eyeling 1.5.41 → 1.6.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,4749 @@
1
+ @prefix : <http://example.org/jade-eigen-loom#> .
2
+
3
+ # ----------------------------------------------------------------------
4
+ # Proof for derived triple:
5
+ # :PCA1 :n 7 .
6
+ # It holds because the following instance of the rule body is provable:
7
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
8
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:length 7 .
9
+ # (?x {
10
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
11
+ # ?p :x ?x .
12
+ # } (20.0 7.0 6.0 5.0 4.0 3.0 2.0)) log:collectAllIn ?_b1 .
13
+ # (?y {
14
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
15
+ # ?p :y ?y .
16
+ # } (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)) log:collectAllIn ?_b1 .
17
+ # (20.0 7.0 6.0 5.0 4.0 3.0 2.0) math:sum 47 .
18
+ # (-3.0 13.0 7.9 5.1 3.2 2.0 1.0) math:sum 29.2 .
19
+ # (47 7) math:quotient 6.714285714285714 .
20
+ # (29.2 7) math:quotient 4.171428571428572 .
21
+ # (?dx2 {
22
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
23
+ # ?p :x ?x .
24
+ # (?x 6.714285714285714) math:difference ?dx .
25
+ # (?dx 2.0) math:exponentiation ?dx2 .
26
+ # } (176.51020408163262 0.08163265306122441 0.5102040816326533 2.9387755102040822 7.367346938775511 13.795918367346939 22.22448979591837)) log:collectAllIn ?_b1 .
27
+ # (176.51020408163262 0.08163265306122441 0.5102040816326533 2.9387755102040822 7.367346938775511 13.795918367346939 22.22448979591837) math:sum 223.42857142857142 .
28
+ # (223.42857142857142 7) math:quotient 31.918367346938773 .
29
+ # (?dy2 {
30
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
31
+ # ?p :y ?y .
32
+ # (?y 4.171428571428572) math:difference ?dy .
33
+ # (?dy 2.0) math:exponentiation ?dy2 .
34
+ # } (51.42938775510204 77.94367346938776 13.902244897959184 0.8622448979591825 0.9436734693877553 4.715102040816328 10.057959183673471)) log:collectAllIn ?_b1 .
35
+ # (51.42938775510204 77.94367346938776 13.902244897959184 0.8622448979591825 0.9436734693877553 4.715102040816328 10.057959183673471) math:sum 159.8542857142857 .
36
+ # (159.8542857142857 7) math:quotient 22.836326530612244 .
37
+ # (?dxdy {
38
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
39
+ # ?p :x ?x .
40
+ # ?p :y ?y .
41
+ # (?x 6.714285714285714) math:difference ?dx .
42
+ # (?y 4.171428571428572) math:difference ?dy .
43
+ # (?dx ?dy) math:product ?dxdy .
44
+ # } (-95.27755102040815 2.522448979591836 -2.6632653061224496 -1.5918367346938767 2.6367346938775515 8.06530612244898 14.951020408163266)) log:collectAllIn ?_b1 .
45
+ # (-95.27755102040815 2.522448979591836 -2.6632653061224496 -1.5918367346938767 2.6367346938775515 8.06530612244898 14.951020408163266) math:sum -71.35714285714286 .
46
+ # (-71.35714285714286 7) math:quotient -10.193877551020408 .
47
+ # via the schematic forward rule:
48
+ # {
49
+ # :PCA1 :points ?pts .
50
+ # ?pts list:length ?n .
51
+ # (?x {
52
+ # ?pts list:member ?p .
53
+ # ?p :x ?x .
54
+ # } ?xs) log:collectAllIn ?_b1 .
55
+ # (?y {
56
+ # ?pts list:member ?p .
57
+ # ?p :y ?y .
58
+ # } ?ys) log:collectAllIn ?_b1 .
59
+ # ?xs math:sum ?sumX .
60
+ # ?ys math:sum ?sumY .
61
+ # (?sumX ?n) math:quotient ?meanX .
62
+ # (?sumY ?n) math:quotient ?meanY .
63
+ # (?dx2 {
64
+ # ?pts list:member ?p .
65
+ # ?p :x ?x .
66
+ # (?x ?meanX) math:difference ?dx .
67
+ # (?dx 2.0) math:exponentiation ?dx2 .
68
+ # } ?dx2s) log:collectAllIn ?_b1 .
69
+ # ?dx2s math:sum ?ssXX .
70
+ # (?ssXX ?n) math:quotient ?covXX .
71
+ # (?dy2 {
72
+ # ?pts list:member ?p .
73
+ # ?p :y ?y .
74
+ # (?y ?meanY) math:difference ?dy .
75
+ # (?dy 2.0) math:exponentiation ?dy2 .
76
+ # } ?dy2s) log:collectAllIn ?_b1 .
77
+ # ?dy2s math:sum ?ssYY .
78
+ # (?ssYY ?n) math:quotient ?covYY .
79
+ # (?dxdy {
80
+ # ?pts list:member ?p .
81
+ # ?p :x ?x .
82
+ # ?p :y ?y .
83
+ # (?x ?meanX) math:difference ?dx .
84
+ # (?y ?meanY) math:difference ?dy .
85
+ # (?dx ?dy) math:product ?dxdy .
86
+ # } ?dxdys) log:collectAllIn ?_b1 .
87
+ # ?dxdys math:sum ?ssXY .
88
+ # (?ssXY ?n) math:quotient ?covXY .
89
+ # } => {
90
+ # :PCA1 :n ?n .
91
+ # :PCA1 :meanX ?meanX .
92
+ # :PCA1 :meanY ?meanY .
93
+ # :PCA1 :covXX ?covXX .
94
+ # :PCA1 :covYY ?covYY .
95
+ # :PCA1 :covXY ?covXY .
96
+ # } .
97
+ # with substitution (on rule variables):
98
+ # ?covXX = 31.918367346938773
99
+ # ?covXY = -10.193877551020408
100
+ # ?covYY = 22.836326530612244
101
+ # ?dx2s = (176.51020408163262 0.08163265306122441 0.5102040816326533 2.9387755102040822 7.367346938775511 13.795918367346939 22.22448979591837)
102
+ # ?dxdys = (-95.27755102040815 2.522448979591836 -2.6632653061224496 -1.5918367346938767 2.6367346938775515 8.06530612244898 14.951020408163266)
103
+ # ?dy2s = (51.42938775510204 77.94367346938776 13.902244897959184 0.8622448979591825 0.9436734693877553 4.715102040816328 10.057959183673471)
104
+ # ?meanX = 6.714285714285714
105
+ # ?meanY = 4.171428571428572
106
+ # ?n = 7
107
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
108
+ # ?ssXX = 223.42857142857142
109
+ # ?ssXY = -71.35714285714286
110
+ # ?ssYY = 159.8542857142857
111
+ # ?sumX = 47
112
+ # ?sumY = 29.2
113
+ # ?xs = (20.0 7.0 6.0 5.0 4.0 3.0 2.0)
114
+ # ?ys = (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)
115
+ # Therefore the derived triple above is entailed by the rules and facts.
116
+ # ----------------------------------------------------------------------
117
+
118
+ :PCA1 :n 7 .
119
+
120
+ # ----------------------------------------------------------------------
121
+ # Proof for derived triple:
122
+ # :PCA1 :meanX 6.714285714285714 .
123
+ # It holds because the following instance of the rule body is provable:
124
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
125
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:length 7 .
126
+ # (?x {
127
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
128
+ # ?p :x ?x .
129
+ # } (20.0 7.0 6.0 5.0 4.0 3.0 2.0)) log:collectAllIn ?_b1 .
130
+ # (?y {
131
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
132
+ # ?p :y ?y .
133
+ # } (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)) log:collectAllIn ?_b1 .
134
+ # (20.0 7.0 6.0 5.0 4.0 3.0 2.0) math:sum 47 .
135
+ # (-3.0 13.0 7.9 5.1 3.2 2.0 1.0) math:sum 29.2 .
136
+ # (47 7) math:quotient 6.714285714285714 .
137
+ # (29.2 7) math:quotient 4.171428571428572 .
138
+ # (?dx2 {
139
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
140
+ # ?p :x ?x .
141
+ # (?x 6.714285714285714) math:difference ?dx .
142
+ # (?dx 2.0) math:exponentiation ?dx2 .
143
+ # } (176.51020408163262 0.08163265306122441 0.5102040816326533 2.9387755102040822 7.367346938775511 13.795918367346939 22.22448979591837)) log:collectAllIn ?_b1 .
144
+ # (176.51020408163262 0.08163265306122441 0.5102040816326533 2.9387755102040822 7.367346938775511 13.795918367346939 22.22448979591837) math:sum 223.42857142857142 .
145
+ # (223.42857142857142 7) math:quotient 31.918367346938773 .
146
+ # (?dy2 {
147
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
148
+ # ?p :y ?y .
149
+ # (?y 4.171428571428572) math:difference ?dy .
150
+ # (?dy 2.0) math:exponentiation ?dy2 .
151
+ # } (51.42938775510204 77.94367346938776 13.902244897959184 0.8622448979591825 0.9436734693877553 4.715102040816328 10.057959183673471)) log:collectAllIn ?_b1 .
152
+ # (51.42938775510204 77.94367346938776 13.902244897959184 0.8622448979591825 0.9436734693877553 4.715102040816328 10.057959183673471) math:sum 159.8542857142857 .
153
+ # (159.8542857142857 7) math:quotient 22.836326530612244 .
154
+ # (?dxdy {
155
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
156
+ # ?p :x ?x .
157
+ # ?p :y ?y .
158
+ # (?x 6.714285714285714) math:difference ?dx .
159
+ # (?y 4.171428571428572) math:difference ?dy .
160
+ # (?dx ?dy) math:product ?dxdy .
161
+ # } (-95.27755102040815 2.522448979591836 -2.6632653061224496 -1.5918367346938767 2.6367346938775515 8.06530612244898 14.951020408163266)) log:collectAllIn ?_b1 .
162
+ # (-95.27755102040815 2.522448979591836 -2.6632653061224496 -1.5918367346938767 2.6367346938775515 8.06530612244898 14.951020408163266) math:sum -71.35714285714286 .
163
+ # (-71.35714285714286 7) math:quotient -10.193877551020408 .
164
+ # via the schematic forward rule:
165
+ # {
166
+ # :PCA1 :points ?pts .
167
+ # ?pts list:length ?n .
168
+ # (?x {
169
+ # ?pts list:member ?p .
170
+ # ?p :x ?x .
171
+ # } ?xs) log:collectAllIn ?_b1 .
172
+ # (?y {
173
+ # ?pts list:member ?p .
174
+ # ?p :y ?y .
175
+ # } ?ys) log:collectAllIn ?_b1 .
176
+ # ?xs math:sum ?sumX .
177
+ # ?ys math:sum ?sumY .
178
+ # (?sumX ?n) math:quotient ?meanX .
179
+ # (?sumY ?n) math:quotient ?meanY .
180
+ # (?dx2 {
181
+ # ?pts list:member ?p .
182
+ # ?p :x ?x .
183
+ # (?x ?meanX) math:difference ?dx .
184
+ # (?dx 2.0) math:exponentiation ?dx2 .
185
+ # } ?dx2s) log:collectAllIn ?_b1 .
186
+ # ?dx2s math:sum ?ssXX .
187
+ # (?ssXX ?n) math:quotient ?covXX .
188
+ # (?dy2 {
189
+ # ?pts list:member ?p .
190
+ # ?p :y ?y .
191
+ # (?y ?meanY) math:difference ?dy .
192
+ # (?dy 2.0) math:exponentiation ?dy2 .
193
+ # } ?dy2s) log:collectAllIn ?_b1 .
194
+ # ?dy2s math:sum ?ssYY .
195
+ # (?ssYY ?n) math:quotient ?covYY .
196
+ # (?dxdy {
197
+ # ?pts list:member ?p .
198
+ # ?p :x ?x .
199
+ # ?p :y ?y .
200
+ # (?x ?meanX) math:difference ?dx .
201
+ # (?y ?meanY) math:difference ?dy .
202
+ # (?dx ?dy) math:product ?dxdy .
203
+ # } ?dxdys) log:collectAllIn ?_b1 .
204
+ # ?dxdys math:sum ?ssXY .
205
+ # (?ssXY ?n) math:quotient ?covXY .
206
+ # } => {
207
+ # :PCA1 :n ?n .
208
+ # :PCA1 :meanX ?meanX .
209
+ # :PCA1 :meanY ?meanY .
210
+ # :PCA1 :covXX ?covXX .
211
+ # :PCA1 :covYY ?covYY .
212
+ # :PCA1 :covXY ?covXY .
213
+ # } .
214
+ # with substitution (on rule variables):
215
+ # ?covXX = 31.918367346938773
216
+ # ?covXY = -10.193877551020408
217
+ # ?covYY = 22.836326530612244
218
+ # ?dx2s = (176.51020408163262 0.08163265306122441 0.5102040816326533 2.9387755102040822 7.367346938775511 13.795918367346939 22.22448979591837)
219
+ # ?dxdys = (-95.27755102040815 2.522448979591836 -2.6632653061224496 -1.5918367346938767 2.6367346938775515 8.06530612244898 14.951020408163266)
220
+ # ?dy2s = (51.42938775510204 77.94367346938776 13.902244897959184 0.8622448979591825 0.9436734693877553 4.715102040816328 10.057959183673471)
221
+ # ?meanX = 6.714285714285714
222
+ # ?meanY = 4.171428571428572
223
+ # ?n = 7
224
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
225
+ # ?ssXX = 223.42857142857142
226
+ # ?ssXY = -71.35714285714286
227
+ # ?ssYY = 159.8542857142857
228
+ # ?sumX = 47
229
+ # ?sumY = 29.2
230
+ # ?xs = (20.0 7.0 6.0 5.0 4.0 3.0 2.0)
231
+ # ?ys = (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)
232
+ # Therefore the derived triple above is entailed by the rules and facts.
