eyeling 1.5.41 → 1.6.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,4231 @@
1
+ @prefix : <http://example.org/topaz-markov#> .
2
+
3
+ # ----------------------------------------------------------------------
4
+ # Proof for derived triple:
5
+ # :MC1 :rowOk _:b3 .
6
+ # It holds because the following instance of the rule body is provable:
7
+ # :MC1 :row _:b3 .
8
+ # _:b3 :pA 0.25 .
9
+ # _:b3 :pB 0.25 .
10
+ # _:b3 :pC 0.50 .
11
+ # (0.25 0.25) math:sum 0.5 .
12
+ # (0.5 0.50) math:sum 1 .
13
+ # 1 math:equalTo 1.0 .
14
+ # via the schematic forward rule:
15
+ # {
16
+ # :MC1 :row ?r .
17
+ # ?r :pA ?a .
18
+ # ?r :pB ?b .
19
+ # ?r :pC ?c .
20
+ # (?a ?b) math:sum ?ab .
21
+ # (?ab ?c) math:sum ?sum .
22
+ # ?sum math:equalTo 1.0 .
23
+ # } => {
24
+ # :MC1 :rowOk ?r .
25
+ # } .
26
+ # with substitution (on rule variables):
27
+ # ?a = 0.25
28
+ # ?ab = 0.5
29
+ # ?b = 0.25
30
+ # ?c = 0.50
31
+ # ?r = _:b3
32
+ # ?sum = 1
33
+ # Therefore the derived triple above is entailed by the rules and facts.
34
+ # ----------------------------------------------------------------------
35
+
36
+ :MC1 :rowOk _:b3 .
37
+
38
+ # ----------------------------------------------------------------------
39
+ # Proof for derived triple:
40
+ # :MC1 :rowOk _:b2 .
41
+ # It holds because the following instance of the rule body is provable:
42
+ # :MC1 :row _:b2 .
43
+ # _:b2 :pA 0.10 .
44
+ # _:b2 :pB 0.70 .
45
+ # _:b2 :pC 0.20 .
46
+ # (0.10 0.70) math:sum 0.7999999999999999 .
47
+ # (0.7999999999999999 0.20) math:sum 1 .
48
+ # 1 math:equalTo 1.0 .
49
+ # via the schematic forward rule:
50
+ # {
51
+ # :MC1 :row ?r .
52
+ # ?r :pA ?a .
53
+ # ?r :pB ?b .
54
+ # ?r :pC ?c .
55
+ # (?a ?b) math:sum ?ab .
56
+ # (?ab ?c) math:sum ?sum .
57
+ # ?sum math:equalTo 1.0 .
58
+ # } => {
59
+ # :MC1 :rowOk ?r .
60
+ # } .
61
+ # with substitution (on rule variables):
62
+ # ?a = 0.10
63
+ # ?ab = 0.7999999999999999
64
+ # ?b = 0.70
65
+ # ?c = 0.20
66
+ # ?r = _:b2
67
+ # ?sum = 1
68
+ # Therefore the derived triple above is entailed by the rules and facts.
69
+ # ----------------------------------------------------------------------
70
+
71
+ :MC1 :rowOk _:b2 .
72
+
73
+ # ----------------------------------------------------------------------
74
+ # Proof for derived triple:
75
+ # :MC1 :rowOk _:b1 .
76
+ # It holds because the following instance of the rule body is provable:
77
+ # :MC1 :row _:b1 .
78
+ # _:b1 :pA 0.80 .
79
+ # _:b1 :pB 0.15 .
80
+ # _:b1 :pC 0.05 .
81
+ # (0.80 0.15) math:sum 0.9500000000000001 .
82
+ # (0.9500000000000001 0.05) math:sum 1 .
83
+ # 1 math:equalTo 1.0 .
84
+ # via the schematic forward rule:
85
+ # {
86
+ # :MC1 :row ?r .
87
+ # ?r :pA ?a .
88
+ # ?r :pB ?b .
89
+ # ?r :pC ?c .
90
+ # (?a ?b) math:sum ?ab .
91
+ # (?ab ?c) math:sum ?sum .
92
+ # ?sum math:equalTo 1.0 .
93
+ # } => {
94
+ # :MC1 :rowOk ?r .
95
+ # } .
96
+ # with substitution (on rule variables):
97
+ # ?a = 0.80
98
+ # ?ab = 0.9500000000000001
99
+ # ?b = 0.15
100
+ # ?c = 0.05
101
+ # ?r = _:b1
102
+ # ?sum = 1
103
+ # Therefore the derived triple above is entailed by the rules and facts.
104
+ # ----------------------------------------------------------------------
105
+
106
+ :MC1 :rowOk _:b1 .
107
+
108
+ # ----------------------------------------------------------------------
109
+ # Proof for derived triple:
110
+ # _:sk_0 :pA 0.535 .
111
+ # It holds because the following instance of the rule body is provable:
112
+ # :MC1 :pi0 _:b4 .
113
+ # :MC1 :row _:b1 .
114
+ # _:b1 :from :A .
115
+ # _:b1 :pA 0.80 .
116
+ # _:b1 :pB 0.15 .
117
+ # _:b1 :pC 0.05 .
118
+ # :MC1 :row _:b2 .
119
+ # _:b2 :from :B .
120
+ # _:b2 :pA 0.10 .
121
+ # _:b2 :pB 0.70 .
122
+ # _:b2 :pC 0.20 .
123
+ # :MC1 :row _:b3 .
124
+ # _:b3 :from :C .
125
+ # _:b3 :pA 0.25 .
126
+ # _:b3 :pB 0.25 .
127
+ # _:b3 :pC 0.50 .
128
+ # _:b4 :pA 0.60 .
129
+ # _:b4 :pB 0.30 .
130
+ # _:b4 :pC 0.10 .
131
+ # (0.60 0.80) math:product 0.48 .
132
+ # (0.30 0.10) math:product 0.03 .
133
+ # (0.10 0.25) math:product 0.025 .
134
+ # (0.48 0.03) math:sum 0.51 .
135
+ # (0.51 0.025) math:sum 0.535 .
136
+ # (0.60 0.15) math:product 0.09 .
137
+ # (0.30 0.70) math:product 0.21 .
138
+ # (0.10 0.25) math:product 0.025 .
139
+ # (0.09 0.21) math:sum 0.3 .
140
+ # (0.3 0.025) math:sum 0.325 .
141
+ # (0.60 0.05) math:product 0.03 .
142
+ # (0.30 0.20) math:product 0.06 .
143
+ # (0.10 0.50) math:product 0.05 .
144
+ # (0.03 0.06) math:sum 0.09 .
145
+ # (0.09 0.05) math:sum 0.14 .
146
+ # via the schematic forward rule:
147
+ # {
148
+ # :MC1 :pi0 ?pi .
149
+ # :MC1 :row ?rA .
150
+ # ?rA :from :A .
151
+ # ?rA :pA ?AA .
152
+ # ?rA :pB ?AB .
153
+ # ?rA :pC ?AC .
154
+ # :MC1 :row ?rB .
155
+ # ?rB :from :B .
156
+ # ?rB :pA ?BA .
157
+ # ?rB :pB ?BB .
158
+ # ?rB :pC ?BC .
159
+ # :MC1 :row ?rC .
160
+ # ?rC :from :C .
161
+ # ?rC :pA ?CA .
162
+ # ?rC :pB ?CB .
163
+ # ?rC :pC ?CC .
164
+ # ?pi :pA ?pA .
165
+ # ?pi :pB ?pB .
166
+ # ?pi :pC ?pC .
167
+ # (?pA ?AA) math:product ?tAA .
168
+ # (?pB ?BA) math:product ?tBA .
169
+ # (?pC ?CA) math:product ?tCA .
170
+ # (?tAA ?tBA) math:sum ?s1 .
171
+ # (?s1 ?tCA) math:sum ?pi1A .
172
+ # (?pA ?AB) math:product ?tAB .
173
+ # (?pB ?BB) math:product ?tBB .
174
+ # (?pC ?CB) math:product ?tCB .
175
+ # (?tAB ?tBB) math:sum ?s2 .
176
+ # (?s2 ?tCB) math:sum ?pi1B .
177
+ # (?pA ?AC) math:product ?tAC .
178
+ # (?pB ?BC) math:product ?tBC .
179
+ # (?pC ?CC) math:product ?tCC .
180
+ # (?tAC ?tBC) math:sum ?s3 .
181
+ # (?s3 ?tCC) math:sum ?pi1C .
182
+ # } => {
183
+ # _:b5 :pA ?pi1A .
184
+ # _:b5 :pB ?pi1B .
185
+ # _:b5 :pC ?pi1C .
186
+ # :MC1 :pi1 _:b5 .
187
+ # } .
188
+ # with substitution (on rule variables):
189
+ # ?AA = 0.80
190
+ # ?AB = 0.15
191
+ # ?AC = 0.05
192
+ # ?BA = 0.10
193
+ # ?BB = 0.70
194
+ # ?BC = 0.20
195
+ # ?CA = 0.25
196
+ # ?CB = 0.25
197
+ # ?CC = 0.50
198
+ # ?pA = 0.60
199
+ # ?pB = 0.30
200
+ # ?pC = 0.10
201
+ # ?pi = _:b4
202
+ # ?pi1A = 0.535
203
+ # ?pi1B = 0.325
204
+ # ?pi1C = 0.14
205
+ # ?rA = _:b1
206
+ # ?rB = _:b2
207
+ # ?rC = _:b3
208
+ # ?s1 = 0.51
209
+ # ?s2 = 0.3
210
+ # ?s3 = 0.09
211
+ # ?tAA = 0.48
212
+ # ?tAB = 0.09
213
+ # ?tAC = 0.03
214
+ # ?tBA = 0.03
215
+ # ?tBB = 0.21
216
+ # ?tBC = 0.06
217
+ # ?tCA = 0.025
218
+ # ?tCB = 0.025
219
+ # ?tCC = 0.05
220
+ # Therefore the derived triple above is entailed by the rules and facts.
221
+ # ----------------------------------------------------------------------
222
+
223
+ _:sk_0 :pA 0.535 .
224
+
225
+ # ----------------------------------------------------------------------
226
+ # Proof for derived triple:
227
+ # _:sk_0 :pB 0.325 .
228
+ # It holds because the following instance of the rule body is provable:
229
+ # :MC1 :pi0 _:b4 .
230
+ # :MC1 :row _:b1 .
231
+ # _:b1 :from :A .
232
+ # _:b1 :pA 0.80 .
233
+ # _:b1 :pB 0.15 .
234
+ # _:b1 :pC 0.05 .
235
+ # :MC1 :row _:b2 .
236
+ # _:b2 :from :B .
237
+ # _:b2 :pA 0.10 .
238
+ # _:b2 :pB 0.70 .
239
+ # _:b2 :pC 0.20 .
240
+ # :MC1 :row _:b3 .
241
+ # _:b3 :from :C .
242
+ # _:b3 :pA 0.25 .
243
+ # _:b3 :pB 0.25 .
244
+ # _:b3 :pC 0.50 .
245
+ # _:b4 :pA 0.60 .
246
+ # _:b4 :pB 0.30 .
247
+ # _:b4 :pC 0.10 .
248
+ # (0.60 0.80) math:product 0.48 .
249
+ # (0.30 0.10) math:product 0.03 .
250
+ # (0.10 0.25) math:product 0.025 .
251
+ # (0.48 0.03) math:sum 0.51 .
252
+ # (0.51 0.025) math:sum 0.535 .
253
+ # (0.60 0.15) math:product 0.09 .
254
+ # (0.30 0.70) math:product 0.21 .
255
+ # (0.10 0.25) math:product 0.025 .
256
+ # (0.09 0.21) math:sum 0.3 .
257
+ # (0.3 0.025) math:sum 0.325 .
258
+ # (0.60 0.05) math:product 0.03 .
259
+ # (0.30 0.20) math:product 0.06 .
260
+ # (0.10 0.50) math:product 0.05 .
261
+ # (0.03 0.06) math:sum 0.09 .
262
+ # (0.09 0.05) math:sum 0.14 .
263
+ # via the schematic forward rule:
264
+ # {
265
+ # :MC1 :pi0 ?pi .
266
+ # :MC1 :row ?rA .
267
+ # ?rA :from :A .
268
+ # ?rA :pA ?AA .
269
+ # ?rA :pB ?AB .
270
+ # ?rA :pC ?AC .
271
+ # :MC1 :row ?rB .
272
+ # ?rB :from :B .
273
+ # ?rB :pA ?BA .
274
+ # ?rB :pB ?BB .
275
+ # ?rB :pC ?BC .
276
+ # :MC1 :row ?rC .
277
+ # ?rC :from :C .
278
+ # ?rC :pA ?CA .
279
+ # ?rC :pB ?CB .
280
+ # ?rC :pC ?CC .
281
+ # ?pi :pA ?pA .
282
+ # ?pi :pB ?pB .
283
+ # ?pi :pC ?pC .
284
+ # (?pA ?AA) math:product ?tAA .
285
+ # (?pB ?BA) math:product ?tBA .
286
+ # (?pC ?CA) math:product ?tCA .
287
+ # (?tAA ?tBA) math:sum ?s1 .
288
+ # (?s1 ?tCA) math:sum ?pi1A .
289
+ # (?pA ?AB) math:product ?tAB .
290
+ # (?pB ?BB) math:product ?tBB .
291
+ # (?pC ?CB) math:product ?tCB .
292
+ # (?tAB ?tBB) math:sum ?s2 .
293
+ # (?s2 ?tCB) math:sum ?pi1B .
294
+ # (?pA ?AC) math:product ?tAC .
295
+ # (?pB ?BC) math:product ?tBC .
296
+ # (?pC ?CC) math:product ?tCC .
297
+ # (?tAC ?tBC) math:sum ?s3 .
298
+ # (?s3 ?tCC) math:sum ?pi1C .
299
+ # } => {
300
+ # _:b5 :pA ?pi1A .
301
+ # _:b5 :pB ?pi1B .
302
+ # _:b5 :pC ?pi1C .
303
+ # :MC1 :pi1 _:b5 .
304
+ # } .
305
+ # with substitution (on rule variables):
306
+ # ?AA = 0.80
307
+ # ?AB = 0.15
308
+ # ?AC = 0.05
309
+ # ?BA = 0.10
310
+ # ?BB = 0.70
311
+ # ?BC = 0.20
312
+ # ?CA = 0.25
313
+ # ?CB = 0.25
314
+ # ?CC = 0.50
315
+ # ?pA = 0.60
316
+ # ?pB = 0.30
317
+ # ?pC = 0.10
318
+ # ?pi = _:b4
319
+ # ?pi1A = 0.535
320
+ # ?pi1B = 0.325
321
+ # ?pi1C = 0.14
322
+ # ?rA = _:b1
323
+ # ?rB = _:b2
324
+ # ?rC = _:b3
325
+ # ?s1 = 0.51
326
+ # ?s2 = 0.3
327
+ # ?s3 = 0.09
328
+ # ?tAA = 0.48
329
+ # ?tAB = 0.09
330
+ # ?tAC = 0.03
331
+ # ?tBA = 0.03
332
+ # ?tBB = 0.21
333
+ # ?tBC = 0.06
334
+ # ?tCA = 0.025
335
+ # ?tCB = 0.025
336
+ # ?tCC = 0.05
337
+ # Therefore the derived triple above is entailed by the rules and facts.
338
+ # ----------------------------------------------------------------------
339
+
340
+ _:sk_0 :pB 0.325 .
341
+
342
+ # ----------------------------------------------------------------------
343
+ # Proof for derived triple:
344
+ # _:sk_0 :pC 0.14 .
345
+ # It holds because the following instance of the rule body is provable:
346
+ # :MC1 :pi0 _:b4 .
347
+ # :MC1 :row _:b1 .
348
+ # _:b1 :from :A .
349
+ # _:b1 :pA 0.80 .
350
+ # _:b1 :pB 0.15 .
351
+ # _:b1 :pC 0.05 .
352
+ # :MC1 :row _:b2 .
353
+ # _:b2 :from :B .
354
+ # _:b2 :pA 0.10 .
355
+ # _:b2 :pB 0.70 .
356
+ # _:b2 :pC 0.20 .
357
+ # :MC1 :row _:b3 .
358
+ # _:b3 :from :C .
359
+ # _:b3 :pA 0.25 .
360
+ # _:b3 :pB 0.25 .
361
+ # _:b3 :pC 0.50 .
362
+ # _:b4 :pA 0.60 .
363
+ # _:b4 :pB 0.30 .
364
+ # _:b4 :pC 0.10 .
365
+ # (0.60 0.80) math:product 0.48 .
366
+ # (0.30 0.10) math:product 0.03 .
367
+ # (0.10 0.25) math:product 0.025 .
368
+ # (0.48 0.03) math:sum 0.51 .
369
+ # (0.51 0.025) math:sum 0.535 .
370
+ # (0.60 0.15) math:product 0.09 .
371
+ # (0.30 0.70) math:product 0.21 .
372
+ # (0.10 0.25) math:product 0.025 .
373
+ # (0.09 0.21) math:sum 0.3 .
374
+ # (0.3 0.025) math:sum 0.325 .
375
+ # (0.60 0.05) math:product 0.03 .
376
+ # (0.30 0.20) math:product 0.06 .
377
+ # (0.10 0.50) math:product 0.05 .
378
+ # (0.03 0.06) math:sum 0.09 .
379
+ # (0.09 0.05) math:sum 0.14 .
380
+ # via the schematic forward rule:
381
+ # {
382
+ # :MC1 :pi0 ?pi .
383
+ # :MC1 :row ?rA .
384
+ # ?rA :from :A .
385
+ # ?rA :pA ?AA .
386
+ # ?rA :pB ?AB .
387
+ # ?rA :pC ?AC .
388
+ # :MC1 :row ?rB .
389
+ # ?rB :from :B .
390
+ # ?rB :pA ?BA .
391
+ # ?rB :pB ?BB .
392
+ # ?rB :pC ?BC .
393
+ # :MC1 :row ?rC .
394
+ # ?rC :from :C .
395
+ # ?rC :pA ?CA .
396
+ # ?rC :pB ?CB .
397
+ # ?rC :pC ?CC .
398
+ # ?pi :pA ?pA .
399
+ # ?pi :pB ?pB .
400
+ # ?pi :pC ?pC .
401
+ # (?pA ?AA) math:product ?tAA .
402
+ # (?pB ?BA) math:product ?tBA .
403
+ # (?pC ?CA) math:product ?tCA .
404
+ # (?tAA ?tBA) math:sum ?s1 .
405
+ # (?s1 ?tCA) math:sum ?pi1A .
406
+ # (?pA ?AB) math:product ?tAB .
407
+ # (?pB ?BB) math:product ?tBB .
408
+ # (?pC ?CB) math:product ?tCB .
409
+ # (?tAB ?tBB) math:sum ?s2 .
410
+ # (?s2 ?tCB) math:sum ?pi1B .
411
+ # (?pA ?AC) math:product ?tAC .
412
+ # (?pB ?BC) math:product ?tBC .
413
+ # (?pC ?CC) math:product ?tCC .
414
+ # (?tAC ?tBC) math:sum ?s3 .
415
+ # (?s3 ?tCC) math:sum ?pi1C .
416
+ # } => {
417
+ # _:b5 :pA ?pi1A .
418
+ # _:b5 :pB ?pi1B .
419
+ # _:b5 :pC ?pi1C .
420
+ # :MC1 :pi1 _:b5 .
421
+ # } .
422
+ # with substitution (on rule variables):
423
+ # ?AA = 0.80
424
+ # ?AB = 0.15
425
+ # ?AC = 0.05
426
+ # ?BA = 0.10
427
+ # ?BB = 0.70
428
+ # ?BC = 0.20
429
+ # ?CA = 0.25
430
+ # ?CB = 0.25
431
+ # ?CC = 0.50
432
+ # ?pA = 0.60
433
+ # ?pB = 0.30
434
+ # ?pC = 0.10
435
+ # ?pi = _:b4
436
+ # ?pi1A = 0.535
437
+ # ?pi1B = 0.325
438
+ # ?pi1C = 0.14
439
+ # ?rA = _:b1
440
+ # ?rB = _:b2
441
+ # ?rC = _:b3
442
+ # ?s1 = 0.51
443
+ # ?s2 = 0.3
444
+ # ?s3 = 0.09
445
+ # ?tAA = 0.48
446
+ # ?tAB = 0.09
447
+ # ?tAC = 0.03
448
+ # ?tBA = 0.03
449
+ # ?tBB = 0.21
450
+ # ?tBC = 0.06
451
+ # ?tCA = 0.025
452
+ # ?tCB = 0.025
453
+ # ?tCC = 0.05
454
+ # Therefore the derived triple above is entailed by the rules and facts.
455
+ # ----------------------------------------------------------------------
456
+
457
+ _:sk_0 :pC 0.14 .
458
+
459
+ # ----------------------------------------------------------------------
460
+ # Proof for derived triple:
461
+ # :MC1 :pi1 _:sk_0 .
462
+ # It holds because the following instance of the rule body is provable:
463
+ # :MC1 :pi0 _:b4 .
464
+ # :MC1 :row _:b1 .
465
+ # _:b1 :from :A .
466
+ # _:b1 :pA 0.80 .
467
+ # _:b1 :pB 0.15 .
468
+ # _:b1 :pC 0.05 .
469
+ # :MC1 :row _:b2 .
470
+ # _:b2 :from :B .
471
+ # _:b2 :pA 0.10 .
472
+ # _:b2 :pB 0.70 .
473
+ # _:b2 :pC 0.20 .
474
+ # :MC1 :row _:b3 .
475
+ # _:b3 :from :C .
476
+ # _:b3 :pA 0.25 .
477
+ # _:b3 :pB 0.25 .
478
+ # _:b3 :pC 0.50 .
479
+ # _:b4 :pA 0.60 .
480
+ # _:b4 :pB 0.30 .
481
+ # _:b4 :pC 0.10 .
482
+ # (0.60 0.80) math:product 0.48 .
483
+ # (0.30 0.10) math:product 0.03 .
484
+ # (0.10 0.25) math:product 0.025 .
485
+ # (0.48 0.03) math:sum 0.51 .
486
+ # (0.51 0.025) math:sum 0.535 .
487
+ # (0.60 0.15) math:product 0.09 .
488
+ # (0.30 0.70) math:product 0.21 .
489
+ # (0.10 0.25) math:product 0.025 .
490
+ # (0.09 0.21) math:sum 0.3 .
491
+ # (0.3 0.025) math:sum 0.325 .
492
+ # (0.60 0.05) math:product 0.03 .
493
+ # (0.30 0.20) math:product 0.06 .
494
+ # (0.10 0.50) math:product 0.05 .
495
+ # (0.03 0.06) math:sum 0.09 .
496
+ # (0.09 0.05) math:sum 0.14 .
497
+ # via the schematic forward rule:
498
+ # {
499
+ # :MC1 :pi0 ?pi .
500
+ # :MC1 :row ?rA .
501
+ # ?rA :from :A .
502
+ # ?rA :pA ?AA .
503
+ # ?rA :pB ?AB .
504
+ # ?rA :pC ?AC .
505
+ # :MC1 :row ?rB .
506
+ # ?rB :from :B .
507
+ # ?rB :pA ?BA .
508
+ # ?rB :pB ?BB .
509
+ # ?rB :pC ?BC .
510
+ # :MC1 :row ?rC .
511
+ # ?rC :from :C .
512
+ # ?rC :pA ?CA .
513
+ # ?rC :pB ?CB .
514
+ # ?rC :pC ?CC .
515
+ # ?pi :pA ?pA .
516
+ # ?pi :pB ?pB .
517
+ # ?pi :pC ?pC .
518
+ # (?pA ?AA) math:product ?tAA .
519
+ # (?pB ?BA) math:product ?tBA .
520
+ # (?pC ?CA) math:product ?tCA .
521
+ # (?tAA ?tBA) math:sum ?s1 .
522
+ # (?s1 ?tCA) math:sum ?pi1A .
523
+ # (?pA ?AB) math:product ?tAB .
524
+ # (?pB ?BB) math:product ?tBB .
525
+ # (?pC ?CB) math:product ?tCB .
526
+ # (?tAB ?tBB) math:sum ?s2 .
527
+ # (?s2 ?tCB) math:sum ?pi1B .
528
+ # (?pA ?AC) math:product ?tAC .
529
+ # (?pB ?BC) math:product ?tBC .
530
+ # (?pC ?CC) math:product ?tCC .
531
+ # (?tAC ?tBC) math:sum ?s3 .
532
+ # (?s3 ?tCC) math:sum ?pi1C .
533
+ # } => {
534
+ # _:b5 :pA ?pi1A .
535
+ # _:b5 :pB ?pi1B .
536
+ # _:b5 :pC ?pi1C .
537
+ # :MC1 :pi1 _:b5 .
538
+ # } .
539
+ # with substitution (on rule variables):
540
+ # ?AA = 0.80
541
+ # ?AB = 0.15
542
+ # ?AC = 0.05
543
+ # ?BA = 0.10
544
+ # ?BB = 0.70
545
+ # ?BC = 0.20
546
+ # ?CA = 0.25
547
+ # ?CB = 0.25
548
+ # ?CC = 0.50
549
+ # ?pA = 0.60
550
+ # ?pB = 0.30
551
+ # ?pC = 0.10
552
+ # ?pi = _:b4
553
+ # ?pi1A = 0.535
554
+ # ?pi1B = 0.325
555
+ # ?pi1C = 0.14
556
+ # ?rA = _:b1
557
+ # ?rB = _:b2
558
+ # ?rC = _:b3
559
+ # ?s1 = 0.51
560
+ # ?s2 = 0.3
561
+ # ?s3 = 0.09
562
+ # ?tAA = 0.48
563
+ # ?tAB = 0.09
564
+ # ?tAC = 0.03
565
+ # ?tBA = 0.03
566
+ # ?tBB = 0.21
567
+ # ?tBC = 0.06
568
+ # ?tCA = 0.025
569
+ # ?tCB = 0.025
570
+ # ?tCC = 0.05
571
+ # Therefore the derived triple above is entailed by the rules and facts.
572
+ # ----------------------------------------------------------------------
573
+
574
+ :MC1 :pi1 _:sk_0 .
575
+
576
+ # ----------------------------------------------------------------------
577
+ # Proof for derived triple:
578
+ # _:sk_1 :pA 0.49550000000000005 .
579
+ # It holds because the following instance of the rule body is provable:
580
+ # :MC1 :pi1 _:sk_0 .
581
+ # :MC1 :row _:b1 .
582
+ # _:b1 :from :A .
583
+ # _:b1 :pA 0.80 .
584
+ # _:b1 :pB 0.15 .
585
+ # _:b1 :pC 0.05 .
586
+ # :MC1 :row _:b2 .
587
+ # _:b2 :from :B .
588
+ # _:b2 :pA 0.10 .
589
+ # _:b2 :pB 0.70 .
590
+ # _:b2 :pC 0.20 .
591
+ # :MC1 :row _:b3 .
592
+ # _:b3 :from :C .
593
+ # _:b3 :pA 0.25 .
594
+ # _:b3 :pB 0.25 .
595
+ # _:b3 :pC 0.50 .
596
+ # _:sk_0 :pA 0.535 .
597
+ # _:sk_0 :pB 0.325 .
598
+ # _:sk_0 :pC 0.14 .
599
+ # (0.535 0.80) math:product 0.42800000000000005 .
600
+ # (0.325 0.10) math:product 0.0325 .
601
+ # (0.14 0.25) math:product 0.035 .
602
+ # (0.42800000000000005 0.0325) math:sum 0.4605 .
603
+ # (0.4605 0.035) math:sum 0.49550000000000005 .
604
+ # (0.535 0.15) math:product 0.08025 .
605
+ # (0.325 0.70) math:product 0.22749999999999998 .
606
+ # (0.14 0.25) math:product 0.035 .
607
+ # (0.08025 0.22749999999999998) math:sum 0.30774999999999997 .
608
+ # (0.30774999999999997 0.035) math:sum 0.34275 .
609
+ # (0.535 0.05) math:product 0.026750000000000003 .
610
+ # (0.325 0.20) math:product 0.065 .
611
+ # (0.14 0.50) math:product 0.07 .
612
+ # (0.026750000000000003 0.065) math:sum 0.09175 .
613
+ # (0.09175 0.07) math:sum 0.16175 .
614
+ # via the schematic forward rule:
615
+ # {
616
+ # :MC1 :pi1 ?pi .
617
+ # :MC1 :row ?rA .
618
+ # ?rA :from :A .
619
+ # ?rA :pA ?AA .
620
+ # ?rA :pB ?AB .
621
+ # ?rA :pC ?AC .
622
+ # :MC1 :row ?rB .
623
+ # ?rB :from :B .
624
+ # ?rB :pA ?BA .
625
+ # ?rB :pB ?BB .
