
3718
+ # :Simpson1 :sumWXY ?sumWXY .
3719
+ # :Simpson1 :sumWY2 ?sumWY2 .
3720
+ # :Simpson1 :sumWDS ?sumWDS .
3721
+ # (?h 3.0) math:quotient ?fac .
3722
+ # (?fac ?sumWY) math:product ?A .
3723
+ # (?fac ?sumWXY) math:product ?My .
3724
+ # (?fac ?sumWY2) math:product ?Iy2 .
3725
+ # (0.5 ?Iy2) math:product ?Mx .
3726
+ # (?fac ?sumWDS) math:product ?L .
3727
+ # (?My ?A) math:quotient ?xbar .
3728
+ # (?Mx ?A) math:quotient ?ybar .
3729
+ # } => {
3730
+ # :Simpson1 :areaUnderCurve ?A .
3731
+ # :Simpson1 :arcLength ?L .
3732
+ # :Simpson1 :momentAboutY ?My .
3733
+ # :Simpson1 :momentAboutX ?Mx .
3734
+ # _:b7 :xbar ?xbar .
3735
+ # _:b7 :ybar ?ybar .
3736
+ # :Simpson1 :centroid _:b7 .
3737
+ # } .
3738
+ # with substitution (on rule variables):
3739
+ # ?A = 4.083320249545751
3740
+ # ?Iy2 = 12.532728869726997
3741
+ # ?L = 5.337003110844506
3742
+ # ?Mx = 6.266364434863498
3743
+ # ?My = 5.740892970016647
3744
+ # ?fac = 0.16666666666666666
3745
+ # ?h = 0.5
3746
+ # ?sumWDS = 32.02201866506704
3747
+ # ?sumWXY = 34.445357820099886
3748
+ # ?sumWY = 24.499921497274507
3749
+ # ?sumWY2 = 75.19637321836198
3750
+ # ?xbar = 1.405937477143825
3751
+ # ?ybar = 1.5346247788330099
3752
+ # Therefore the derived triple above is entailed by the rules and facts.
3753
+ # ----------------------------------------------------------------------
3754
+
3755
+ :Simpson1 :momentAboutX 6.266364434863498 .
3756
+
3757
+ # ----------------------------------------------------------------------
3758
+ # Proof for derived triple:
3759
+ # _:sk_5 :xbar 1.405937477143825 .
3760
+ # It holds because the following instance of the rule body is provable:
3761
+ # :Simpson1 :h 0.5 .
3762
+ # :Simpson1 :sumWY 24.499921497274507 .
3763
+ # :Simpson1 :sumWXY 34.445357820099886 .
3764
+ # :Simpson1 :sumWY2 75.19637321836198 .
3765
+ # :Simpson1 :sumWDS 32.02201866506704 .
3766
+ # (0.5 3.0) math:quotient 0.16666666666666666 .
3767
+ # (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
3768
+ # (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
3769
+ # (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
3770
+ # (0.5 12.532728869726997) math:product 6.266364434863498 .
3771
+ # (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
3772
+ # (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
3773
+ # (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
3774
+ # via the schematic forward rule:
3775
+ # {
3776
+ # :Simpson1 :h ?h .
3777
+ # :Simpson1 :sumWY ?sumWY .
3778
+ # :Simpson1 :sumWXY ?sumWXY .
3779
+ # :Simpson1 :sumWY2 ?sumWY2 .
3780
+ # :Simpson1 :sumWDS ?sumWDS .
3781
+ # (?h 3.0) math:quotient ?fac .
3782
+ # (?fac ?sumWY) math:product ?A .
3783
+ # (?fac ?sumWXY) math:product ?My .
3784
+ # (?fac ?sumWY2) math:product ?Iy2 .
3785
+ # (0.5 ?Iy2) math:product ?Mx .
3786
+ # (?fac ?sumWDS) math:product ?L .
3787
+ # (?My ?A) math:quotient ?xbar .