233
+ # ----------------------------------------------------------------------
234
+
235
+ :PCA1 :meanX 6.714285714285714 .
236
+
237
+ # ----------------------------------------------------------------------
238
+ # Proof for derived triple:
239
+ # :PCA1 :meanY 4.171428571428572 .
240
+ # It holds because the following instance of the rule body is provable:
241
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
242
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:length 7 .
243
+ # (?x {
244
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
245
+ # ?p :x ?x .
246
+ # } (20.0 7.0 6.0 5.0 4.0 3.0 2.0)) log:collectAllIn ?_b1 .
247
+ # (?y {
248
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
249
+ # ?p :y ?y .
250
+ # } (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)) log:collectAllIn ?_b1 .
251
+ # (20.0 7.0 6.0 5.0 4.0 3.0 2.0) math:sum 47 .
252
+ # (-3.0 13.0 7.9 5.1 3.2 2.0 1.0) math:sum 29.2 .
253
+ # (47 7) math:quotient 6.714285714285714 .
254
+ # (29.2 7) math:quotient 4.171428571428572 .
255
+ # (?dx2 {
256
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
257
+ # ?p :x ?x .
258
+ # (?x 6.714285714285714) math:difference ?dx .
259
+ # (?dx 2.0) math:exponentiation ?dx2 .
260
+ # } (176.51020408163262 0.08163265306122441 0.5102040816326533 2.9387755102040822 7.367346938775511 13.795918367346939 22.22448979591837)) log:collectAllIn ?_b1 .
261
+ # (176.51020408163262 0.08163265306122441 0.5102040816326533 2.9387755102040822 7.367346938775511 13.795918367346939 22.22448979591837) math:sum 223.42857142857142 .
262
+ # (223.42857142857142 7) math:quotient 31.918367346938773 .
263
+ # (?dy2 {
264
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
265
+ # ?p :y ?y .
266
+ # (?y 4.171428571428572) math:difference ?dy .
267
+ # (?dy 2.0) math:exponentiation ?dy2 .
268
+ # } (51.42938775510204 77.94367346938776 13.902244897959184 0.8622448979591825 0.9436734693877553 4.715102040816328 10.057959183673471)) log:collectAllIn ?_b1 .
269
+ # (51.42938775510204 77.94367346938776 13.902244897959184 0.8622448979591825 0.9436734693877553 4.715102040816328 10.057959183673471) math:sum 159.8542857142857 .
270
+ # (159.8542857142857 7) math:quotient 22.836326530612244 .
271
+ # (?dxdy {
272
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
273
+ # ?p :x ?x .
274
+ # ?p :y ?y .
275
+ # (?x 6.714285714285714) math:difference ?dx .
276
+ # (?y 4.171428571428572) math:difference ?dy .
277
+ # (?dx ?dy) math:product ?dxdy .
278
+ # } (-95.27755102040815 2.522448979591836 -2.6632653061224496 -1.5918367346938767 2.6367346938775515 8.06530612244898 14.951020408163266)) log:collectAllIn ?_b1 .
279
+ # (-95.27755102040815 2.522448979591836 -2.6632653061224496 -1.5918367346938767 2.6367346938775515 8.06530612244898 14.951020408163266) math:sum -71.35714285714286 .
280
+ # (-71.35714285714286 7) math:quotient -10.193877551020408 .
281
+ # via the schematic forward rule:
282
+ # {
283
+ # :PCA1 :points ?pts .
284
+ # ?pts list:length ?n .
285
+ # (?x {
286
+ # ?pts list:member ?p .
287
+ # ?p :x ?x .
288
+ # } ?xs) log:collectAllIn ?_b1 .
289
+ # (?y {
290
+ # ?pts list:member ?p .
291
+ # ?p :y ?y .
292
+ # } ?ys) log:collectAllIn ?_b1 .
293
+ # ?xs math:sum ?sumX .
294
+ # ?ys math:sum ?sumY .
295
+ # (?sumX ?n) math:quotient ?meanX .
296
+ # (?sumY ?n) math:quotient ?meanY .
297
+ # (?dx2 {
298
+ # ?pts list:member ?p .
299
+ # ?p :x ?x .
300
+ # (?x ?meanX) math:difference ?dx .
301
+ # (?dx 2.0) math:exponentiation ?dx2 .
302
+ # } ?dx2s) log:collectAllIn ?_b1 .
303
+ # ?dx2s math:sum ?ssXX .
304
+ # (?ssXX ?n) math:quotient ?covXX .
305
+ # (?dy2 {
306
+ # ?pts list:member ?p .
307
+ # ?p :y ?y .
308
+ # (?y ?meanY) math:difference ?dy .
309
+ # (?dy 2.0) math:exponentiation ?dy2 .
310
+ # } ?dy2s) log:collectAllIn ?_b1 .
311
+ # ?dy2s math:sum ?ssYY .
312
+ # (?ssYY ?n) math:quotient ?covYY .
313
+ # (?dxdy {
314
+ # ?pts list:member ?p .
315
+ # ?p :x ?x .
316
+ # ?p :y ?y .
317
+ # (?x ?meanX) math:difference ?dx .
318
+ # (?y ?meanY) math:difference ?dy .
319
+ # (?dx ?dy) math:product ?dxdy .
320
+ # } ?dxdys) log:collectAllIn ?_b1 .
321
+ # ?dxdys math:sum ?ssXY .
322
+ # (?ssXY ?n) math:quotient ?covXY .
323
+ # } => {
324
+ # :PCA1 :n ?n .
325
+ # :PCA1 :meanX ?meanX .
326
+ # :PCA1 :meanY ?meanY .
327
+ # :PCA1 :covXX ?covXX .
328
+ # :PCA1 :covYY ?covYY .
329
+ # :PCA1 :covXY ?covXY .
330
+ # } .
331
+ # with substitution (on rule variables):
332
+ # ?covXX = 31.918367346938773
333
+ # ?covXY = -10.193877551020408
334
+ # ?covYY = 22.836326530612244
335
+ # ?dx2s = (176.51020408163262 0.08163265306122441 0.5102040816326533 2.9387755102040822 7.367346938775511 13.795918367346939 22.22448979591837)
336
+ # ?dxdys = (-95.27755102040815 2.522448979591836 -2.6632653061224496 -1.5918367346938767 2.6367346938775515 8.06530612244898 14.951020408163266)
337
+ # ?dy2s = (51.42938775510204 77.94367346938776 13.902244897959184 0.8622448979591825 0.9436734693877553 4.715102040816328 10.057959183673471)
338
+ # ?meanX = 6.714285714285714
339
+ # ?meanY = 4.171428571428572
340
+ # ?n = 7
341
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
342
+ # ?ssXX = 223.42857142857142
343
+ # ?ssXY = -71.35714285714286
344
+ # ?ssYY = 159.8542857142857
345
+ # ?sumX = 47
346
+ # ?sumY = 29.2
347
+ # ?xs = (20.0 7.0 6.0 5.0 4.0 3.0 2.0)
348
+ # ?ys = (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)
349
+ # Therefore the derived triple above is entailed by the rules and facts.
350
+ # ----------------------------------------------------------------------
351
+
352
+ :PCA1 :meanY 4.171428571428572 .
353
+
354
+ # ----------------------------------------------------------------------
355
+ # Proof for derived triple:
356
+ # :PCA1 :covXX 31.918367346938773 .
357
+ # It holds because the following instance of the rule body is provable:
358
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
359
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:length 7 .
360
+ # (?x {
361
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
362
+ # ?p :x ?x .
363
+ # } (20.0 7.0 6.0 5.0 4.0 3.0 2.0)) log:collectAllIn ?_b1 .
364
+ # (?y {
365
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
366
+ # ?p :y ?y .
367
+ # } (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)) log:collectAllIn ?_b1 .
368
+ # (20.0 7.0 6.0 5.0 4.0 3.0 2.0) math:sum 47 .
369
+ # (-3.0 13.0 7.9 5.1 3.2 2.0 1.0) math:sum 29.2 .
370
+ # (47 7) math:quotient 6.714285714285714 .
371
+ # (29.2 7) math:quotient 4.171428571428572 .
372
+ # (?dx2 {
373
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
374
+ # ?p :x ?x .
375
+ # (?x 6.714285714285714) math:difference ?dx .
376
+ # (?dx 2.0) math:exponentiation ?dx2 .
377
+ # } (176.51020408163262 0.08163265306122441 0.5102040816326533 2.9387755102040822 7.367346938775511 13.795918367346939 22.22448979591837)) log:collectAllIn ?_b1 .
378
+ # (176.51020408163262 0.08163265306122441 0.5102040816326533 2.9387755102040822 7.367346938775511 13.795918367346939 22.22448979591837) math:sum 223.42857142857142 .
379
+ # (223.42857142857142 7) math:quotient 31.918367346938773 .
380
+ # (?dy2 {
381
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
382
+ # ?p :y ?y .
383
+ # (?y 4.171428571428572) math:difference ?dy .
384
+ # (?dy 2.0) math:exponentiation ?dy2 .
385
+ # } (51.42938775510204 77.94367346938776 13.902244897959184 0.8622448979591825 0.9436734693877553 4.715102040816328 10.057959183673471)) log:collectAllIn ?_b1 .
386
+ # (51.42938775510204 77.94367346938776 13.902244897959184 0.8622448979591825 0.9436734693877553 4.715102040816328 10.057959183673471) math:sum 159.8542857142857 .
387
+ # (159.8542857142857 7) math:quotient 22.836326530612244 .
388
+ # (?dxdy {
389
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
390
+ # ?p :x ?x .
391
+ # ?p :y ?y .
392
+ # (?x 6.714285714285714) math:difference ?dx .
393
+ # (?y 4.171428571428572) math:difference ?dy .
394
+ # (?dx ?dy) math:product ?dxdy .
395
+ # } (-95.27755102040815 2.522448979591836 -2.6632653061224496 -1.5918367346938767 2.6367346938775515 8.06530612244898 14.951020408163266)) log:collectAllIn ?_b1 .
396
+ # (-95.27755102040815 2.522448979591836 -2.6632653061224496 -1.5918367346938767 2.6367346938775515 8.06530612244898 14.951020408163266) math:sum -71.35714285714286 .
397
+ # (-71.35714285714286 7) math:quotient -10.193877551020408 .
398
+ # via the schematic forward rule:
399
+ # {
400
+ # :PCA1 :points ?pts .
401
+ # ?pts list:length ?n .
402
+ # (?x {
403
+ # ?pts list:member ?p .
404
+ # ?p :x ?x .
405
+ # } ?xs) log:collectAllIn ?_b1 .
406
+ # (?y {
407
+ # ?pts list:member ?p .
408
+ # ?p :y ?y .
409
+ # } ?ys) log:collectAllIn ?_b1 .
410
+ # ?xs math:sum ?sumX .
411
+ # ?ys math:sum ?sumY .
412
+ # (?sumX ?n) math:quotient ?meanX .
413
+ # (?sumY ?n) math:quotient ?meanY .
414
+ # (?dx2 {
415
+ # ?pts list:member ?p .
416
+ # ?p :x ?x .
417
+ # (?x ?meanX) math:difference ?dx .
418
+ # (?dx 2.0) math:exponentiation ?dx2 .
419
+ # } ?dx2s) log:collectAllIn ?_b1 .
420
+ # ?dx2s math:sum ?ssXX .
421
+ # (?ssXX ?n) math:quotient ?covXX .
422
+ # (?dy2 {
423
+ # ?pts list:member ?p .
424
+ # ?p :y ?y .
425
+ # (?y ?meanY) math:difference ?dy .
426
+ # (?dy 2.0) math:exponentiation ?dy2 .
427
+ # } ?dy2s) log:collectAllIn ?_b1 .
428
+ # ?dy2s math:sum ?ssYY .
429
+ # (?ssYY ?n) math:quotient ?covYY .
430
+ # (?dxdy {
431
+ # ?pts list:member ?p .
432
+ # ?p :x ?x .
433
+ # ?p :y ?y .
434
+ # (?x ?meanX) math:difference ?dx .
435
+ # (?y ?meanY) math:difference ?dy .
436
+ # (?dx ?dy) math:product ?dxdy .
437
+ # } ?dxdys) log:collectAllIn ?_b1 .
438
+ # ?dxdys math:sum ?ssXY .
439
+ # (?ssXY ?n) math:quotient ?covXY .
440
+ # } => {
441
+ # :PCA1 :n ?n .
442
+ # :PCA1 :meanX ?meanX .
443
+ # :PCA1 :meanY ?meanY .
444
+ # :PCA1 :covXX ?covXX .
445
+ # :PCA1 :covYY ?covYY .
446
+ # :PCA1 :covXY ?covXY .
447
+ # } .