626
+ # ?rB :pC ?BC .
627
+ # :MC1 :row ?rC .
628
+ # ?rC :from :C .
629
+ # ?rC :pA ?CA .
630
+ # ?rC :pB ?CB .
631
+ # ?rC :pC ?CC .
632
+ # ?pi :pA ?pA .
633
+ # ?pi :pB ?pB .
634
+ # ?pi :pC ?pC .
635
+ # (?pA ?AA) math:product ?tAA .
636
+ # (?pB ?BA) math:product ?tBA .
637
+ # (?pC ?CA) math:product ?tCA .
638
+ # (?tAA ?tBA) math:sum ?s1 .
639
+ # (?s1 ?tCA) math:sum ?pi2A .
640
+ # (?pA ?AB) math:product ?tAB .
641
+ # (?pB ?BB) math:product ?tBB .
642
+ # (?pC ?CB) math:product ?tCB .
643
+ # (?tAB ?tBB) math:sum ?s2 .
644
+ # (?s2 ?tCB) math:sum ?pi2B .
645
+ # (?pA ?AC) math:product ?tAC .
646
+ # (?pB ?BC) math:product ?tBC .
647
+ # (?pC ?CC) math:product ?tCC .
648
+ # (?tAC ?tBC) math:sum ?s3 .
649
+ # (?s3 ?tCC) math:sum ?pi2C .
650
+ # } => {
651
+ # _:b6 :pA ?pi2A .
652
+ # _:b6 :pB ?pi2B .
653
+ # _:b6 :pC ?pi2C .
654
+ # :MC1 :pi2 _:b6 .
655
+ # } .
656
+ # with substitution (on rule variables):
657
+ # ?AA = 0.80
658
+ # ?AB = 0.15
659
+ # ?AC = 0.05
660
+ # ?BA = 0.10
661
+ # ?BB = 0.70
662
+ # ?BC = 0.20
663
+ # ?CA = 0.25
664
+ # ?CB = 0.25
665
+ # ?CC = 0.50
666
+ # ?pA = 0.535
667
+ # ?pB = 0.325
668
+ # ?pC = 0.14
669
+ # ?pi = _:sk_0
670
+ # ?pi2A = 0.49550000000000005
671
+ # ?pi2B = 0.34275
672
+ # ?pi2C = 0.16175
673
+ # ?rA = _:b1
674
+ # ?rB = _:b2
675
+ # ?rC = _:b3
676
+ # ?s1 = 0.4605
677
+ # ?s2 = 0.30774999999999997
678
+ # ?s3 = 0.09175
679
+ # ?tAA = 0.42800000000000005
680
+ # ?tAB = 0.08025
681
+ # ?tAC = 0.026750000000000003
682
+ # ?tBA = 0.0325
683
+ # ?tBB = 0.22749999999999998
684
+ # ?tBC = 0.065
685
+ # ?tCA = 0.035
686
+ # ?tCB = 0.035
687
+ # ?tCC = 0.07
688
+ # Therefore the derived triple above is entailed by the rules and facts.
689
+ # ----------------------------------------------------------------------
690
+
691
+ _:sk_1 :pA 0.49550000000000005 .
692
+
693
+ # ----------------------------------------------------------------------
694
+ # Proof for derived triple:
695
+ # _:sk_1 :pB 0.34275 .
696
+ # It holds because the following instance of the rule body is provable:
697
+ # :MC1 :pi1 _:sk_0 .
698
+ # :MC1 :row _:b1 .
699
+ # _:b1 :from :A .
700
+ # _:b1 :pA 0.80 .
701
+ # _:b1 :pB 0.15 .
702
+ # _:b1 :pC 0.05 .
703
+ # :MC1 :row _:b2 .
704
+ # _:b2 :from :B .
705
+ # _:b2 :pA 0.10 .
706
+ # _:b2 :pB 0.70 .
707
+ # _:b2 :pC 0.20 .
708
+ # :MC1 :row _:b3 .
709
+ # _:b3 :from :C .
710
+ # _:b3 :pA 0.25 .
711
+ # _:b3 :pB 0.25 .
712
+ # _:b3 :pC 0.50 .
713
+ # _:sk_0 :pA 0.535 .
714
+ # _:sk_0 :pB 0.325 .
715
+ # _:sk_0 :pC 0.14 .
716
+ # (0.535 0.80) math:product 0.42800000000000005 .
717
+ # (0.325 0.10) math:product 0.0325 .
718
+ # (0.14 0.25) math:product 0.035 .
719
+ # (0.42800000000000005 0.0325) math:sum 0.4605 .
720
+ # (0.4605 0.035) math:sum 0.49550000000000005 .
721
+ # (0.535 0.15) math:product 0.08025 .
722
+ # (0.325 0.70) math:product 0.22749999999999998 .
723
+ # (0.14 0.25) math:product 0.035 .
724
+ # (0.08025 0.22749999999999998) math:sum 0.30774999999999997 .
725
+ # (0.30774999999999997 0.035) math:sum 0.34275 .
726
+ # (0.535 0.05) math:product 0.026750000000000003 .
727
+ # (0.325 0.20) math:product 0.065 .
728
+ # (0.14 0.50) math:product 0.07 .
729
+ # (0.026750000000000003 0.065) math:sum 0.09175 .
730
+ # (0.09175 0.07) math:sum 0.16175 .
731
+ # via the schematic forward rule:
732
+ # {
733
+ # :MC1 :pi1 ?pi .
734
+ # :MC1 :row ?rA .
735
+ # ?rA :from :A .
736
+ # ?rA :pA ?AA .
737
+ # ?rA :pB ?AB .
738
+ # ?rA :pC ?AC .
739
+ # :MC1 :row ?rB .
740
+ # ?rB :from :B .
741
+ # ?rB :pA ?BA .
742
+ # ?rB :pB ?BB .
743
+ # ?rB :pC ?BC .
744
+ # :MC1 :row ?rC .
745
+ # ?rC :from :C .
746
+ # ?rC :pA ?CA .
747
+ # ?rC :pB ?CB .
748
+ # ?rC :pC ?CC .
749
+ # ?pi :pA ?pA .
750
+ # ?pi :pB ?pB .
751
+ # ?pi :pC ?pC .
752
+ # (?pA ?AA) math:product ?tAA .
753
+ # (?pB ?BA) math:product ?tBA .
754
+ # (?pC ?CA) math:product ?tCA .
755
+ # (?tAA ?tBA) math:sum ?s1 .
756
+ # (?s1 ?tCA) math:sum ?pi2A .
757
+ # (?pA ?AB) math:product ?tAB .
758
+ # (?pB ?BB) math:product ?tBB .
759
+ # (?pC ?CB) math:product ?tCB .
760
+ # (?tAB ?tBB) math:sum ?s2 .
761
+ # (?s2 ?tCB) math:sum ?pi2B .
762
+ # (?pA ?AC) math:product ?tAC .
763
+ # (?pB ?BC) math:product ?tBC .
764
+ # (?pC ?CC) math:product ?tCC .
765
+ # (?tAC ?tBC) math:sum ?s3 .
766
+ # (?s3 ?tCC) math:sum ?pi2C .
767
+ # } => {
768
+ # _:b6 :pA ?pi2A .
769
+ # _:b6 :pB ?pi2B .
770
+ # _:b6 :pC ?pi2C .
771
+ # :MC1 :pi2 _:b6 .
772
+ # } .
773
+ # with substitution (on rule variables):
774
+ # ?AA = 0.80
775
+ # ?AB = 0.15
776
+ # ?AC = 0.05
777
+ # ?BA = 0.10
778
+ # ?BB = 0.70
779
+ # ?BC = 0.20
780
+ # ?CA = 0.25
781
+ # ?CB = 0.25
782
+ # ?CC = 0.50
783
+ # ?pA = 0.535
784
+ # ?pB = 0.325
785
+ # ?pC = 0.14
786
+ # ?pi = _:sk_0
787
+ # ?pi2A = 0.49550000000000005
788
+ # ?pi2B = 0.34275
789
+ # ?pi2C = 0.16175
790
+ # ?rA = _:b1
791
+ # ?rB = _:b2
792
+ # ?rC = _:b3
793
+ # ?s1 = 0.4605
794
+ # ?s2 = 0.30774999999999997
795
+ # ?s3 = 0.09175
796
+ # ?tAA = 0.42800000000000005
797
+ # ?tAB = 0.08025
798
+ # ?tAC = 0.026750000000000003
799
+ # ?tBA = 0.0325
800
+ # ?tBB = 0.22749999999999998
801
+ # ?tBC = 0.065
802
+ # ?tCA = 0.035
803
+ # ?tCB = 0.035
804
+ # ?tCC = 0.07
805
+ # Therefore the derived triple above is entailed by the rules and facts.
806
+ # ----------------------------------------------------------------------
807
+
808
+ _:sk_1 :pB 0.34275 .
809
+
810
+ # ----------------------------------------------------------------------
811
+ # Proof for derived triple:
812
+ # _:sk_1 :pC 0.16175 .
813
+ # It holds because the following instance of the rule body is provable:
814
+ # :MC1 :pi1 _:sk_0 .
815
+ # :MC1 :row _:b1 .
816
+ # _:b1 :from :A .
817
+ # _:b1 :pA 0.80 .
818
+ # _:b1 :pB 0.15 .
819
+ # _:b1 :pC 0.05 .
820
+ # :MC1 :row _:b2 .
821
+ # _:b2 :from :B .
822
+ # _:b2 :pA 0.10 .
823
+ # _:b2 :pB 0.70 .
824
+ # _:b2 :pC 0.20 .
825
+ # :MC1 :row _:b3 .
826
+ # _:b3 :from :C .
827
+ # _:b3 :pA 0.25 .
828
+ # _:b3 :pB 0.25 .
829
+ # _:b3 :pC 0.50 .
830
+ # _:sk_0 :pA 0.535 .
831
+ # _:sk_0 :pB 0.325 .
832
+ # _:sk_0 :pC 0.14 .
833
+ # (0.535 0.80) math:product 0.42800000000000005 .
834
+ # (0.325 0.10) math:product 0.0325 .
835
+ # (0.14 0.25) math:product 0.035 .
836
+ # (0.42800000000000005 0.0325) math:sum 0.4605 .
837
+ # (0.4605 0.035) math:sum 0.49550000000000005 .
838
+ # (0.535 0.15) math:product 0.08025 .
839
+ # (0.325 0.70) math:product 0.22749999999999998 .
840
+ # (0.14 0.25) math:product 0.035 .
841
+ # (0.08025 0.22749999999999998) math:sum 0.30774999999999997 .
842
+ # (0.30774999999999997 0.035) math:sum 0.34275 .
843
+ # (0.535 0.05) math:product 0.026750000000000003 .
844
+ # (0.325 0.20) math:product 0.065 .
845
+ # (0.14 0.50) math:product 0.07 .
846
+ # (0.026750000000000003 0.065) math:sum 0.09175 .
847
+ # (0.09175 0.07) math:sum 0.16175 .
848
+ # via the schematic forward rule:
849
+ # {
850
+ # :MC1 :pi1 ?pi .
851
+ # :MC1 :row ?rA .
852
+ # ?rA :from :A .
853
+ # ?rA :pA ?AA .
854
+ # ?rA :pB ?AB .
855
+ # ?rA :pC ?AC .
856
+ # :MC1 :row ?rB .
857
+ # ?rB :from :B .
858
+ # ?rB :pA ?BA .
859
+ # ?rB :pB ?BB .
860
+ # ?rB :pC ?BC .
861
+ # :MC1 :row ?rC .
862
+ # ?rC :from :C .
863
+ # ?rC :pA ?CA .
864
+ # ?rC :pB ?CB .
865
+ # ?rC :pC ?CC .
866
+ # ?pi :pA ?pA .
867
+ # ?pi :pB ?pB .
868
+ # ?pi :pC ?pC .
869
+ # (?pA ?AA) math:product ?tAA .
870
+ # (?pB ?BA) math:product ?tBA .
871
+ # (?pC ?CA) math:product ?tCA .
872
+ # (?tAA ?tBA) math:sum ?s1 .
873
+ # (?s1 ?tCA) math:sum ?pi2A .
874
+ # (?pA ?AB) math:product ?tAB .
875
+ # (?pB ?BB) math:product ?tBB .
876
+ # (?pC ?CB) math:product ?tCB .
877
+ # (?tAB ?tBB) math:sum ?s2 .
878
+ # (?s2 ?tCB) math:sum ?pi2B .
879
+ # (?pA ?AC) math:product ?tAC .
880
+ # (?pB ?BC) math:product ?tBC .
881
+ # (?pC ?CC) math:product ?tCC .
882
+ # (?tAC ?tBC) math:sum ?s3 .
883
+ # (?s3 ?tCC) math:sum ?pi2C .
884
+ # } => {
885
+ # _:b6 :pA ?pi2A .
886
+ # _:b6 :pB ?pi2B .
887
+ # _:b6 :pC ?pi2C .
888
+ # :MC1 :pi2 _:b6 .
889
+ # } .
890
+ # with substitution (on rule variables):
891
+ # ?AA = 0.80
892
+ # ?AB = 0.15
893
+ # ?AC = 0.05
894
+ # ?BA = 0.10
895
+ # ?BB = 0.70
896
+ # ?BC = 0.20
897
+ # ?CA = 0.25
898
+ # ?CB = 0.25
899
+ # ?CC = 0.50
900
+ # ?pA = 0.535
901
+ # ?pB = 0.325
902
+ # ?pC = 0.14
903
+ # ?pi = _:sk_0
904
+ # ?pi2A = 0.49550000000000005
905
+ # ?pi2B = 0.34275
906
+ # ?pi2C = 0.16175
907
+ # ?rA = _:b1
908
+ # ?rB = _:b2
909
+ # ?rC = _:b3
910
+ # ?s1 = 0.4605
911
+ # ?s2 = 0.30774999999999997
912
+ # ?s3 = 0.09175
913
+ # ?tAA = 0.42800000000000005
914
+ # ?tAB = 0.08025
915
+ # ?tAC = 0.026750000000000003
916
+ # ?tBA = 0.0325
917
+ # ?tBB = 0.22749999999999998
918
+ # ?tBC = 0.065
919
+ # ?tCA = 0.035
920
+ # ?tCB = 0.035
921
+ # ?tCC = 0.07
922
+ # Therefore the derived triple above is entailed by the rules and facts.
923
+ # ----------------------------------------------------------------------
924
+
925
+ _:sk_1 :pC 0.16175 .
926
+
927
+ # ----------------------------------------------------------------------
928
+ # Proof for derived triple:
929
+ # :MC1 :pi2 _:sk_1 .
930
+ # It holds because the following instance of the rule body is provable:
931
+ # :MC1 :pi1 _:sk_0 .
932
+ # :MC1 :row _:b1 .
933
+ # _:b1 :from :A .
934
+ # _:b1 :pA 0.80 .
935
+ # _:b1 :pB 0.15 .
936
+ # _:b1 :pC 0.05 .
937
+ # :MC1 :row _:b2 .
938
+ # _:b2 :from :B .
939
+ # _:b2 :pA 0.10 .
940
+ # _:b2 :pB 0.70 .
941
+ # _:b2 :pC 0.20 .
942
+ # :MC1 :row _:b3 .
943
+ # _:b3 :from :C .
944
+ # _:b3 :pA 0.25 .
945
+ # _:b3 :pB 0.25 .
946
+ # _:b3 :pC 0.50 .
947
+ # _:sk_0 :pA 0.535 .
948
+ # _:sk_0 :pB 0.325 .
949
+ # _:sk_0 :pC 0.14 .
950
+ # (0.535 0.80) math:product 0.42800000000000005 .
951
+ # (0.325 0.10) math:product 0.0325 .
952
+ # (0.14 0.25) math:product 0.035 .
953
+ # (0.42800000000000005 0.0325) math:sum 0.4605 .
954
+ # (0.4605 0.035) math:sum 0.49550000000000005 .
955
+ # (0.535 0.15) math:product 0.08025 .
956
+ # (0.325 0.70) math:product 0.22749999999999998 .
957
+ # (0.14 0.25) math:product 0.035 .
958
+ # (0.08025 0.22749999999999998) math:sum 0.30774999999999997 .
959
+ # (0.30774999999999997 0.035) math:sum 0.34275 .
960
+ # (0.535 0.05) math:product 0.026750000000000003 .
961
+ # (0.325 0.20) math:product 0.065 .
962
+ # (0.14 0.50) math:product 0.07 .
963
+ # (0.026750000000000003 0.065) math:sum 0.09175 .
964
+ # (0.09175 0.07) math:sum 0.16175 .
965
+ # via the schematic forward rule:
966
+ # {
967
+ # :MC1 :pi1 ?pi .
968
+ # :MC1 :row ?rA .
969
+ # ?rA :from :A .
970
+ # ?rA :pA ?AA .
971
+ # ?rA :pB ?AB .
972
+ # ?rA :pC ?AC .
973
+ # :MC1 :row ?rB .
974
+ # ?rB :from :B .
975
+ # ?rB :pA ?BA .
976
+ # ?rB :pB ?BB .
977
+ # ?rB :pC ?BC .
978
+ # :MC1 :row ?rC .
979
+ # ?rC :from :C .
980
+ # ?rC :pA ?CA .
981
+ # ?rC :pB ?CB .
982
+ # ?rC :pC ?CC .
983
+ # ?pi :pA ?pA .
984
+ # ?pi :pB ?pB .
985
+ # ?pi :pC ?pC .
986
+ # (?pA ?AA) math:product ?tAA .
987
+ # (?pB ?BA) math:product ?tBA .
988
+ # (?pC ?CA) math:product ?tCA .
989
+ # (?tAA ?tBA) math:sum ?s1 .
990
+ # (?s1 ?tCA) math:sum ?pi2A .
991
+ # (?pA ?AB) math:product ?tAB .
992
+ # (?pB ?BB) math:product ?tBB .
993
+ # (?pC ?CB) math:product ?tCB .
994
+ # (?tAB ?tBB) math:sum ?s2 .
995
+ # (?s2 ?tCB) math:sum ?pi2B .
996
+ # (?pA ?AC) math:product ?tAC .
997
+ # (?pB ?BC) math:product ?tBC .
998
+ # (?pC ?CC) math:product ?tCC .
999
+ # (?tAC ?tBC) math:sum ?s3 .
1000
+ # (?s3 ?tCC) math:sum ?pi2C .
1001
+ # } => {
1002
+ # _:b6 :pA ?pi2A .
1003
+ # _:b6 :pB ?pi2B .
1004
+ # _:b6 :pC ?pi2C .
1005
+ # :MC1 :pi2 _:b6 .
1006
+ # } .
1007
+ # with substitution (on rule variables):
1008
+ # ?AA = 0.80
1009
+ # ?AB = 0.15
1010
+ # ?AC = 0.05
1011
+ # ?BA = 0.10
1012
+ # ?BB = 0.70
1013
+ # ?BC = 0.20
1014
+ # ?CA = 0.25
1015
+ # ?CB = 0.25
1016
+ # ?CC = 0.50
1017
+ # ?pA = 0.535
1018
+ # ?pB = 0.325
1019
+ # ?pC = 0.14
1020
+ # ?pi = _:sk_0
1021
+ # ?pi2A = 0.49550000000000005
1022
+ # ?pi2B = 0.34275
1023
+ # ?pi2C = 0.16175
1024
+ # ?rA = _:b1
1025
+ # ?rB = _:b2
1026
+ # ?rC = _:b3
1027
+ # ?s1 = 0.4605
1028
+ # ?s2 = 0.30774999999999997
1029
+ # ?s3 = 0.09175
1030
+ # ?tAA = 0.42800000000000005
1031
+ # ?tAB = 0.08025
1032
+ # ?tAC = 0.026750000000000003
1033
+ # ?tBA = 0.0325
1034
+ # ?tBB = 0.22749999999999998
1035
+ # ?tBC = 0.065
1036
+ # ?tCA = 0.035
1037
+ # ?tCB = 0.035
1038
+ # ?tCC = 0.07
1039
+ # Therefore the derived triple above is entailed by the rules and facts.
1040
+ # ----------------------------------------------------------------------
1041
+
1042
+ :MC1 :pi2 _:sk_1 .
1043
+
1044
+ # ----------------------------------------------------------------------
1045
+ # Proof for derived triple:
1046
+ # _:sk_2 :pA 0.4711125000000001 .
1047
+ # It holds because the following instance of the rule body is provable:
1048
+ # :MC1 :pi2 _:sk_1 .
1049
+ # :MC1 :row _:b1 .
1050
+ # _:b1 :from :A .
1051
+ # _:b1 :pA 0.80 .
1052
+ # _:b1 :pB 0.15 .
1053
+ # _:b1 :pC 0.05 .
1054
+ # :MC1 :row _:b2 .
1055
+ # _:b2 :from :B .
1056
+ # _:b2 :pA 0.10 .
1057
+ # _:b2 :pB 0.70 .
1058
+ # _:b2 :pC 0.20 .
1059
+ # :MC1 :row _:b3 .
1060
+ # _:b3 :from :C .
1061
+ # _:b3 :pA 0.25 .
1062
+ # _:b3 :pB 0.25 .
1063
+ # _:b3 :pC 0.50 .
1064
+ # _:sk_1 :pA 0.49550000000000005 .
1065
+ # _:sk_1 :pB 0.34275 .
1066
+ # _:sk_1 :pC 0.16175 .
1067
+ # (0.49550000000000005 0.80) math:product 0.3964000000000001 .
1068
+ # (0.34275 0.10) math:product 0.034275 .
1069
+ # (0.16175 0.25) math:product 0.0404375 .
1070
+ # (0.3964000000000001 0.034275) math:sum 0.4306750000000001 .
1071
+ # (0.4306750000000001 0.0404375) math:sum 0.4711125000000001 .
1072
+ # (0.49550000000000005 0.15) math:product 0.074325 .
1073
+ # (0.34275 0.70) math:product 0.23992499999999997 .
1074
+ # (0.16175 0.25) math:product 0.0404375 .
1075
+ # (0.074325 0.23992499999999997) math:sum 0.31425 .
1076
+ # (0.31425 0.0404375) math:sum 0.3546875 .
1077
+ # (0.49550000000000005 0.05) math:product 0.024775000000000005 .
1078
+ # (0.34275 0.20) math:product 0.06855 .
1079
+ # (0.16175 0.50) math:product 0.080875 .
1080
+ # (0.024775000000000005 0.06855) math:sum 0.093325 .
1081
+ # (0.093325 0.080875) math:sum 0.17420000000000002 .
1082
+ # via the schematic forward rule:
1083
+ # {
1084
+ # :MC1 :pi2 ?pi .
1085
+ # :MC1 :row ?rA .
1086
+ # ?rA :from :A .
1087
+ # ?rA :pA ?AA .
1088
+ # ?rA :pB ?AB .
1089
+ # ?rA :pC ?AC .
1090
+ # :MC1 :row ?rB .
1091
+ # ?rB :from :B .
1092
+ # ?rB :pA ?BA .
1093
+ # ?rB :pB ?BB .
1094
+ # ?rB :pC ?BC .
1095
+ # :MC1 :row ?rC .
1096
+ # ?rC :from :C .
1097
+ # ?rC :pA ?CA .
1098
+ # ?rC :pB ?CB .
1099
+ # ?rC :pC ?CC .
1100
+ # ?pi :pA ?pA .
1101
+ # ?pi :pB ?pB .
1102
+ # ?pi :pC ?pC .
1103
+ # (?pA ?AA) math:product ?tAA .
1104
+ # (?pB ?BA) math:product ?tBA .
1105
+ # (?pC ?CA) math:product ?tCA .
1106
+ # (?tAA ?tBA) math:sum ?s1 .
1107
+ # (?s1 ?tCA) math:sum ?pi3A .
1108
+ # (?pA ?AB) math:product ?tAB .
1109
+ # (?pB ?BB) math:product ?tBB .
1110
+ # (?pC ?CB) math:product ?tCB .
1111
+ # (?tAB ?tBB) math:sum ?s2 .
1112
+ # (?s2 ?tCB) math:sum ?pi3B .
1113
+ # (?pA ?AC) math:product ?tAC .
1114
+ # (?pB ?BC) math:product ?tBC .
1115
+ # (?pC ?CC) math:product ?tCC .
1116
+ # (?tAC ?tBC) math:sum ?s3 .
1117
+ # (?s3 ?tCC) math:sum ?pi3C .
1118
+ # } => {
1119
+ # _:b7 :pA ?pi3A .
1120
+ # _:b7 :pB ?pi3B .
1121
+ # _:b7 :pC ?pi3C .
1122
+ # :MC1 :pi3 _:b7 .
1123
+ # } .
1124
+ # with substitution (on rule variables):
1125
+ # ?AA = 0.80
1126
+ # ?AB = 0.15
1127
+ # ?AC = 0.05
1128
+ # ?BA = 0.10
1129
+ # ?BB = 0.70
1130
+ # ?BC = 0.20
1131
+ # ?CA = 0.25
1132
+ # ?CB = 0.25
1133
+ # ?CC = 0.50
1134
+ # ?pA = 0.49550000000000005
1135
+ # ?pB = 0.34275
1136
+ # ?pC = 0.16175
1137
+ # ?pi = _:sk_1
1138
+ # ?pi3A = 0.4711125000000001
1139
+ # ?pi3B = 0.3546875
1140
+ # ?pi3C = 0.17420000000000002
1141
+ # ?rA = _:b1
1142
+ # ?rB = _:b2
1143
+ # ?rC = _:b3
1144
+ # ?s1 = 0.4306750000000001
1145
+ # ?s2 = 0.31425
1146
+ # ?s3 = 0.093325
1147
+ # ?tAA = 0.3964000000000001
1148
+ # ?tAB = 0.074325
1149
+ # ?tAC = 0.024775000000000005
1150
+ # ?tBA = 0.034275
1151
+ # ?tBB = 0.23992499999999997
1152
+ # ?tBC = 0.06855
1153
+ # ?tCA = 0.0404375
1154
+ # ?tCB = 0.0404375
1155
+ # ?tCC = 0.080875
1156
+ # Therefore the derived triple above is entailed by the rules and facts.
1157
+ # ----------------------------------------------------------------------
1158
+
1159
+ _:sk_2 :pA 0.4711125000000001 .
1160
+
1161
+ # ----------------------------------------------------------------------
1162
+ # Proof for derived triple:
1163
+ # _:sk_2 :pB 0.3546875 .
1164
+ # It holds because the following instance of the rule body is provable:
1165
+ # :MC1 :pi2 _:sk_1 .
1166
+ # :MC1 :row _:b1 .
1167
+ # _:b1 :from :A .
1168
+ # _:b1 :pA 0.80 .
1169
+ # _:b1 :pB 0.15 .
1170
+ # _:b1 :pC 0.05 .
1171
+ # :MC1 :row _:b2 .
1172
+ # _:b2 :from :B .
1173
+ # _:b2 :pA 0.10 .
1174
+ # _:b2 :pB 0.70 .
1175
+ # _:b2 :pC 0.20 .
1176
+ # :MC1 :row _:b3 .
1177
+ # _:b3 :from :C .
1178
+ # _:b3 :pA 0.25 .
1179
+ # _:b3 :pB 0.25 .
1180
+ # _:b3 :pC 0.50 .
1181
+ # _:sk_1 :pA 0.49550000000000005 .
1182
+ # _:sk_1 :pB 0.34275 .
1183
+ # _:sk_1 :pC 0.16175 .
1184
+ # (0.49550000000000005 0.80) math:product 0.3964000000000001 .
1185
+ # (0.34275 0.10) math:product 0.034275 .
1186
+ # (0.16175 0.25) math:product 0.0404375 .
1187
+ # (0.3964000000000001 0.034275) math:sum 0.4306750000000001 .
1188
+ # (0.4306750000000001 0.0404375) math:sum 0.4711125000000001 .
1189
+ # (0.49550000000000005 0.15) math:product 0.074325 .
1190
+ # (0.34275 0.70) math:product 0.23992499999999997 .
1191
+ # (0.16175 0.25) math:product 0.0404375 .
1192
+ # (0.074325 0.23992499999999997) math:sum 0.31425 .
1193
+ # (0.31425 0.0404375) math:sum 0.3546875 .
1194
+ # (0.49550000000000005 0.05) math:product 0.024775000000000005 .
1195
+ # (0.34275 0.20) math:product 0.06855 .
1196
+ # (0.16175 0.50) math:product 0.080875 .
1197
+ # (0.024775000000000005 0.06855) math:sum 0.093325 .
1198
+ # (0.093325 0.080875) math:sum 0.17420000000000002 .
1199
+ # via the schematic forward rule:
1200
+ # {
1201
+ # :MC1 :pi2 ?pi .
1202
+ # :MC1 :row ?rA .
1203
+ # ?rA :from :A .
1204
+ # ?rA :pA ?AA .
1205
+ # ?rA :pB ?AB .