3788
+ # (?Mx ?A) math:quotient ?ybar .
3789
+ # } => {
3790
+ # :Simpson1 :areaUnderCurve ?A .
3791
+ # :Simpson1 :arcLength ?L .
3792
+ # :Simpson1 :momentAboutY ?My .
3793
+ # :Simpson1 :momentAboutX ?Mx .
3794
+ # _:b7 :xbar ?xbar .
3795
+ # _:b7 :ybar ?ybar .
3796
+ # :Simpson1 :centroid _:b7 .
3797
+ # } .
3798
+ # with substitution (on rule variables):
3799
+ # ?A = 4.083320249545751
3800
+ # ?Iy2 = 12.532728869726997
3801
+ # ?L = 5.337003110844506
3802
+ # ?Mx = 6.266364434863498
3803
+ # ?My = 5.740892970016647
3804
+ # ?fac = 0.16666666666666666
3805
+ # ?h = 0.5
3806
+ # ?sumWDS = 32.02201866506704
3807
+ # ?sumWXY = 34.445357820099886
3808
+ # ?sumWY = 24.499921497274507
3809
+ # ?sumWY2 = 75.19637321836198
3810
+ # ?xbar = 1.405937477143825
3811
+ # ?ybar = 1.5346247788330099
3812
+ # Therefore the derived triple above is entailed by the rules and facts.
3813
+ # ----------------------------------------------------------------------
3814
+
3815
+ _:sk_5 :xbar 1.405937477143825 .
3816
+
3817
+ # ----------------------------------------------------------------------
3818
+ # Proof for derived triple:
3819
+ # _:sk_5 :ybar 1.5346247788330099 .
3820
+ # It holds because the following instance of the rule body is provable:
3821
+ # :Simpson1 :h 0.5 .
3822
+ # :Simpson1 :sumWY 24.499921497274507 .
3823
+ # :Simpson1 :sumWXY 34.445357820099886 .
3824
+ # :Simpson1 :sumWY2 75.19637321836198 .
3825
+ # :Simpson1 :sumWDS 32.02201866506704 .
3826
+ # (0.5 3.0) math:quotient 0.16666666666666666 .
3827
+ # (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
3828
+ # (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
3829
+ # (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
3830
+ # (0.5 12.532728869726997) math:product 6.266364434863498 .
3831
+ # (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
3832
+ # (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
3833
+ # (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
3834
+ # via the schematic forward rule:
3835
+ # {
3836
+ # :Simpson1 :h ?h .
3837
+ # :Simpson1 :sumWY ?sumWY .
3838
+ # :Simpson1 :sumWXY ?sumWXY .
3839
+ # :Simpson1 :sumWY2 ?sumWY2 .
3840
+ # :Simpson1 :sumWDS ?sumWDS .
3841
+ # (?h 3.0) math:quotient ?fac .
3842
+ # (?fac ?sumWY) math:product ?A .
3843
+ # (?fac ?sumWXY) math:product ?My .
3844
+ # (?fac ?sumWY2) math:product ?Iy2 .
3845
+ # (0.5 ?Iy2) math:product ?Mx .
3846
+ # (?fac ?sumWDS) math:product ?L .
3847
+ # (?My ?A) math:quotient ?xbar .
3848
+ # (?Mx ?A) math:quotient ?ybar .
3849
+ # } => {
3850
+ # :Simpson1 :areaUnderCurve ?A .
3851
+ # :Simpson1 :arcLength ?L .
3852
+ # :Simpson1 :momentAboutY ?My .
3853
+ # :Simpson1 :momentAboutX ?Mx .
3854
+ # _:b7 :xbar ?xbar .
3855
+ # _:b7 :ybar ?ybar .
3856
+ # :Simpson1 :centroid _:b7 .
3857
+ # } .