448
+ # with substitution (on rule variables):
449
+ # ?covXX = 31.918367346938773
450
+ # ?covXY = -10.193877551020408
451
+ # ?covYY = 22.836326530612244
452
+ # ?dx2s = (176.51020408163262 0.08163265306122441 0.5102040816326533 2.9387755102040822 7.367346938775511 13.795918367346939 22.22448979591837)
453
+ # ?dxdys = (-95.27755102040815 2.522448979591836 -2.6632653061224496 -1.5918367346938767 2.6367346938775515 8.06530612244898 14.951020408163266)
454
+ # ?dy2s = (51.42938775510204 77.94367346938776 13.902244897959184 0.8622448979591825 0.9436734693877553 4.715102040816328 10.057959183673471)
455
+ # ?meanX = 6.714285714285714
456
+ # ?meanY = 4.171428571428572
457
+ # ?n = 7
458
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
459
+ # ?ssXX = 223.42857142857142
460
+ # ?ssXY = -71.35714285714286
461
+ # ?ssYY = 159.8542857142857
462
+ # ?sumX = 47
463
+ # ?sumY = 29.2
464
+ # ?xs = (20.0 7.0 6.0 5.0 4.0 3.0 2.0)
465
+ # ?ys = (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)
466
+ # Therefore the derived triple above is entailed by the rules and facts.
467
+ # ----------------------------------------------------------------------
468
+
469
+ :PCA1 :covXX 31.918367346938773 .
470
+
471
+ # ----------------------------------------------------------------------
472
+ # Proof for derived triple:
473
+ # :PCA1 :covYY 22.836326530612244 .
474
+ # It holds because the following instance of the rule body is provable:
475
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
476
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:length 7 .
477
+ # (?x {
478
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
479
+ # ?p :x ?x .
480
+ # } (20.0 7.0 6.0 5.0 4.0 3.0 2.0)) log:collectAllIn ?_b1 .
481
+ # (?y {
482
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
483
+ # ?p :y ?y .
484
+ # } (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)) log:collectAllIn ?_b1 .
485
+ # (20.0 7.0 6.0 5.0 4.0 3.0 2.0) math:sum 47 .
486
+ # (-3.0 13.0 7.9 5.1 3.2 2.0 1.0) math:sum 29.2 .
487
+ # (47 7) math:quotient 6.714285714285714 .
488
+ # (29.2 7) math:quotient 4.171428571428572 .
489
+ # (?dx2 {
490
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
491
+ # ?p :x ?x .
492
+ # (?x 6.714285714285714) math:difference ?dx .
493
+ # (?dx 2.0) math:exponentiation ?dx2 .
494
+ # } (176.51020408163262 0.08163265306122441 0.5102040816326533 2.9387755102040822 7.367346938775511 13.795918367346939 22.22448979591837)) log:collectAllIn ?_b1 .
495
+ # (176.51020408163262 0.08163265306122441 0.5102040816326533 2.9387755102040822 7.367346938775511 13.795918367346939 22.22448979591837) math:sum 223.42857142857142 .
496
+ # (223.42857142857142 7) math:quotient 31.918367346938773 .
497
+ # (?dy2 {
498
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
499
+ # ?p :y ?y .
500
+ # (?y 4.171428571428572) math:difference ?dy .
501
+ # (?dy 2.0) math:exponentiation ?dy2 .
502
+ # } (51.42938775510204 77.94367346938776 13.902244897959184 0.8622448979591825 0.9436734693877553 4.715102040816328 10.057959183673471)) log:collectAllIn ?_b1 .
503
+ # (51.42938775510204 77.94367346938776 13.902244897959184 0.8622448979591825 0.9436734693877553 4.715102040816328 10.057959183673471) math:sum 159.8542857142857 .
504
+ # (159.8542857142857 7) math:quotient 22.836326530612244 .
505
+ # (?dxdy {
506
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
507
+ # ?p :x ?x .
508
+ # ?p :y ?y .
509
+ # (?x 6.714285714285714) math:difference ?dx .
510
+ # (?y 4.171428571428572) math:difference ?dy .
511
+ # (?dx ?dy) math:product ?dxdy .
512
+ # } (-95.27755102040815 2.522448979591836 -2.6632653061224496 -1.5918367346938767 2.6367346938775515 8.06530612244898 14.951020408163266)) log:collectAllIn ?_b1 .
513
+ # (-95.27755102040815 2.522448979591836 -2.6632653061224496 -1.5918367346938767 2.6367346938775515 8.06530612244898 14.951020408163266) math:sum -71.35714285714286 .
514
+ # (-71.35714285714286 7) math:quotient -10.193877551020408 .
515
+ # via the schematic forward rule:
516
+ # {
517
+ # :PCA1 :points ?pts .
518
+ # ?pts list:length ?n .
519
+ # (?x {
520
+ # ?pts list:member ?p .
521
+ # ?p :x ?x .
522
+ # } ?xs) log:collectAllIn ?_b1 .
523
+ # (?y {
524
+ # ?pts list:member ?p .
525
+ # ?p :y ?y .
526
+ # } ?ys) log:collectAllIn ?_b1 .
527
+ # ?xs math:sum ?sumX .
528
+ # ?ys math:sum ?sumY .
529
+ # (?sumX ?n) math:quotient ?meanX .
530
+ # (?sumY ?n) math:quotient ?meanY .
531
+ # (?dx2 {
532
+ # ?pts list:member ?p .
533
+ # ?p :x ?x .
534
+ # (?x ?meanX) math:difference ?dx .
535
+ # (?dx 2.0) math:exponentiation ?dx2 .
536
+ # } ?dx2s) log:collectAllIn ?_b1 .
537
+ # ?dx2s math:sum ?ssXX .
538
+ # (?ssXX ?n) math:quotient ?covXX .
539
+ # (?dy2 {
540
+ # ?pts list:member ?p .
541
+ # ?p :y ?y .
542
+ # (?y ?meanY) math:difference ?dy .
543
+ # (?dy 2.0) math:exponentiation ?dy2 .
544
+ # } ?dy2s) log:collectAllIn ?_b1 .
545
+ # ?dy2s math:sum ?ssYY .
546
+ # (?ssYY ?n) math:quotient ?covYY .
547
+ # (?dxdy {
548
+ # ?pts list:member ?p .
549
+ # ?p :x ?x .
550
+ # ?p :y ?y .
551
+ # (?x ?meanX) math:difference ?dx .
552
+ # (?y ?meanY) math:difference ?dy .
553
+ # (?dx ?dy) math:product ?dxdy .
554
+ # } ?dxdys) log:collectAllIn ?_b1 .
555
+ # ?dxdys math:sum ?ssXY .
556
+ # (?ssXY ?n) math:quotient ?covXY .
557
+ # } => {
558
+ # :PCA1 :n ?n .
559
+ # :PCA1 :meanX ?meanX .
560
+ # :PCA1 :meanY ?meanY .
561
+ # :PCA1 :covXX ?covXX .
562
+ # :PCA1 :covYY ?covYY .
563
+ # :PCA1 :covXY ?covXY .
564
+ # } .
565
+ # with substitution (on rule variables):
566
+ # ?covXX = 31.918367346938773
567
+ # ?covXY = -10.193877551020408
568
+ # ?covYY = 22.836326530612244
569
+ # ?dx2s = (176.51020408163262 0.08163265306122441 0.5102040816326533 2.9387755102040822 7.367346938775511 13.795918367346939 22.22448979591837)
570
+ # ?dxdys = (-95.27755102040815 2.522448979591836 -2.6632653061224496 -1.5918367346938767 2.6367346938775515 8.06530612244898 14.951020408163266)
571
+ # ?dy2s = (51.42938775510204 77.94367346938776 13.902244897959184 0.8622448979591825 0.9436734693877553 4.715102040816328 10.057959183673471)
572
+ # ?meanX = 6.714285714285714
573
+ # ?meanY = 4.171428571428572
574
+ # ?n = 7
575
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
576
+ # ?ssXX = 223.42857142857142
577
+ # ?ssXY = -71.35714285714286
578
+ # ?ssYY = 159.8542857142857
579
+ # ?sumX = 47
580
+ # ?sumY = 29.2
581
+ # ?xs = (20.0 7.0 6.0 5.0 4.0 3.0 2.0)
582
+ # ?ys = (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)
583
+ # Therefore the derived triple above is entailed by the rules and facts.
584
+ # ----------------------------------------------------------------------
585
+
586
+ :PCA1 :covYY 22.836326530612244 .
587
+
588
+ # ----------------------------------------------------------------------
589
+ # Proof for derived triple:
590
+ # :PCA1 :covXY -10.193877551020408 .
591
+ # It holds because the following instance of the rule body is provable:
592
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
593
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:length 7 .
594
+ # (?x {
595
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
596
+ # ?p :x ?x .
597
+ # } (20.0 7.0 6.0 5.0 4.0 3.0 2.0)) log:collectAllIn ?_b1 .
598
+ # (?y {
599
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
600
+ # ?p :y ?y .
601
+ # } (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)) log:collectAllIn ?_b1 .
602
+ # (20.0 7.0 6.0 5.0 4.0 3.0 2.0) math:sum 47 .
603
+ # (-3.0 13.0 7.9 5.1 3.2 2.0 1.0) math:sum 29.2 .
604
+ # (47 7) math:quotient 6.714285714285714 .
605
+ # (29.2 7) math:quotient 4.171428571428572 .
606
+ # (?dx2 {
607
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
608
+ # ?p :x ?x .
609
+ # (?x 6.714285714285714) math:difference ?dx .
610
+ # (?dx 2.0) math:exponentiation ?dx2 .
611
+ # } (176.51020408163262 0.08163265306122441 0.5102040816326533 2.9387755102040822 7.367346938775511 13.795918367346939 22.22448979591837)) log:collectAllIn ?_b1 .
612
+ # (176.51020408163262 0.08163265306122441 0.5102040816326533 2.9387755102040822 7.367346938775511 13.795918367346939 22.22448979591837) math:sum 223.42857142857142 .
613
+ # (223.42857142857142 7) math:quotient 31.918367346938773 .
614
+ # (?dy2 {
615
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
616
+ # ?p :y ?y .
617
+ # (?y 4.171428571428572) math:difference ?dy .
618
+ # (?dy 2.0) math:exponentiation ?dy2 .
619
+ # } (51.42938775510204 77.94367346938776 13.902244897959184 0.8622448979591825 0.9436734693877553 4.715102040816328 10.057959183673471)) log:collectAllIn ?_b1 .
620
+ # (51.42938775510204 77.94367346938776 13.902244897959184 0.8622448979591825 0.9436734693877553 4.715102040816328 10.057959183673471) math:sum 159.8542857142857 .
621
+ # (159.8542857142857 7) math:quotient 22.836326530612244 .
622
+ # (?dxdy {
623
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
624
+ # ?p :x ?x .
625
+ # ?p :y ?y .
626
+ # (?x 6.714285714285714) math:difference ?dx .
627
+ # (?y 4.171428571428572) math:difference ?dy .
628
+ # (?dx ?dy) math:product ?dxdy .
629
+ # } (-95.27755102040815 2.522448979591836 -2.6632653061224496 -1.5918367346938767 2.6367346938775515 8.06530612244898 14.951020408163266)) log:collectAllIn ?_b1 .
630
+ # (-95.27755102040815 2.522448979591836 -2.6632653061224496 -1.5918367346938767 2.6367346938775515 8.06530612244898 14.951020408163266) math:sum -71.35714285714286 .
631
+ # (-71.35714285714286 7) math:quotient -10.193877551020408 .
632
+ # via the schematic forward rule:
633
+ # {
634
+ # :PCA1 :points ?pts .
635
+ # ?pts list:length ?n .
636
+ # (?x {
637
+ # ?pts list:member ?p .
638
+ # ?p :x ?x .
639
+ # } ?xs) log:collectAllIn ?_b1 .
640
+ # (?y {
641
+ # ?pts list:member ?p .
642
+ # ?p :y ?y .
643
+ # } ?ys) log:collectAllIn ?_b1 .
644
+ # ?xs math:sum ?sumX .
645
+ # ?ys math:sum ?sumY .
646
+ # (?sumX ?n) math:quotient ?meanX .
647
+ # (?sumY ?n) math:quotient ?meanY .
648
+ # (?dx2 {
649
+ # ?pts list:member ?p .
650
+ # ?p :x ?x .
651
+ # (?x ?meanX) math:difference ?dx .
652
+ # (?dx 2.0) math:exponentiation ?dx2 .
653
+ # } ?dx2s) log:collectAllIn ?_b1 .
654
+ # ?dx2s math:sum ?ssXX .
655
+ # (?ssXX ?n) math:quotient ?covXX .
656
+ # (?dy2 {
657
+ # ?pts list:member ?p .
658
+ # ?p :y ?y .
659
+ # (?y ?meanY) math:difference ?dy .
660
+ # (?dy 2.0) math:exponentiation ?dy2 .
661
+ # } ?dy2s) log:collectAllIn ?_b1 .
662
+ # ?dy2s math:sum ?ssYY .
663
+ # (?ssYY ?n) math:quotient ?covYY .
664
+ # (?dxdy {
665
+ # ?pts list:member ?p .
666
+ # ?p :x ?x .
667
+ # ?p :y ?y .
668
+ # (?x ?meanX) math:difference ?dx .
669
+ # (?y ?meanY) math:difference ?dy .
670
+ # (?dx ?dy) math:product ?dxdy .