1206
+ # ?rA :pC ?AC .
1207
+ # :MC1 :row ?rB .
1208
+ # ?rB :from :B .
1209
+ # ?rB :pA ?BA .
1210
+ # ?rB :pB ?BB .
1211
+ # ?rB :pC ?BC .
1212
+ # :MC1 :row ?rC .
1213
+ # ?rC :from :C .
1214
+ # ?rC :pA ?CA .
1215
+ # ?rC :pB ?CB .
1216
+ # ?rC :pC ?CC .
1217
+ # ?pi :pA ?pA .
1218
+ # ?pi :pB ?pB .
1219
+ # ?pi :pC ?pC .
1220
+ # (?pA ?AA) math:product ?tAA .
1221
+ # (?pB ?BA) math:product ?tBA .
1222
+ # (?pC ?CA) math:product ?tCA .
1223
+ # (?tAA ?tBA) math:sum ?s1 .
1224
+ # (?s1 ?tCA) math:sum ?pi3A .
1225
+ # (?pA ?AB) math:product ?tAB .
1226
+ # (?pB ?BB) math:product ?tBB .
1227
+ # (?pC ?CB) math:product ?tCB .
1228
+ # (?tAB ?tBB) math:sum ?s2 .
1229
+ # (?s2 ?tCB) math:sum ?pi3B .
1230
+ # (?pA ?AC) math:product ?tAC .
1231
+ # (?pB ?BC) math:product ?tBC .
1232
+ # (?pC ?CC) math:product ?tCC .
1233
+ # (?tAC ?tBC) math:sum ?s3 .
1234
+ # (?s3 ?tCC) math:sum ?pi3C .
1235
+ # } => {
1236
+ # _:b7 :pA ?pi3A .
1237
+ # _:b7 :pB ?pi3B .
1238
+ # _:b7 :pC ?pi3C .
1239
+ # :MC1 :pi3 _:b7 .
1240
+ # } .
1241
+ # with substitution (on rule variables):
1242
+ # ?AA = 0.80
1243
+ # ?AB = 0.15
1244
+ # ?AC = 0.05
1245
+ # ?BA = 0.10
1246
+ # ?BB = 0.70
1247
+ # ?BC = 0.20
1248
+ # ?CA = 0.25
1249
+ # ?CB = 0.25
1250
+ # ?CC = 0.50
1251
+ # ?pA = 0.49550000000000005
1252
+ # ?pB = 0.34275
1253
+ # ?pC = 0.16175
1254
+ # ?pi = _:sk_1
1255
+ # ?pi3A = 0.4711125000000001
1256
+ # ?pi3B = 0.3546875
1257
+ # ?pi3C = 0.17420000000000002
1258
+ # ?rA = _:b1
1259
+ # ?rB = _:b2
1260
+ # ?rC = _:b3
1261
+ # ?s1 = 0.4306750000000001
1262
+ # ?s2 = 0.31425
1263
+ # ?s3 = 0.093325
1264
+ # ?tAA = 0.3964000000000001
1265
+ # ?tAB = 0.074325
1266
+ # ?tAC = 0.024775000000000005
1267
+ # ?tBA = 0.034275
1268
+ # ?tBB = 0.23992499999999997
1269
+ # ?tBC = 0.06855
1270
+ # ?tCA = 0.0404375
1271
+ # ?tCB = 0.0404375
1272
+ # ?tCC = 0.080875
1273
+ # Therefore the derived triple above is entailed by the rules and facts.
1274
+ # ----------------------------------------------------------------------
1275
+
1276
+ _:sk_2 :pB 0.3546875 .
1277
+
1278
+ # ----------------------------------------------------------------------
1279
+ # Proof for derived triple:
1280
+ # _:sk_2 :pC 0.17420000000000002 .
1281
+ # It holds because the following instance of the rule body is provable:
1282
+ # :MC1 :pi2 _:sk_1 .
1283
+ # :MC1 :row _:b1 .
1284
+ # _:b1 :from :A .
1285
+ # _:b1 :pA 0.80 .
1286
+ # _:b1 :pB 0.15 .
1287
+ # _:b1 :pC 0.05 .
1288
+ # :MC1 :row _:b2 .
1289
+ # _:b2 :from :B .
1290
+ # _:b2 :pA 0.10 .
1291
+ # _:b2 :pB 0.70 .
1292
+ # _:b2 :pC 0.20 .
1293
+ # :MC1 :row _:b3 .
1294
+ # _:b3 :from :C .
1295
+ # _:b3 :pA 0.25 .
1296
+ # _:b3 :pB 0.25 .
1297
+ # _:b3 :pC 0.50 .
1298
+ # _:sk_1 :pA 0.49550000000000005 .
1299
+ # _:sk_1 :pB 0.34275 .
1300
+ # _:sk_1 :pC 0.16175 .
1301
+ # (0.49550000000000005 0.80) math:product 0.3964000000000001 .
1302
+ # (0.34275 0.10) math:product 0.034275 .
1303
+ # (0.16175 0.25) math:product 0.0404375 .
1304
+ # (0.3964000000000001 0.034275) math:sum 0.4306750000000001 .
1305
+ # (0.4306750000000001 0.0404375) math:sum 0.4711125000000001 .
1306
+ # (0.49550000000000005 0.15) math:product 0.074325 .
1307
+ # (0.34275 0.70) math:product 0.23992499999999997 .
1308
+ # (0.16175 0.25) math:product 0.0404375 .
1309
+ # (0.074325 0.23992499999999997) math:sum 0.31425 .
1310
+ # (0.31425 0.0404375) math:sum 0.3546875 .
1311
+ # (0.49550000000000005 0.05) math:product 0.024775000000000005 .
1312
+ # (0.34275 0.20) math:product 0.06855 .
1313
+ # (0.16175 0.50) math:product 0.080875 .
1314
+ # (0.024775000000000005 0.06855) math:sum 0.093325 .
1315
+ # (0.093325 0.080875) math:sum 0.17420000000000002 .
1316
+ # via the schematic forward rule:
1317
+ # {
1318
+ # :MC1 :pi2 ?pi .
1319
+ # :MC1 :row ?rA .
1320
+ # ?rA :from :A .
1321
+ # ?rA :pA ?AA .
1322
+ # ?rA :pB ?AB .
1323
+ # ?rA :pC ?AC .
1324
+ # :MC1 :row ?rB .
1325
+ # ?rB :from :B .
1326
+ # ?rB :pA ?BA .
1327
+ # ?rB :pB ?BB .
1328
+ # ?rB :pC ?BC .
1329
+ # :MC1 :row ?rC .
1330
+ # ?rC :from :C .
1331
+ # ?rC :pA ?CA .
1332
+ # ?rC :pB ?CB .
1333
+ # ?rC :pC ?CC .
1334
+ # ?pi :pA ?pA .
1335
+ # ?pi :pB ?pB .
1336
+ # ?pi :pC ?pC .
1337
+ # (?pA ?AA) math:product ?tAA .
1338
+ # (?pB ?BA) math:product ?tBA .
1339
+ # (?pC ?CA) math:product ?tCA .
1340
+ # (?tAA ?tBA) math:sum ?s1 .
1341
+ # (?s1 ?tCA) math:sum ?pi3A .
1342
+ # (?pA ?AB) math:product ?tAB .
1343
+ # (?pB ?BB) math:product ?tBB .
1344
+ # (?pC ?CB) math:product ?tCB .
1345
+ # (?tAB ?tBB) math:sum ?s2 .
1346
+ # (?s2 ?tCB) math:sum ?pi3B .
1347
+ # (?pA ?AC) math:product ?tAC .
1348
+ # (?pB ?BC) math:product ?tBC .
1349
+ # (?pC ?CC) math:product ?tCC .
1350
+ # (?tAC ?tBC) math:sum ?s3 .
1351
+ # (?s3 ?tCC) math:sum ?pi3C .
1352
+ # } => {
1353
+ # _:b7 :pA ?pi3A .
1354
+ # _:b7 :pB ?pi3B .
1355
+ # _:b7 :pC ?pi3C .
1356
+ # :MC1 :pi3 _:b7 .
1357
+ # } .
1358
+ # with substitution (on rule variables):
1359
+ # ?AA = 0.80
1360
+ # ?AB = 0.15
1361
+ # ?AC = 0.05
1362
+ # ?BA = 0.10
1363
+ # ?BB = 0.70
1364
+ # ?BC = 0.20
1365
+ # ?CA = 0.25
1366
+ # ?CB = 0.25
1367
+ # ?CC = 0.50
1368
+ # ?pA = 0.49550000000000005
1369
+ # ?pB = 0.34275
1370
+ # ?pC = 0.16175
1371
+ # ?pi = _:sk_1
1372
+ # ?pi3A = 0.4711125000000001
1373
+ # ?pi3B = 0.3546875
1374
+ # ?pi3C = 0.17420000000000002
1375
+ # ?rA = _:b1
1376
+ # ?rB = _:b2
1377
+ # ?rC = _:b3
1378
+ # ?s1 = 0.4306750000000001
1379
+ # ?s2 = 0.31425
1380
+ # ?s3 = 0.093325
1381
+ # ?tAA = 0.3964000000000001
1382
+ # ?tAB = 0.074325
1383
+ # ?tAC = 0.024775000000000005
1384
+ # ?tBA = 0.034275
1385
+ # ?tBB = 0.23992499999999997
1386
+ # ?tBC = 0.06855
1387
+ # ?tCA = 0.0404375
1388
+ # ?tCB = 0.0404375
1389
+ # ?tCC = 0.080875
1390
+ # Therefore the derived triple above is entailed by the rules and facts.
1391
+ # ----------------------------------------------------------------------
1392
+
1393
+ _:sk_2 :pC 0.17420000000000002 .
1394
+
1395
+ # ----------------------------------------------------------------------
1396
+ # Proof for derived triple:
1397
+ # :MC1 :pi3 _:sk_2 .
1398
+ # It holds because the following instance of the rule body is provable:
1399
+ # :MC1 :pi2 _:sk_1 .
1400
+ # :MC1 :row _:b1 .
1401
+ # _:b1 :from :A .
1402
+ # _:b1 :pA 0.80 .
1403
+ # _:b1 :pB 0.15 .
1404
+ # _:b1 :pC 0.05 .
1405
+ # :MC1 :row _:b2 .
1406
+ # _:b2 :from :B .
1407
+ # _:b2 :pA 0.10 .
1408
+ # _:b2 :pB 0.70 .
1409
+ # _:b2 :pC 0.20 .
1410
+ # :MC1 :row _:b3 .
1411
+ # _:b3 :from :C .
1412
+ # _:b3 :pA 0.25 .
1413
+ # _:b3 :pB 0.25 .
1414
+ # _:b3 :pC 0.50 .
1415
+ # _:sk_1 :pA 0.49550000000000005 .
1416
+ # _:sk_1 :pB 0.34275 .
1417
+ # _:sk_1 :pC 0.16175 .
1418
+ # (0.49550000000000005 0.80) math:product 0.3964000000000001 .
1419
+ # (0.34275 0.10) math:product 0.034275 .
1420
+ # (0.16175 0.25) math:product 0.0404375 .
1421
+ # (0.3964000000000001 0.034275) math:sum 0.4306750000000001 .
1422
+ # (0.4306750000000001 0.0404375) math:sum 0.4711125000000001 .
1423
+ # (0.49550000000000005 0.15) math:product 0.074325 .
1424
+ # (0.34275 0.70) math:product 0.23992499999999997 .
1425
+ # (0.16175 0.25) math:product 0.0404375 .
1426
+ # (0.074325 0.23992499999999997) math:sum 0.31425 .
1427
+ # (0.31425 0.0404375) math:sum 0.3546875 .
1428
+ # (0.49550000000000005 0.05) math:product 0.024775000000000005 .
1429
+ # (0.34275 0.20) math:product 0.06855 .
1430
+ # (0.16175 0.50) math:product 0.080875 .
1431
+ # (0.024775000000000005 0.06855) math:sum 0.093325 .
1432
+ # (0.093325 0.080875) math:sum 0.17420000000000002 .
1433
+ # via the schematic forward rule:
1434
+ # {
1435
+ # :MC1 :pi2 ?pi .
1436
+ # :MC1 :row ?rA .
1437
+ # ?rA :from :A .
1438
+ # ?rA :pA ?AA .
1439
+ # ?rA :pB ?AB .
1440
+ # ?rA :pC ?AC .
1441
+ # :MC1 :row ?rB .
1442
+ # ?rB :from :B .
1443
+ # ?rB :pA ?BA .
1444
+ # ?rB :pB ?BB .
1445
+ # ?rB :pC ?BC .
1446
+ # :MC1 :row ?rC .
1447
+ # ?rC :from :C .
1448
+ # ?rC :pA ?CA .
1449
+ # ?rC :pB ?CB .
1450
+ # ?rC :pC ?CC .
1451
+ # ?pi :pA ?pA .
1452
+ # ?pi :pB ?pB .
1453
+ # ?pi :pC ?pC .
1454
+ # (?pA ?AA) math:product ?tAA .
1455
+ # (?pB ?BA) math:product ?tBA .
1456
+ # (?pC ?CA) math:product ?tCA .
1457
+ # (?tAA ?tBA) math:sum ?s1 .
1458
+ # (?s1 ?tCA) math:sum ?pi3A .
1459
+ # (?pA ?AB) math:product ?tAB .
1460
+ # (?pB ?BB) math:product ?tBB .
1461
+ # (?pC ?CB) math:product ?tCB .
1462
+ # (?tAB ?tBB) math:sum ?s2 .
1463
+ # (?s2 ?tCB) math:sum ?pi3B .
1464
+ # (?pA ?AC) math:product ?tAC .
1465
+ # (?pB ?BC) math:product ?tBC .
1466
+ # (?pC ?CC) math:product ?tCC .
1467
+ # (?tAC ?tBC) math:sum ?s3 .
1468
+ # (?s3 ?tCC) math:sum ?pi3C .
1469
+ # } => {
1470
+ # _:b7 :pA ?pi3A .
1471
+ # _:b7 :pB ?pi3B .
1472
+ # _:b7 :pC ?pi3C .
1473
+ # :MC1 :pi3 _:b7 .
1474
+ # } .
1475
+ # with substitution (on rule variables):
1476
+ # ?AA = 0.80
1477
+ # ?AB = 0.15
1478
+ # ?AC = 0.05
1479
+ # ?BA = 0.10
1480
+ # ?BB = 0.70
1481
+ # ?BC = 0.20
1482
+ # ?CA = 0.25
1483
+ # ?CB = 0.25
1484
+ # ?CC = 0.50
1485
+ # ?pA = 0.49550000000000005
1486
+ # ?pB = 0.34275
1487
+ # ?pC = 0.16175
1488
+ # ?pi = _:sk_1
1489
+ # ?pi3A = 0.4711125000000001
1490
+ # ?pi3B = 0.3546875
1491
+ # ?pi3C = 0.17420000000000002
1492
+ # ?rA = _:b1
1493
+ # ?rB = _:b2
1494
+ # ?rC = _:b3
1495
+ # ?s1 = 0.4306750000000001
1496
+ # ?s2 = 0.31425
1497
+ # ?s3 = 0.093325
1498
+ # ?tAA = 0.3964000000000001
1499
+ # ?tAB = 0.074325
1500
+ # ?tAC = 0.024775000000000005
1501
+ # ?tBA = 0.034275
1502
+ # ?tBB = 0.23992499999999997
1503
+ # ?tBC = 0.06855
1504
+ # ?tCA = 0.0404375
1505
+ # ?tCB = 0.0404375
1506
+ # ?tCC = 0.080875
1507
+ # Therefore the derived triple above is entailed by the rules and facts.
1508
+ # ----------------------------------------------------------------------
1509
+
1510
+ :MC1 :pi3 _:sk_2 .
1511
+
1512
+ # ----------------------------------------------------------------------
1513
+ # Proof for derived triple:
1514
+ # _:sk_3 :pA 0.6675000000000001 .
1515
+ # It holds because the following instance of the rule body is provable:
1516
+ # :MC1 :row _:b1 .
1517
+ # _:b1 :from :A .
1518
+ # _:b1 :pA 0.80 .
1519
+ # _:b1 :pB 0.15 .
1520
+ # _:b1 :pC 0.05 .
1521
+ # :MC1 :row _:b2 .
1522
+ # _:b2 :from :B .
1523
+ # _:b2 :pA 0.10 .
1524
+ # _:b2 :pB 0.70 .
1525
+ # _:b2 :pC 0.20 .
1526
+ # :MC1 :row _:b3 .
1527
+ # _:b3 :from :C .
1528
+ # _:b3 :pA 0.25 .
1529
+ # _:b3 :pB 0.25 .
1530
+ # _:b3 :pC 0.50 .
1531
+ # (0.80 0.80) math:product 0.6400000000000001 .
1532
+ # (0.15 0.10) math:product 0.015 .
1533
+ # (0.05 0.25) math:product 0.0125 .
1534
+ # (0.6400000000000001 0.015) math:sum 0.6550000000000001 .
1535
+ # (0.6550000000000001 0.0125) math:sum 0.6675000000000001 .
1536
+ # (0.80 0.15) math:product 0.12 .
1537
+ # (0.15 0.70) math:product 0.105 .
1538
+ # (0.05 0.25) math:product 0.0125 .
1539
+ # (0.12 0.105) math:sum 0.22499999999999998 .
1540
+ # (0.22499999999999998 0.0125) math:sum 0.2375 .
1541
+ # (0.80 0.05) math:product 0.04000000000000001 .
1542
+ # (0.15 0.20) math:product 0.03 .
1543
+ # (0.05 0.50) math:product 0.025 .
1544
+ # (0.04000000000000001 0.03) math:sum 0.07 .
1545
+ # (0.07 0.025) math:sum 0.095 .
1546
+ # via the schematic forward rule:
1547
+ # {
1548
+ # :MC1 :row ?rA .
1549
+ # ?rA :from :A .
1550
+ # ?rA :pA ?AA .
1551
+ # ?rA :pB ?AB .
1552
+ # ?rA :pC ?AC .
1553
+ # :MC1 :row ?rB .
1554
+ # ?rB :from :B .
1555
+ # ?rB :pA ?BA .
1556
+ # ?rB :pB ?BB .
1557
+ # ?rB :pC ?BC .
1558
+ # :MC1 :row ?rC .
1559
+ # ?rC :from :C .
1560
+ # ?rC :pA ?CA .
1561
+ # ?rC :pB ?CB .
1562
+ # ?rC :pC ?CC .
1563
+ # (?AA ?AA) math:product ?AA_AA .
1564
+ # (?AB ?BA) math:product ?AB_BA .
1565
+ # (?AC ?CA) math:product ?AC_CA .
1566
+ # (?AA_AA ?AB_BA) math:sum ?sAA .
1567
+ # (?sAA ?AC_CA) math:sum ?P2AA .
1568
+ # (?AA ?AB) math:product ?AA_AB .
1569
+ # (?AB ?BB) math:product ?AB_BB .
1570
+ # (?AC ?CB) math:product ?AC_CB .
1571
+ # (?AA_AB ?AB_BB) math:sum ?sAB .
1572
+ # (?sAB ?AC_CB) math:sum ?P2AB .
1573
+ # (?AA ?AC) math:product ?AA_AC .
1574
+ # (?AB ?BC) math:product ?AB_BC .
1575
+ # (?AC ?CC) math:product ?AC_CC .
1576
+ # (?AA_AC ?AB_BC) math:sum ?sAC .
1577
+ # (?sAC ?AC_CC) math:sum ?P2AC .
1578
+ # } => {
1579
+ # _:b8 :pA ?P2AA .
1580
+ # _:b8 :pB ?P2AB .
1581
+ # _:b8 :pC ?P2AC .
1582
+ # :MC1 :P2rowA _:b8 .
1583
+ # } .
1584
+ # with substitution (on rule variables):
1585
+ # ?AA = 0.80
1586
+ # ?AA_AA = 0.6400000000000001
1587
+ # ?AA_AB = 0.12
1588
+ # ?AA_AC = 0.04000000000000001
1589
+ # ?AB = 0.15
1590
+ # ?AB_BA = 0.015
1591
+ # ?AB_BB = 0.105
1592
+ # ?AB_BC = 0.03
1593
+ # ?AC = 0.05
1594
+ # ?AC_CA = 0.0125
1595
+ # ?AC_CB = 0.0125
1596
+ # ?AC_CC = 0.025
1597
+ # ?BA = 0.10
1598
+ # ?BB = 0.70
1599
+ # ?BC = 0.20
1600
+ # ?CA = 0.25
1601
+ # ?CB = 0.25
1602
+ # ?CC = 0.50
1603
+ # ?P2AA = 0.6675000000000001
1604
+ # ?P2AB = 0.2375
1605
+ # ?P2AC = 0.095
1606
+ # ?rA = _:b1
1607
+ # ?rB = _:b2
1608
+ # ?rC = _:b3
1609
+ # ?sAA = 0.6550000000000001
1610
+ # ?sAB = 0.22499999999999998
1611
+ # ?sAC = 0.07
1612
+ # Therefore the derived triple above is entailed by the rules and facts.
1613
+ # ----------------------------------------------------------------------
1614
+
1615
+ _:sk_3 :pA 0.6675000000000001 .
1616
+
1617
+ # ----------------------------------------------------------------------
1618
+ # Proof for derived triple:
1619
+ # _:sk_3 :pB 0.2375 .
1620
+ # It holds because the following instance of the rule body is provable:
1621
+ # :MC1 :row _:b1 .
1622
+ # _:b1 :from :A .
1623
+ # _:b1 :pA 0.80 .
1624
+ # _:b1 :pB 0.15 .
1625
+ # _:b1 :pC 0.05 .
1626
+ # :MC1 :row _:b2 .
1627
+ # _:b2 :from :B .
1628
+ # _:b2 :pA 0.10 .
1629
+ # _:b2 :pB 0.70 .
1630
+ # _:b2 :pC 0.20 .
1631
+ # :MC1 :row _:b3 .
1632
+ # _:b3 :from :C .
1633
+ # _:b3 :pA 0.25 .
1634
+ # _:b3 :pB 0.25 .
1635
+ # _:b3 :pC 0.50 .
1636
+ # (0.80 0.80) math:product 0.6400000000000001 .
1637
+ # (0.15 0.10) math:product 0.015 .
1638
+ # (0.05 0.25) math:product 0.0125 .
1639
+ # (0.6400000000000001 0.015) math:sum 0.6550000000000001 .
1640
+ # (0.6550000000000001 0.0125) math:sum 0.6675000000000001 .
1641
+ # (0.80 0.15) math:product 0.12 .
1642
+ # (0.15 0.70) math:product 0.105 .
1643
+ # (0.05 0.25) math:product 0.0125 .
1644
+ # (0.12 0.105) math:sum 0.22499999999999998 .
1645
+ # (0.22499999999999998 0.0125) math:sum 0.2375 .
1646
+ # (0.80 0.05) math:product 0.04000000000000001 .
1647
+ # (0.15 0.20) math:product 0.03 .
1648
+ # (0.05 0.50) math:product 0.025 .
1649
+ # (0.04000000000000001 0.03) math:sum 0.07 .
1650
+ # (0.07 0.025) math:sum 0.095 .
1651
+ # via the schematic forward rule:
1652
+ # {
1653
+ # :MC1 :row ?rA .
1654
+ # ?rA :from :A .
1655
+ # ?rA :pA ?AA .
1656
+ # ?rA :pB ?AB .
1657
+ # ?rA :pC ?AC .
1658
+ # :MC1 :row ?rB .
1659
+ # ?rB :from :B .
1660
+ # ?rB :pA ?BA .
1661
+ # ?rB :pB ?BB .
1662
+ # ?rB :pC ?BC .
1663
+ # :MC1 :row ?rC .
1664
+ # ?rC :from :C .
1665
+ # ?rC :pA ?CA .
1666
+ # ?rC :pB ?CB .
1667
+ # ?rC :pC ?CC .
1668
+ # (?AA ?AA) math:product ?AA_AA .
1669
+ # (?AB ?BA) math:product ?AB_BA .
1670
+ # (?AC ?CA) math:product ?AC_CA .
1671
+ # (?AA_AA ?AB_BA) math:sum ?sAA .
1672
+ # (?sAA ?AC_CA) math:sum ?P2AA .
1673
+ # (?AA ?AB) math:product ?AA_AB .
1674
+ # (?AB ?BB) math:product ?AB_BB .
1675
+ # (?AC ?CB) math:product ?AC_CB .
1676
+ # (?AA_AB ?AB_BB) math:sum ?sAB .
1677
+ # (?sAB ?AC_CB) math:sum ?P2AB .
1678
+ # (?AA ?AC) math:product ?AA_AC .
1679
+ # (?AB ?BC) math:product ?AB_BC .
1680
+ # (?AC ?CC) math:product ?AC_CC .
1681
+ # (?AA_AC ?AB_BC) math:sum ?sAC .
1682
+ # (?sAC ?AC_CC) math:sum ?P2AC .
1683
+ # } => {
1684
+ # _:b8 :pA ?P2AA .
1685
+ # _:b8 :pB ?P2AB .
1686
+ # _:b8 :pC ?P2AC .
1687
+ # :MC1 :P2rowA _:b8 .
1688
+ # } .
1689
+ # with substitution (on rule variables):
1690
+ # ?AA = 0.80
1691
+ # ?AA_AA = 0.6400000000000001
1692
+ # ?AA_AB = 0.12
1693
+ # ?AA_AC = 0.04000000000000001
1694
+ # ?AB = 0.15
1695
+ # ?AB_BA = 0.015
1696
+ # ?AB_BB = 0.105
1697
+ # ?AB_BC = 0.03
1698
+ # ?AC = 0.05
1699
+ # ?AC_CA = 0.0125
1700
+ # ?AC_CB = 0.0125
1701
+ # ?AC_CC = 0.025
1702
+ # ?BA = 0.10
1703
+ # ?BB = 0.70
1704
+ # ?BC = 0.20
1705
+ # ?CA = 0.25
1706
+ # ?CB = 0.25
1707
+ # ?CC = 0.50
1708
+ # ?P2AA = 0.6675000000000001
1709
+ # ?P2AB = 0.2375
1710
+ # ?P2AC = 0.095
1711
+ # ?rA = _:b1
1712
+ # ?rB = _:b2
1713
+ # ?rC = _:b3
1714
+ # ?sAA = 0.6550000000000001
1715
+ # ?sAB = 0.22499999999999998
1716
+ # ?sAC = 0.07
1717
+ # Therefore the derived triple above is entailed by the rules and facts.
1718
+ # ----------------------------------------------------------------------
1719
+
1720
+ _:sk_3 :pB 0.2375 .
1721
+
1722
+ # ----------------------------------------------------------------------
1723
+ # Proof for derived triple:
1724
+ # _:sk_3 :pC 0.095 .
1725
+ # It holds because the following instance of the rule body is provable:
1726
+ # :MC1 :row _:b1 .
1727
+ # _:b1 :from :A .
1728
+ # _:b1 :pA 0.80 .
1729
+ # _:b1 :pB 0.15 .
1730
+ # _:b1 :pC 0.05 .
1731
+ # :MC1 :row _:b2 .
1732
+ # _:b2 :from :B .
1733
+ # _:b2 :pA 0.10 .
1734
+ # _:b2 :pB 0.70 .
1735
+ # _:b2 :pC 0.20 .
1736
+ # :MC1 :row _:b3 .
1737
+ # _:b3 :from :C .
1738
+ # _:b3 :pA 0.25 .
1739
+ # _:b3 :pB 0.25 .
1740
+ # _:b3 :pC 0.50 .
1741
+ # (0.80 0.80) math:product 0.6400000000000001 .
1742
+ # (0.15 0.10) math:product 0.015 .
1743
+ # (0.05 0.25) math:product 0.0125 .
1744
+ # (0.6400000000000001 0.015) math:sum 0.6550000000000001 .
1745
+ # (0.6550000000000001 0.0125) math:sum 0.6675000000000001 .
1746
+ # (0.80 0.15) math:product 0.12 .
1747
+ # (0.15 0.70) math:product 0.105 .
1748
+ # (0.05 0.25) math:product 0.0125 .
1749
+ # (0.12 0.105) math:sum 0.22499999999999998 .
1750
+ # (0.22499999999999998 0.0125) math:sum 0.2375 .
1751
+ # (0.80 0.05) math:product 0.04000000000000001 .
1752
+ # (0.15 0.20) math:product 0.03 .
1753
+ # (0.05 0.50) math:product 0.025 .
1754
+ # (0.04000000000000001 0.03) math:sum 0.07 .
1755
+ # (0.07 0.025) math:sum 0.095 .
1756
+ # via the schematic forward rule:
1757
+ # {
1758
+ # :MC1 :row ?rA .
1759
+ # ?rA :from :A .
1760
+ # ?rA :pA ?AA .
1761
+ # ?rA :pB ?AB .