3858
+ # with substitution (on rule variables):
3859
+ # ?A = 4.083320249545751
3860
+ # ?Iy2 = 12.532728869726997
3861
+ # ?L = 5.337003110844506
3862
+ # ?Mx = 6.266364434863498
3863
+ # ?My = 5.740892970016647
3864
+ # ?fac = 0.16666666666666666
3865
+ # ?h = 0.5
3866
+ # ?sumWDS = 32.02201866506704
3867
+ # ?sumWXY = 34.445357820099886
3868
+ # ?sumWY = 24.499921497274507
3869
+ # ?sumWY2 = 75.19637321836198
3870
+ # ?xbar = 1.405937477143825
3871
+ # ?ybar = 1.5346247788330099
3872
+ # Therefore the derived triple above is entailed by the rules and facts.
3873
+ # ----------------------------------------------------------------------
3874
+
3875
+ _:sk_5 :ybar 1.5346247788330099 .
3876
+
3877
+ # ----------------------------------------------------------------------
3878
+ # Proof for derived triple:
3879
+ # :Simpson1 :centroid _:sk_5 .
3880
+ # It holds because the following instance of the rule body is provable:
3881
+ # :Simpson1 :h 0.5 .
3882
+ # :Simpson1 :sumWY 24.499921497274507 .
3883
+ # :Simpson1 :sumWXY 34.445357820099886 .
3884
+ # :Simpson1 :sumWY2 75.19637321836198 .
3885
+ # :Simpson1 :sumWDS 32.02201866506704 .
3886
+ # (0.5 3.0) math:quotient 0.16666666666666666 .
3887
+ # (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
3888
+ # (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
3889
+ # (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
3890
+ # (0.5 12.532728869726997) math:product 6.266364434863498 .
3891
+ # (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
3892
+ # (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
3893
+ # (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
3894
+ # via the schematic forward rule:
3895
+ # {
3896
+ # :Simpson1 :h ?h .
3897
+ # :Simpson1 :sumWY ?sumWY .
3898
+ # :Simpson1 :sumWXY ?sumWXY .
3899
+ # :Simpson1 :sumWY2 ?sumWY2 .
3900
+ # :Simpson1 :sumWDS ?sumWDS .
3901
+ # (?h 3.0) math:quotient ?fac .
3902
+ # (?fac ?sumWY) math:product ?A .
3903
+ # (?fac ?sumWXY) math:product ?My .
3904
+ # (?fac ?sumWY2) math:product ?Iy2 .
3905
+ # (0.5 ?Iy2) math:product ?Mx .
3906
+ # (?fac ?sumWDS) math:product ?L .
3907
+ # (?My ?A) math:quotient ?xbar .
3908
+ # (?Mx ?A) math:quotient ?ybar .
3909
+ # } => {
3910
+ # :Simpson1 :areaUnderCurve ?A .
3911
+ # :Simpson1 :arcLength ?L .
3912
+ # :Simpson1 :momentAboutY ?My .
3913
+ # :Simpson1 :momentAboutX ?Mx .
3914
+ # _:b7 :xbar ?xbar .
3915
+ # _:b7 :ybar ?ybar .
3916
+ # :Simpson1 :centroid _:b7 .
3917
+ # } .
3918
+ # with substitution (on rule variables):
3919
+ # ?A = 4.083320249545751
3920
+ # ?Iy2 = 12.532728869726997
3921
+ # ?L = 5.337003110844506
3922
+ # ?Mx = 6.266364434863498
3923
+ # ?My = 5.740892970016647
3924
+ # ?fac = 0.16666666666666666
3925
+ # ?h = 0.5
3926
+ # ?sumWDS = 32.02201866506704
3927
+ # ?sumWXY = 34.445357820099886
3928
+ # ?sumWY = 24.499921497274507
3929
+ # ?sumWY2 = 75.19637321836198
3930
+ # ?xbar = 1.405937477143825
3931
+ # ?ybar = 1.5346247788330099
3932
+ # Therefore the derived triple above is entailed by the rules and facts.
3933
+ # ----------------------------------------------------------------------
3934
+
3935
+ :Simpson1 :centroid _:sk_5 .
3936
+