671
+ # } ?dxdys) log:collectAllIn ?_b1 .
672
+ # ?dxdys math:sum ?ssXY .
673
+ # (?ssXY ?n) math:quotient ?covXY .
674
+ # } => {
675
+ # :PCA1 :n ?n .
676
+ # :PCA1 :meanX ?meanX .
677
+ # :PCA1 :meanY ?meanY .
678
+ # :PCA1 :covXX ?covXX .
679
+ # :PCA1 :covYY ?covYY .
680
+ # :PCA1 :covXY ?covXY .
681
+ # } .
682
+ # with substitution (on rule variables):
683
+ # ?covXX = 31.918367346938773
684
+ # ?covXY = -10.193877551020408
685
+ # ?covYY = 22.836326530612244
686
+ # ?dx2s = (176.51020408163262 0.08163265306122441 0.5102040816326533 2.9387755102040822 7.367346938775511 13.795918367346939 22.22448979591837)
687
+ # ?dxdys = (-95.27755102040815 2.522448979591836 -2.6632653061224496 -1.5918367346938767 2.6367346938775515 8.06530612244898 14.951020408163266)
688
+ # ?dy2s = (51.42938775510204 77.94367346938776 13.902244897959184 0.8622448979591825 0.9436734693877553 4.715102040816328 10.057959183673471)
689
+ # ?meanX = 6.714285714285714
690
+ # ?meanY = 4.171428571428572
691
+ # ?n = 7
692
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
693
+ # ?ssXX = 223.42857142857142
694
+ # ?ssXY = -71.35714285714286
695
+ # ?ssYY = 159.8542857142857
696
+ # ?sumX = 47
697
+ # ?sumY = 29.2
698
+ # ?xs = (20.0 7.0 6.0 5.0 4.0 3.0 2.0)
699
+ # ?ys = (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)
700
+ # Therefore the derived triple above is entailed by the rules and facts.
701
+ # ----------------------------------------------------------------------
702
+
703
+ :PCA1 :covXY -10.193877551020408 .
704
+
705
+ # ----------------------------------------------------------------------
706
+ # Proof for derived triple:
707
+ # :PCA1 :lambda1 38.53691708607748 .
708
+ # It holds because the following instance of the rule body is provable:
709
+ # :PCA1 :covXX 31.918367346938773 .
710
+ # :PCA1 :covYY 22.836326530612244 .
711
+ # :PCA1 :covXY -10.193877551020408 .
712
+ # (31.918367346938773 22.836326530612244) math:sum 54.75469387755102 .
713
+ # (31.918367346938773 22.836326530612244) math:product 728.8982590587254 .
714
+ # (-10.193877551020408 2.0) math:exponentiation 103.91513952519784 .
715
+ # (728.8982590587254 103.91513952519784) math:difference 624.9831195335275 .
716
+ # (54.75469387755102 2.0) math:exponentiation 2998.076501624323 .
717
+ # (4.0 624.9831195335275) math:product 2499.93247813411 .
718
+ # (2998.076501624323 2499.93247813411) math:difference 498.14402349021293 .
719
+ # (498.14402349021293 0.5) math:exponentiation 22.319140294603933 .
720
+ # (54.75469387755102 22.319140294603933) math:sum 77.07383417215496 .
721
+ # (54.75469387755102 22.319140294603933) math:difference 32.43555358294709 .
722
+ # (77.07383417215496 2.0) math:quotient 38.53691708607748 .
723
+ # (32.43555358294709 2.0) math:quotient 16.217776791473543 .
724
+ # (38.53691708607748 54.75469387755102) math:quotient 0.7038102919953919 .
725
+ # via the schematic forward rule:
726
+ # {
727
+ # :PCA1 :covXX ?a .
728
+ # :PCA1 :covYY ?d .
729
+ # :PCA1 :covXY ?b .
730
+ # (?a ?d) math:sum ?tr .
731
+ # (?a ?d) math:product ?ad .
732
+ # (?b 2.0) math:exponentiation ?b2 .
733
+ # (?ad ?b2) math:difference ?det .
734
+ # (?tr 2.0) math:exponentiation ?tr2 .
735
+ # (4.0 ?det) math:product ?fourDet .
736
+ # (?tr2 ?fourDet) math:difference ?disc .
737
+ # (?disc 0.5) math:exponentiation ?sqrtDisc .
738
+ # (?tr ?sqrtDisc) math:sum ?trPlus .
739
+ # (?tr ?sqrtDisc) math:difference ?trMinus .
740
+ # (?trPlus 2.0) math:quotient ?lambda1 .
741
+ # (?trMinus 2.0) math:quotient ?lambda2 .
742
+ # (?lambda1 ?tr) math:quotient ?explained1 .
743
+ # } => {
744
+ # :PCA1 :lambda1 ?lambda1 .
745
+ # :PCA1 :lambda2 ?lambda2 .
746
+ # :PCA1 :explainedVar1 ?explained1 .
747
+ # } .
748
+ # with substitution (on rule variables):
749
+ # ?a = 31.918367346938773
750
+ # ?ad = 728.8982590587254
751
+ # ?b = -10.193877551020408
752
+ # ?b2 = 103.91513952519784
753
+ # ?d = 22.836326530612244
754
+ # ?det = 624.9831195335275
755
+ # ?disc = 498.14402349021293
756
+ # ?explained1 = 0.7038102919953919
757
+ # ?fourDet = 2499.93247813411
758
+ # ?lambda1 = 38.53691708607748
759
+ # ?lambda2 = 16.217776791473543
760
+ # ?sqrtDisc = 22.319140294603933
761
+ # ?tr = 54.75469387755102
762
+ # ?tr2 = 2998.076501624323
763
+ # ?trMinus = 32.43555358294709
764
+ # ?trPlus = 77.07383417215496
765
+ # Therefore the derived triple above is entailed by the rules and facts.
766
+ # ----------------------------------------------------------------------
767
+
768
+ :PCA1 :lambda1 38.53691708607748 .
769
+
770
+ # ----------------------------------------------------------------------
771
+ # Proof for derived triple:
772
+ # :PCA1 :lambda2 16.217776791473543 .
773
+ # It holds because the following instance of the rule body is provable:
774
+ # :PCA1 :covXX 31.918367346938773 .
775
+ # :PCA1 :covYY 22.836326530612244 .
776
+ # :PCA1 :covXY -10.193877551020408 .
777
+ # (31.918367346938773 22.836326530612244) math:sum 54.75469387755102 .
778
+ # (31.918367346938773 22.836326530612244) math:product 728.8982590587254 .
779
+ # (-10.193877551020408 2.0) math:exponentiation 103.91513952519784 .
780
+ # (728.8982590587254 103.91513952519784) math:difference 624.9831195335275 .
781
+ # (54.75469387755102 2.0) math:exponentiation 2998.076501624323 .
782
+ # (4.0 624.9831195335275) math:product 2499.93247813411 .
783
+ # (2998.076501624323 2499.93247813411) math:difference 498.14402349021293 .
784
+ # (498.14402349021293 0.5) math:exponentiation 22.319140294603933 .
785
+ # (54.75469387755102 22.319140294603933) math:sum 77.07383417215496 .
786
+ # (54.75469387755102 22.319140294603933) math:difference 32.43555358294709 .
787
+ # (77.07383417215496 2.0) math:quotient 38.53691708607748 .
788
+ # (32.43555358294709 2.0) math:quotient 16.217776791473543 .
789
+ # (38.53691708607748 54.75469387755102) math:quotient 0.7038102919953919 .
790
+ # via the schematic forward rule:
791
+ # {
792
+ # :PCA1 :covXX ?a .
793
+ # :PCA1 :covYY ?d .
794
+ # :PCA1 :covXY ?b .
795
+ # (?a ?d) math:sum ?tr .
796
+ # (?a ?d) math:product ?ad .
797
+ # (?b 2.0) math:exponentiation ?b2 .
798
+ # (?ad ?b2) math:difference ?det .
799
+ # (?tr 2.0) math:exponentiation ?tr2 .
800
+ # (4.0 ?det) math:product ?fourDet .
801
+ # (?tr2 ?fourDet) math:difference ?disc .
802
+ # (?disc 0.5) math:exponentiation ?sqrtDisc .
803
+ # (?tr ?sqrtDisc) math:sum ?trPlus .
804
+ # (?tr ?sqrtDisc) math:difference ?trMinus .
805
+ # (?trPlus 2.0) math:quotient ?lambda1 .
806
+ # (?trMinus 2.0) math:quotient ?lambda2 .
807
+ # (?lambda1 ?tr) math:quotient ?explained1 .
808
+ # } => {
809
+ # :PCA1 :lambda1 ?lambda1 .
810
+ # :PCA1 :lambda2 ?lambda2 .
811
+ # :PCA1 :explainedVar1 ?explained1 .
812
+ # } .
813
+ # with substitution (on rule variables):
814
+ # ?a = 31.918367346938773
815
+ # ?ad = 728.8982590587254
816
+ # ?b = -10.193877551020408
817
+ # ?b2 = 103.91513952519784
818
+ # ?d = 22.836326530612244
819
+ # ?det = 624.9831195335275
820
+ # ?disc = 498.14402349021293
821
+ # ?explained1 = 0.7038102919953919
822
+ # ?fourDet = 2499.93247813411
823
+ # ?lambda1 = 38.53691708607748
824
+ # ?lambda2 = 16.217776791473543
825
+ # ?sqrtDisc = 22.319140294603933
826
+ # ?tr = 54.75469387755102
827
+ # ?tr2 = 2998.076501624323
828
+ # ?trMinus = 32.43555358294709
829
+ # ?trPlus = 77.07383417215496
830
+ # Therefore the derived triple above is entailed by the rules and facts.
831
+ # ----------------------------------------------------------------------
832
+
833
+ :PCA1 :lambda2 16.217776791473543 .
834
+
835
+ # ----------------------------------------------------------------------
836
+ # Proof for derived triple:
837
+ # :PCA1 :explainedVar1 0.7038102919953919 .
838
+ # It holds because the following instance of the rule body is provable:
839
+ # :PCA1 :covXX 31.918367346938773 .
840
+ # :PCA1 :covYY 22.836326530612244 .
841
+ # :PCA1 :covXY -10.193877551020408 .
842
+ # (31.918367346938773 22.836326530612244) math:sum 54.75469387755102 .
843
+ # (31.918367346938773 22.836326530612244) math:product 728.8982590587254 .
844
+ # (-10.193877551020408 2.0) math:exponentiation 103.91513952519784 .
845
+ # (728.8982590587254 103.91513952519784) math:difference 624.9831195335275 .
846
+ # (54.75469387755102 2.0) math:exponentiation 2998.076501624323 .
847
+ # (4.0 624.9831195335275) math:product 2499.93247813411 .
848
+ # (2998.076501624323 2499.93247813411) math:difference 498.14402349021293 .
849
+ # (498.14402349021293 0.5) math:exponentiation 22.319140294603933 .
850
+ # (54.75469387755102 22.319140294603933) math:sum 77.07383417215496 .
851
+ # (54.75469387755102 22.319140294603933) math:difference 32.43555358294709 .
852
+ # (77.07383417215496 2.0) math:quotient 38.53691708607748 .
853
+ # (32.43555358294709 2.0) math:quotient 16.217776791473543 .
854
+ # (38.53691708607748 54.75469387755102) math:quotient 0.7038102919953919 .
855
+ # via the schematic forward rule:
856
+ # {
857
+ # :PCA1 :covXX ?a .
858
+ # :PCA1 :covYY ?d .
859
+ # :PCA1 :covXY ?b .
860
+ # (?a ?d) math:sum ?tr .
861
+ # (?a ?d) math:product ?ad .
862
+ # (?b 2.0) math:exponentiation ?b2 .
863
+ # (?ad ?b2) math:difference ?det .
864
+ # (?tr 2.0) math:exponentiation ?tr2 .
865
+ # (4.0 ?det) math:product ?fourDet .
866
+ # (?tr2 ?fourDet) math:difference ?disc .
867
+ # (?disc 0.5) math:exponentiation ?sqrtDisc .
868
+ # (?tr ?sqrtDisc) math:sum ?trPlus .
869
+ # (?tr ?sqrtDisc) math:difference ?trMinus .
870
+ # (?trPlus 2.0) math:quotient ?lambda1 .
871
+ # (?trMinus 2.0) math:quotient ?lambda2 .
872
+ # (?lambda1 ?tr) math:quotient ?explained1 .
873
+ # } => {
874
+ # :PCA1 :lambda1 ?lambda1 .
875
+ # :PCA1 :lambda2 ?lambda2 .
876
+ # :PCA1 :explainedVar1 ?explained1 .
877
+ # } .
878
+ # with substitution (on rule variables):
879
+ # ?a = 31.918367346938773
880
+ # ?ad = 728.8982590587254
881
+ # ?b = -10.193877551020408
882
+ # ?b2 = 103.91513952519784
883
+ # ?d = 22.836326530612244
884
+ # ?det = 624.9831195335275
885
+ # ?disc = 498.14402349021293
886
+ # ?explained1 = 0.7038102919953919
887
+ # ?fourDet = 2499.93247813411
888
+ # ?lambda1 = 38.53691708607748
889
+ # ?lambda2 = 16.217776791473543
890
+ # ?sqrtDisc = 22.319140294603933
891
+ # ?tr = 54.75469387755102
892
+ # ?tr2 = 2998.076501624323
893
+ # ?trMinus = 32.43555358294709
894
+ # ?trPlus = 77.07383417215496
895
+ # Therefore the derived triple above is entailed by the rules and facts.