1762
+ # ?rA :pC ?AC .
1763
+ # :MC1 :row ?rB .
1764
+ # ?rB :from :B .
1765
+ # ?rB :pA ?BA .
1766
+ # ?rB :pB ?BB .
1767
+ # ?rB :pC ?BC .
1768
+ # :MC1 :row ?rC .
1769
+ # ?rC :from :C .
1770
+ # ?rC :pA ?CA .
1771
+ # ?rC :pB ?CB .
1772
+ # ?rC :pC ?CC .
1773
+ # (?AA ?AA) math:product ?AA_AA .
1774
+ # (?AB ?BA) math:product ?AB_BA .
1775
+ # (?AC ?CA) math:product ?AC_CA .
1776
+ # (?AA_AA ?AB_BA) math:sum ?sAA .
1777
+ # (?sAA ?AC_CA) math:sum ?P2AA .
1778
+ # (?AA ?AB) math:product ?AA_AB .
1779
+ # (?AB ?BB) math:product ?AB_BB .
1780
+ # (?AC ?CB) math:product ?AC_CB .
1781
+ # (?AA_AB ?AB_BB) math:sum ?sAB .
1782
+ # (?sAB ?AC_CB) math:sum ?P2AB .
1783
+ # (?AA ?AC) math:product ?AA_AC .
1784
+ # (?AB ?BC) math:product ?AB_BC .
1785
+ # (?AC ?CC) math:product ?AC_CC .
1786
+ # (?AA_AC ?AB_BC) math:sum ?sAC .
1787
+ # (?sAC ?AC_CC) math:sum ?P2AC .
1788
+ # } => {
1789
+ # _:b8 :pA ?P2AA .
1790
+ # _:b8 :pB ?P2AB .
1791
+ # _:b8 :pC ?P2AC .
1792
+ # :MC1 :P2rowA _:b8 .
1793
+ # } .
1794
+ # with substitution (on rule variables):
1795
+ # ?AA = 0.80
1796
+ # ?AA_AA = 0.6400000000000001
1797
+ # ?AA_AB = 0.12
1798
+ # ?AA_AC = 0.04000000000000001
1799
+ # ?AB = 0.15
1800
+ # ?AB_BA = 0.015
1801
+ # ?AB_BB = 0.105
1802
+ # ?AB_BC = 0.03
1803
+ # ?AC = 0.05
1804
+ # ?AC_CA = 0.0125
1805
+ # ?AC_CB = 0.0125
1806
+ # ?AC_CC = 0.025
1807
+ # ?BA = 0.10
1808
+ # ?BB = 0.70
1809
+ # ?BC = 0.20
1810
+ # ?CA = 0.25
1811
+ # ?CB = 0.25
1812
+ # ?CC = 0.50
1813
+ # ?P2AA = 0.6675000000000001
1814
+ # ?P2AB = 0.2375
1815
+ # ?P2AC = 0.095
1816
+ # ?rA = _:b1
1817
+ # ?rB = _:b2
1818
+ # ?rC = _:b3
1819
+ # ?sAA = 0.6550000000000001
1820
+ # ?sAB = 0.22499999999999998
1821
+ # ?sAC = 0.07
1822
+ # Therefore the derived triple above is entailed by the rules and facts.
1823
+ # ----------------------------------------------------------------------
1824
+
1825
+ _:sk_3 :pC 0.095 .
1826
+
1827
+ # ----------------------------------------------------------------------
1828
+ # Proof for derived triple:
1829
+ # :MC1 :P2rowA _:sk_3 .
1830
+ # It holds because the following instance of the rule body is provable:
1831
+ # :MC1 :row _:b1 .
1832
+ # _:b1 :from :A .
1833
+ # _:b1 :pA 0.80 .
1834
+ # _:b1 :pB 0.15 .
1835
+ # _:b1 :pC 0.05 .
1836
+ # :MC1 :row _:b2 .
1837
+ # _:b2 :from :B .
1838
+ # _:b2 :pA 0.10 .
1839
+ # _:b2 :pB 0.70 .
1840
+ # _:b2 :pC 0.20 .
1841
+ # :MC1 :row _:b3 .
1842
+ # _:b3 :from :C .
1843
+ # _:b3 :pA 0.25 .
1844
+ # _:b3 :pB 0.25 .
1845
+ # _:b3 :pC 0.50 .
1846
+ # (0.80 0.80) math:product 0.6400000000000001 .
1847
+ # (0.15 0.10) math:product 0.015 .
1848
+ # (0.05 0.25) math:product 0.0125 .
1849
+ # (0.6400000000000001 0.015) math:sum 0.6550000000000001 .
1850
+ # (0.6550000000000001 0.0125) math:sum 0.6675000000000001 .
1851
+ # (0.80 0.15) math:product 0.12 .
1852
+ # (0.15 0.70) math:product 0.105 .
1853
+ # (0.05 0.25) math:product 0.0125 .
1854
+ # (0.12 0.105) math:sum 0.22499999999999998 .
1855
+ # (0.22499999999999998 0.0125) math:sum 0.2375 .
1856
+ # (0.80 0.05) math:product 0.04000000000000001 .
1857
+ # (0.15 0.20) math:product 0.03 .
1858
+ # (0.05 0.50) math:product 0.025 .
1859
+ # (0.04000000000000001 0.03) math:sum 0.07 .
1860
+ # (0.07 0.025) math:sum 0.095 .
1861
+ # via the schematic forward rule:
1862
+ # {
1863
+ # :MC1 :row ?rA .
1864
+ # ?rA :from :A .
1865
+ # ?rA :pA ?AA .
1866
+ # ?rA :pB ?AB .
1867
+ # ?rA :pC ?AC .
1868
+ # :MC1 :row ?rB .
1869
+ # ?rB :from :B .
1870
+ # ?rB :pA ?BA .
1871
+ # ?rB :pB ?BB .
1872
+ # ?rB :pC ?BC .
1873
+ # :MC1 :row ?rC .
1874
+ # ?rC :from :C .
1875
+ # ?rC :pA ?CA .
1876
+ # ?rC :pB ?CB .
1877
+ # ?rC :pC ?CC .
1878
+ # (?AA ?AA) math:product ?AA_AA .
1879
+ # (?AB ?BA) math:product ?AB_BA .
1880
+ # (?AC ?CA) math:product ?AC_CA .
1881
+ # (?AA_AA ?AB_BA) math:sum ?sAA .
1882
+ # (?sAA ?AC_CA) math:sum ?P2AA .
1883
+ # (?AA ?AB) math:product ?AA_AB .
1884
+ # (?AB ?BB) math:product ?AB_BB .
1885
+ # (?AC ?CB) math:product ?AC_CB .
1886
+ # (?AA_AB ?AB_BB) math:sum ?sAB .
1887
+ # (?sAB ?AC_CB) math:sum ?P2AB .
1888
+ # (?AA ?AC) math:product ?AA_AC .
1889
+ # (?AB ?BC) math:product ?AB_BC .
1890
+ # (?AC ?CC) math:product ?AC_CC .
1891
+ # (?AA_AC ?AB_BC) math:sum ?sAC .
1892
+ # (?sAC ?AC_CC) math:sum ?P2AC .
1893
+ # } => {
1894
+ # _:b8 :pA ?P2AA .
1895
+ # _:b8 :pB ?P2AB .
1896
+ # _:b8 :pC ?P2AC .
1897
+ # :MC1 :P2rowA _:b8 .
1898
+ # } .
1899
+ # with substitution (on rule variables):
1900
+ # ?AA = 0.80
1901
+ # ?AA_AA = 0.6400000000000001
1902
+ # ?AA_AB = 0.12
1903
+ # ?AA_AC = 0.04000000000000001
1904
+ # ?AB = 0.15
1905
+ # ?AB_BA = 0.015
1906
+ # ?AB_BB = 0.105
1907
+ # ?AB_BC = 0.03
1908
+ # ?AC = 0.05
1909
+ # ?AC_CA = 0.0125
1910
+ # ?AC_CB = 0.0125
1911
+ # ?AC_CC = 0.025
1912
+ # ?BA = 0.10
1913
+ # ?BB = 0.70
1914
+ # ?BC = 0.20
1915
+ # ?CA = 0.25
1916
+ # ?CB = 0.25
1917
+ # ?CC = 0.50
1918
+ # ?P2AA = 0.6675000000000001
1919
+ # ?P2AB = 0.2375
1920
+ # ?P2AC = 0.095
1921
+ # ?rA = _:b1
1922
+ # ?rB = _:b2
1923
+ # ?rC = _:b3
1924
+ # ?sAA = 0.6550000000000001
1925
+ # ?sAB = 0.22499999999999998
1926
+ # ?sAC = 0.07
1927
+ # Therefore the derived triple above is entailed by the rules and facts.
1928
+ # ----------------------------------------------------------------------
1929
+
1930
+ :MC1 :P2rowA _:sk_3 .
1931
+
1932
+ # ----------------------------------------------------------------------
1933
+ # Proof for derived triple:
1934
+ # _:sk_4 :t 0 .
1935
+ # It holds because the following instance of the rule body is provable:
1936
+ # :MC1 :pi0 _:b4 .
1937
+ # via the schematic forward rule:
1938
+ # {
1939
+ # :MC1 :pi0 ?pi .
1940
+ # } => {
1941
+ # _:b9 :t 0 .
1942
+ # _:b9 :pi ?pi .
1943
+ # :MC1 :metrics _:b9 .
1944
+ # } .
1945
+ # with substitution (on rule variables):
1946
+ # ?pi = _:b4
1947
+ # Therefore the derived triple above is entailed by the rules and facts.
1948
+ # ----------------------------------------------------------------------
1949
+
1950
+ _:sk_4 :t 0 .
1951
+
1952
+ # ----------------------------------------------------------------------
1953
+ # Proof for derived triple:
1954
+ # _:sk_4 :pi _:b4 .
1955
+ # It holds because the following instance of the rule body is provable:
1956
+ # :MC1 :pi0 _:b4 .
1957
+ # via the schematic forward rule:
1958
+ # {
1959
+ # :MC1 :pi0 ?pi .
1960
+ # } => {
1961
+ # _:b9 :t 0 .
1962
+ # _:b9 :pi ?pi .
1963
+ # :MC1 :metrics _:b9 .
1964
+ # } .
1965
+ # with substitution (on rule variables):
1966
+ # ?pi = _:b4
1967
+ # Therefore the derived triple above is entailed by the rules and facts.
1968
+ # ----------------------------------------------------------------------
1969
+
1970
+ _:sk_4 :pi _:b4 .
1971
+
1972
+ # ----------------------------------------------------------------------
1973
+ # Proof for derived triple:
1974
+ # :MC1 :metrics _:sk_4 .
1975
+ # It holds because the following instance of the rule body is provable:
1976
+ # :MC1 :pi0 _:b4 .
1977
+ # via the schematic forward rule:
1978
+ # {
1979
+ # :MC1 :pi0 ?pi .
1980
+ # } => {
1981
+ # _:b9 :t 0 .
1982
+ # _:b9 :pi ?pi .
1983
+ # :MC1 :metrics _:b9 .
1984
+ # } .
1985
+ # with substitution (on rule variables):
1986
+ # ?pi = _:b4
1987
+ # Therefore the derived triple above is entailed by the rules and facts.
1988
+ # ----------------------------------------------------------------------
1989
+
1990
+ :MC1 :metrics _:sk_4 .
1991
+
1992
+ # ----------------------------------------------------------------------
1993
+ # Proof for derived triple:
1994
+ # _:sk_5 :t 1 .
1995
+ # It holds because the following instance of the rule body is provable:
1996
+ # :MC1 :pi1 _:sk_0 .
1997
+ # via the schematic forward rule:
1998
+ # {
1999
+ # :MC1 :pi1 ?pi .
2000
+ # } => {
2001
+ # _:b10 :t 1 .
2002
+ # _:b10 :pi ?pi .
2003
+ # :MC1 :metrics _:b10 .
2004
+ # } .
2005
+ # with substitution (on rule variables):
2006
+ # ?pi = _:sk_0
2007
+ # Therefore the derived triple above is entailed by the rules and facts.
2008
+ # ----------------------------------------------------------------------
2009
+
2010
+ _:sk_5 :t 1 .
2011
+
2012
+ # ----------------------------------------------------------------------
2013
+ # Proof for derived triple:
2014
+ # _:sk_5 :pi _:sk_0 .
2015
+ # It holds because the following instance of the rule body is provable:
2016
+ # :MC1 :pi1 _:sk_0 .
2017
+ # via the schematic forward rule:
2018
+ # {
2019
+ # :MC1 :pi1 ?pi .
2020
+ # } => {
2021
+ # _:b10 :t 1 .
2022
+ # _:b10 :pi ?pi .
2023
+ # :MC1 :metrics _:b10 .
2024
+ # } .
2025
+ # with substitution (on rule variables):
2026
+ # ?pi = _:sk_0
2027
+ # Therefore the derived triple above is entailed by the rules and facts.
2028
+ # ----------------------------------------------------------------------
2029
+
2030
+ _:sk_5 :pi _:sk_0 .
2031
+
2032
+ # ----------------------------------------------------------------------
2033
+ # Proof for derived triple:
2034
+ # :MC1 :metrics _:sk_5 .
2035
+ # It holds because the following instance of the rule body is provable:
2036
+ # :MC1 :pi1 _:sk_0 .
2037
+ # via the schematic forward rule:
2038
+ # {
2039
+ # :MC1 :pi1 ?pi .
2040
+ # } => {
2041
+ # _:b10 :t 1 .
2042
+ # _:b10 :pi ?pi .
2043
+ # :MC1 :metrics _:b10 .
2044
+ # } .
2045
+ # with substitution (on rule variables):
2046
+ # ?pi = _:sk_0
2047
+ # Therefore the derived triple above is entailed by the rules and facts.
2048
+ # ----------------------------------------------------------------------
2049
+
2050
+ :MC1 :metrics _:sk_5 .
2051
+
2052
+ # ----------------------------------------------------------------------
2053
+ # Proof for derived triple:
2054
+ # _:sk_6 :t 2 .
2055
+ # It holds because the following instance of the rule body is provable:
2056
+ # :MC1 :pi2 _:sk_1 .
2057
+ # via the schematic forward rule:
2058
+ # {
2059
+ # :MC1 :pi2 ?pi .
2060
+ # } => {
2061
+ # _:b11 :t 2 .
2062
+ # _:b11 :pi ?pi .
2063
+ # :MC1 :metrics _:b11 .
2064
+ # } .
2065
+ # with substitution (on rule variables):
2066
+ # ?pi = _:sk_1
2067
+ # Therefore the derived triple above is entailed by the rules and facts.
2068
+ # ----------------------------------------------------------------------
2069
+
2070
+ _:sk_6 :t 2 .
2071
+
2072
+ # ----------------------------------------------------------------------
2073
+ # Proof for derived triple:
2074
+ # _:sk_6 :pi _:sk_1 .
2075
+ # It holds because the following instance of the rule body is provable:
2076
+ # :MC1 :pi2 _:sk_1 .
2077
+ # via the schematic forward rule:
2078
+ # {
2079
+ # :MC1 :pi2 ?pi .
2080
+ # } => {
2081
+ # _:b11 :t 2 .
2082
+ # _:b11 :pi ?pi .
2083
+ # :MC1 :metrics _:b11 .
2084
+ # } .
2085
+ # with substitution (on rule variables):
2086
+ # ?pi = _:sk_1
2087
+ # Therefore the derived triple above is entailed by the rules and facts.
2088
+ # ----------------------------------------------------------------------
2089
+
2090
+ _:sk_6 :pi _:sk_1 .
2091
+
2092
+ # ----------------------------------------------------------------------
2093
+ # Proof for derived triple:
2094
+ # :MC1 :metrics _:sk_6 .
2095
+ # It holds because the following instance of the rule body is provable:
2096
+ # :MC1 :pi2 _:sk_1 .
2097
+ # via the schematic forward rule:
2098
+ # {
2099
+ # :MC1 :pi2 ?pi .
2100
+ # } => {
2101
+ # _:b11 :t 2 .
2102
+ # _:b11 :pi ?pi .
2103
+ # :MC1 :metrics _:b11 .
2104
+ # } .
2105
+ # with substitution (on rule variables):
2106
+ # ?pi = _:sk_1
2107
+ # Therefore the derived triple above is entailed by the rules and facts.
2108
+ # ----------------------------------------------------------------------
2109
+
2110
+ :MC1 :metrics _:sk_6 .
2111
+
2112
+ # ----------------------------------------------------------------------
2113
+ # Proof for derived triple:
2114
+ # _:sk_7 :t 3 .
2115
+ # It holds because the following instance of the rule body is provable:
2116
+ # :MC1 :pi3 _:sk_2 .
2117
+ # via the schematic forward rule:
2118
+ # {
2119
+ # :MC1 :pi3 ?pi .
2120
+ # } => {
2121
+ # _:b12 :t 3 .
2122
+ # _:b12 :pi ?pi .
2123
+ # :MC1 :metrics _:b12 .
2124
+ # } .
2125
+ # with substitution (on rule variables):
2126
+ # ?pi = _:sk_2
2127
+ # Therefore the derived triple above is entailed by the rules and facts.
2128
+ # ----------------------------------------------------------------------
2129
+
2130
+ _:sk_7 :t 3 .
2131
+
2132
+ # ----------------------------------------------------------------------
2133
+ # Proof for derived triple:
2134
+ # _:sk_7 :pi _:sk_2 .
2135
+ # It holds because the following instance of the rule body is provable:
2136
+ # :MC1 :pi3 _:sk_2 .
2137
+ # via the schematic forward rule:
2138
+ # {
2139
+ # :MC1 :pi3 ?pi .
2140
+ # } => {
2141
+ # _:b12 :t 3 .
2142
+ # _:b12 :pi ?pi .
2143
+ # :MC1 :metrics _:b12 .
2144
+ # } .
2145
+ # with substitution (on rule variables):
2146
+ # ?pi = _:sk_2
2147
+ # Therefore the derived triple above is entailed by the rules and facts.
2148
+ # ----------------------------------------------------------------------
2149
+
2150
+ _:sk_7 :pi _:sk_2 .
2151
+
2152
+ # ----------------------------------------------------------------------
2153
+ # Proof for derived triple:
2154
+ # :MC1 :metrics _:sk_7 .
2155
+ # It holds because the following instance of the rule body is provable:
2156
+ # :MC1 :pi3 _:sk_2 .
2157
+ # via the schematic forward rule:
2158
+ # {
2159
+ # :MC1 :pi3 ?pi .
2160
+ # } => {
2161
+ # _:b12 :t 3 .
2162
+ # _:b12 :pi ?pi .
2163
+ # :MC1 :metrics _:b12 .
2164
+ # } .
2165
+ # with substitution (on rule variables):
2166
+ # ?pi = _:sk_2
2167
+ # Therefore the derived triple above is entailed by the rules and facts.
2168
+ # ----------------------------------------------------------------------
2169
+
2170
+ :MC1 :metrics _:sk_7 .
2171
+
2172
+ # ----------------------------------------------------------------------
2173
+ # Proof for derived triple:
2174
+ # _:sk_7 :sumSq 0.3780958503125001 .
2175
+ # It holds because the following instance of the rule body is provable:
2176
+ # :MC1 :metrics _:sk_7 .
2177
+ # _:sk_7 :pi _:sk_2 .
2178
+ # _:sk_2 :pA 0.4711125000000001 .
2179
+ # _:sk_2 :pB 0.3546875 .
2180
+ # _:sk_2 :pC 0.17420000000000002 .
2181
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
2182
+ # (0.4711125000000001 2.0) math:exponentiation 0.2219469876562501 .
2183
+ # (0.3546875 2.0) math:exponentiation 0.12580322265625 .
2184
+ # (0.17420000000000002 2.0) math:exponentiation 0.030345640000000007 .
2185
+ # (0.2219469876562501 0.12580322265625) math:sum 0.3477502103125001 .
2186
+ # (0.3477502103125001 0.030345640000000007) math:sum 0.3780958503125001 .
2187
+ # (1.0 0.3780958503125001) math:difference 0.6219041496875 .
2188
+ # (1.0 0.3780958503125001) math:quotient 2.644831989490204 .
2189
+ # (0.4711125000000001 0.3333333333333333) math:difference 0.13777916666666679 .
2190
+ # 0.13777916666666679 math:absoluteValue 0.13777916666666679 .
2191
+ # (0.3546875 0.3333333333333333) math:difference 0.021354166666666674 .
2192
+ # 0.021354166666666674 math:absoluteValue 0.021354166666666674 .
2193
+ # (0.17420000000000002 0.3333333333333333) math:difference -0.1591333333333333 .
2194
+ # -0.1591333333333333 math:absoluteValue 0.1591333333333333 .
2195
+ # (0.13777916666666679 0.021354166666666674) math:sum 0.15913333333333346 .
2196
+ # (0.15913333333333346 0.1591333333333333) math:sum 0.31826666666666675 .
2197
+ # (0.5 0.31826666666666675) math:product 0.15913333333333338 .
2198
+ # (0.13777916666666679 2.0) math:exponentiation 0.018983098767361144 .
2199
+ # (0.021354166666666674 2.0) math:exponentiation 0.0004560004340277781 .
2200
+ # (-0.1591333333333333 2.0) math:exponentiation 0.025323417777777767 .
2201
+ # (0.018983098767361144 0.0004560004340277781) math:sum 0.01943909920138892 .
2202
+ # (0.01943909920138892 0.025323417777777767) math:sum 0.04476251697916669 .
2203
+ # (0.04476251697916669 0.5) math:exponentiation 0.2115715410426617 .
2204
+ # via the schematic forward rule:
2205
+ # {
2206
+ # :MC1 :metrics ?m .
2207
+ # ?m :pi ?pi .
2208
+ # ?pi :pA ?a .
2209
+ # ?pi :pB ?b .
2210
+ # ?pi :pC ?c .
2211
+ # (1.0 3.0) math:quotient ?u .
2212
+ # (?a 2.0) math:exponentiation ?a2 .
2213
+ # (?b 2.0) math:exponentiation ?b2 .
2214
+ # (?c 2.0) math:exponentiation ?c2 .
2215
+ # (?a2 ?b2) math:sum ?ab2 .
2216
+ # (?ab2 ?c2) math:sum ?sumSq .
2217
+ # (1.0 ?sumSq) math:difference ?gini .
2218
+ # (1.0 ?sumSq) math:quotient ?effN .
2219
+ # (?a ?u) math:difference ?da .
2220
+ # ?da math:absoluteValue ?ada .
2221
+ # (?b ?u) math:difference ?db .
2222
+ # ?db math:absoluteValue ?adb .
2223
+ # (?c ?u) math:difference ?dc .
2224
+ # ?dc math:absoluteValue ?adc .
2225
+ # (?ada ?adb) math:sum ?s1 .
2226
+ # (?s1 ?adc) math:sum ?sAbs .
2227
+ # (0.5 ?sAbs) math:product ?tv .
2228
+ # (?da 2.0) math:exponentiation ?da2 .
2229
+ # (?db 2.0) math:exponentiation ?db2 .
2230
+ # (?dc 2.0) math:exponentiation ?dc2 .
2231
+ # (?da2 ?db2) math:sum ?s2 .
2232
+ # (?s2 ?dc2) math:sum ?s3 .
2233
+ # (?s3 0.5) math:exponentiation ?l2 .
2234
+ # } => {
2235
+ # ?m :sumSq ?sumSq .
2236
+ # ?m :gini ?gini .
2237
+ # ?m :effectiveStates ?effN .
2238
+ # ?m :tvToUniform ?tv .
2239
+ # ?m :l2ToUniform ?l2 .
2240
+ # } .
2241
+ # with substitution (on rule variables):
2242
+ # ?a = 0.4711125000000001
2243
+ # ?a2 = 0.2219469876562501
2244
+ # ?ab2 = 0.3477502103125001
2245
+ # ?ada = 0.13777916666666679
2246
+ # ?adb = 0.021354166666666674
2247
+ # ?adc = 0.1591333333333333
2248
+ # ?b = 0.3546875
2249
+ # ?b2 = 0.12580322265625
2250
+ # ?c = 0.17420000000000002
2251
+ # ?c2 = 0.030345640000000007
2252
+ # ?da = 0.13777916666666679
2253
+ # ?da2 = 0.018983098767361144
2254
+ # ?db = 0.021354166666666674
2255
+ # ?db2 = 0.0004560004340277781
2256
+ # ?dc = -0.1591333333333333
2257
+ # ?dc2 = 0.025323417777777767
2258
+ # ?effN = 2.644831989490204
2259
+ # ?gini = 0.6219041496875
2260
+ # ?l2 = 0.2115715410426617
2261
+ # ?m = _:sk_7
2262
+ # ?pi = _:sk_2
2263
+ # ?s1 = 0.15913333333333346
2264
+ # ?s2 = 0.01943909920138892
2265
+ # ?s3 = 0.04476251697916669
2266
+ # ?sAbs = 0.31826666666666675
2267
+ # ?sumSq = 0.3780958503125001
2268
+ # ?tv = 0.15913333333333338
2269
+ # ?u = 0.3333333333333333
2270
+ # Therefore the derived triple above is entailed by the rules and facts.
2271
+ # ----------------------------------------------------------------------
2272
+
2273
+ _:sk_7 :sumSq 0.3780958503125001 .
2274
+
2275
+ # ----------------------------------------------------------------------
2276
+ # Proof for derived triple:
2277
+ # _:sk_7 :gini 0.6219041496875 .
2278
+ # It holds because the following instance of the rule body is provable:
2279
+ # :MC1 :metrics _:sk_7 .
2280
+ # _:sk_7 :pi _:sk_2 .
2281
+ # _:sk_2 :pA 0.4711125000000001 .
2282
+ # _:sk_2 :pB 0.3546875 .
2283
+ # _:sk_2 :pC 0.17420000000000002 .
2284
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
2285
+ # (0.4711125000000001 2.0) math:exponentiation 0.2219469876562501 .
2286
+ # (0.3546875 2.0) math:exponentiation 0.12580322265625 .
2287
+ # (0.17420000000000002 2.0) math:exponentiation 0.030345640000000007 .
2288
+ # (0.2219469876562501 0.12580322265625) math:sum 0.3477502103125001 .
2289
+ # (0.3477502103125001 0.030345640000000007) math:sum 0.3780958503125001 .
2290
+ # (1.0 0.3780958503125001) math:difference 0.6219041496875 .
2291
+ # (1.0 0.3780958503125001) math:quotient 2.644831989490204 .
2292
+ # (0.4711125000000001 0.3333333333333333) math:difference 0.13777916666666679 .
2293
+ # 0.13777916666666679 math:absoluteValue 0.13777916666666679 .
2294
+ # (0.3546875 0.3333333333333333) math:difference 0.021354166666666674 .
2295
+ # 0.021354166666666674 math:absoluteValue 0.021354166666666674 .
2296
+ # (0.17420000000000002 0.3333333333333333) math:difference -0.1591333333333333 .
2297
+ # -0.1591333333333333 math:absoluteValue 0.1591333333333333 .
2298
+ # (0.13777916666666679 0.021354166666666674) math:sum 0.15913333333333346 .
2299
+ # (0.15913333333333346 0.1591333333333333) math:sum 0.31826666666666675 .
2300
+ # (0.5 0.31826666666666675) math:product 0.15913333333333338 .
2301
+ # (0.13777916666666679 2.0) math:exponentiation 0.018983098767361144 .
2302
+ # (0.021354166666666674 2.0) math:exponentiation 0.0004560004340277781 .
2303
+ # (-0.1591333333333333 2.0) math:exponentiation 0.025323417777777767 .
2304
+ # (0.018983098767361144 0.0004560004340277781) math:sum 0.01943909920138892 .
2305
+ # (0.01943909920138892 0.025323417777777767) math:sum 0.04476251697916669 .
2306
+ # (0.04476251697916669 0.5) math:exponentiation 0.2115715410426617 .
2307
+ # via the schematic forward rule:
2308
+ # {
2309
+ # :MC1 :metrics ?m .
2310
+ # ?m :pi ?pi .
2311
+ # ?pi :pA ?a .
2312
+ # ?pi :pB ?b .
2313
+ # ?pi :pC ?c .
2314
+ # (1.0 3.0) math:quotient ?u .
2315
+ # (?a 2.0) math:exponentiation ?a2 .
2316
+ # (?b 2.0) math:exponentiation ?b2 .
2317
+ # (?c 2.0) math:exponentiation ?c2 .
2318
+ # (?a2 ?b2) math:sum ?ab2 .
2319
+ # (?ab2 ?c2) math:sum ?sumSq .
2320
+ # (1.0 ?sumSq) math:difference ?gini .
2321
+ # (1.0 ?sumSq) math:quotient ?effN .
2322
+ # (?a ?u) math:difference ?da .
2323
+ # ?da math:absoluteValue ?ada .