896
+ # ----------------------------------------------------------------------
897
+
898
+ :PCA1 :explainedVar1 0.7038102919953919 .
899
+
900
+ # ----------------------------------------------------------------------
901
+ # Proof for derived triple:
902
+ # :PCA1 :_phi -1.1517197151996337 .
903
+ # It holds because the following instance of the rule body is provable:
904
+ # :PCA1 :covXX 31.918367346938773 .
905
+ # :PCA1 :covYY 22.836326530612244 .
906
+ # :PCA1 :covXY -10.193877551020408 .
907
+ # (31.918367346938773 22.836326530612244) math:difference 9.08204081632653 .
908
+ # (2.0 -10.193877551020408) math:product -20.387755102040817 .
909
+ # (-20.387755102040817 9.08204081632653) math:quotient -2.2448429284077123 .
910
+ # -2.2448429284077123 math:atan -1.1517197151996337 .
911
+ # 9.08204081632653 math:notEqualTo 0.0 .
912
+ # via the schematic forward rule:
913
+ # {
914
+ # :PCA1 :covXX ?a .
915
+ # :PCA1 :covYY ?d .
916
+ # :PCA1 :covXY ?b .
917
+ # (?a ?d) math:difference ?diff .
918
+ # (2.0 ?b) math:product ?twoB .
919
+ # (?twoB ?diff) math:quotient ?ratio .
920
+ # ?ratio math:atan ?phi .
921
+ # ?diff math:notEqualTo 0.0 .
922
+ # } => {
923
+ # :PCA1 :_phi ?phi .
924
+ # :PCA1 :_diff ?diff .
925
+ # :PCA1 :_twoB ?twoB .
926
+ # :PCA1 :_b ?b .
927
+ # } .
928
+ # with substitution (on rule variables):
929
+ # ?a = 31.918367346938773
930
+ # ?b = -10.193877551020408
931
+ # ?d = 22.836326530612244
932
+ # ?diff = 9.08204081632653
933
+ # ?phi = -1.1517197151996337
934
+ # ?ratio = -2.2448429284077123
935
+ # ?twoB = -20.387755102040817
936
+ # Therefore the derived triple above is entailed by the rules and facts.
937
+ # ----------------------------------------------------------------------
938
+
939
+ :PCA1 :_phi -1.1517197151996337 .
940
+
941
+ # ----------------------------------------------------------------------
942
+ # Proof for derived triple:
943
+ # :PCA1 :_diff 9.08204081632653 .
944
+ # It holds because the following instance of the rule body is provable:
945
+ # :PCA1 :covXX 31.918367346938773 .
946
+ # :PCA1 :covYY 22.836326530612244 .
947
+ # :PCA1 :covXY -10.193877551020408 .
948
+ # (31.918367346938773 22.836326530612244) math:difference 9.08204081632653 .
949
+ # (2.0 -10.193877551020408) math:product -20.387755102040817 .
950
+ # (-20.387755102040817 9.08204081632653) math:quotient -2.2448429284077123 .
951
+ # -2.2448429284077123 math:atan -1.1517197151996337 .
952
+ # 9.08204081632653 math:notEqualTo 0.0 .
953
+ # via the schematic forward rule:
954
+ # {
955
+ # :PCA1 :covXX ?a .
956
+ # :PCA1 :covYY ?d .
957
+ # :PCA1 :covXY ?b .
958
+ # (?a ?d) math:difference ?diff .
959
+ # (2.0 ?b) math:product ?twoB .
960
+ # (?twoB ?diff) math:quotient ?ratio .
961
+ # ?ratio math:atan ?phi .
962
+ # ?diff math:notEqualTo 0.0 .
963
+ # } => {
964
+ # :PCA1 :_phi ?phi .
965
+ # :PCA1 :_diff ?diff .
966
+ # :PCA1 :_twoB ?twoB .
967
+ # :PCA1 :_b ?b .
968
+ # } .
969
+ # with substitution (on rule variables):
970
+ # ?a = 31.918367346938773
971
+ # ?b = -10.193877551020408
972
+ # ?d = 22.836326530612244
973
+ # ?diff = 9.08204081632653
974
+ # ?phi = -1.1517197151996337
975
+ # ?ratio = -2.2448429284077123
976
+ # ?twoB = -20.387755102040817
977
+ # Therefore the derived triple above is entailed by the rules and facts.
978
+ # ----------------------------------------------------------------------
979
+
980
+ :PCA1 :_diff 9.08204081632653 .
981
+
982
+ # ----------------------------------------------------------------------
983
+ # Proof for derived triple:
984
+ # :PCA1 :_twoB -20.387755102040817 .
985
+ # It holds because the following instance of the rule body is provable:
986
+ # :PCA1 :covXX 31.918367346938773 .
987
+ # :PCA1 :covYY 22.836326530612244 .
988
+ # :PCA1 :covXY -10.193877551020408 .
989
+ # (31.918367346938773 22.836326530612244) math:difference 9.08204081632653 .
990
+ # (2.0 -10.193877551020408) math:product -20.387755102040817 .
991
+ # (-20.387755102040817 9.08204081632653) math:quotient -2.2448429284077123 .
992
+ # -2.2448429284077123 math:atan -1.1517197151996337 .
993
+ # 9.08204081632653 math:notEqualTo 0.0 .
994
+ # via the schematic forward rule:
995
+ # {
996
+ # :PCA1 :covXX ?a .
997
+ # :PCA1 :covYY ?d .
998
+ # :PCA1 :covXY ?b .
999
+ # (?a ?d) math:difference ?diff .
1000
+ # (2.0 ?b) math:product ?twoB .
1001
+ # (?twoB ?diff) math:quotient ?ratio .
1002
+ # ?ratio math:atan ?phi .
1003
+ # ?diff math:notEqualTo 0.0 .
1004
+ # } => {
1005
+ # :PCA1 :_phi ?phi .
1006
+ # :PCA1 :_diff ?diff .
1007
+ # :PCA1 :_twoB ?twoB .
1008
+ # :PCA1 :_b ?b .
1009
+ # } .
1010
+ # with substitution (on rule variables):
1011
+ # ?a = 31.918367346938773
1012
+ # ?b = -10.193877551020408
1013
+ # ?d = 22.836326530612244
1014
+ # ?diff = 9.08204081632653
1015
+ # ?phi = -1.1517197151996337
1016
+ # ?ratio = -2.2448429284077123
1017
+ # ?twoB = -20.387755102040817
1018
+ # Therefore the derived triple above is entailed by the rules and facts.
1019
+ # ----------------------------------------------------------------------
1020
+
1021
+ :PCA1 :_twoB -20.387755102040817 .
1022
+
1023
+ # ----------------------------------------------------------------------
1024
+ # Proof for derived triple:
1025
+ # :PCA1 :_b -10.193877551020408 .
1026
+ # It holds because the following instance of the rule body is provable:
1027
+ # :PCA1 :covXX 31.918367346938773 .
1028
+ # :PCA1 :covYY 22.836326530612244 .
1029
+ # :PCA1 :covXY -10.193877551020408 .
1030
+ # (31.918367346938773 22.836326530612244) math:difference 9.08204081632653 .
1031
+ # (2.0 -10.193877551020408) math:product -20.387755102040817 .
1032
+ # (-20.387755102040817 9.08204081632653) math:quotient -2.2448429284077123 .
1033
+ # -2.2448429284077123 math:atan -1.1517197151996337 .
1034
+ # 9.08204081632653 math:notEqualTo 0.0 .
1035
+ # via the schematic forward rule:
1036
+ # {
1037
+ # :PCA1 :covXX ?a .
1038
+ # :PCA1 :covYY ?d .
1039
+ # :PCA1 :covXY ?b .
1040
+ # (?a ?d) math:difference ?diff .
1041
+ # (2.0 ?b) math:product ?twoB .
1042
+ # (?twoB ?diff) math:quotient ?ratio .
1043
+ # ?ratio math:atan ?phi .
1044
+ # ?diff math:notEqualTo 0.0 .
1045
+ # } => {
1046
+ # :PCA1 :_phi ?phi .
1047
+ # :PCA1 :_diff ?diff .
1048
+ # :PCA1 :_twoB ?twoB .
1049
+ # :PCA1 :_b ?b .
1050
+ # } .
1051
+ # with substitution (on rule variables):
1052
+ # ?a = 31.918367346938773
1053
+ # ?b = -10.193877551020408
1054
+ # ?d = 22.836326530612244
1055
+ # ?diff = 9.08204081632653
1056
+ # ?phi = -1.1517197151996337
1057
+ # ?ratio = -2.2448429284077123
1058
+ # ?twoB = -20.387755102040817
1059
+ # Therefore the derived triple above is entailed by the rules and facts.
1060
+ # ----------------------------------------------------------------------
1061
+
1062
+ :PCA1 :_b -10.193877551020408 .
1063
+
1064
+ # ----------------------------------------------------------------------
1065
+ # Proof for derived triple:
1066
+ # :PCA1 :thetaRad -0.5758598575998168 .
1067
+ # It holds because the following instance of the rule body is provable:
1068
+ # :PCA1 :_phi -1.1517197151996337 .
1069
+ # :PCA1 :_diff 9.08204081632653 .
1070
+ # (0.5 -1.1517197151996337) math:product -0.5758598575998168 .
1071
+ # -0.5758598575998168 math:degrees -32.99433943147409 .
1072
+ # 9.08204081632653 math:greaterThan 0.0 .
1073
+ # via the schematic forward rule:
1074
+ # {
1075
+ # :PCA1 :_phi ?phi .
1076
+ # :PCA1 :_diff ?diff .
1077
+ # (0.5 ?phi) math:product ?theta .
1078
+ # ?theta math:degrees ?thetaDeg .
1079
+ # ?diff math:greaterThan 0.0 .
1080
+ # } => {
1081
+ # :PCA1 :thetaRad ?theta .
1082
+ # :PCA1 :thetaDeg ?thetaDeg .
1083
+ # } .
1084
+ # with substitution (on rule variables):
1085
+ # ?diff = 9.08204081632653
1086
+ # ?phi = -1.1517197151996337
1087
+ # ?theta = -0.5758598575998168
1088
+ # ?thetaDeg = -32.99433943147409
1089
+ # Therefore the derived triple above is entailed by the rules and facts.
1090
+ # ----------------------------------------------------------------------
1091
+
1092
+ :PCA1 :thetaRad -0.5758598575998168 .
1093
+
1094
+ # ----------------------------------------------------------------------
1095
+ # Proof for derived triple:
1096
+ # :PCA1 :thetaDeg -32.99433943147409 .
1097
+ # It holds because the following instance of the rule body is provable:
1098
+ # :PCA1 :_phi -1.1517197151996337 .
1099
+ # :PCA1 :_diff 9.08204081632653 .
1100
+ # (0.5 -1.1517197151996337) math:product -0.5758598575998168 .
1101
+ # -0.5758598575998168 math:degrees -32.99433943147409 .
1102
+ # 9.08204081632653 math:greaterThan 0.0 .
1103
+ # via the schematic forward rule:
1104
+ # {
1105
+ # :PCA1 :_phi ?phi .
1106
+ # :PCA1 :_diff ?diff .
1107
+ # (0.5 ?phi) math:product ?theta .
1108
+ # ?theta math:degrees ?thetaDeg .
1109
+ # ?diff math:greaterThan 0.0 .
1110
+ # } => {
1111
+ # :PCA1 :thetaRad ?theta .
1112
+ # :PCA1 :thetaDeg ?thetaDeg .
1113
+ # } .
1114
+ # with substitution (on rule variables):
1115
+ # ?diff = 9.08204081632653
1116
+ # ?phi = -1.1517197151996337
1117
+ # ?theta = -0.5758598575998168
1118
+ # ?thetaDeg = -32.99433943147409
1119
+ # Therefore the derived triple above is entailed by the rules and facts.
1120
+ # ----------------------------------------------------------------------
1121
+
1122
+ :PCA1 :thetaDeg -32.99433943147409 .
1123
+
1124
+ # ----------------------------------------------------------------------
1125
+ # Proof for derived triple:
1126
+ # _:sk_0 :point _:b7 .
1127
+ # It holds because the following instance of the rule body is provable:
1128
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1129
+ # :PCA1 :meanX 6.714285714285714 .
1130
+ # :PCA1 :meanY 4.171428571428572 .
1131
+ # :PCA1 :thetaRad -0.5758598575998168 .
1132
+ # :PCA1 :lambda1 38.53691708607748 .
1133
+ # :PCA1 :lambda2 16.217776791473543 .
1134
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
1135
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
1136
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b7 .
1137
+ # _:b7 :x 20.0 .
1138
+ # _:b7 :y -3.0 .
1139
+ # (20.0 6.714285714285714) math:difference 13.285714285714285 .
1140
+ # (-3.0 4.171428571428572) math:difference -7.171428571428572 .
1141
+ # (13.285714285714285 0.8387243717699311) math:product 11.143052367800513 .
1142
+ # (-7.171428571428572 -0.5445561754301703) math:product 3.905245715227793 .
1143
+ # (11.143052367800513 3.905245715227793) math:sum 15.048298083028305 .
1144
+ # (13.285714285714285 -0.5445561754301703) math:product -7.234817759286548 .
1145
+ # (0.0 -7.234817759286548) math:difference 7.234817759286548 .
1146
+ # (-7.171428571428572 0.8387243717699311) math:product -6.014851923264363 .
1147
+ # (7.234817759286548 -6.014851923264363) math:sum 1.219965836022185 .
1148
+ # (15.048298083028305 2.0) math:exponentiation 226.45127519567336 .
1149
+ # (1.219965836022185 2.0) math:exponentiation 1.4883166410613087 .
1150
+ # (226.45127519567336 38.53691708607748) math:quotient 5.8762166856747635 .
1151
+ # (1.4883166410613087 16.217776791473543) math:quotient 0.0917706946024678 .
1152
+ # (5.8762166856747635 0.0917706946024678) math:sum 5.967987380277231 .
1153
+ # via the schematic forward rule:
1154
+ # {
1155
+ # :PCA1 :points ?pts .
1156
+ # :PCA1 :meanX ?mx .
1157
+ # :PCA1 :meanY ?my .
1158
+ # :PCA1 :thetaRad ?theta .
1159
+ # :PCA1 :lambda1 ?l1 .
1160
+ # :PCA1 :lambda2 ?l2 .
1161
+ # ?theta math:cos ?c .
1162
+ # ?theta math:sin ?s .
1163
+ # ?pts list:member ?p .
1164
+ # ?p :x ?x .
1165
+ # ?p :y ?y .
1166
+ # (?x ?mx) math:difference ?dx .
1167
+ # (?y ?my) math:difference ?dy .
1168
+ # (?dx ?c) math:product ?dxC .
1169
+ # (?dy ?s) math:product ?dyS .
1170
+ # (?dxC ?dyS) math:sum ?u .
1171
+ # (?dx ?s) math:product ?dxS .
1172
+ # (0.0 ?dxS) math:difference ?negDxS .
1173
+ # (?dy ?c) math:product ?dyC .
1174
+ # (?negDxS ?dyC) math:sum ?v .
1175
+ # (?u 2.0) math:exponentiation ?u2 .
1176
+ # (?v 2.0) math:exponentiation ?v2 .
1177
+ # (?u2 ?l1) math:quotient ?u2Over .
1178
+ # (?v2 ?l2) math:quotient ?v2Over .
1179
+ # (?u2Over ?v2Over) math:sum ?md2 .
1180
+ # } => {
1181
+ # _:b8 :point ?p .
1182
+ # _:b8 :u ?u .
1183
+ # _:b8 :v ?v .
1184
+ # _:b8 :md2 ?md2 .
1185
+ # :PCA1 :score _:b8 .
1186
+ # } .
1187
+ # with substitution (on rule variables):
1188
+ # ?c = 0.8387243717699311
1189
+ # ?dx = 13.285714285714285
1190
+ # ?dxC = 11.143052367800513
1191
+ # ?dxS = -7.234817759286548
1192
+ # ?dy = -7.171428571428572
1193
+ # ?dyC = -6.014851923264363
1194
+ # ?dyS = 3.905245715227793
1195
+ # ?l1 = 38.53691708607748
1196
+ # ?l2 = 16.217776791473543
1197
+ # ?md2 = 5.967987380277231
1198
+ # ?mx = 6.714285714285714
1199
+ # ?my = 4.171428571428572
1200
+ # ?negDxS = 7.234817759286548
1201
+ # ?p = _:b7
1202
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
1203
+ # ?s = -0.5445561754301703
1204
+ # ?theta = -0.5758598575998168
1205
+ # ?u = 15.048298083028305
1206
+ # ?u2 = 226.45127519567336
1207
+ # ?u2Over = 5.8762166856747635
1208
+ # ?v = 1.219965836022185
1209
+ # ?v2 = 1.4883166410613087
1210
+ # ?v2Over = 0.0917706946024678
1211
+ # ?x = 20.0
1212
+ # ?y = -3.0
1213
+ # Therefore the derived triple above is entailed by the rules and facts.
1214
+ # ----------------------------------------------------------------------
1215
+
1216
+ _:sk_0 :point _:b7 .
1217
+
1218
+ # ----------------------------------------------------------------------
1219
+ # Proof for derived triple:
1220
+ # _:sk_0 :u 15.048298083028305 .
1221
+ # It holds because the following instance of the rule body is provable:
1222
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1223
+ # :PCA1 :meanX 6.714285714285714 .
1224
+ # :PCA1 :meanY 4.171428571428572 .
1225
+ # :PCA1 :thetaRad -0.5758598575998168 .
1226
+ # :PCA1 :lambda1 38.53691708607748 .
1227
+ # :PCA1 :lambda2 16.217776791473543 .
1228
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
1229
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
1230
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b7 .
1231
+ # _:b7 :x 20.0 .
1232
+ # _:b7 :y -3.0 .
1233
+ # (20.0 6.714285714285714) math:difference 13.285714285714285 .
1234
+ # (-3.0 4.171428571428572) math:difference -7.171428571428572 .
1235
+ # (13.285714285714285 0.8387243717699311) math:product 11.143052367800513 .
1236
+ # (-7.171428571428572 -0.5445561754301703) math:product 3.905245715227793 .
1237
+ # (11.143052367800513 3.905245715227793) math:sum 15.048298083028305 .
1238
+ # (13.285714285714285 -0.5445561754301703) math:product -7.234817759286548 .
1239
+ # (0.0 -7.234817759286548) math:difference 7.234817759286548 .
1240
+ # (-7.171428571428572 0.8387243717699311) math:product -6.014851923264363 .
1241
+ # (7.234817759286548 -6.014851923264363) math:sum 1.219965836022185 .
1242
+ # (15.048298083028305 2.0) math:exponentiation 226.45127519567336 .
1243
+ # (1.219965836022185 2.0) math:exponentiation 1.4883166410613087 .
1244
+ # (226.45127519567336 38.53691708607748) math:quotient 5.8762166856747635 .
1245
+ # (1.4883166410613087 16.217776791473543) math:quotient 0.0917706946024678 .
1246
+ # (5.8762166856747635 0.0917706946024678) math:sum 5.967987380277231 .
1247
+ # via the schematic forward rule:
1248
+ # {
1249
+ # :PCA1 :points ?pts .
1250
+ # :PCA1 :meanX ?mx .
1251
+ # :PCA1 :meanY ?my .
1252
+ # :PCA1 :thetaRad ?theta .
1253
+ # :PCA1 :lambda1 ?l1 .
1254
+ # :PCA1 :lambda2 ?l2 .
1255
+ # ?theta math:cos ?c .
1256
+ # ?theta math:sin ?s .
1257
+ # ?pts list:member ?p .
1258
+ # ?p :x ?x .
1259
+ # ?p :y ?y .
1260
+ # (?x ?mx) math:difference ?dx .
1261
+ # (?y ?my) math:difference ?dy .
1262
+ # (?dx ?c) math:product ?dxC .
1263
+ # (?dy ?s) math:product ?dyS .
1264
+ # (?dxC ?dyS) math:sum ?u .
1265
+ # (?dx ?s) math:product ?dxS .
1266
+ # (0.0 ?dxS) math:difference ?negDxS .
1267
+ # (?dy ?c) math:product ?dyC .
1268
+ # (?negDxS ?dyC) math:sum ?v .
1269
+ # (?u 2.0) math:exponentiation ?u2 .
1270
+ # (?v 2.0) math:exponentiation ?v2 .
1271
+ # (?u2 ?l1) math:quotient ?u2Over .
1272
+ # (?v2 ?l2) math:quotient ?v2Over .
1273
+ # (?u2Over ?v2Over) math:sum ?md2 .
1274
+ # } => {
1275
+ # _:b8 :point ?p .
1276
+ # _:b8 :u ?u .
1277
+ # _:b8 :v ?v .
1278
+ # _:b8 :md2 ?md2 .
1279
+ # :PCA1 :score _:b8 .
1280
+ # } .
1281
+ # with substitution (on rule variables):
1282
+ # ?c = 0.8387243717699311
1283
+ # ?dx = 13.285714285714285
1284
+ # ?dxC = 11.143052367800513
1285
+ # ?dxS = -7.234817759286548
1286
+ # ?dy = -7.171428571428572
1287
+ # ?dyC = -6.014851923264363
1288
+ # ?dyS = 3.905245715227793
1289
+ # ?l1 = 38.53691708607748
1290
+ # ?l2 = 16.217776791473543
1291
+ # ?md2 = 5.967987380277231
1292
+ # ?mx = 6.714285714285714
1293
+ # ?my = 4.171428571428572
1294
+ # ?negDxS = 7.234817759286548
1295
+ # ?p = _:b7
1296
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
1297
+ # ?s = -0.5445561754301703
1298
+ # ?theta = -0.5758598575998168
1299
+ # ?u = 15.048298083028305
1300
+ # ?u2 = 226.45127519567336
1301
+ # ?u2Over = 5.8762166856747635
1302
+ # ?v = 1.219965836022185
1303
+ # ?v2 = 1.4883166410613087
1304
+ # ?v2Over = 0.0917706946024678
1305
+ # ?x = 20.0
1306
+ # ?y = -3.0
1307
+ # Therefore the derived triple above is entailed by the rules and facts.
1308
+ # ----------------------------------------------------------------------
1309
+
1310
+ _:sk_0 :u 15.048298083028305 .
1311
+
1312
+ # ----------------------------------------------------------------------
1313
+ # Proof for derived triple:
1314
+ # _:sk_0 :v 1.219965836022185 .
1315
+ # It holds because the following instance of the rule body is provable:
1316
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1317
+ # :PCA1 :meanX 6.714285714285714 .
1318
+ # :PCA1 :meanY 4.171428571428572 .
1319
+ # :PCA1 :thetaRad -0.5758598575998168 .
1320
+ # :PCA1 :lambda1 38.53691708607748 .
1321
+ # :PCA1 :lambda2 16.217776791473543 .
1322
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
1323
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
1324
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b7 .
1325
+ # _:b7 :x 20.0 .
1326
+ # _:b7 :y -3.0 .
1327
+ # (20.0 6.714285714285714) math:difference 13.285714285714285 .
1328
+ # (-3.0 4.171428571428572) math:difference -7.171428571428572 .
1329
+ # (13.285714285714285 0.8387243717699311) math:product 11.143052367800513 .
1330
+ # (-7.171428571428572 -0.5445561754301703) math:product 3.905245715227793 .
1331
+ # (11.143052367800513 3.905245715227793) math:sum 15.048298083028305 .
1332
+ # (13.285714285714285 -0.5445561754301703) math:product -7.234817759286548 .
1333
+ # (0.0 -7.234817759286548) math:difference 7.234817759286548 .
1334
+ # (-7.171428571428572 0.8387243717699311) math:product -6.014851923264363 .
1335
+ # (7.234817759286548 -6.014851923264363) math:sum 1.219965836022185 .
1336
+ # (15.048298083028305 2.0) math:exponentiation 226.45127519567336 .
1337
+ # (1.219965836022185 2.0) math:exponentiation 1.4883166410613087 .
1338
+ # (226.45127519567336 38.53691708607748) math:quotient 5.8762166856747635 .
1339
+ # (1.4883166410613087 16.217776791473543) math:quotient 0.0917706946024678 .
1340
+ # (5.8762166856747635 0.0917706946024678) math:sum 5.967987380277231 .
1341
+ # via the schematic forward rule:
1342
+ # {
1343
+ # :PCA1 :points ?pts .
1344
+ # :PCA1 :meanX ?mx .
1345
+ # :PCA1 :meanY ?my .
1346
+ # :PCA1 :thetaRad ?theta .
1347
+ # :PCA1 :lambda1 ?l1 .
1348
+ # :PCA1 :lambda2 ?l2 .
1349
+ # ?theta math:cos ?c .
1350
+ # ?theta math:sin ?s .
1351
+ # ?pts list:member ?p .
1352
+ # ?p :x ?x .
1353
+ # ?p :y ?y .
1354
+ # (?x ?mx) math:difference ?dx .
1355
+ # (?y ?my) math:difference ?dy .
1356
+ # (?dx ?c) math:product ?dxC .
1357
+ # (?dy ?s) math:product ?dyS .
1358
+ # (?dxC ?dyS) math:sum ?u .
1359
+ # (?dx ?s) math:product ?dxS .
1360
+ # (0.0 ?dxS) math:difference ?negDxS .
1361
+ # (?dy ?c) math:product ?dyC .
1362
+ # (?negDxS ?dyC) math:sum ?v .
1363
+ # (?u 2.0) math:exponentiation ?u2 .
1364
+ # (?v 2.0) math:exponentiation ?v2 .
1365
+ # (?u2 ?l1) math:quotient ?u2Over .
1366
+ # (?v2 ?l2) math:quotient ?v2Over .
1367
+ # (?u2Over ?v2Over) math:sum ?md2 .
1368
+ # } => {
1369
+ # _:b8 :point ?p .
1370
+ # _:b8 :u ?u .
1371
+ # _:b8 :v ?v .
1372
+ # _:b8 :md2 ?md2 .
1373
+ # :PCA1 :score _:b8 .
1374
+ # } .