2324
+ # (?b ?u) math:difference ?db .
2325
+ # ?db math:absoluteValue ?adb .
2326
+ # (?c ?u) math:difference ?dc .
2327
+ # ?dc math:absoluteValue ?adc .
2328
+ # (?ada ?adb) math:sum ?s1 .
2329
+ # (?s1 ?adc) math:sum ?sAbs .
2330
+ # (0.5 ?sAbs) math:product ?tv .
2331
+ # (?da 2.0) math:exponentiation ?da2 .
2332
+ # (?db 2.0) math:exponentiation ?db2 .
2333
+ # (?dc 2.0) math:exponentiation ?dc2 .
2334
+ # (?da2 ?db2) math:sum ?s2 .
2335
+ # (?s2 ?dc2) math:sum ?s3 .
2336
+ # (?s3 0.5) math:exponentiation ?l2 .
2337
+ # } => {
2338
+ # ?m :sumSq ?sumSq .
2339
+ # ?m :gini ?gini .
2340
+ # ?m :effectiveStates ?effN .
2341
+ # ?m :tvToUniform ?tv .
2342
+ # ?m :l2ToUniform ?l2 .
2343
+ # } .
2344
+ # with substitution (on rule variables):
2345
+ # ?a = 0.4711125000000001
2346
+ # ?a2 = 0.2219469876562501
2347
+ # ?ab2 = 0.3477502103125001
2348
+ # ?ada = 0.13777916666666679
2349
+ # ?adb = 0.021354166666666674
2350
+ # ?adc = 0.1591333333333333
2351
+ # ?b = 0.3546875
2352
+ # ?b2 = 0.12580322265625
2353
+ # ?c = 0.17420000000000002
2354
+ # ?c2 = 0.030345640000000007
2355
+ # ?da = 0.13777916666666679
2356
+ # ?da2 = 0.018983098767361144
2357
+ # ?db = 0.021354166666666674
2358
+ # ?db2 = 0.0004560004340277781
2359
+ # ?dc = -0.1591333333333333
2360
+ # ?dc2 = 0.025323417777777767
2361
+ # ?effN = 2.644831989490204
2362
+ # ?gini = 0.6219041496875
2363
+ # ?l2 = 0.2115715410426617
2364
+ # ?m = _:sk_7
2365
+ # ?pi = _:sk_2
2366
+ # ?s1 = 0.15913333333333346
2367
+ # ?s2 = 0.01943909920138892
2368
+ # ?s3 = 0.04476251697916669
2369
+ # ?sAbs = 0.31826666666666675
2370
+ # ?sumSq = 0.3780958503125001
2371
+ # ?tv = 0.15913333333333338
2372
+ # ?u = 0.3333333333333333
2373
+ # Therefore the derived triple above is entailed by the rules and facts.
2374
+ # ----------------------------------------------------------------------
2375
+
2376
+ _:sk_7 :gini 0.6219041496875 .
2377
+
2378
+ # ----------------------------------------------------------------------
2379
+ # Proof for derived triple:
2380
+ # _:sk_7 :effectiveStates 2.644831989490204 .
2381
+ # It holds because the following instance of the rule body is provable:
2382
+ # :MC1 :metrics _:sk_7 .
2383
+ # _:sk_7 :pi _:sk_2 .
2384
+ # _:sk_2 :pA 0.4711125000000001 .
2385
+ # _:sk_2 :pB 0.3546875 .
2386
+ # _:sk_2 :pC 0.17420000000000002 .
2387
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
2388
+ # (0.4711125000000001 2.0) math:exponentiation 0.2219469876562501 .
2389
+ # (0.3546875 2.0) math:exponentiation 0.12580322265625 .
2390
+ # (0.17420000000000002 2.0) math:exponentiation 0.030345640000000007 .
2391
+ # (0.2219469876562501 0.12580322265625) math:sum 0.3477502103125001 .
2392
+ # (0.3477502103125001 0.030345640000000007) math:sum 0.3780958503125001 .
2393
+ # (1.0 0.3780958503125001) math:difference 0.6219041496875 .
2394
+ # (1.0 0.3780958503125001) math:quotient 2.644831989490204 .
2395
+ # (0.4711125000000001 0.3333333333333333) math:difference 0.13777916666666679 .
2396
+ # 0.13777916666666679 math:absoluteValue 0.13777916666666679 .
2397
+ # (0.3546875 0.3333333333333333) math:difference 0.021354166666666674 .
2398
+ # 0.021354166666666674 math:absoluteValue 0.021354166666666674 .
2399
+ # (0.17420000000000002 0.3333333333333333) math:difference -0.1591333333333333 .
2400
+ # -0.1591333333333333 math:absoluteValue 0.1591333333333333 .
2401
+ # (0.13777916666666679 0.021354166666666674) math:sum 0.15913333333333346 .
2402
+ # (0.15913333333333346 0.1591333333333333) math:sum 0.31826666666666675 .
2403
+ # (0.5 0.31826666666666675) math:product 0.15913333333333338 .
2404
+ # (0.13777916666666679 2.0) math:exponentiation 0.018983098767361144 .
2405
+ # (0.021354166666666674 2.0) math:exponentiation 0.0004560004340277781 .
2406
+ # (-0.1591333333333333 2.0) math:exponentiation 0.025323417777777767 .
2407
+ # (0.018983098767361144 0.0004560004340277781) math:sum 0.01943909920138892 .
2408
+ # (0.01943909920138892 0.025323417777777767) math:sum 0.04476251697916669 .
2409
+ # (0.04476251697916669 0.5) math:exponentiation 0.2115715410426617 .
2410
+ # via the schematic forward rule:
2411
+ # {
2412
+ # :MC1 :metrics ?m .
2413
+ # ?m :pi ?pi .
2414
+ # ?pi :pA ?a .
2415
+ # ?pi :pB ?b .
2416
+ # ?pi :pC ?c .
2417
+ # (1.0 3.0) math:quotient ?u .
2418
+ # (?a 2.0) math:exponentiation ?a2 .
2419
+ # (?b 2.0) math:exponentiation ?b2 .
2420
+ # (?c 2.0) math:exponentiation ?c2 .
2421
+ # (?a2 ?b2) math:sum ?ab2 .
2422
+ # (?ab2 ?c2) math:sum ?sumSq .
2423
+ # (1.0 ?sumSq) math:difference ?gini .
2424
+ # (1.0 ?sumSq) math:quotient ?effN .
2425
+ # (?a ?u) math:difference ?da .
2426
+ # ?da math:absoluteValue ?ada .
2427
+ # (?b ?u) math:difference ?db .
2428
+ # ?db math:absoluteValue ?adb .
2429
+ # (?c ?u) math:difference ?dc .
2430
+ # ?dc math:absoluteValue ?adc .
2431
+ # (?ada ?adb) math:sum ?s1 .
2432
+ # (?s1 ?adc) math:sum ?sAbs .
2433
+ # (0.5 ?sAbs) math:product ?tv .
2434
+ # (?da 2.0) math:exponentiation ?da2 .
2435
+ # (?db 2.0) math:exponentiation ?db2 .
2436
+ # (?dc 2.0) math:exponentiation ?dc2 .
2437
+ # (?da2 ?db2) math:sum ?s2 .
2438
+ # (?s2 ?dc2) math:sum ?s3 .
2439
+ # (?s3 0.5) math:exponentiation ?l2 .
2440
+ # } => {
2441
+ # ?m :sumSq ?sumSq .
2442
+ # ?m :gini ?gini .
2443
+ # ?m :effectiveStates ?effN .
2444
+ # ?m :tvToUniform ?tv .
2445
+ # ?m :l2ToUniform ?l2 .
2446
+ # } .
2447
+ # with substitution (on rule variables):
2448
+ # ?a = 0.4711125000000001
2449
+ # ?a2 = 0.2219469876562501
2450
+ # ?ab2 = 0.3477502103125001
2451
+ # ?ada = 0.13777916666666679
2452
+ # ?adb = 0.021354166666666674
2453
+ # ?adc = 0.1591333333333333
2454
+ # ?b = 0.3546875
2455
+ # ?b2 = 0.12580322265625
2456
+ # ?c = 0.17420000000000002
2457
+ # ?c2 = 0.030345640000000007
2458
+ # ?da = 0.13777916666666679
2459
+ # ?da2 = 0.018983098767361144
2460
+ # ?db = 0.021354166666666674
2461
+ # ?db2 = 0.0004560004340277781
2462
+ # ?dc = -0.1591333333333333
2463
+ # ?dc2 = 0.025323417777777767
2464
+ # ?effN = 2.644831989490204
2465
+ # ?gini = 0.6219041496875
2466
+ # ?l2 = 0.2115715410426617
2467
+ # ?m = _:sk_7
2468
+ # ?pi = _:sk_2
2469
+ # ?s1 = 0.15913333333333346
2470
+ # ?s2 = 0.01943909920138892
2471
+ # ?s3 = 0.04476251697916669
2472
+ # ?sAbs = 0.31826666666666675
2473
+ # ?sumSq = 0.3780958503125001
2474
+ # ?tv = 0.15913333333333338
2475
+ # ?u = 0.3333333333333333
2476
+ # Therefore the derived triple above is entailed by the rules and facts.
2477
+ # ----------------------------------------------------------------------
2478
+
2479
+ _:sk_7 :effectiveStates 2.644831989490204 .
2480
+
2481
+ # ----------------------------------------------------------------------
2482
+ # Proof for derived triple:
2483
+ # _:sk_7 :tvToUniform 0.15913333333333338 .
2484
+ # It holds because the following instance of the rule body is provable:
2485
+ # :MC1 :metrics _:sk_7 .
2486
+ # _:sk_7 :pi _:sk_2 .
2487
+ # _:sk_2 :pA 0.4711125000000001 .
2488
+ # _:sk_2 :pB 0.3546875 .
2489
+ # _:sk_2 :pC 0.17420000000000002 .
2490
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
2491
+ # (0.4711125000000001 2.0) math:exponentiation 0.2219469876562501 .
2492
+ # (0.3546875 2.0) math:exponentiation 0.12580322265625 .
2493
+ # (0.17420000000000002 2.0) math:exponentiation 0.030345640000000007 .
2494
+ # (0.2219469876562501 0.12580322265625) math:sum 0.3477502103125001 .
2495
+ # (0.3477502103125001 0.030345640000000007) math:sum 0.3780958503125001 .
2496
+ # (1.0 0.3780958503125001) math:difference 0.6219041496875 .
2497
+ # (1.0 0.3780958503125001) math:quotient 2.644831989490204 .
2498
+ # (0.4711125000000001 0.3333333333333333) math:difference 0.13777916666666679 .
2499
+ # 0.13777916666666679 math:absoluteValue 0.13777916666666679 .
2500
+ # (0.3546875 0.3333333333333333) math:difference 0.021354166666666674 .
2501
+ # 0.021354166666666674 math:absoluteValue 0.021354166666666674 .
2502
+ # (0.17420000000000002 0.3333333333333333) math:difference -0.1591333333333333 .
2503
+ # -0.1591333333333333 math:absoluteValue 0.1591333333333333 .
2504
+ # (0.13777916666666679 0.021354166666666674) math:sum 0.15913333333333346 .
2505
+ # (0.15913333333333346 0.1591333333333333) math:sum 0.31826666666666675 .
2506
+ # (0.5 0.31826666666666675) math:product 0.15913333333333338 .
2507
+ # (0.13777916666666679 2.0) math:exponentiation 0.018983098767361144 .
2508
+ # (0.021354166666666674 2.0) math:exponentiation 0.0004560004340277781 .
2509
+ # (-0.1591333333333333 2.0) math:exponentiation 0.025323417777777767 .
2510
+ # (0.018983098767361144 0.0004560004340277781) math:sum 0.01943909920138892 .
2511
+ # (0.01943909920138892 0.025323417777777767) math:sum 0.04476251697916669 .
2512
+ # (0.04476251697916669 0.5) math:exponentiation 0.2115715410426617 .
2513
+ # via the schematic forward rule:
2514
+ # {
2515
+ # :MC1 :metrics ?m .
2516
+ # ?m :pi ?pi .
2517
+ # ?pi :pA ?a .
2518
+ # ?pi :pB ?b .
2519
+ # ?pi :pC ?c .
2520
+ # (1.0 3.0) math:quotient ?u .
2521
+ # (?a 2.0) math:exponentiation ?a2 .
2522
+ # (?b 2.0) math:exponentiation ?b2 .
2523
+ # (?c 2.0) math:exponentiation ?c2 .
2524
+ # (?a2 ?b2) math:sum ?ab2 .
2525
+ # (?ab2 ?c2) math:sum ?sumSq .
2526
+ # (1.0 ?sumSq) math:difference ?gini .
2527
+ # (1.0 ?sumSq) math:quotient ?effN .
2528
+ # (?a ?u) math:difference ?da .
2529
+ # ?da math:absoluteValue ?ada .
2530
+ # (?b ?u) math:difference ?db .
2531
+ # ?db math:absoluteValue ?adb .
2532
+ # (?c ?u) math:difference ?dc .
2533
+ # ?dc math:absoluteValue ?adc .
2534
+ # (?ada ?adb) math:sum ?s1 .
2535
+ # (?s1 ?adc) math:sum ?sAbs .
2536
+ # (0.5 ?sAbs) math:product ?tv .
2537
+ # (?da 2.0) math:exponentiation ?da2 .
2538
+ # (?db 2.0) math:exponentiation ?db2 .
2539
+ # (?dc 2.0) math:exponentiation ?dc2 .
2540
+ # (?da2 ?db2) math:sum ?s2 .
2541
+ # (?s2 ?dc2) math:sum ?s3 .
2542
+ # (?s3 0.5) math:exponentiation ?l2 .
2543
+ # } => {
2544
+ # ?m :sumSq ?sumSq .
2545
+ # ?m :gini ?gini .
2546
+ # ?m :effectiveStates ?effN .
2547
+ # ?m :tvToUniform ?tv .
2548
+ # ?m :l2ToUniform ?l2 .
2549
+ # } .
2550
+ # with substitution (on rule variables):
2551
+ # ?a = 0.4711125000000001
2552
+ # ?a2 = 0.2219469876562501
2553
+ # ?ab2 = 0.3477502103125001
2554
+ # ?ada = 0.13777916666666679
2555
+ # ?adb = 0.021354166666666674
2556
+ # ?adc = 0.1591333333333333
2557
+ # ?b = 0.3546875
2558
+ # ?b2 = 0.12580322265625
2559
+ # ?c = 0.17420000000000002
2560
+ # ?c2 = 0.030345640000000007
2561
+ # ?da = 0.13777916666666679
2562
+ # ?da2 = 0.018983098767361144
2563
+ # ?db = 0.021354166666666674
2564
+ # ?db2 = 0.0004560004340277781
2565
+ # ?dc = -0.1591333333333333
2566
+ # ?dc2 = 0.025323417777777767
2567
+ # ?effN = 2.644831989490204
2568
+ # ?gini = 0.6219041496875
2569
+ # ?l2 = 0.2115715410426617
2570
+ # ?m = _:sk_7
2571
+ # ?pi = _:sk_2
2572
+ # ?s1 = 0.15913333333333346
2573
+ # ?s2 = 0.01943909920138892
2574
+ # ?s3 = 0.04476251697916669
2575
+ # ?sAbs = 0.31826666666666675
2576
+ # ?sumSq = 0.3780958503125001
2577
+ # ?tv = 0.15913333333333338
2578
+ # ?u = 0.3333333333333333
2579
+ # Therefore the derived triple above is entailed by the rules and facts.
2580
+ # ----------------------------------------------------------------------
2581
+
2582
+ _:sk_7 :tvToUniform 0.15913333333333338 .
2583
+
2584
+ # ----------------------------------------------------------------------
2585
+ # Proof for derived triple:
2586
+ # _:sk_7 :l2ToUniform 0.2115715410426617 .
2587
+ # It holds because the following instance of the rule body is provable:
2588
+ # :MC1 :metrics _:sk_7 .
2589
+ # _:sk_7 :pi _:sk_2 .
2590
+ # _:sk_2 :pA 0.4711125000000001 .
2591
+ # _:sk_2 :pB 0.3546875 .
2592
+ # _:sk_2 :pC 0.17420000000000002 .
2593
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
2594
+ # (0.4711125000000001 2.0) math:exponentiation 0.2219469876562501 .
2595
+ # (0.3546875 2.0) math:exponentiation 0.12580322265625 .
2596
+ # (0.17420000000000002 2.0) math:exponentiation 0.030345640000000007 .
2597
+ # (0.2219469876562501 0.12580322265625) math:sum 0.3477502103125001 .
2598
+ # (0.3477502103125001 0.030345640000000007) math:sum 0.3780958503125001 .
2599
+ # (1.0 0.3780958503125001) math:difference 0.6219041496875 .
2600
+ # (1.0 0.3780958503125001) math:quotient 2.644831989490204 .
2601
+ # (0.4711125000000001 0.3333333333333333) math:difference 0.13777916666666679 .
2602
+ # 0.13777916666666679 math:absoluteValue 0.13777916666666679 .
2603
+ # (0.3546875 0.3333333333333333) math:difference 0.021354166666666674 .
2604
+ # 0.021354166666666674 math:absoluteValue 0.021354166666666674 .
2605
+ # (0.17420000000000002 0.3333333333333333) math:difference -0.1591333333333333 .
2606
+ # -0.1591333333333333 math:absoluteValue 0.1591333333333333 .
2607
+ # (0.13777916666666679 0.021354166666666674) math:sum 0.15913333333333346 .
2608
+ # (0.15913333333333346 0.1591333333333333) math:sum 0.31826666666666675 .
2609
+ # (0.5 0.31826666666666675) math:product 0.15913333333333338 .
2610
+ # (0.13777916666666679 2.0) math:exponentiation 0.018983098767361144 .
2611
+ # (0.021354166666666674 2.0) math:exponentiation 0.0004560004340277781 .
2612
+ # (-0.1591333333333333 2.0) math:exponentiation 0.025323417777777767 .
2613
+ # (0.018983098767361144 0.0004560004340277781) math:sum 0.01943909920138892 .
2614
+ # (0.01943909920138892 0.025323417777777767) math:sum 0.04476251697916669 .
2615
+ # (0.04476251697916669 0.5) math:exponentiation 0.2115715410426617 .
2616
+ # via the schematic forward rule:
2617
+ # {
2618
+ # :MC1 :metrics ?m .
2619
+ # ?m :pi ?pi .
2620
+ # ?pi :pA ?a .
2621
+ # ?pi :pB ?b .
2622
+ # ?pi :pC ?c .
2623
+ # (1.0 3.0) math:quotient ?u .
2624
+ # (?a 2.0) math:exponentiation ?a2 .
2625
+ # (?b 2.0) math:exponentiation ?b2 .
2626
+ # (?c 2.0) math:exponentiation ?c2 .
2627
+ # (?a2 ?b2) math:sum ?ab2 .
2628
+ # (?ab2 ?c2) math:sum ?sumSq .
2629
+ # (1.0 ?sumSq) math:difference ?gini .
2630
+ # (1.0 ?sumSq) math:quotient ?effN .
2631
+ # (?a ?u) math:difference ?da .
2632
+ # ?da math:absoluteValue ?ada .
2633
+ # (?b ?u) math:difference ?db .
2634
+ # ?db math:absoluteValue ?adb .
2635
+ # (?c ?u) math:difference ?dc .
2636
+ # ?dc math:absoluteValue ?adc .
2637
+ # (?ada ?adb) math:sum ?s1 .
2638
+ # (?s1 ?adc) math:sum ?sAbs .
2639
+ # (0.5 ?sAbs) math:product ?tv .
2640
+ # (?da 2.0) math:exponentiation ?da2 .
2641
+ # (?db 2.0) math:exponentiation ?db2 .
2642
+ # (?dc 2.0) math:exponentiation ?dc2 .
2643
+ # (?da2 ?db2) math:sum ?s2 .
2644
+ # (?s2 ?dc2) math:sum ?s3 .
2645
+ # (?s3 0.5) math:exponentiation ?l2 .
2646
+ # } => {
2647
+ # ?m :sumSq ?sumSq .
2648
+ # ?m :gini ?gini .
2649
+ # ?m :effectiveStates ?effN .
2650
+ # ?m :tvToUniform ?tv .
2651
+ # ?m :l2ToUniform ?l2 .
2652
+ # } .
2653
+ # with substitution (on rule variables):
2654
+ # ?a = 0.4711125000000001
2655
+ # ?a2 = 0.2219469876562501
2656
+ # ?ab2 = 0.3477502103125001
2657
+ # ?ada = 0.13777916666666679
2658
+ # ?adb = 0.021354166666666674
2659
+ # ?adc = 0.1591333333333333
2660
+ # ?b = 0.3546875
2661
+ # ?b2 = 0.12580322265625
2662
+ # ?c = 0.17420000000000002
2663
+ # ?c2 = 0.030345640000000007
2664
+ # ?da = 0.13777916666666679
2665
+ # ?da2 = 0.018983098767361144
2666
+ # ?db = 0.021354166666666674
2667
+ # ?db2 = 0.0004560004340277781
2668
+ # ?dc = -0.1591333333333333
2669
+ # ?dc2 = 0.025323417777777767
2670
+ # ?effN = 2.644831989490204
2671
+ # ?gini = 0.6219041496875
2672
+ # ?l2 = 0.2115715410426617
2673
+ # ?m = _:sk_7
2674
+ # ?pi = _:sk_2
2675
+ # ?s1 = 0.15913333333333346
2676
+ # ?s2 = 0.01943909920138892
2677
+ # ?s3 = 0.04476251697916669
2678
+ # ?sAbs = 0.31826666666666675
2679
+ # ?sumSq = 0.3780958503125001
2680
+ # ?tv = 0.15913333333333338
2681
+ # ?u = 0.3333333333333333
2682
+ # Therefore the derived triple above is entailed by the rules and facts.
2683
+ # ----------------------------------------------------------------------
2684
+
2685
+ _:sk_7 :l2ToUniform 0.2115715410426617 .
2686
+
2687
+ # ----------------------------------------------------------------------
2688
+ # Proof for derived triple:
2689
+ # _:sk_6 :sumSq 0.3891608750000001 .
2690
+ # It holds because the following instance of the rule body is provable:
2691
+ # :MC1 :metrics _:sk_6 .
2692
+ # _:sk_6 :pi _:sk_1 .
2693
+ # _:sk_1 :pA 0.49550000000000005 .
2694
+ # _:sk_1 :pB 0.34275 .
2695
+ # _:sk_1 :pC 0.16175 .
2696
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
2697
+ # (0.49550000000000005 2.0) math:exponentiation 0.24552025000000005 .
2698
+ # (0.34275 2.0) math:exponentiation 0.1174775625 .
2699
+ # (0.16175 2.0) math:exponentiation 0.0261630625 .
2700
+ # (0.24552025000000005 0.1174775625) math:sum 0.36299781250000007 .
2701
+ # (0.36299781250000007 0.0261630625) math:sum 0.3891608750000001 .
2702
+ # (1.0 0.3891608750000001) math:difference 0.6108391249999999 .
2703
+ # (1.0 0.3891608750000001) math:quotient 2.569631389589202 .
2704
+ # (0.49550000000000005 0.3333333333333333) math:difference 0.16216666666666674 .
2705
+ # 0.16216666666666674 math:absoluteValue 0.16216666666666674 .
2706
+ # (0.34275 0.3333333333333333) math:difference 0.009416666666666684 .
2707
+ # 0.009416666666666684 math:absoluteValue 0.009416666666666684 .
2708
+ # (0.16175 0.3333333333333333) math:difference -0.1715833333333333 .
2709
+ # -0.1715833333333333 math:absoluteValue 0.1715833333333333 .
2710
+ # (0.16216666666666674 0.009416666666666684) math:sum 0.17158333333333342 .
2711
+ # (0.17158333333333342 0.1715833333333333) math:sum 0.34316666666666673 .
2712
+ # (0.5 0.34316666666666673) math:product 0.17158333333333337 .
2713
+ # (0.16216666666666674 2.0) math:exponentiation 0.026298027777777802 .
2714
+ # (0.009416666666666684 2.0) math:exponentiation 0.00008867361111111145 .
2715
+ # (-0.1715833333333333 2.0) math:exponentiation 0.02944084027777777 .
2716
+ # (0.026298027777777802 0.00008867361111111145) math:sum 0.026386701388888913 .
2717
+ # (0.026386701388888913 0.02944084027777777) math:sum 0.05582754166666668 .
2718
+ # (0.05582754166666668 0.5) math:exponentiation 0.23627852561472165 .
2719
+ # via the schematic forward rule:
2720
+ # {
2721
+ # :MC1 :metrics ?m .
2722
+ # ?m :pi ?pi .
2723
+ # ?pi :pA ?a .
2724
+ # ?pi :pB ?b .
2725
+ # ?pi :pC ?c .
2726
+ # (1.0 3.0) math:quotient ?u .
2727
+ # (?a 2.0) math:exponentiation ?a2 .
2728
+ # (?b 2.0) math:exponentiation ?b2 .
2729
+ # (?c 2.0) math:exponentiation ?c2 .
2730
+ # (?a2 ?b2) math:sum ?ab2 .
2731
+ # (?ab2 ?c2) math:sum ?sumSq .
2732
+ # (1.0 ?sumSq) math:difference ?gini .
2733
+ # (1.0 ?sumSq) math:quotient ?effN .
2734
+ # (?a ?u) math:difference ?da .
2735
+ # ?da math:absoluteValue ?ada .
2736
+ # (?b ?u) math:difference ?db .
2737
+ # ?db math:absoluteValue ?adb .
2738
+ # (?c ?u) math:difference ?dc .
2739
+ # ?dc math:absoluteValue ?adc .
2740
+ # (?ada ?adb) math:sum ?s1 .
2741
+ # (?s1 ?adc) math:sum ?sAbs .
2742
+ # (0.5 ?sAbs) math:product ?tv .
2743
+ # (?da 2.0) math:exponentiation ?da2 .
2744
+ # (?db 2.0) math:exponentiation ?db2 .
2745
+ # (?dc 2.0) math:exponentiation ?dc2 .
2746
+ # (?da2 ?db2) math:sum ?s2 .
2747
+ # (?s2 ?dc2) math:sum ?s3 .
2748
+ # (?s3 0.5) math:exponentiation ?l2 .
2749
+ # } => {
2750
+ # ?m :sumSq ?sumSq .
2751
+ # ?m :gini ?gini .
2752
+ # ?m :effectiveStates ?effN .
2753
+ # ?m :tvToUniform ?tv .
2754
+ # ?m :l2ToUniform ?l2 .
2755
+ # } .
2756
+ # with substitution (on rule variables):
2757
+ # ?a = 0.49550000000000005
2758
+ # ?a2 = 0.24552025000000005
2759
+ # ?ab2 = 0.36299781250000007
2760
+ # ?ada = 0.16216666666666674
2761
+ # ?adb = 0.009416666666666684
2762
+ # ?adc = 0.1715833333333333
2763
+ # ?b = 0.34275
2764
+ # ?b2 = 0.1174775625
2765
+ # ?c = 0.16175
2766
+ # ?c2 = 0.0261630625
2767
+ # ?da = 0.16216666666666674
2768
+ # ?da2 = 0.026298027777777802
2769
+ # ?db = 0.009416666666666684
2770
+ # ?db2 = 0.00008867361111111145
2771
+ # ?dc = -0.1715833333333333
2772
+ # ?dc2 = 0.02944084027777777
2773
+ # ?effN = 2.569631389589202
2774
+ # ?gini = 0.6108391249999999
2775
+ # ?l2 = 0.23627852561472165
2776
+ # ?m = _:sk_6
2777
+ # ?pi = _:sk_1
2778
+ # ?s1 = 0.17158333333333342
2779
+ # ?s2 = 0.026386701388888913
2780
+ # ?s3 = 0.05582754166666668
2781
+ # ?sAbs = 0.34316666666666673
2782
+ # ?sumSq = 0.3891608750000001
2783
+ # ?tv = 0.17158333333333337
2784
+ # ?u = 0.3333333333333333
2785
+ # Therefore the derived triple above is entailed by the rules and facts.
2786
+ # ----------------------------------------------------------------------
2787
+
2788
+ _:sk_6 :sumSq 0.3891608750000001 .
2789
+
2790
+ # ----------------------------------------------------------------------
2791
+ # Proof for derived triple:
2792
+ # _:sk_6 :gini 0.6108391249999999 .
2793
+ # It holds because the following instance of the rule body is provable:
2794
+ # :MC1 :metrics _:sk_6 .
2795
+ # _:sk_6 :pi _:sk_1 .
2796
+ # _:sk_1 :pA 0.49550000000000005 .
2797
+ # _:sk_1 :pB 0.34275 .
2798
+ # _:sk_1 :pC 0.16175 .
2799
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
2800
+ # (0.49550000000000005 2.0) math:exponentiation 0.24552025000000005 .