1375
+ # with substitution (on rule variables):
1376
+ # ?c = 0.8387243717699311
1377
+ # ?dx = 13.285714285714285
1378
+ # ?dxC = 11.143052367800513
1379
+ # ?dxS = -7.234817759286548
1380
+ # ?dy = -7.171428571428572
1381
+ # ?dyC = -6.014851923264363
1382
+ # ?dyS = 3.905245715227793
1383
+ # ?l1 = 38.53691708607748
1384
+ # ?l2 = 16.217776791473543
1385
+ # ?md2 = 5.967987380277231
1386
+ # ?mx = 6.714285714285714
1387
+ # ?my = 4.171428571428572
1388
+ # ?negDxS = 7.234817759286548
1389
+ # ?p = _:b7
1390
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
1391
+ # ?s = -0.5445561754301703
1392
+ # ?theta = -0.5758598575998168
1393
+ # ?u = 15.048298083028305
1394
+ # ?u2 = 226.45127519567336
1395
+ # ?u2Over = 5.8762166856747635
1396
+ # ?v = 1.219965836022185
1397
+ # ?v2 = 1.4883166410613087
1398
+ # ?v2Over = 0.0917706946024678
1399
+ # ?x = 20.0
1400
+ # ?y = -3.0
1401
+ # Therefore the derived triple above is entailed by the rules and facts.
1402
+ # ----------------------------------------------------------------------
1403
+
1404
+ _:sk_0 :v 1.219965836022185 .
1405
+
1406
+ # ----------------------------------------------------------------------
1407
+ # Proof for derived triple:
1408
+ # _:sk_0 :md2 5.967987380277231 .
1409
+ # It holds because the following instance of the rule body is provable:
1410
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1411
+ # :PCA1 :meanX 6.714285714285714 .
1412
+ # :PCA1 :meanY 4.171428571428572 .
1413
+ # :PCA1 :thetaRad -0.5758598575998168 .
1414
+ # :PCA1 :lambda1 38.53691708607748 .
1415
+ # :PCA1 :lambda2 16.217776791473543 .
1416
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
1417
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
1418
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b7 .
1419
+ # _:b7 :x 20.0 .
1420
+ # _:b7 :y -3.0 .
1421
+ # (20.0 6.714285714285714) math:difference 13.285714285714285 .
1422
+ # (-3.0 4.171428571428572) math:difference -7.171428571428572 .
1423
+ # (13.285714285714285 0.8387243717699311) math:product 11.143052367800513 .
1424
+ # (-7.171428571428572 -0.5445561754301703) math:product 3.905245715227793 .
1425
+ # (11.143052367800513 3.905245715227793) math:sum 15.048298083028305 .
1426
+ # (13.285714285714285 -0.5445561754301703) math:product -7.234817759286548 .
1427
+ # (0.0 -7.234817759286548) math:difference 7.234817759286548 .
1428
+ # (-7.171428571428572 0.8387243717699311) math:product -6.014851923264363 .
1429
+ # (7.234817759286548 -6.014851923264363) math:sum 1.219965836022185 .
1430
+ # (15.048298083028305 2.0) math:exponentiation 226.45127519567336 .
1431
+ # (1.219965836022185 2.0) math:exponentiation 1.4883166410613087 .
1432
+ # (226.45127519567336 38.53691708607748) math:quotient 5.8762166856747635 .
1433
+ # (1.4883166410613087 16.217776791473543) math:quotient 0.0917706946024678 .
1434
+ # (5.8762166856747635 0.0917706946024678) math:sum 5.967987380277231 .
1435
+ # via the schematic forward rule:
1436
+ # {
1437
+ # :PCA1 :points ?pts .
1438
+ # :PCA1 :meanX ?mx .
1439
+ # :PCA1 :meanY ?my .
1440
+ # :PCA1 :thetaRad ?theta .
1441
+ # :PCA1 :lambda1 ?l1 .
1442
+ # :PCA1 :lambda2 ?l2 .
1443
+ # ?theta math:cos ?c .
1444
+ # ?theta math:sin ?s .
1445
+ # ?pts list:member ?p .
1446
+ # ?p :x ?x .
1447
+ # ?p :y ?y .
1448
+ # (?x ?mx) math:difference ?dx .
1449
+ # (?y ?my) math:difference ?dy .
1450
+ # (?dx ?c) math:product ?dxC .
1451
+ # (?dy ?s) math:product ?dyS .
1452
+ # (?dxC ?dyS) math:sum ?u .
1453
+ # (?dx ?s) math:product ?dxS .
1454
+ # (0.0 ?dxS) math:difference ?negDxS .
1455
+ # (?dy ?c) math:product ?dyC .
1456
+ # (?negDxS ?dyC) math:sum ?v .
1457
+ # (?u 2.0) math:exponentiation ?u2 .
1458
+ # (?v 2.0) math:exponentiation ?v2 .
1459
+ # (?u2 ?l1) math:quotient ?u2Over .
1460
+ # (?v2 ?l2) math:quotient ?v2Over .
1461
+ # (?u2Over ?v2Over) math:sum ?md2 .
1462
+ # } => {
1463
+ # _:b8 :point ?p .
1464
+ # _:b8 :u ?u .
1465
+ # _:b8 :v ?v .
1466
+ # _:b8 :md2 ?md2 .
1467
+ # :PCA1 :score _:b8 .
1468
+ # } .
1469
+ # with substitution (on rule variables):
1470
+ # ?c = 0.8387243717699311
1471
+ # ?dx = 13.285714285714285
1472
+ # ?dxC = 11.143052367800513
1473
+ # ?dxS = -7.234817759286548
1474
+ # ?dy = -7.171428571428572
1475
+ # ?dyC = -6.014851923264363
1476
+ # ?dyS = 3.905245715227793
1477
+ # ?l1 = 38.53691708607748
1478
+ # ?l2 = 16.217776791473543
1479
+ # ?md2 = 5.967987380277231
1480
+ # ?mx = 6.714285714285714
1481
+ # ?my = 4.171428571428572
1482
+ # ?negDxS = 7.234817759286548
1483
+ # ?p = _:b7
1484
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
1485
+ # ?s = -0.5445561754301703
1486
+ # ?theta = -0.5758598575998168
1487
+ # ?u = 15.048298083028305
1488
+ # ?u2 = 226.45127519567336
1489
+ # ?u2Over = 5.8762166856747635
1490
+ # ?v = 1.219965836022185
1491
+ # ?v2 = 1.4883166410613087
1492
+ # ?v2Over = 0.0917706946024678
1493
+ # ?x = 20.0
1494
+ # ?y = -3.0
1495
+ # Therefore the derived triple above is entailed by the rules and facts.
1496
+ # ----------------------------------------------------------------------
1497
+
1498
+ _:sk_0 :md2 5.967987380277231 .
1499
+
1500
+ # ----------------------------------------------------------------------
1501
+ # Proof for derived triple:
1502
+ # :PCA1 :score _:sk_0 .
1503
+ # It holds because the following instance of the rule body is provable:
1504
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1505
+ # :PCA1 :meanX 6.714285714285714 .
1506
+ # :PCA1 :meanY 4.171428571428572 .
1507
+ # :PCA1 :thetaRad -0.5758598575998168 .
1508
+ # :PCA1 :lambda1 38.53691708607748 .
1509
+ # :PCA1 :lambda2 16.217776791473543 .
1510
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
1511
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
1512
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b7 .
1513
+ # _:b7 :x 20.0 .
1514
+ # _:b7 :y -3.0 .
1515
+ # (20.0 6.714285714285714) math:difference 13.285714285714285 .
1516
+ # (-3.0 4.171428571428572) math:difference -7.171428571428572 .
1517
+ # (13.285714285714285 0.8387243717699311) math:product 11.143052367800513 .
1518
+ # (-7.171428571428572 -0.5445561754301703) math:product 3.905245715227793 .
1519
+ # (11.143052367800513 3.905245715227793) math:sum 15.048298083028305 .
1520
+ # (13.285714285714285 -0.5445561754301703) math:product -7.234817759286548 .
1521
+ # (0.0 -7.234817759286548) math:difference 7.234817759286548 .
1522
+ # (-7.171428571428572 0.8387243717699311) math:product -6.014851923264363 .
1523
+ # (7.234817759286548 -6.014851923264363) math:sum 1.219965836022185 .
1524
+ # (15.048298083028305 2.0) math:exponentiation 226.45127519567336 .
1525
+ # (1.219965836022185 2.0) math:exponentiation 1.4883166410613087 .
1526
+ # (226.45127519567336 38.53691708607748) math:quotient 5.8762166856747635 .
1527
+ # (1.4883166410613087 16.217776791473543) math:quotient 0.0917706946024678 .
1528
+ # (5.8762166856747635 0.0917706946024678) math:sum 5.967987380277231 .
1529
+ # via the schematic forward rule:
1530
+ # {
1531
+ # :PCA1 :points ?pts .
1532
+ # :PCA1 :meanX ?mx .
1533
+ # :PCA1 :meanY ?my .
1534
+ # :PCA1 :thetaRad ?theta .
1535
+ # :PCA1 :lambda1 ?l1 .
1536
+ # :PCA1 :lambda2 ?l2 .
1537
+ # ?theta math:cos ?c .
1538
+ # ?theta math:sin ?s .
1539
+ # ?pts list:member ?p .
1540
+ # ?p :x ?x .
1541
+ # ?p :y ?y .
1542
+ # (?x ?mx) math:difference ?dx .
1543
+ # (?y ?my) math:difference ?dy .
1544
+ # (?dx ?c) math:product ?dxC .
1545
+ # (?dy ?s) math:product ?dyS .
1546
+ # (?dxC ?dyS) math:sum ?u .
1547
+ # (?dx ?s) math:product ?dxS .
1548
+ # (0.0 ?dxS) math:difference ?negDxS .
1549
+ # (?dy ?c) math:product ?dyC .
1550
+ # (?negDxS ?dyC) math:sum ?v .
1551
+ # (?u 2.0) math:exponentiation ?u2 .
1552
+ # (?v 2.0) math:exponentiation ?v2 .
1553
+ # (?u2 ?l1) math:quotient ?u2Over .
1554
+ # (?v2 ?l2) math:quotient ?v2Over .
1555
+ # (?u2Over ?v2Over) math:sum ?md2 .
1556
+ # } => {
1557
+ # _:b8 :point ?p .
1558
+ # _:b8 :u ?u .
1559
+ # _:b8 :v ?v .
1560
+ # _:b8 :md2 ?md2 .
1561
+ # :PCA1 :score _:b8 .
1562
+ # } .
1563
+ # with substitution (on rule variables):
1564
+ # ?c = 0.8387243717699311
1565
+ # ?dx = 13.285714285714285
1566
+ # ?dxC = 11.143052367800513
1567
+ # ?dxS = -7.234817759286548
1568
+ # ?dy = -7.171428571428572
1569
+ # ?dyC = -6.014851923264363
1570
+ # ?dyS = 3.905245715227793
1571
+ # ?l1 = 38.53691708607748
1572
+ # ?l2 = 16.217776791473543
1573
+ # ?md2 = 5.967987380277231
1574
+ # ?mx = 6.714285714285714
1575
+ # ?my = 4.171428571428572
1576
+ # ?negDxS = 7.234817759286548
1577
+ # ?p = _:b7
1578
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
1579
+ # ?s = -0.5445561754301703
1580
+ # ?theta = -0.5758598575998168
1581
+ # ?u = 15.048298083028305
1582
+ # ?u2 = 226.45127519567336
1583
+ # ?u2Over = 5.8762166856747635
1584
+ # ?v = 1.219965836022185
1585
+ # ?v2 = 1.4883166410613087
1586
+ # ?v2Over = 0.0917706946024678
1587
+ # ?x = 20.0
1588
+ # ?y = -3.0
1589
+ # Therefore the derived triple above is entailed by the rules and facts.
1590
+ # ----------------------------------------------------------------------
1591
+
1592
+ :PCA1 :score _:sk_0 .
1593
+
1594
+ # ----------------------------------------------------------------------
1595
+ # Proof for derived triple:
1596
+ # _:sk_1 :point _:b6 .
1597
+ # It holds because the following instance of the rule body is provable:
1598
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1599
+ # :PCA1 :meanX 6.714285714285714 .
1600
+ # :PCA1 :meanY 4.171428571428572 .
1601
+ # :PCA1 :thetaRad -0.5758598575998168 .
1602
+ # :PCA1 :lambda1 38.53691708607748 .
1603
+ # :PCA1 :lambda2 16.217776791473543 .
1604
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
1605
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
1606
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b6 .
1607
+ # _:b6 :x 7.0 .
1608
+ # _:b6 :y 13.0 .
1609
+ # (7.0 6.714285714285714) math:difference 0.2857142857142856 .
1610
+ # (13.0 4.171428571428572) math:difference 8.82857142857143 .
1611
+ # (0.2857142857142856 0.8387243717699311) math:product 0.23963553479140878 .
1612
+ # (8.82857142857143 -0.5445561754301703) math:product -4.807653091654933 .
1613
+ # (0.23963553479140878 -4.807653091654933) math:sum -4.5680175568635235 .
1614
+ # (0.2857142857142856 -0.5445561754301703) math:product -0.1555874786943343 .
1615
+ # (0.0 -0.1555874786943343) math:difference 0.1555874786943343 .
1616
+ # (8.82857142857143 0.8387243717699311) math:product 7.404738025054535 .
1617
+ # (0.1555874786943343 7.404738025054535) math:sum 7.56032550374887 .
1618
+ # (-4.5680175568635235 2.0) math:exponentiation 20.866784399813394 .