2801
+ # (0.34275 2.0) math:exponentiation 0.1174775625 .
2802
+ # (0.16175 2.0) math:exponentiation 0.0261630625 .
2803
+ # (0.24552025000000005 0.1174775625) math:sum 0.36299781250000007 .
2804
+ # (0.36299781250000007 0.0261630625) math:sum 0.3891608750000001 .
2805
+ # (1.0 0.3891608750000001) math:difference 0.6108391249999999 .
2806
+ # (1.0 0.3891608750000001) math:quotient 2.569631389589202 .
2807
+ # (0.49550000000000005 0.3333333333333333) math:difference 0.16216666666666674 .
2808
+ # 0.16216666666666674 math:absoluteValue 0.16216666666666674 .
2809
+ # (0.34275 0.3333333333333333) math:difference 0.009416666666666684 .
2810
+ # 0.009416666666666684 math:absoluteValue 0.009416666666666684 .
2811
+ # (0.16175 0.3333333333333333) math:difference -0.1715833333333333 .
2812
+ # -0.1715833333333333 math:absoluteValue 0.1715833333333333 .
2813
+ # (0.16216666666666674 0.009416666666666684) math:sum 0.17158333333333342 .
2814
+ # (0.17158333333333342 0.1715833333333333) math:sum 0.34316666666666673 .
2815
+ # (0.5 0.34316666666666673) math:product 0.17158333333333337 .
2816
+ # (0.16216666666666674 2.0) math:exponentiation 0.026298027777777802 .
2817
+ # (0.009416666666666684 2.0) math:exponentiation 0.00008867361111111145 .
2818
+ # (-0.1715833333333333 2.0) math:exponentiation 0.02944084027777777 .
2819
+ # (0.026298027777777802 0.00008867361111111145) math:sum 0.026386701388888913 .
2820
+ # (0.026386701388888913 0.02944084027777777) math:sum 0.05582754166666668 .
2821
+ # (0.05582754166666668 0.5) math:exponentiation 0.23627852561472165 .
2822
+ # via the schematic forward rule:
2823
+ # {
2824
+ # :MC1 :metrics ?m .
2825
+ # ?m :pi ?pi .
2826
+ # ?pi :pA ?a .
2827
+ # ?pi :pB ?b .
2828
+ # ?pi :pC ?c .
2829
+ # (1.0 3.0) math:quotient ?u .
2830
+ # (?a 2.0) math:exponentiation ?a2 .
2831
+ # (?b 2.0) math:exponentiation ?b2 .
2832
+ # (?c 2.0) math:exponentiation ?c2 .
2833
+ # (?a2 ?b2) math:sum ?ab2 .
2834
+ # (?ab2 ?c2) math:sum ?sumSq .
2835
+ # (1.0 ?sumSq) math:difference ?gini .
2836
+ # (1.0 ?sumSq) math:quotient ?effN .
2837
+ # (?a ?u) math:difference ?da .
2838
+ # ?da math:absoluteValue ?ada .
2839
+ # (?b ?u) math:difference ?db .
2840
+ # ?db math:absoluteValue ?adb .
2841
+ # (?c ?u) math:difference ?dc .
2842
+ # ?dc math:absoluteValue ?adc .
2843
+ # (?ada ?adb) math:sum ?s1 .
2844
+ # (?s1 ?adc) math:sum ?sAbs .
2845
+ # (0.5 ?sAbs) math:product ?tv .
2846
+ # (?da 2.0) math:exponentiation ?da2 .
2847
+ # (?db 2.0) math:exponentiation ?db2 .
2848
+ # (?dc 2.0) math:exponentiation ?dc2 .
2849
+ # (?da2 ?db2) math:sum ?s2 .
2850
+ # (?s2 ?dc2) math:sum ?s3 .
2851
+ # (?s3 0.5) math:exponentiation ?l2 .
2852
+ # } => {
2853
+ # ?m :sumSq ?sumSq .
2854
+ # ?m :gini ?gini .
2855
+ # ?m :effectiveStates ?effN .
2856
+ # ?m :tvToUniform ?tv .
2857
+ # ?m :l2ToUniform ?l2 .
2858
+ # } .
2859
+ # with substitution (on rule variables):
2860
+ # ?a = 0.49550000000000005
2861
+ # ?a2 = 0.24552025000000005
2862
+ # ?ab2 = 0.36299781250000007
2863
+ # ?ada = 0.16216666666666674
2864
+ # ?adb = 0.009416666666666684
2865
+ # ?adc = 0.1715833333333333
2866
+ # ?b = 0.34275
2867
+ # ?b2 = 0.1174775625
2868
+ # ?c = 0.16175
2869
+ # ?c2 = 0.0261630625
2870
+ # ?da = 0.16216666666666674
2871
+ # ?da2 = 0.026298027777777802
2872
+ # ?db = 0.009416666666666684
2873
+ # ?db2 = 0.00008867361111111145
2874
+ # ?dc = -0.1715833333333333
2875
+ # ?dc2 = 0.02944084027777777
2876
+ # ?effN = 2.569631389589202
2877
+ # ?gini = 0.6108391249999999
2878
+ # ?l2 = 0.23627852561472165
2879
+ # ?m = _:sk_6
2880
+ # ?pi = _:sk_1
2881
+ # ?s1 = 0.17158333333333342
2882
+ # ?s2 = 0.026386701388888913
2883
+ # ?s3 = 0.05582754166666668
2884
+ # ?sAbs = 0.34316666666666673
2885
+ # ?sumSq = 0.3891608750000001
2886
+ # ?tv = 0.17158333333333337
2887
+ # ?u = 0.3333333333333333
2888
+ # Therefore the derived triple above is entailed by the rules and facts.
2889
+ # ----------------------------------------------------------------------
2890
+
2891
+ _:sk_6 :gini 0.6108391249999999 .
2892
+
2893
+ # ----------------------------------------------------------------------
2894
+ # Proof for derived triple:
2895
+ # _:sk_6 :effectiveStates 2.569631389589202 .
2896
+ # It holds because the following instance of the rule body is provable:
2897
+ # :MC1 :metrics _:sk_6 .
2898
+ # _:sk_6 :pi _:sk_1 .
2899
+ # _:sk_1 :pA 0.49550000000000005 .
2900
+ # _:sk_1 :pB 0.34275 .
2901
+ # _:sk_1 :pC 0.16175 .
2902
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
2903
+ # (0.49550000000000005 2.0) math:exponentiation 0.24552025000000005 .
2904
+ # (0.34275 2.0) math:exponentiation 0.1174775625 .
2905
+ # (0.16175 2.0) math:exponentiation 0.0261630625 .
2906
+ # (0.24552025000000005 0.1174775625) math:sum 0.36299781250000007 .
2907
+ # (0.36299781250000007 0.0261630625) math:sum 0.3891608750000001 .
2908
+ # (1.0 0.3891608750000001) math:difference 0.6108391249999999 .
2909
+ # (1.0 0.3891608750000001) math:quotient 2.569631389589202 .
2910
+ # (0.49550000000000005 0.3333333333333333) math:difference 0.16216666666666674 .
2911
+ # 0.16216666666666674 math:absoluteValue 0.16216666666666674 .
2912
+ # (0.34275 0.3333333333333333) math:difference 0.009416666666666684 .
2913
+ # 0.009416666666666684 math:absoluteValue 0.009416666666666684 .
2914
+ # (0.16175 0.3333333333333333) math:difference -0.1715833333333333 .
2915
+ # -0.1715833333333333 math:absoluteValue 0.1715833333333333 .
2916
+ # (0.16216666666666674 0.009416666666666684) math:sum 0.17158333333333342 .
2917
+ # (0.17158333333333342 0.1715833333333333) math:sum 0.34316666666666673 .
2918
+ # (0.5 0.34316666666666673) math:product 0.17158333333333337 .
2919
+ # (0.16216666666666674 2.0) math:exponentiation 0.026298027777777802 .
2920
+ # (0.009416666666666684 2.0) math:exponentiation 0.00008867361111111145 .
2921
+ # (-0.1715833333333333 2.0) math:exponentiation 0.02944084027777777 .
2922
+ # (0.026298027777777802 0.00008867361111111145) math:sum 0.026386701388888913 .
2923
+ # (0.026386701388888913 0.02944084027777777) math:sum 0.05582754166666668 .
2924
+ # (0.05582754166666668 0.5) math:exponentiation 0.23627852561472165 .
2925
+ # via the schematic forward rule:
2926
+ # {
2927
+ # :MC1 :metrics ?m .
2928
+ # ?m :pi ?pi .
2929
+ # ?pi :pA ?a .
2930
+ # ?pi :pB ?b .
2931
+ # ?pi :pC ?c .
2932
+ # (1.0 3.0) math:quotient ?u .
2933
+ # (?a 2.0) math:exponentiation ?a2 .
2934
+ # (?b 2.0) math:exponentiation ?b2 .
2935
+ # (?c 2.0) math:exponentiation ?c2 .
2936
+ # (?a2 ?b2) math:sum ?ab2 .
2937
+ # (?ab2 ?c2) math:sum ?sumSq .
2938
+ # (1.0 ?sumSq) math:difference ?gini .
2939
+ # (1.0 ?sumSq) math:quotient ?effN .
2940
+ # (?a ?u) math:difference ?da .
2941
+ # ?da math:absoluteValue ?ada .
2942
+ # (?b ?u) math:difference ?db .
2943
+ # ?db math:absoluteValue ?adb .
2944
+ # (?c ?u) math:difference ?dc .
2945
+ # ?dc math:absoluteValue ?adc .
2946
+ # (?ada ?adb) math:sum ?s1 .
2947
+ # (?s1 ?adc) math:sum ?sAbs .
2948
+ # (0.5 ?sAbs) math:product ?tv .
2949
+ # (?da 2.0) math:exponentiation ?da2 .
2950
+ # (?db 2.0) math:exponentiation ?db2 .
2951
+ # (?dc 2.0) math:exponentiation ?dc2 .
2952
+ # (?da2 ?db2) math:sum ?s2 .
2953
+ # (?s2 ?dc2) math:sum ?s3 .
2954
+ # (?s3 0.5) math:exponentiation ?l2 .
2955
+ # } => {
2956
+ # ?m :sumSq ?sumSq .
2957
+ # ?m :gini ?gini .
2958
+ # ?m :effectiveStates ?effN .
2959
+ # ?m :tvToUniform ?tv .
2960
+ # ?m :l2ToUniform ?l2 .
2961
+ # } .
2962
+ # with substitution (on rule variables):
2963
+ # ?a = 0.49550000000000005
2964
+ # ?a2 = 0.24552025000000005
2965
+ # ?ab2 = 0.36299781250000007
2966
+ # ?ada = 0.16216666666666674
2967
+ # ?adb = 0.009416666666666684
2968
+ # ?adc = 0.1715833333333333
2969
+ # ?b = 0.34275
2970
+ # ?b2 = 0.1174775625
2971
+ # ?c = 0.16175
2972
+ # ?c2 = 0.0261630625
2973
+ # ?da = 0.16216666666666674
2974
+ # ?da2 = 0.026298027777777802
2975
+ # ?db = 0.009416666666666684
2976
+ # ?db2 = 0.00008867361111111145
2977
+ # ?dc = -0.1715833333333333
2978
+ # ?dc2 = 0.02944084027777777
2979
+ # ?effN = 2.569631389589202
2980
+ # ?gini = 0.6108391249999999
2981
+ # ?l2 = 0.23627852561472165
2982
+ # ?m = _:sk_6
2983
+ # ?pi = _:sk_1
2984
+ # ?s1 = 0.17158333333333342
2985
+ # ?s2 = 0.026386701388888913
2986
+ # ?s3 = 0.05582754166666668
2987
+ # ?sAbs = 0.34316666666666673
2988
+ # ?sumSq = 0.3891608750000001
2989
+ # ?tv = 0.17158333333333337
2990
+ # ?u = 0.3333333333333333
2991
+ # Therefore the derived triple above is entailed by the rules and facts.
2992
+ # ----------------------------------------------------------------------
2993
+
2994
+ _:sk_6 :effectiveStates 2.569631389589202 .
2995
+
2996
+ # ----------------------------------------------------------------------
2997
+ # Proof for derived triple:
2998
+ # _:sk_6 :tvToUniform 0.17158333333333337 .
2999
+ # It holds because the following instance of the rule body is provable:
3000
+ # :MC1 :metrics _:sk_6 .
3001
+ # _:sk_6 :pi _:sk_1 .
3002
+ # _:sk_1 :pA 0.49550000000000005 .
3003
+ # _:sk_1 :pB 0.34275 .
3004
+ # _:sk_1 :pC 0.16175 .
3005
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
3006
+ # (0.49550000000000005 2.0) math:exponentiation 0.24552025000000005 .
3007
+ # (0.34275 2.0) math:exponentiation 0.1174775625 .
3008
+ # (0.16175 2.0) math:exponentiation 0.0261630625 .
3009
+ # (0.24552025000000005 0.1174775625) math:sum 0.36299781250000007 .
3010
+ # (0.36299781250000007 0.0261630625) math:sum 0.3891608750000001 .
3011
+ # (1.0 0.3891608750000001) math:difference 0.6108391249999999 .
3012
+ # (1.0 0.3891608750000001) math:quotient 2.569631389589202 .
3013
+ # (0.49550000000000005 0.3333333333333333) math:difference 0.16216666666666674 .
3014
+ # 0.16216666666666674 math:absoluteValue 0.16216666666666674 .
3015
+ # (0.34275 0.3333333333333333) math:difference 0.009416666666666684 .
3016
+ # 0.009416666666666684 math:absoluteValue 0.009416666666666684 .
3017
+ # (0.16175 0.3333333333333333) math:difference -0.1715833333333333 .
3018
+ # -0.1715833333333333 math:absoluteValue 0.1715833333333333 .
3019
+ # (0.16216666666666674 0.009416666666666684) math:sum 0.17158333333333342 .
3020
+ # (0.17158333333333342 0.1715833333333333) math:sum 0.34316666666666673 .
3021
+ # (0.5 0.34316666666666673) math:product 0.17158333333333337 .
3022
+ # (0.16216666666666674 2.0) math:exponentiation 0.026298027777777802 .
3023
+ # (0.009416666666666684 2.0) math:exponentiation 0.00008867361111111145 .
3024
+ # (-0.1715833333333333 2.0) math:exponentiation 0.02944084027777777 .
3025
+ # (0.026298027777777802 0.00008867361111111145) math:sum 0.026386701388888913 .
3026
+ # (0.026386701388888913 0.02944084027777777) math:sum 0.05582754166666668 .
3027
+ # (0.05582754166666668 0.5) math:exponentiation 0.23627852561472165 .
3028
+ # via the schematic forward rule:
3029
+ # {
3030
+ # :MC1 :metrics ?m .
3031
+ # ?m :pi ?pi .
3032
+ # ?pi :pA ?a .
3033
+ # ?pi :pB ?b .
3034
+ # ?pi :pC ?c .
3035
+ # (1.0 3.0) math:quotient ?u .
3036
+ # (?a 2.0) math:exponentiation ?a2 .
3037
+ # (?b 2.0) math:exponentiation ?b2 .
3038
+ # (?c 2.0) math:exponentiation ?c2 .
3039
+ # (?a2 ?b2) math:sum ?ab2 .
3040
+ # (?ab2 ?c2) math:sum ?sumSq .
3041
+ # (1.0 ?sumSq) math:difference ?gini .
3042
+ # (1.0 ?sumSq) math:quotient ?effN .
3043
+ # (?a ?u) math:difference ?da .
3044
+ # ?da math:absoluteValue ?ada .
3045
+ # (?b ?u) math:difference ?db .
3046
+ # ?db math:absoluteValue ?adb .
3047
+ # (?c ?u) math:difference ?dc .
3048
+ # ?dc math:absoluteValue ?adc .
3049
+ # (?ada ?adb) math:sum ?s1 .
3050
+ # (?s1 ?adc) math:sum ?sAbs .
3051
+ # (0.5 ?sAbs) math:product ?tv .
3052
+ # (?da 2.0) math:exponentiation ?da2 .
3053
+ # (?db 2.0) math:exponentiation ?db2 .
3054
+ # (?dc 2.0) math:exponentiation ?dc2 .
3055
+ # (?da2 ?db2) math:sum ?s2 .
3056
+ # (?s2 ?dc2) math:sum ?s3 .
3057
+ # (?s3 0.5) math:exponentiation ?l2 .
3058
+ # } => {
3059
+ # ?m :sumSq ?sumSq .
3060
+ # ?m :gini ?gini .
3061
+ # ?m :effectiveStates ?effN .
3062
+ # ?m :tvToUniform ?tv .
3063
+ # ?m :l2ToUniform ?l2 .
3064
+ # } .
3065
+ # with substitution (on rule variables):
3066
+ # ?a = 0.49550000000000005
3067
+ # ?a2 = 0.24552025000000005
3068
+ # ?ab2 = 0.36299781250000007
3069
+ # ?ada = 0.16216666666666674
3070
+ # ?adb = 0.009416666666666684
3071
+ # ?adc = 0.1715833333333333
3072
+ # ?b = 0.34275
3073
+ # ?b2 = 0.1174775625
3074
+ # ?c = 0.16175
3075
+ # ?c2 = 0.0261630625
3076
+ # ?da = 0.16216666666666674
3077
+ # ?da2 = 0.026298027777777802
3078
+ # ?db = 0.009416666666666684
3079
+ # ?db2 = 0.00008867361111111145
3080
+ # ?dc = -0.1715833333333333
3081
+ # ?dc2 = 0.02944084027777777
3082
+ # ?effN = 2.569631389589202
3083
+ # ?gini = 0.6108391249999999
3084
+ # ?l2 = 0.23627852561472165
3085
+ # ?m = _:sk_6
3086
+ # ?pi = _:sk_1
3087
+ # ?s1 = 0.17158333333333342
3088
+ # ?s2 = 0.026386701388888913
3089
+ # ?s3 = 0.05582754166666668
3090
+ # ?sAbs = 0.34316666666666673
3091
+ # ?sumSq = 0.3891608750000001
3092
+ # ?tv = 0.17158333333333337
3093
+ # ?u = 0.3333333333333333
3094
+ # Therefore the derived triple above is entailed by the rules and facts.
3095
+ # ----------------------------------------------------------------------
3096
+
3097
+ _:sk_6 :tvToUniform 0.17158333333333337 .
3098
+
3099
+ # ----------------------------------------------------------------------
3100
+ # Proof for derived triple:
3101
+ # _:sk_6 :l2ToUniform 0.23627852561472165 .
3102
+ # It holds because the following instance of the rule body is provable:
3103
+ # :MC1 :metrics _:sk_6 .
3104
+ # _:sk_6 :pi _:sk_1 .
3105
+ # _:sk_1 :pA 0.49550000000000005 .
3106
+ # _:sk_1 :pB 0.34275 .
3107
+ # _:sk_1 :pC 0.16175 .
3108
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
3109
+ # (0.49550000000000005 2.0) math:exponentiation 0.24552025000000005 .
3110
+ # (0.34275 2.0) math:exponentiation 0.1174775625 .
3111
+ # (0.16175 2.0) math:exponentiation 0.0261630625 .
3112
+ # (0.24552025000000005 0.1174775625) math:sum 0.36299781250000007 .
3113
+ # (0.36299781250000007 0.0261630625) math:sum 0.3891608750000001 .
3114
+ # (1.0 0.3891608750000001) math:difference 0.6108391249999999 .
3115
+ # (1.0 0.3891608750000001) math:quotient 2.569631389589202 .
3116
+ # (0.49550000000000005 0.3333333333333333) math:difference 0.16216666666666674 .
3117
+ # 0.16216666666666674 math:absoluteValue 0.16216666666666674 .
3118
+ # (0.34275 0.3333333333333333) math:difference 0.009416666666666684 .
3119
+ # 0.009416666666666684 math:absoluteValue 0.009416666666666684 .
3120
+ # (0.16175 0.3333333333333333) math:difference -0.1715833333333333 .
3121
+ # -0.1715833333333333 math:absoluteValue 0.1715833333333333 .
3122
+ # (0.16216666666666674 0.009416666666666684) math:sum 0.17158333333333342 .
3123
+ # (0.17158333333333342 0.1715833333333333) math:sum 0.34316666666666673 .
3124
+ # (0.5 0.34316666666666673) math:product 0.17158333333333337 .
3125
+ # (0.16216666666666674 2.0) math:exponentiation 0.026298027777777802 .
3126
+ # (0.009416666666666684 2.0) math:exponentiation 0.00008867361111111145 .
3127
+ # (-0.1715833333333333 2.0) math:exponentiation 0.02944084027777777 .
3128
+ # (0.026298027777777802 0.00008867361111111145) math:sum 0.026386701388888913 .
3129
+ # (0.026386701388888913 0.02944084027777777) math:sum 0.05582754166666668 .
3130
+ # (0.05582754166666668 0.5) math:exponentiation 0.23627852561472165 .
3131
+ # via the schematic forward rule:
3132
+ # {
3133
+ # :MC1 :metrics ?m .
3134
+ # ?m :pi ?pi .
3135
+ # ?pi :pA ?a .
3136
+ # ?pi :pB ?b .
3137
+ # ?pi :pC ?c .
3138
+ # (1.0 3.0) math:quotient ?u .
3139
+ # (?a 2.0) math:exponentiation ?a2 .
3140
+ # (?b 2.0) math:exponentiation ?b2 .
3141
+ # (?c 2.0) math:exponentiation ?c2 .
3142
+ # (?a2 ?b2) math:sum ?ab2 .
3143
+ # (?ab2 ?c2) math:sum ?sumSq .
3144
+ # (1.0 ?sumSq) math:difference ?gini .
3145
+ # (1.0 ?sumSq) math:quotient ?effN .
3146
+ # (?a ?u) math:difference ?da .
3147
+ # ?da math:absoluteValue ?ada .
3148
+ # (?b ?u) math:difference ?db .
3149
+ # ?db math:absoluteValue ?adb .
3150
+ # (?c ?u) math:difference ?dc .
3151
+ # ?dc math:absoluteValue ?adc .
3152
+ # (?ada ?adb) math:sum ?s1 .
3153
+ # (?s1 ?adc) math:sum ?sAbs .
3154
+ # (0.5 ?sAbs) math:product ?tv .
3155
+ # (?da 2.0) math:exponentiation ?da2 .
3156
+ # (?db 2.0) math:exponentiation ?db2 .
3157
+ # (?dc 2.0) math:exponentiation ?dc2 .
3158
+ # (?da2 ?db2) math:sum ?s2 .
3159
+ # (?s2 ?dc2) math:sum ?s3 .
3160
+ # (?s3 0.5) math:exponentiation ?l2 .
3161
+ # } => {
3162
+ # ?m :sumSq ?sumSq .
3163
+ # ?m :gini ?gini .
3164
+ # ?m :effectiveStates ?effN .
3165
+ # ?m :tvToUniform ?tv .
3166
+ # ?m :l2ToUniform ?l2 .
3167
+ # } .
3168
+ # with substitution (on rule variables):
3169
+ # ?a = 0.49550000000000005
3170
+ # ?a2 = 0.24552025000000005
3171
+ # ?ab2 = 0.36299781250000007
3172
+ # ?ada = 0.16216666666666674
3173
+ # ?adb = 0.009416666666666684
3174
+ # ?adc = 0.1715833333333333
3175
+ # ?b = 0.34275
3176
+ # ?b2 = 0.1174775625
3177
+ # ?c = 0.16175
3178
+ # ?c2 = 0.0261630625
3179
+ # ?da = 0.16216666666666674
3180
+ # ?da2 = 0.026298027777777802
3181
+ # ?db = 0.009416666666666684
3182
+ # ?db2 = 0.00008867361111111145
3183
+ # ?dc = -0.1715833333333333
3184
+ # ?dc2 = 0.02944084027777777
3185
+ # ?effN = 2.569631389589202
3186
+ # ?gini = 0.6108391249999999
3187
+ # ?l2 = 0.23627852561472165
3188
+ # ?m = _:sk_6
3189
+ # ?pi = _:sk_1
3190
+ # ?s1 = 0.17158333333333342
3191
+ # ?s2 = 0.026386701388888913
3192
+ # ?s3 = 0.05582754166666668
3193
+ # ?sAbs = 0.34316666666666673
3194
+ # ?sumSq = 0.3891608750000001
3195
+ # ?tv = 0.17158333333333337
3196
+ # ?u = 0.3333333333333333
3197
+ # Therefore the derived triple above is entailed by the rules and facts.
3198
+ # ----------------------------------------------------------------------
3199
+
3200
+ _:sk_6 :l2ToUniform 0.23627852561472165 .
3201
+
3202
+ # ----------------------------------------------------------------------
3203
+ # Proof for derived triple:
3204
+ # _:sk_5 :sumSq 0.41145000000000004 .
3205
+ # It holds because the following instance of the rule body is provable:
3206
+ # :MC1 :metrics _:sk_5 .
3207
+ # _:sk_5 :pi _:sk_0 .
3208
+ # _:sk_0 :pA 0.535 .
3209
+ # _:sk_0 :pB 0.325 .
3210
+ # _:sk_0 :pC 0.14 .
3211
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
3212
+ # (0.535 2.0) math:exponentiation 0.286225 .
3213
+ # (0.325 2.0) math:exponentiation 0.10562500000000001 .
3214
+ # (0.14 2.0) math:exponentiation 0.019600000000000003 .
3215
+ # (0.286225 0.10562500000000001) math:sum 0.39185000000000003 .
3216
+ # (0.39185000000000003 0.019600000000000003) math:sum 0.41145000000000004 .
3217
+ # (1.0 0.41145000000000004) math:difference 0.5885499999999999 .
3218
+ # (1.0 0.41145000000000004) math:quotient 2.4304289707133306 .
3219
+ # (0.535 0.3333333333333333) math:difference 0.20166666666666672 .
3220
+ # 0.20166666666666672 math:absoluteValue 0.20166666666666672 .
3221
+ # (0.325 0.3333333333333333) math:difference -0.008333333333333304 .
3222
+ # -0.008333333333333304 math:absoluteValue 0.008333333333333304 .
3223
+ # (0.14 0.3333333333333333) math:difference -0.1933333333333333 .
3224
+ # -0.1933333333333333 math:absoluteValue 0.1933333333333333 .
3225
+ # (0.20166666666666672 0.008333333333333304) math:sum 0.21000000000000002 .
3226
+ # (0.21000000000000002 0.1933333333333333) math:sum 0.4033333333333333 .
3227
+ # (0.5 0.4033333333333333) math:product 0.20166666666666666 .
3228
+ # (0.20166666666666672 2.0) math:exponentiation 0.040669444444444466 .
3229
+ # (-0.008333333333333304 2.0) math:exponentiation 0.00006944444444444396 .
3230
+ # (-0.1933333333333333 2.0) math:exponentiation 0.03737777777777777 .
3231
+ # (0.040669444444444466 0.00006944444444444396) math:sum 0.04073888888888891 .
3232
+ # (0.04073888888888891 0.03737777777777777) math:sum 0.07811666666666667 .
3233
+ # (0.07811666666666667 0.5) math:exponentiation 0.2794935896700793 .
3234
+ # via the schematic forward rule:
3235
+ # {
3236
+ # :MC1 :metrics ?m .
3237
+ # ?m :pi ?pi .
3238
+ # ?pi :pA ?a .
3239
+ # ?pi :pB ?b .
3240
+ # ?pi :pC ?c .
3241
+ # (1.0 3.0) math:quotient ?u .
3242
+ # (?a 2.0) math:exponentiation ?a2 .
3243
+ # (?b 2.0) math:exponentiation ?b2 .
3244
+ # (?c 2.0) math:exponentiation ?c2 .
3245
+ # (?a2 ?b2) math:sum ?ab2 .
3246
+ # (?ab2 ?c2) math:sum ?sumSq .
3247
+ # (1.0 ?sumSq) math:difference ?gini .
3248
+ # (1.0 ?sumSq) math:quotient ?effN .
3249
+ # (?a ?u) math:difference ?da .
3250
+ # ?da math:absoluteValue ?ada .
3251
+ # (?b ?u) math:difference ?db .
3252
+ # ?db math:absoluteValue ?adb .
3253
+ # (?c ?u) math:difference ?dc .
3254
+ # ?dc math:absoluteValue ?adc .
3255
+ # (?ada ?adb) math:sum ?s1 .
3256
+ # (?s1 ?adc) math:sum ?sAbs .
3257
+ # (0.5 ?sAbs) math:product ?tv .
3258
+ # (?da 2.0) math:exponentiation ?da2 .
3259
+ # (?db 2.0) math:exponentiation ?db2 .
3260
+ # (?dc 2.0) math:exponentiation ?dc2 .
3261
+ # (?da2 ?db2) math:sum ?s2 .
3262
+ # (?s2 ?dc2) math:sum ?s3 .
3263
+ # (?s3 0.5) math:exponentiation ?l2 .
3264
+ # } => {
3265
+ # ?m :sumSq ?sumSq .
3266
+ # ?m :gini ?gini .
3267
+ # ?m :effectiveStates ?effN .
3268
+ # ?m :tvToUniform ?tv .
3269
+ # ?m :l2ToUniform ?l2 .
3270
+ # } .
3271
+ # with substitution (on rule variables):
3272
+ # ?a = 0.535
3273
+ # ?a2 = 0.286225
3274
+ # ?ab2 = 0.39185000000000003
3275
+ # ?ada = 0.20166666666666672
3276
+ # ?adb = 0.008333333333333304
3277
+ # ?adc = 0.1933333333333333
3278
+ # ?b = 0.325
3279
+ # ?b2 = 0.10562500000000001
3280
+ # ?c = 0.14
3281
+ # ?c2 = 0.019600000000000003
3282
+ # ?da = 0.20166666666666672
3283
+ # ?da2 = 0.040669444444444466
3284
+ # ?db = -0.008333333333333304
3285
+ # ?db2 = 0.00006944444444444396
3286
+ # ?dc = -0.1933333333333333
3287
+ # ?dc2 = 0.03737777777777777
3288
+ # ?effN = 2.4304289707133306
3289
+ # ?gini = 0.5885499999999999
3290
+ # ?l2 = 0.2794935896700793
3291
+ # ?m = _:sk_5
3292
+ # ?pi = _:sk_0
3293
+ # ?s1 = 0.21000000000000002
3294
+ # ?s2 = 0.04073888888888891
3295
+ # ?s3 = 0.07811666666666667
3296
+ # ?sAbs = 0.4033333333333333
3297
+ # ?sumSq = 0.41145000000000004
3298
+ # ?tv = 0.20166666666666666
3299
+ # ?u = 0.3333333333333333
3300
+ # Therefore the derived triple above is entailed by the rules and facts.
3301
+ # ----------------------------------------------------------------------
3302
+
3303
+ _:sk_5 :sumSq 0.41145000000000004 .
3304
+
3305
+ # ----------------------------------------------------------------------
3306
+ # Proof for derived triple:
3307
+ # _:sk_5 :gini 0.5885499999999999 .
3308
+ # It holds because the following instance of the rule body is provable:
3309
+ # :MC1 :metrics _:sk_5 .
3310
+ # _:sk_5 :pi _:sk_0 .
3311
+ # _:sk_0 :pA 0.535 .
3312
+ # _:sk_0 :pB 0.325 .
3313
+ # _:sk_0 :pC 0.14 .
3314
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
3315
+ # (0.535 2.0) math:exponentiation 0.286225 .
3316
+ # (0.325 2.0) math:exponentiation 0.10562500000000001 .
3317
+ # (0.14 2.0) math:exponentiation 0.019600000000000003 .
3318
+ # (0.286225 0.10562500000000001) math:sum 0.39185000000000003 .
3319
+ # (0.39185000000000003 0.019600000000000003) math:sum 0.41145000000000004 .
3320
+ # (1.0 0.41145000000000004) math:difference 0.5885499999999999 .
3321
+ # (1.0 0.41145000000000004) math:quotient 2.4304289707133306 .
3322
+ # (0.535 0.3333333333333333) math:difference 0.20166666666666672 .
3323
+ # 0.20166666666666672 math:absoluteValue 0.20166666666666672 .
3324
+ # (0.325 0.3333333333333333) math:difference -0.008333333333333304 .
3325
+ # -0.008333333333333304 math:absoluteValue 0.008333333333333304 .
3326
+ # (0.14 0.3333333333333333) math:difference -0.1933333333333333 .
3327
+ # -0.1933333333333333 math:absoluteValue 0.1933333333333333 .
3328
+ # (0.20166666666666672 0.008333333333333304) math:sum 0.21000000000000002 .
3329
+ # (0.21000000000000002 0.1933333333333333) math:sum 0.4033333333333333 .
3330
+ # (0.5 0.4033333333333333) math:product 0.20166666666666666 .
3331
+ # (0.20166666666666672 2.0) math:exponentiation 0.040669444444444466 .
3332
+ # (-0.008333333333333304 2.0) math:exponentiation 0.00006944444444444396 .
3333
+ # (-0.1933333333333333 2.0) math:exponentiation 0.03737777777777777 .
3334
+ # (0.040669444444444466 0.00006944444444444396) math:sum 0.04073888888888891 .
3335
+ # (0.04073888888888891 0.03737777777777777) math:sum 0.07811666666666667 .
3336
+ # (0.07811666666666667 0.5) math:exponentiation 0.2794935896700793 .
3337
+ # via the schematic forward rule:
3338
+ # {
3339
+ # :MC1 :metrics ?m .
3340
+ # ?m :pi ?pi .
3341
+ # ?pi :pA ?a .
3342
+ # ?pi :pB ?b .
3343
+ # ?pi :pC ?c .
3344
+ # (1.0 3.0) math:quotient ?u .
3345
+ # (?a 2.0) math:exponentiation ?a2 .
3346
+ # (?b 2.0) math:exponentiation ?b2 .
3347
+ # (?c 2.0) math:exponentiation ?c2 .
3348
+ # (?a2 ?b2) math:sum ?ab2 .
3349
+ # (?ab2 ?c2) math:sum ?sumSq .
3350
+ # (1.0 ?sumSq) math:difference ?gini .
3351
+ # (1.0 ?sumSq) math:quotient ?effN .
3352
+ # (?a ?u) math:difference ?da .
3353
+ # ?da math:absoluteValue ?ada .
3354
+ # (?b ?u) math:difference ?db .
3355
+ # ?db math:absoluteValue ?adb .
3356
+ # (?c ?u) math:difference ?dc .
3357
+ # ?dc math:absoluteValue ?adc .
3358
+ # (?ada ?adb) math:sum ?s1 .
3359
+ # (?s1 ?adc) math:sum ?sAbs .
3360
+ # (0.5 ?sAbs) math:product ?tv .
3361
+ # (?da 2.0) math:exponentiation ?da2 .
3362
+ # (?db 2.0) math:exponentiation ?db2 .
3363
+ # (?dc 2.0) math:exponentiation ?dc2 .
3364
+ # (?da2 ?db2) math:sum ?s2 .
3365
+ # (?s2 ?dc2) math:sum ?s3 .
3366
+ # (?s3 0.5) math:exponentiation ?l2 .
3367
+ # } => {
3368
+ # ?m :sumSq ?sumSq .
3369
+ # ?m :gini ?gini .
3370
+ # ?m :effectiveStates ?effN .
3371
+ # ?m :tvToUniform ?tv .
3372
+ # ?m :l2ToUniform ?l2 .
3373
+ # } .
3374
+ # with substitution (on rule variables):
3375
+ # ?a = 0.535
3376
+ # ?a2 = 0.286225
3377
+ # ?ab2 = 0.39185000000000003
3378
+ # ?ada = 0.20166666666666672
3379
+ # ?adb = 0.008333333333333304
3380
+ # ?adc = 0.1933333333333333
3381
+ # ?b = 0.325
3382
+ # ?b2 = 0.10562500000000001
3383
+ # ?c = 0.14
3384
+ # ?c2 = 0.019600000000000003
3385
+ # ?da = 0.20166666666666672
3386
+ # ?da2 = 0.040669444444444466
3387
+ # ?db = -0.008333333333333304
3388
+ # ?db2 = 0.00006944444444444396
3389
+ # ?dc = -0.1933333333333333
3390
+ # ?dc2 = 0.03737777777777777
3391
+ # ?effN = 2.4304289707133306
3392
+ # ?gini = 0.5885499999999999
3393
+ # ?l2 = 0.2794935896700793
3394
+ # ?m = _:sk_5
3395
+ # ?pi = _:sk_0
3396
+ # ?s1 = 0.21000000000000002
3397
+ # ?s2 = 0.04073888888888891
3398
+ # ?s3 = 0.07811666666666667
3399
+ # ?sAbs = 0.4033333333333333
3400
+ # ?sumSq = 0.41145000000000004
3401
+ # ?tv = 0.20166666666666666
3402
+ # ?u = 0.3333333333333333
3403
+ # Therefore the derived triple above is entailed by the rules and facts.
3404
+ # ----------------------------------------------------------------------
3405
+
3406
+ _:sk_5 :gini 0.5885499999999999 .
3407
+
3408
+ # ----------------------------------------------------------------------
3409
+ # Proof for derived triple:
3410
+ # _:sk_5 :effectiveStates 2.4304289707133306 .
3411
+ # It holds because the following instance of the rule body is provable:
3412
+ # :MC1 :metrics _:sk_5 .
3413
+ # _:sk_5 :pi _:sk_0 .
3414
+ # _:sk_0 :pA 0.535 .
3415
+ # _:sk_0 :pB 0.325 .
3416
+ # _:sk_0 :pC 0.14 .
3417
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
3418
+ # (0.535 2.0) math:exponentiation 0.286225 .
3419
+ # (0.325 2.0) math:exponentiation 0.10562500000000001 .
3420
+ # (0.14 2.0) math:exponentiation 0.019600000000000003 .
3421
+ # (0.286225 0.10562500000000001) math:sum 0.39185000000000003 .
3422
+ # (0.39185000000000003 0.019600000000000003) math:sum 0.41145000000000004 .
3423
+ # (1.0 0.41145000000000004) math:difference 0.5885499999999999 .
3424
+ # (1.0 0.41145000000000004) math:quotient 2.4304289707133306 .
3425
+ # (0.535 0.3333333333333333) math:difference 0.20166666666666672 .
3426
+ # 0.20166666666666672 math:absoluteValue 0.20166666666666672 .
3427
+ # (0.325 0.3333333333333333) math:difference -0.008333333333333304 .
3428
+ # -0.008333333333333304 math:absoluteValue 0.008333333333333304 .
3429
+ # (0.14 0.3333333333333333) math:difference -0.1933333333333333 .
3430
+ # -0.1933333333333333 math:absoluteValue 0.1933333333333333 .
3431
+ # (0.20166666666666672 0.008333333333333304) math:sum 0.21000000000000002 .
3432
+ # (0.21000000000000002 0.1933333333333333) math:sum 0.4033333333333333 .
3433
+ # (0.5 0.4033333333333333) math:product 0.20166666666666666 .
3434
+ # (0.20166666666666672 2.0) math:exponentiation 0.040669444444444466 .
3435
+ # (-0.008333333333333304 2.0) math:exponentiation 0.00006944444444444396 .
3436
+ # (-0.1933333333333333 2.0) math:exponentiation 0.03737777777777777 .
3437
+ # (0.040669444444444466 0.00006944444444444396) math:sum 0.04073888888888891 .
3438
+ # (0.04073888888888891 0.03737777777777777) math:sum 0.07811666666666667 .
3439
+ # (0.07811666666666667 0.5) math:exponentiation 0.2794935896700793 .
3440
+ # via the schematic forward rule:
3441
+ # {
3442
+ # :MC1 :metrics ?m .
3443
+ # ?m :pi ?pi .
3444
+ # ?pi :pA ?a .
3445
+ # ?pi :pB ?b .
3446
+ # ?pi :pC ?c .
3447
+ # (1.0 3.0) math:quotient ?u .
3448
+ # (?a 2.0) math:exponentiation ?a2 .
3449
+ # (?b 2.0) math:exponentiation ?b2 .
3450
+ # (?c 2.0) math:exponentiation ?c2 .
3451
+ # (?a2 ?b2) math:sum ?ab2 .
3452
+ # (?ab2 ?c2) math:sum ?sumSq .
3453
+ # (1.0 ?sumSq) math:difference ?gini .
3454
+ # (1.0 ?sumSq) math:quotient ?effN .
3455
+ # (?a ?u) math:difference ?da .
3456
+ # ?da math:absoluteValue ?ada .
3457
+ # (?b ?u) math:difference ?db .
3458
+ # ?db math:absoluteValue ?adb .
3459
+ # (?c ?u) math:difference ?dc .
3460
+ # ?dc math:absoluteValue ?adc .
3461
+ # (?ada ?adb) math:sum ?s1 .
3462
+ # (?s1 ?adc) math:sum ?sAbs .
3463
+ # (0.5 ?sAbs) math:product ?tv .
3464
+ # (?da 2.0) math:exponentiation ?da2 .
3465
+ # (?db 2.0) math:exponentiation ?db2 .
3466
+ # (?dc 2.0) math:exponentiation ?dc2 .
3467
+ # (?da2 ?db2) math:sum ?s2 .
3468
+ # (?s2 ?dc2) math:sum ?s3 .
3469
+ # (?s3 0.5) math:exponentiation ?l2 .
3470
+ # } => {
3471
+ # ?m :sumSq ?sumSq .
3472
+ # ?m :gini ?gini .
3473
+ # ?m :effectiveStates ?effN .
3474
+ # ?m :tvToUniform ?tv .
3475
+ # ?m :l2ToUniform ?l2 .
3476
+ # } .
3477
+ # with substitution (on rule variables):
3478
+ # ?a = 0.535
3479
+ # ?a2 = 0.286225
3480
+ # ?ab2 = 0.39185000000000003
3481
+ # ?ada = 0.20166666666666672
3482
+ # ?adb = 0.008333333333333304
3483
+ # ?adc = 0.1933333333333333
3484
+ # ?b = 0.325
3485
+ # ?b2 = 0.10562500000000001
3486
+ # ?c = 0.14
3487
+ # ?c2 = 0.019600000000000003
3488
+ # ?da = 0.20166666666666672
3489
+ # ?da2 = 0.040669444444444466
3490
+ # ?db = -0.008333333333333304
3491
+ # ?db2 = 0.00006944444444444396
3492
+ # ?dc = -0.1933333333333333
3493
+ # ?dc2 = 0.03737777777777777
3494
+ # ?effN = 2.4304289707133306
3495
+ # ?gini = 0.5885499999999999
3496
+ # ?l2 = 0.2794935896700793
3497
+ # ?m = _:sk_5
3498
+ # ?pi = _:sk_0
3499
+ # ?s1 = 0.21000000000000002
3500
+ # ?s2 = 0.04073888888888891
3501
+ # ?s3 = 0.07811666666666667
3502
+ # ?sAbs = 0.4033333333333333
3503
+ # ?sumSq = 0.41145000000000004
3504
+ # ?tv = 0.20166666666666666
3505
+ # ?u = 0.3333333333333333
3506
+ # Therefore the derived triple above is entailed by the rules and facts.
3507
+ # ----------------------------------------------------------------------
3508
+
3509
+ _:sk_5 :effectiveStates 2.4304289707133306 .
3510
+
3511
+ # ----------------------------------------------------------------------
3512
+ # Proof for derived triple:
3513
+ # _:sk_5 :tvToUniform 0.20166666666666666 .
3514
+ # It holds because the following instance of the rule body is provable:
3515
+ # :MC1 :metrics _:sk_5 .
3516
+ # _:sk_5 :pi _:sk_0 .
3517
+ # _:sk_0 :pA 0.535 .
3518
+ # _:sk_0 :pB 0.325 .
3519
+ # _:sk_0 :pC 0.14 .
3520
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
3521
+ # (0.535 2.0) math:exponentiation 0.286225 .
3522
+ # (0.325 2.0) math:exponentiation 0.10562500000000001 .
3523
+ # (0.14 2.0) math:exponentiation 0.019600000000000003 .
3524
+ # (0.286225 0.10562500000000001) math:sum 0.39185000000000003 .
3525
+ # (0.39185000000000003 0.019600000000000003) math:sum 0.41145000000000004 .
3526
+ # (1.0 0.41145000000000004) math:difference 0.5885499999999999 .
3527
+ # (1.0 0.41145000000000004) math:quotient 2.4304289707133306 .
3528
+ # (0.535 0.3333333333333333) math:difference 0.20166666666666672 .
3529
+ # 0.20166666666666672 math:absoluteValue 0.20166666666666672 .
3530
+ # (0.325 0.3333333333333333) math:difference -0.008333333333333304 .
3531
+ # -0.008333333333333304 math:absoluteValue 0.008333333333333304 .
3532
+ # (0.14 0.3333333333333333) math:difference -0.1933333333333333 .
3533
+ # -0.1933333333333333 math:absoluteValue 0.1933333333333333 .
3534
+ # (0.20166666666666672 0.008333333333333304) math:sum 0.21000000000000002 .
3535
+ # (0.21000000000000002 0.1933333333333333) math:sum 0.4033333333333333 .
3536
+ # (0.5 0.4033333333333333) math:product 0.20166666666666666 .
3537
+ # (0.20166666666666672 2.0) math:exponentiation 0.040669444444444466 .
3538
+ # (-0.008333333333333304 2.0) math:exponentiation 0.00006944444444444396 .
3539
+ # (-0.1933333333333333 2.0) math:exponentiation 0.03737777777777777 .
3540
+ # (0.040669444444444466 0.00006944444444444396) math:sum 0.04073888888888891 .
3541
+ # (0.04073888888888891 0.03737777777777777) math:sum 0.07811666666666667 .
3542
+ # (0.07811666666666667 0.5) math:exponentiation 0.2794935896700793 .
3543
+ # via the schematic forward rule:
3544
+ # {
3545
+ # :MC1 :metrics ?m .
3546
+ # ?m :pi ?pi .
3547
+ # ?pi :pA ?a .
3548
+ # ?pi :pB ?b .
3549
+ # ?pi :pC ?c .
3550
+ # (1.0 3.0) math:quotient ?u .
3551
+ # (?a 2.0) math:exponentiation ?a2 .
3552
+ # (?b 2.0) math:exponentiation ?b2 .
3553
+ # (?c 2.0) math:exponentiation ?c2 .
3554
+ # (?a2 ?b2) math:sum ?ab2 .
3555
+ # (?ab2 ?c2) math:sum ?sumSq .
3556
+ # (1.0 ?sumSq) math:difference ?gini .
3557
+ # (1.0 ?sumSq) math:quotient ?effN .
3558
+ # (?a ?u) math:difference ?da .
3559
+ # ?da math:absoluteValue ?ada .
3560
+ # (?b ?u) math:difference ?db .
3561
+ # ?db math:absoluteValue ?adb .
3562
+ # (?c ?u) math:difference ?dc .
3563
+ # ?dc math:absoluteValue ?adc .
3564
+ # (?ada ?adb) math:sum ?s1 .
3565
+ # (?s1 ?adc) math:sum ?sAbs .
3566
+ # (0.5 ?sAbs) math:product ?tv .
3567
+ # (?da 2.0) math:exponentiation ?da2 .
3568
+ # (?db 2.0) math:exponentiation ?db2 .
3569
+ # (?dc 2.0) math:exponentiation ?dc2 .
3570
+ # (?da2 ?db2) math:sum ?s2 .
3571
+ # (?s2 ?dc2) math:sum ?s3 .
3572
+ # (?s3 0.5) math:exponentiation ?l2 .
3573
+ # } => {
3574
+ # ?m :sumSq ?sumSq .
3575
+ # ?m :gini ?gini .
3576
+ # ?m :effectiveStates ?effN .
3577
+ # ?m :tvToUniform ?tv .
3578
+ # ?m :l2ToUniform ?l2 .
3579
+ # } .
3580
+ # with substitution (on rule variables):
3581
+ # ?a = 0.535
3582
+ # ?a2 = 0.286225
3583
+ # ?ab2 = 0.39185000000000003
3584
+ # ?ada = 0.20166666666666672
3585
+ # ?adb = 0.008333333333333304
3586
+ # ?adc = 0.1933333333333333
3587
+ # ?b = 0.325
3588
+ # ?b2 = 0.10562500000000001
3589
+ # ?c = 0.14
3590
+ # ?c2 = 0.019600000000000003
3591
+ # ?da = 0.20166666666666672
3592
+ # ?da2 = 0.040669444444444466
3593
+ # ?db = -0.008333333333333304
3594
+ # ?db2 = 0.00006944444444444396
3595
+ # ?dc = -0.1933333333333333
3596
+ # ?dc2 = 0.03737777777777777
3597
+ # ?effN = 2.4304289707133306
3598
+ # ?gini = 0.5885499999999999
3599
+ # ?l2 = 0.2794935896700793
3600
+ # ?m = _:sk_5
3601
+ # ?pi = _:sk_0
3602
+ # ?s1 = 0.21000000000000002
3603
+ # ?s2 = 0.04073888888888891
3604
+ # ?s3 = 0.07811666666666667
3605
+ # ?sAbs = 0.4033333333333333
3606
+ # ?sumSq = 0.41145000000000004
3607
+ # ?tv = 0.20166666666666666
3608
+ # ?u = 0.3333333333333333
3609
+ # Therefore the derived triple above is entailed by the rules and facts.
3610
+ # ----------------------------------------------------------------------
3611
+
3612
+ _:sk_5 :tvToUniform 0.20166666666666666 .
3613
+
3614
+ # ----------------------------------------------------------------------
3615
+ # Proof for derived triple:
3616
+ # _:sk_5 :l2ToUniform 0.2794935896700793 .
3617
+ # It holds because the following instance of the rule body is provable:
3618
+ # :MC1 :metrics _:sk_5 .
3619
+ # _:sk_5 :pi _:sk_0 .
3620
+ # _:sk_0 :pA 0.535 .
3621
+ # _:sk_0 :pB 0.325 .
3622
+ # _:sk_0 :pC 0.14 .
3623
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
3624
+ # (0.535 2.0) math:exponentiation 0.286225 .
3625
+ # (0.325 2.0) math:exponentiation 0.10562500000000001 .
3626
+ # (0.14 2.0) math:exponentiation 0.019600000000000003 .
3627
+ # (0.286225 0.10562500000000001) math:sum 0.39185000000000003 .
3628
+ # (0.39185000000000003 0.019600000000000003) math:sum 0.41145000000000004 .
3629
+ # (1.0 0.41145000000000004) math:difference 0.5885499999999999 .
3630
+ # (1.0 0.41145000000000004) math:quotient 2.4304289707133306 .
3631
+ # (0.535 0.3333333333333333) math:difference 0.20166666666666672 .
3632
+ # 0.20166666666666672 math:absoluteValue 0.20166666666666672 .
3633
+ # (0.325 0.3333333333333333) math:difference -0.008333333333333304 .
3634
+ # -0.008333333333333304 math:absoluteValue 0.008333333333333304 .
3635
+ # (0.14 0.3333333333333333) math:difference -0.1933333333333333 .
3636
+ # -0.1933333333333333 math:absoluteValue 0.1933333333333333 .
3637
+ # (0.20166666666666672 0.008333333333333304) math:sum 0.21000000000000002 .
3638
+ # (0.21000000000000002 0.1933333333333333) math:sum 0.4033333333333333 .
3639
+ # (0.5 0.4033333333333333) math:product 0.20166666666666666 .
3640
+ # (0.20166666666666672 2.0) math:exponentiation 0.040669444444444466 .
3641
+ # (-0.008333333333333304 2.0) math:exponentiation 0.00006944444444444396 .
3642
+ # (-0.1933333333333333 2.0) math:exponentiation 0.03737777777777777 .
3643
+ # (0.040669444444444466 0.00006944444444444396) math:sum 0.04073888888888891 .
3644
+ # (0.04073888888888891 0.03737777777777777) math:sum 0.07811666666666667 .
3645
+ # (0.07811666666666667 0.5) math:exponentiation 0.2794935896700793 .
3646
+ # via the schematic forward rule:
3647
+ # {
3648
+ # :MC1 :metrics ?m .
3649
+ # ?m :pi ?pi .
3650
+ # ?pi :pA ?a .
3651
+ # ?pi :pB ?b .
3652
+ # ?pi :pC ?c .
3653
+ # (1.0 3.0) math:quotient ?u .
3654
+ # (?a 2.0) math:exponentiation ?a2 .
3655
+ # (?b 2.0) math:exponentiation ?b2 .
3656
+ # (?c 2.0) math:exponentiation ?c2 .
3657
+ # (?a2 ?b2) math:sum ?ab2 .
3658
+ # (?ab2 ?c2) math:sum ?sumSq .
3659
+ # (1.0 ?sumSq) math:difference ?gini .
3660
+ # (1.0 ?sumSq) math:quotient ?effN .
3661
+ # (?a ?u) math:difference ?da .
3662
+ # ?da math:absoluteValue ?ada .
3663
+ # (?b ?u) math:difference ?db .
3664
+ # ?db math:absoluteValue ?adb .
3665
+ # (?c ?u) math:difference ?dc .
3666
+ # ?dc math:absoluteValue ?adc .
3667
+ # (?ada ?adb) math:sum ?s1 .
3668
+ # (?s1 ?adc) math:sum ?sAbs .
3669
+ # (0.5 ?sAbs) math:product ?tv .
3670
+ # (?da 2.0) math:exponentiation ?da2 .
3671
+ # (?db 2.0) math:exponentiation ?db2 .
3672
+ # (?dc 2.0) math:exponentiation ?dc2 .
3673
+ # (?da2 ?db2) math:sum ?s2 .
3674
+ # (?s2 ?dc2) math:sum ?s3 .
3675
+ # (?s3 0.5) math:exponentiation ?l2 .
3676
+ # } => {
3677
+ # ?m :sumSq ?sumSq .
3678
+ # ?m :gini ?gini .
3679
+ # ?m :effectiveStates ?effN .
3680
+ # ?m :tvToUniform ?tv .
3681
+ # ?m :l2ToUniform ?l2 .
3682
+ # } .
3683
+ # with substitution (on rule variables):
3684
+ # ?a = 0.535
3685
+ # ?a2 = 0.286225
3686
+ # ?ab2 = 0.39185000000000003
3687
+ # ?ada = 0.20166666666666672
3688
+ # ?adb = 0.008333333333333304
3689
+ # ?adc = 0.1933333333333333
3690
+ # ?b = 0.325
3691
+ # ?b2 = 0.10562500000000001
3692
+ # ?c = 0.14
3693
+ # ?c2 = 0.019600000000000003
3694
+ # ?da = 0.20166666666666672
3695
+ # ?da2 = 0.040669444444444466
3696
+ # ?db = -0.008333333333333304
3697
+ # ?db2 = 0.00006944444444444396
3698
+ # ?dc = -0.1933333333333333
3699
+ # ?dc2 = 0.03737777777777777
3700
+ # ?effN = 2.4304289707133306
3701
+ # ?gini = 0.5885499999999999
3702
+ # ?l2 = 0.2794935896700793
3703
+ # ?m = _:sk_5
3704
+ # ?pi = _:sk_0
3705
+ # ?s1 = 0.21000000000000002
3706
+ # ?s2 = 0.04073888888888891
3707
+ # ?s3 = 0.07811666666666667
3708
+ # ?sAbs = 0.4033333333333333
3709
+ # ?sumSq = 0.41145000000000004
3710
+ # ?tv = 0.20166666666666666
3711
+ # ?u = 0.3333333333333333
3712
+ # Therefore the derived triple above is entailed by the rules and facts.
3713
+ # ----------------------------------------------------------------------
3714
+
3715
+ _:sk_5 :l2ToUniform 0.2794935896700793 .
3716
+
3717
+ # ----------------------------------------------------------------------
3718
+ # Proof for derived triple:
3719
+ # _:sk_4 :sumSq 0.45999999999999996 .
3720
+ # It holds because the following instance of the rule body is provable:
3721
+ # :MC1 :metrics _:sk_4 .
3722
+ # _:sk_4 :pi _:b4 .
3723
+ # _:b4 :pA 0.60 .
3724
+ # _:b4 :pB 0.30 .
3725
+ # _:b4 :pC 0.10 .
3726
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
3727
+ # (0.60 2.0) math:exponentiation 0.36 .
3728
+ # (0.30 2.0) math:exponentiation 0.09 .
3729
+ # (0.10 2.0) math:exponentiation 0.010000000000000002 .
3730
+ # (0.36 0.09) math:sum 0.44999999999999996 .
3731
+ # (0.44999999999999996 0.010000000000000002) math:sum 0.45999999999999996 .
3732
+ # (1.0 0.45999999999999996) math:difference 0.54 .
3733
+ # (1.0 0.45999999999999996) math:quotient 2.173913043478261 .
3734
+ # (0.60 0.3333333333333333) math:difference 0.26666666666666666 .
3735
+ # 0.26666666666666666 math:absoluteValue 0.26666666666666666 .
3736
+ # (0.30 0.3333333333333333) math:difference -0.033333333333333326 .
3737
+ # -0.033333333333333326 math:absoluteValue 0.033333333333333326 .
3738
+ # (0.10 0.3333333333333333) math:difference -0.2333333333333333 .
3739
+ # -0.2333333333333333 math:absoluteValue 0.2333333333333333 .
3740
+ # (0.26666666666666666 0.033333333333333326) math:sum 0.3 .
3741
+ # (0.3 0.2333333333333333) math:sum 0.5333333333333333 .
3742
+ # (0.5 0.5333333333333333) math:product 0.26666666666666666 .
3743
+ # (0.26666666666666666 2.0) math:exponentiation 0.07111111111111111 .
3744
+ # (-0.033333333333333326 2.0) math:exponentiation 0.0011111111111111107 .
3745
+ # (-0.2333333333333333 2.0) math:exponentiation 0.054444444444444434 .
3746
+ # (0.07111111111111111 0.0011111111111111107) math:sum 0.07222222222222222 .
3747
+ # (0.07222222222222222 0.054444444444444434) math:sum 0.12666666666666665 .
3748
+ # (0.12666666666666665 0.5) math:exponentiation 0.3559026084010437 .
3749
+ # via the schematic forward rule:
3750
+ # {
3751
+ # :MC1 :metrics ?m .
3752
+ # ?m :pi ?pi .
3753
+ # ?pi :pA ?a .
3754
+ # ?pi :pB ?b .
3755
+ # ?pi :pC ?c .
3756
+ # (1.0 3.0) math:quotient ?u .
3757
+ # (?a 2.0) math:exponentiation ?a2 .
3758
+ # (?b 2.0) math:exponentiation ?b2 .
3759
+ # (?c 2.0) math:exponentiation ?c2 .
3760
+ # (?a2 ?b2) math:sum ?ab2 .
3761
+ # (?ab2 ?c2) math:sum ?sumSq .
3762
+ # (1.0 ?sumSq) math:difference ?gini .
3763
+ # (1.0 ?sumSq) math:quotient ?effN .
3764
+ # (?a ?u) math:difference ?da .
3765
+ # ?da math:absoluteValue ?ada .
3766
+ # (?b ?u) math:difference ?db .
3767
+ # ?db math:absoluteValue ?adb .
3768
+ # (?c ?u) math:difference ?dc .
3769
+ # ?dc math:absoluteValue ?adc .
3770
+ # (?ada ?adb) math:sum ?s1 .
3771
+ # (?s1 ?adc) math:sum ?sAbs .
3772
+ # (0.5 ?sAbs) math:product ?tv .
3773
+ # (?da 2.0) math:exponentiation ?da2 .
3774
+ # (?db 2.0) math:exponentiation ?db2 .
3775
+ # (?dc 2.0) math:exponentiation ?dc2 .
3776
+ # (?da2 ?db2) math:sum ?s2 .
3777
+ # (?s2 ?dc2) math:sum ?s3 .
3778
+ # (?s3 0.5) math:exponentiation ?l2 .
3779
+ # } => {
3780
+ # ?m :sumSq ?sumSq .
3781
+ # ?m :gini ?gini .
3782
+ # ?m :effectiveStates ?effN .
3783
+ # ?m :tvToUniform ?tv .
3784
+ # ?m :l2ToUniform ?l2 .
3785
+ # } .
3786
+ # with substitution (on rule variables):
3787
+ # ?a = 0.60
3788
+ # ?a2 = 0.36
3789
+ # ?ab2 = 0.44999999999999996
3790
+ # ?ada = 0.26666666666666666
3791
+ # ?adb = 0.033333333333333326
3792
+ # ?adc = 0.2333333333333333
3793
+ # ?b = 0.30
3794
+ # ?b2 = 0.09
3795
+ # ?c = 0.10
3796
+ # ?c2 = 0.010000000000000002
3797
+ # ?da = 0.26666666666666666
3798
+ # ?da2 = 0.07111111111111111
3799
+ # ?db = -0.033333333333333326
3800
+ # ?db2 = 0.0011111111111111107
3801
+ # ?dc = -0.2333333333333333
3802
+ # ?dc2 = 0.054444444444444434
3803
+ # ?effN = 2.173913043478261
3804
+ # ?gini = 0.54
3805
+ # ?l2 = 0.3559026084010437
3806
+ # ?m = _:sk_4
3807
+ # ?pi = _:b4
3808
+ # ?s1 = 0.3
3809
+ # ?s2 = 0.07222222222222222
3810
+ # ?s3 = 0.12666666666666665
3811
+ # ?sAbs = 0.5333333333333333
3812
+ # ?sumSq = 0.45999999999999996
3813
+ # ?tv = 0.26666666666666666
3814
+ # ?u = 0.3333333333333333
3815
+ # Therefore the derived triple above is entailed by the rules and facts.
3816
+ # ----------------------------------------------------------------------
3817
+
3818
+ _:sk_4 :sumSq 0.45999999999999996 .
3819
+
3820
+ # ----------------------------------------------------------------------
3821
+ # Proof for derived triple:
3822
+ # _:sk_4 :gini 0.54 .
3823
+ # It holds because the following instance of the rule body is provable:
3824
+ # :MC1 :metrics _:sk_4 .
3825
+ # _:sk_4 :pi _:b4 .
3826
+ # _:b4 :pA 0.60 .
3827
+ # _:b4 :pB 0.30 .
3828
+ # _:b4 :pC 0.10 .
3829
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
3830
+ # (0.60 2.0) math:exponentiation 0.36 .
3831
+ # (0.30 2.0) math:exponentiation 0.09 .
3832
+ # (0.10 2.0) math:exponentiation 0.010000000000000002 .
3833
+ # (0.36 0.09) math:sum 0.44999999999999996 .
3834
+ # (0.44999999999999996 0.010000000000000002) math:sum 0.45999999999999996 .
3835
+ # (1.0 0.45999999999999996) math:difference 0.54 .
3836
+ # (1.0 0.45999999999999996) math:quotient 2.173913043478261 .
3837
+ # (0.60 0.3333333333333333) math:difference 0.26666666666666666 .
3838
+ # 0.26666666666666666 math:absoluteValue 0.26666666666666666 .
3839
+ # (0.30 0.3333333333333333) math:difference -0.033333333333333326 .
3840
+ # -0.033333333333333326 math:absoluteValue 0.033333333333333326 .
3841
+ # (0.10 0.3333333333333333) math:difference -0.2333333333333333 .
3842
+ # -0.2333333333333333 math:absoluteValue 0.2333333333333333 .
3843
+ # (0.26666666666666666 0.033333333333333326) math:sum 0.3 .
3844
+ # (0.3 0.2333333333333333) math:sum 0.5333333333333333 .
3845
+ # (0.5 0.5333333333333333) math:product 0.26666666666666666 .
3846
+ # (0.26666666666666666 2.0) math:exponentiation 0.07111111111111111 .
3847
+ # (-0.033333333333333326 2.0) math:exponentiation 0.0011111111111111107 .
3848
+ # (-0.2333333333333333 2.0) math:exponentiation 0.054444444444444434 .
3849
+ # (0.07111111111111111 0.0011111111111111107) math:sum 0.07222222222222222 .
3850
+ # (0.07222222222222222 0.054444444444444434) math:sum 0.12666666666666665 .
3851
+ # (0.12666666666666665 0.5) math:exponentiation 0.3559026084010437 .
3852
+ # via the schematic forward rule:
3853
+ # {
3854
+ # :MC1 :metrics ?m .
3855
+ # ?m :pi ?pi .
3856
+ # ?pi :pA ?a .
3857
+ # ?pi :pB ?b .
3858
+ # ?pi :pC ?c .
3859
+ # (1.0 3.0) math:quotient ?u .
3860
+ # (?a 2.0) math:exponentiation ?a2 .
3861
+ # (?b 2.0) math:exponentiation ?b2 .
3862
+ # (?c 2.0) math:exponentiation ?c2 .
3863
+ # (?a2 ?b2) math:sum ?ab2 .
3864
+ # (?ab2 ?c2) math:sum ?sumSq .
3865
+ # (1.0 ?sumSq) math:difference ?gini .
3866
+ # (1.0 ?sumSq) math:quotient ?effN .
3867
+ # (?a ?u) math:difference ?da .
3868
+ # ?da math:absoluteValue ?ada .
3869
+ # (?b ?u) math:difference ?db .
3870
+ # ?db math:absoluteValue ?adb .
3871
+ # (?c ?u) math:difference ?dc .
3872
+ # ?dc math:absoluteValue ?adc .
3873
+ # (?ada ?adb) math:sum ?s1 .
3874
+ # (?s1 ?adc) math:sum ?sAbs .
3875
+ # (0.5 ?sAbs) math:product ?tv .
3876
+ # (?da 2.0) math:exponentiation ?da2 .
3877
+ # (?db 2.0) math:exponentiation ?db2 .
3878
+ # (?dc 2.0) math:exponentiation ?dc2 .
3879
+ # (?da2 ?db2) math:sum ?s2 .
3880
+ # (?s2 ?dc2) math:sum ?s3 .
3881
+ # (?s3 0.5) math:exponentiation ?l2 .
3882
+ # } => {
3883
+ # ?m :sumSq ?sumSq .
3884
+ # ?m :gini ?gini .
3885
+ # ?m :effectiveStates ?effN .
3886
+ # ?m :tvToUniform ?tv .
3887
+ # ?m :l2ToUniform ?l2 .
3888
+ # } .
3889
+ # with substitution (on rule variables):
3890
+ # ?a = 0.60
3891
+ # ?a2 = 0.36
3892
+ # ?ab2 = 0.44999999999999996
3893
+ # ?ada = 0.26666666666666666
3894
+ # ?adb = 0.033333333333333326
3895
+ # ?adc = 0.2333333333333333
3896
+ # ?b = 0.30
3897
+ # ?b2 = 0.09
3898
+ # ?c = 0.10
3899
+ # ?c2 = 0.010000000000000002
3900
+ # ?da = 0.26666666666666666
3901
+ # ?da2 = 0.07111111111111111
3902
+ # ?db = -0.033333333333333326
3903
+ # ?db2 = 0.0011111111111111107
3904
+ # ?dc = -0.2333333333333333
3905
+ # ?dc2 = 0.054444444444444434
3906
+ # ?effN = 2.173913043478261
3907
+ # ?gini = 0.54
3908
+ # ?l2 = 0.3559026084010437
3909
+ # ?m = _:sk_4
3910
+ # ?pi = _:b4
3911
+ # ?s1 = 0.3
3912
+ # ?s2 = 0.07222222222222222
3913
+ # ?s3 = 0.12666666666666665
3914
+ # ?sAbs = 0.5333333333333333
3915
+ # ?sumSq = 0.45999999999999996
3916
+ # ?tv = 0.26666666666666666
3917
+ # ?u = 0.3333333333333333
3918
+ # Therefore the derived triple above is entailed by the rules and facts.
3919
+ # ----------------------------------------------------------------------
3920
+
3921
+ _:sk_4 :gini 0.54 .
3922
+
3923
+ # ----------------------------------------------------------------------
3924
+ # Proof for derived triple:
3925
+ # _:sk_4 :effectiveStates 2.173913043478261 .
3926
+ # It holds because the following instance of the rule body is provable:
3927
+ # :MC1 :metrics _:sk_4 .
3928
+ # _:sk_4 :pi _:b4 .
3929
+ # _:b4 :pA 0.60 .
3930
+ # _:b4 :pB 0.30 .
3931
+ # _:b4 :pC 0.10 .
3932
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
3933
+ # (0.60 2.0) math:exponentiation 0.36 .
3934
+ # (0.30 2.0) math:exponentiation 0.09 .
3935
+ # (0.10 2.0) math:exponentiation 0.010000000000000002 .
3936
+ # (0.36 0.09) math:sum 0.44999999999999996 .
3937
+ # (0.44999999999999996 0.010000000000000002) math:sum 0.45999999999999996 .
3938
+ # (1.0 0.45999999999999996) math:difference 0.54 .
3939
+ # (1.0 0.45999999999999996) math:quotient 2.173913043478261 .
3940
+ # (0.60 0.3333333333333333) math:difference 0.26666666666666666 .
3941
+ # 0.26666666666666666 math:absoluteValue 0.26666666666666666 .
3942
+ # (0.30 0.3333333333333333) math:difference -0.033333333333333326 .
3943
+ # -0.033333333333333326 math:absoluteValue 0.033333333333333326 .
3944
+ # (0.10 0.3333333333333333) math:difference -0.2333333333333333 .
3945
+ # -0.2333333333333333 math:absoluteValue 0.2333333333333333 .
3946
+ # (0.26666666666666666 0.033333333333333326) math:sum 0.3 .
3947
+ # (0.3 0.2333333333333333) math:sum 0.5333333333333333 .
3948
+ # (0.5 0.5333333333333333) math:product 0.26666666666666666 .
3949
+ # (0.26666666666666666 2.0) math:exponentiation 0.07111111111111111 .
3950
+ # (-0.033333333333333326 2.0) math:exponentiation 0.0011111111111111107 .
3951
+ # (-0.2333333333333333 2.0) math:exponentiation 0.054444444444444434 .
3952
+ # (0.07111111111111111 0.0011111111111111107) math:sum 0.07222222222222222 .
3953
+ # (0.07222222222222222 0.054444444444444434) math:sum 0.12666666666666665 .
3954
+ # (0.12666666666666665 0.5) math:exponentiation 0.3559026084010437 .
3955
+ # via the schematic forward rule:
3956
+ # {
3957
+ # :MC1 :metrics ?m .
3958
+ # ?m :pi ?pi .
3959
+ # ?pi :pA ?a .
3960
+ # ?pi :pB ?b .
3961
+ # ?pi :pC ?c .
3962
+ # (1.0 3.0) math:quotient ?u .
3963
+ # (?a 2.0) math:exponentiation ?a2 .
3964
+ # (?b 2.0) math:exponentiation ?b2 .
3965
+ # (?c 2.0) math:exponentiation ?c2 .
3966
+ # (?a2 ?b2) math:sum ?ab2 .
3967
+ # (?ab2 ?c2) math:sum ?sumSq .
3968
+ # (1.0 ?sumSq) math:difference ?gini .
3969
+ # (1.0 ?sumSq) math:quotient ?effN .
3970
+ # (?a ?u) math:difference ?da .
3971
+ # ?da math:absoluteValue ?ada .
3972
+ # (?b ?u) math:difference ?db .
3973
+ # ?db math:absoluteValue ?adb .
3974
+ # (?c ?u) math:difference ?dc .
3975
+ # ?dc math:absoluteValue ?adc .
3976
+ # (?ada ?adb) math:sum ?s1 .
3977
+ # (?s1 ?adc) math:sum ?sAbs .
3978
+ # (0.5 ?sAbs) math:product ?tv .
3979
+ # (?da 2.0) math:exponentiation ?da2 .
3980
+ # (?db 2.0) math:exponentiation ?db2 .
3981
+ # (?dc 2.0) math:exponentiation ?dc2 .
3982
+ # (?da2 ?db2) math:sum ?s2 .
3983
+ # (?s2 ?dc2) math:sum ?s3 .
3984
+ # (?s3 0.5) math:exponentiation ?l2 .
3985
+ # } => {
3986
+ # ?m :sumSq ?sumSq .
3987
+ # ?m :gini ?gini .
3988
+ # ?m :effectiveStates ?effN .
3989
+ # ?m :tvToUniform ?tv .
3990
+ # ?m :l2ToUniform ?l2 .
3991
+ # } .
3992
+ # with substitution (on rule variables):
3993
+ # ?a = 0.60
3994
+ # ?a2 = 0.36
3995
+ # ?ab2 = 0.44999999999999996
3996
+ # ?ada = 0.26666666666666666
3997
+ # ?adb = 0.033333333333333326
3998
+ # ?adc = 0.2333333333333333
3999
+ # ?b = 0.30
4000
+ # ?b2 = 0.09
4001
+ # ?c = 0.10
4002
+ # ?c2 = 0.010000000000000002
4003
+ # ?da = 0.26666666666666666
4004
+ # ?da2 = 0.07111111111111111
4005
+ # ?db = -0.033333333333333326
4006
+ # ?db2 = 0.0011111111111111107
4007
+ # ?dc = -0.2333333333333333
4008
+ # ?dc2 = 0.054444444444444434
4009
+ # ?effN = 2.173913043478261
4010
+ # ?gini = 0.54
4011
+ # ?l2 = 0.3559026084010437
4012
+ # ?m = _:sk_4
4013
+ # ?pi = _:b4
4014
+ # ?s1 = 0.3
4015
+ # ?s2 = 0.07222222222222222
4016
+ # ?s3 = 0.12666666666666665
4017
+ # ?sAbs = 0.5333333333333333
4018
+ # ?sumSq = 0.45999999999999996
4019
+ # ?tv = 0.26666666666666666
4020
+ # ?u = 0.3333333333333333
4021
+ # Therefore the derived triple above is entailed by the rules and facts.
4022
+ # ----------------------------------------------------------------------
4023
+
4024
+ _:sk_4 :effectiveStates 2.173913043478261 .
4025
+
4026
+ # ----------------------------------------------------------------------
4027
+ # Proof for derived triple:
4028
+ # _:sk_4 :tvToUniform 0.26666666666666666 .
4029
+ # It holds because the following instance of the rule body is provable:
4030
+ # :MC1 :metrics _:sk_4 .
4031
+ # _:sk_4 :pi _:b4 .
4032
+ # _:b4 :pA 0.60 .
4033
+ # _:b4 :pB 0.30 .
4034
+ # _:b4 :pC 0.10 .
4035
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
4036
+ # (0.60 2.0) math:exponentiation 0.36 .
4037
+ # (0.30 2.0) math:exponentiation 0.09 .
4038
+ # (0.10 2.0) math:exponentiation 0.010000000000000002 .
4039
+ # (0.36 0.09) math:sum 0.44999999999999996 .
4040
+ # (0.44999999999999996 0.010000000000000002) math:sum 0.45999999999999996 .
4041
+ # (1.0 0.45999999999999996) math:difference 0.54 .
4042
+ # (1.0 0.45999999999999996) math:quotient 2.173913043478261 .
4043
+ # (0.60 0.3333333333333333) math:difference 0.26666666666666666 .
4044
+ # 0.26666666666666666 math:absoluteValue 0.26666666666666666 .
4045
+ # (0.30 0.3333333333333333) math:difference -0.033333333333333326 .
4046
+ # -0.033333333333333326 math:absoluteValue 0.033333333333333326 .
4047
+ # (0.10 0.3333333333333333) math:difference -0.2333333333333333 .
4048
+ # -0.2333333333333333 math:absoluteValue 0.2333333333333333 .
4049
+ # (0.26666666666666666 0.033333333333333326) math:sum 0.3 .
4050
+ # (0.3 0.2333333333333333) math:sum 0.5333333333333333 .
4051
+ # (0.5 0.5333333333333333) math:product 0.26666666666666666 .
4052
+ # (0.26666666666666666 2.0) math:exponentiation 0.07111111111111111 .
4053
+ # (-0.033333333333333326 2.0) math:exponentiation 0.0011111111111111107 .
4054
+ # (-0.2333333333333333 2.0) math:exponentiation 0.054444444444444434 .
4055
+ # (0.07111111111111111 0.0011111111111111107) math:sum 0.07222222222222222 .
4056
+ # (0.07222222222222222 0.054444444444444434) math:sum 0.12666666666666665 .
4057
+ # (0.12666666666666665 0.5) math:exponentiation 0.3559026084010437 .
4058
+ # via the schematic forward rule:
4059
+ # {
4060
+ # :MC1 :metrics ?m .
4061
+ # ?m :pi ?pi .
4062
+ # ?pi :pA ?a .
4063
+ # ?pi :pB ?b .
4064
+ # ?pi :pC ?c .
4065
+ # (1.0 3.0) math:quotient ?u .
4066
+ # (?a 2.0) math:exponentiation ?a2 .
4067
+ # (?b 2.0) math:exponentiation ?b2 .
4068
+ # (?c 2.0) math:exponentiation ?c2 .
4069
+ # (?a2 ?b2) math:sum ?ab2 .
4070
+ # (?ab2 ?c2) math:sum ?sumSq .
4071
+ # (1.0 ?sumSq) math:difference ?gini .
4072
+ # (1.0 ?sumSq) math:quotient ?effN .
4073
+ # (?a ?u) math:difference ?da .
4074
+ # ?da math:absoluteValue ?ada .
4075
+ # (?b ?u) math:difference ?db .
4076
+ # ?db math:absoluteValue ?adb .
4077
+ # (?c ?u) math:difference ?dc .
4078
+ # ?dc math:absoluteValue ?adc .
4079
+ # (?ada ?adb) math:sum ?s1 .
4080
+ # (?s1 ?adc) math:sum ?sAbs .
4081
+ # (0.5 ?sAbs) math:product ?tv .
4082
+ # (?da 2.0) math:exponentiation ?da2 .
4083
+ # (?db 2.0) math:exponentiation ?db2 .
4084
+ # (?dc 2.0) math:exponentiation ?dc2 .
4085
+ # (?da2 ?db2) math:sum ?s2 .
4086
+ # (?s2 ?dc2) math:sum ?s3 .
4087
+ # (?s3 0.5) math:exponentiation ?l2 .
4088
+ # } => {
4089
+ # ?m :sumSq ?sumSq .
4090
+ # ?m :gini ?gini .
4091
+ # ?m :effectiveStates ?effN .
4092
+ # ?m :tvToUniform ?tv .
4093
+ # ?m :l2ToUniform ?l2 .
4094
+ # } .
4095
+ # with substitution (on rule variables):
4096
+ # ?a = 0.60
4097
+ # ?a2 = 0.36
4098
+ # ?ab2 = 0.44999999999999996
4099
+ # ?ada = 0.26666666666666666
4100
+ # ?adb = 0.033333333333333326
4101
+ # ?adc = 0.2333333333333333
4102
+ # ?b = 0.30
4103
+ # ?b2 = 0.09
4104
+ # ?c = 0.10
4105
+ # ?c2 = 0.010000000000000002
4106
+ # ?da = 0.26666666666666666
4107
+ # ?da2 = 0.07111111111111111
4108
+ # ?db = -0.033333333333333326
4109
+ # ?db2 = 0.0011111111111111107
4110
+ # ?dc = -0.2333333333333333
4111
+ # ?dc2 = 0.054444444444444434
4112
+ # ?effN = 2.173913043478261
4113
+ # ?gini = 0.54
4114
+ # ?l2 = 0.3559026084010437
4115
+ # ?m = _:sk_4
4116
+ # ?pi = _:b4
4117
+ # ?s1 = 0.3
4118
+ # ?s2 = 0.07222222222222222
4119
+ # ?s3 = 0.12666666666666665
4120
+ # ?sAbs = 0.5333333333333333
4121
+ # ?sumSq = 0.45999999999999996
4122
+ # ?tv = 0.26666666666666666
4123
+ # ?u = 0.3333333333333333
4124
+ # Therefore the derived triple above is entailed by the rules and facts.
4125
+ # ----------------------------------------------------------------------
4126
+
4127
+ _:sk_4 :tvToUniform 0.26666666666666666 .
4128
+
4129
+ # ----------------------------------------------------------------------
4130
+ # Proof for derived triple:
4131
+ # _:sk_4 :l2ToUniform 0.3559026084010437 .
4132
+ # It holds because the following instance of the rule body is provable:
4133
+ # :MC1 :metrics _:sk_4 .
4134
+ # _:sk_4 :pi _:b4 .
4135
+ # _:b4 :pA 0.60 .
4136
+ # _:b4 :pB 0.30 .
4137
+ # _:b4 :pC 0.10 .
4138
+ # (1.0 3.0) math:quotient 0.3333333333333333 .
4139
+ # (0.60 2.0) math:exponentiation 0.36 .
4140
+ # (0.30 2.0) math:exponentiation 0.09 .
4141
+ # (0.10 2.0) math:exponentiation 0.010000000000000002 .
4142
+ # (0.36 0.09) math:sum 0.44999999999999996 .
4143
+ # (0.44999999999999996 0.010000000000000002) math:sum 0.45999999999999996 .
4144
+ # (1.0 0.45999999999999996) math:difference 0.54 .
4145
+ # (1.0 0.45999999999999996) math:quotient 2.173913043478261 .
4146
+ # (0.60 0.3333333333333333) math:difference 0.26666666666666666 .
4147
+ # 0.26666666666666666 math:absoluteValue 0.26666666666666666 .
4148
+ # (0.30 0.3333333333333333) math:difference -0.033333333333333326 .
4149
+ # -0.033333333333333326 math:absoluteValue 0.033333333333333326 .
4150
+ # (0.10 0.3333333333333333) math:difference -0.2333333333333333 .
4151
+ # -0.2333333333333333 math:absoluteValue 0.2333333333333333 .
4152
+ # (0.26666666666666666 0.033333333333333326) math:sum 0.3 .
4153
+ # (0.3 0.2333333333333333) math:sum 0.5333333333333333 .
4154
+ # (0.5 0.5333333333333333) math:product 0.26666666666666666 .
4155
+ # (0.26666666666666666 2.0) math:exponentiation 0.07111111111111111 .
4156
+ # (-0.033333333333333326 2.0) math:exponentiation 0.0011111111111111107 .
4157
+ # (-0.2333333333333333 2.0) math:exponentiation 0.054444444444444434 .
4158
+ # (0.07111111111111111 0.0011111111111111107) math:sum 0.07222222222222222 .
4159
+ # (0.07222222222222222 0.054444444444444434) math:sum 0.12666666666666665 .
4160
+ # (0.12666666666666665 0.5) math:exponentiation 0.3559026084010437 .
4161
+ # via the schematic forward rule:
4162
+ # {
4163
+ # :MC1 :metrics ?m .
4164
+ # ?m :pi ?pi .
4165
+ # ?pi :pA ?a .
4166
+ # ?pi :pB ?b .
4167
+ # ?pi :pC ?c .
4168
+ # (1.0 3.0) math:quotient ?u .
4169
+ # (?a 2.0) math:exponentiation ?a2 .
4170
+ # (?b 2.0) math:exponentiation ?b2 .
4171
+ # (?c 2.0) math:exponentiation ?c2 .
4172
+ # (?a2 ?b2) math:sum ?ab2 .
4173
+ # (?ab2 ?c2) math:sum ?sumSq .
4174
+ # (1.0 ?sumSq) math:difference ?gini .
4175
+ # (1.0 ?sumSq) math:quotient ?effN .
4176
+ # (?a ?u) math:difference ?da .
4177
+ # ?da math:absoluteValue ?ada .
4178
+ # (?b ?u) math:difference ?db .
4179
+ # ?db math:absoluteValue ?adb .
4180
+ # (?c ?u) math:difference ?dc .
4181
+ # ?dc math:absoluteValue ?adc .
4182
+ # (?ada ?adb) math:sum ?s1 .
4183
+ # (?s1 ?adc) math:sum ?sAbs .
4184
+ # (0.5 ?sAbs) math:product ?tv .
4185
+ # (?da 2.0) math:exponentiation ?da2 .
4186
+ # (?db 2.0) math:exponentiation ?db2 .
4187
+ # (?dc 2.0) math:exponentiation ?dc2 .
4188
+ # (?da2 ?db2) math:sum ?s2 .
4189
+ # (?s2 ?dc2) math:sum ?s3 .
4190
+ # (?s3 0.5) math:exponentiation ?l2 .
4191
+ # } => {
4192
+ # ?m :sumSq ?sumSq .
4193
+ # ?m :gini ?gini .
4194
+ # ?m :effectiveStates ?effN .
4195
+ # ?m :tvToUniform ?tv .
4196
+ # ?m :l2ToUniform ?l2 .
4197
+ # } .
4198
+ # with substitution (on rule variables):
4199
+ # ?a = 0.60
4200
+ # ?a2 = 0.36
4201
+ # ?ab2 = 0.44999999999999996
4202
+ # ?ada = 0.26666666666666666
4203
+ # ?adb = 0.033333333333333326
4204
+ # ?adc = 0.2333333333333333
4205
+ # ?b = 0.30
4206
+ # ?b2 = 0.09
4207
+ # ?c = 0.10
4208
+ # ?c2 = 0.010000000000000002
4209
+ # ?da = 0.26666666666666666
4210
+ # ?da2 = 0.07111111111111111
4211
+ # ?db = -0.033333333333333326
4212
+ # ?db2 = 0.0011111111111111107
4213
+ # ?dc = -0.2333333333333333
4214
+ # ?dc2 = 0.054444444444444434
4215
+ # ?effN = 2.173913043478261
4216
+ # ?gini = 0.54
4217
+ # ?l2 = 0.3559026084010437
4218
+ # ?m = _:sk_4
4219
+ # ?pi = _:b4
4220
+ # ?s1 = 0.3
4221
+ # ?s2 = 0.07222222222222222
4222
+ # ?s3 = 0.12666666666666665
4223
+ # ?sAbs = 0.5333333333333333
4224
+ # ?sumSq = 0.45999999999999996
4225
+ # ?tv = 0.26666666666666666
4226
+ # ?u = 0.3333333333333333
4227
+ # Therefore the derived triple above is entailed by the rules and facts.
4228
+ # ----------------------------------------------------------------------
4229
+
4230
+ _:sk_4 :l2ToUniform 0.3559026084010437 .
4231
+