1619
+ # (7.56032550374887 2.0) math:exponentiation 57.158521722635605 .
1620
+ # (20.866784399813394 38.53691708607748) math:quotient 0.541475187369155 .
1621
+ # (57.158521722635605 16.217776791473543) math:quotient 3.5244363304276427 .
1622
+ # (0.541475187369155 3.5244363304276427) math:sum 4.065911517796797 .
1623
+ # via the schematic forward rule:
1624
+ # {
1625
+ # :PCA1 :points ?pts .
1626
+ # :PCA1 :meanX ?mx .
1627
+ # :PCA1 :meanY ?my .
1628
+ # :PCA1 :thetaRad ?theta .
1629
+ # :PCA1 :lambda1 ?l1 .
1630
+ # :PCA1 :lambda2 ?l2 .
1631
+ # ?theta math:cos ?c .
1632
+ # ?theta math:sin ?s .
1633
+ # ?pts list:member ?p .
1634
+ # ?p :x ?x .
1635
+ # ?p :y ?y .
1636
+ # (?x ?mx) math:difference ?dx .
1637
+ # (?y ?my) math:difference ?dy .
1638
+ # (?dx ?c) math:product ?dxC .
1639
+ # (?dy ?s) math:product ?dyS .
1640
+ # (?dxC ?dyS) math:sum ?u .
1641
+ # (?dx ?s) math:product ?dxS .
1642
+ # (0.0 ?dxS) math:difference ?negDxS .
1643
+ # (?dy ?c) math:product ?dyC .
1644
+ # (?negDxS ?dyC) math:sum ?v .
1645
+ # (?u 2.0) math:exponentiation ?u2 .
1646
+ # (?v 2.0) math:exponentiation ?v2 .
1647
+ # (?u2 ?l1) math:quotient ?u2Over .
1648
+ # (?v2 ?l2) math:quotient ?v2Over .
1649
+ # (?u2Over ?v2Over) math:sum ?md2 .
1650
+ # } => {
1651
+ # _:b8 :point ?p .
1652
+ # _:b8 :u ?u .
1653
+ # _:b8 :v ?v .
1654
+ # _:b8 :md2 ?md2 .
1655
+ # :PCA1 :score _:b8 .
1656
+ # } .
1657
+ # with substitution (on rule variables):
1658
+ # ?c = 0.8387243717699311
1659
+ # ?dx = 0.2857142857142856
1660
+ # ?dxC = 0.23963553479140878
1661
+ # ?dxS = -0.1555874786943343
1662
+ # ?dy = 8.82857142857143
1663
+ # ?dyC = 7.404738025054535
1664
+ # ?dyS = -4.807653091654933
1665
+ # ?l1 = 38.53691708607748
1666
+ # ?l2 = 16.217776791473543
1667
+ # ?md2 = 4.065911517796797
1668
+ # ?mx = 6.714285714285714
1669
+ # ?my = 4.171428571428572
1670
+ # ?negDxS = 0.1555874786943343
1671
+ # ?p = _:b6
1672
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
1673
+ # ?s = -0.5445561754301703
1674
+ # ?theta = -0.5758598575998168
1675
+ # ?u = -4.5680175568635235
1676
+ # ?u2 = 20.866784399813394
1677
+ # ?u2Over = 0.541475187369155
1678
+ # ?v = 7.56032550374887
1679
+ # ?v2 = 57.158521722635605
1680
+ # ?v2Over = 3.5244363304276427
1681
+ # ?x = 7.0
1682
+ # ?y = 13.0
1683
+ # Therefore the derived triple above is entailed by the rules and facts.
1684
+ # ----------------------------------------------------------------------
1685
+
1686
+ _:sk_1 :point _:b6 .
1687
+
1688
+ # ----------------------------------------------------------------------
1689
+ # Proof for derived triple:
1690
+ # _:sk_1 :u -4.5680175568635235 .
1691
+ # It holds because the following instance of the rule body is provable:
1692
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1693
+ # :PCA1 :meanX 6.714285714285714 .
1694
+ # :PCA1 :meanY 4.171428571428572 .
1695
+ # :PCA1 :thetaRad -0.5758598575998168 .
1696
+ # :PCA1 :lambda1 38.53691708607748 .
1697
+ # :PCA1 :lambda2 16.217776791473543 .
1698
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
1699
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
1700
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b6 .
1701
+ # _:b6 :x 7.0 .
1702
+ # _:b6 :y 13.0 .
1703
+ # (7.0 6.714285714285714) math:difference 0.2857142857142856 .
1704
+ # (13.0 4.171428571428572) math:difference 8.82857142857143 .
1705
+ # (0.2857142857142856 0.8387243717699311) math:product 0.23963553479140878 .
1706
+ # (8.82857142857143 -0.5445561754301703) math:product -4.807653091654933 .
1707
+ # (0.23963553479140878 -4.807653091654933) math:sum -4.5680175568635235 .
1708
+ # (0.2857142857142856 -0.5445561754301703) math:product -0.1555874786943343 .
1709
+ # (0.0 -0.1555874786943343) math:difference 0.1555874786943343 .
1710
+ # (8.82857142857143 0.8387243717699311) math:product 7.404738025054535 .
1711
+ # (0.1555874786943343 7.404738025054535) math:sum 7.56032550374887 .
1712
+ # (-4.5680175568635235 2.0) math:exponentiation 20.866784399813394 .
1713
+ # (7.56032550374887 2.0) math:exponentiation 57.158521722635605 .
1714
+ # (20.866784399813394 38.53691708607748) math:quotient 0.541475187369155 .
1715
+ # (57.158521722635605 16.217776791473543) math:quotient 3.5244363304276427 .
1716
+ # (0.541475187369155 3.5244363304276427) math:sum 4.065911517796797 .
1717
+ # via the schematic forward rule:
1718
+ # {
1719
+ # :PCA1 :points ?pts .
1720
+ # :PCA1 :meanX ?mx .
1721
+ # :PCA1 :meanY ?my .
1722
+ # :PCA1 :thetaRad ?theta .
1723
+ # :PCA1 :lambda1 ?l1 .
1724
+ # :PCA1 :lambda2 ?l2 .
1725
+ # ?theta math:cos ?c .
1726
+ # ?theta math:sin ?s .
1727
+ # ?pts list:member ?p .
1728
+ # ?p :x ?x .
1729
+ # ?p :y ?y .
1730
+ # (?x ?mx) math:difference ?dx .
1731
+ # (?y ?my) math:difference ?dy .
1732
+ # (?dx ?c) math:product ?dxC .
1733
+ # (?dy ?s) math:product ?dyS .
1734
+ # (?dxC ?dyS) math:sum ?u .
1735
+ # (?dx ?s) math:product ?dxS .
1736
+ # (0.0 ?dxS) math:difference ?negDxS .
1737
+ # (?dy ?c) math:product ?dyC .
1738
+ # (?negDxS ?dyC) math:sum ?v .
1739
+ # (?u 2.0) math:exponentiation ?u2 .
1740
+ # (?v 2.0) math:exponentiation ?v2 .
1741
+ # (?u2 ?l1) math:quotient ?u2Over .
1742
+ # (?v2 ?l2) math:quotient ?v2Over .
1743
+ # (?u2Over ?v2Over) math:sum ?md2 .
1744
+ # } => {
1745
+ # _:b8 :point ?p .
1746
+ # _:b8 :u ?u .
1747
+ # _:b8 :v ?v .
1748
+ # _:b8 :md2 ?md2 .
1749
+ # :PCA1 :score _:b8 .
1750
+ # } .
1751
+ # with substitution (on rule variables):
1752
+ # ?c = 0.8387243717699311
1753
+ # ?dx = 0.2857142857142856
1754
+ # ?dxC = 0.23963553479140878
1755
+ # ?dxS = -0.1555874786943343
1756
+ # ?dy = 8.82857142857143
1757
+ # ?dyC = 7.404738025054535
1758
+ # ?dyS = -4.807653091654933
1759
+ # ?l1 = 38.53691708607748
1760
+ # ?l2 = 16.217776791473543
1761
+ # ?md2 = 4.065911517796797
1762
+ # ?mx = 6.714285714285714
1763
+ # ?my = 4.171428571428572
1764
+ # ?negDxS = 0.1555874786943343
1765
+ # ?p = _:b6
1766
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
1767
+ # ?s = -0.5445561754301703
1768
+ # ?theta = -0.5758598575998168
1769
+ # ?u = -4.5680175568635235
1770
+ # ?u2 = 20.866784399813394
1771
+ # ?u2Over = 0.541475187369155
1772
+ # ?v = 7.56032550374887
1773
+ # ?v2 = 57.158521722635605
1774
+ # ?v2Over = 3.5244363304276427
1775
+ # ?x = 7.0
1776
+ # ?y = 13.0
1777
+ # Therefore the derived triple above is entailed by the rules and facts.
1778
+ # ----------------------------------------------------------------------
1779
+
1780
+ _:sk_1 :u -4.5680175568635235 .
1781
+
1782
+ # ----------------------------------------------------------------------
1783
+ # Proof for derived triple:
1784
+ # _:sk_1 :v 7.56032550374887 .
1785
+ # It holds because the following instance of the rule body is provable:
1786
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1787
+ # :PCA1 :meanX 6.714285714285714 .
1788
+ # :PCA1 :meanY 4.171428571428572 .
1789
+ # :PCA1 :thetaRad -0.5758598575998168 .
1790
+ # :PCA1 :lambda1 38.53691708607748 .
1791
+ # :PCA1 :lambda2 16.217776791473543 .
1792
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
1793
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
1794
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b6 .
1795
+ # _:b6 :x 7.0 .
1796
+ # _:b6 :y 13.0 .
1797
+ # (7.0 6.714285714285714) math:difference 0.2857142857142856 .
1798
+ # (13.0 4.171428571428572) math:difference 8.82857142857143 .
1799
+ # (0.2857142857142856 0.8387243717699311) math:product 0.23963553479140878 .
1800
+ # (8.82857142857143 -0.5445561754301703) math:product -4.807653091654933 .
1801
+ # (0.23963553479140878 -4.807653091654933) math:sum -4.5680175568635235 .
1802
+ # (0.2857142857142856 -0.5445561754301703) math:product -0.1555874786943343 .
1803
+ # (0.0 -0.1555874786943343) math:difference 0.1555874786943343 .
1804
+ # (8.82857142857143 0.8387243717699311) math:product 7.404738025054535 .
1805
+ # (0.1555874786943343 7.404738025054535) math:sum 7.56032550374887 .
1806
+ # (-4.5680175568635235 2.0) math:exponentiation 20.866784399813394 .
1807
+ # (7.56032550374887 2.0) math:exponentiation 57.158521722635605 .
1808
+ # (20.866784399813394 38.53691708607748) math:quotient 0.541475187369155 .
1809
+ # (57.158521722635605 16.217776791473543) math:quotient 3.5244363304276427 .
1810
+ # (0.541475187369155 3.5244363304276427) math:sum 4.065911517796797 .
1811
+ # via the schematic forward rule:
1812
+ # {
1813
+ # :PCA1 :points ?pts .
1814
+ # :PCA1 :meanX ?mx .
1815
+ # :PCA1 :meanY ?my .
1816
+ # :PCA1 :thetaRad ?theta .
1817
+ # :PCA1 :lambda1 ?l1 .
1818
+ # :PCA1 :lambda2 ?l2 .
1819
+ # ?theta math:cos ?c .
1820
+ # ?theta math:sin ?s .
1821
+ # ?pts list:member ?p .
1822
+ # ?p :x ?x .
1823
+ # ?p :y ?y .
1824
+ # (?x ?mx) math:difference ?dx .
1825
+ # (?y ?my) math:difference ?dy .
1826
+ # (?dx ?c) math:product ?dxC .
1827
+ # (?dy ?s) math:product ?dyS .
1828
+ # (?dxC ?dyS) math:sum ?u .
1829
+ # (?dx ?s) math:product ?dxS .
1830
+ # (0.0 ?dxS) math:difference ?negDxS .
1831
+ # (?dy ?c) math:product ?dyC .
1832
+ # (?negDxS ?dyC) math:sum ?v .
1833
+ # (?u 2.0) math:exponentiation ?u2 .
1834
+ # (?v 2.0) math:exponentiation ?v2 .
1835
+ # (?u2 ?l1) math:quotient ?u2Over .
1836
+ # (?v2 ?l2) math:quotient ?v2Over .
1837
+ # (?u2Over ?v2Over) math:sum ?md2 .
1838
+ # } => {
1839
+ # _:b8 :point ?p .
1840
+ # _:b8 :u ?u .
1841
+ # _:b8 :v ?v .
1842
+ # _:b8 :md2 ?md2 .
1843
+ # :PCA1 :score _:b8 .
1844
+ # } .
1845
+ # with substitution (on rule variables):
1846
+ # ?c = 0.8387243717699311
1847
+ # ?dx = 0.2857142857142856
1848
+ # ?dxC = 0.23963553479140878
1849
+ # ?dxS = -0.1555874786943343
1850
+ # ?dy = 8.82857142857143
1851
+ # ?dyC = 7.404738025054535
1852
+ # ?dyS = -4.807653091654933
1853
+ # ?l1 = 38.53691708607748
1854
+ # ?l2 = 16.217776791473543
1855
+ # ?md2 = 4.065911517796797
1856
+ # ?mx = 6.714285714285714
1857
+ # ?my = 4.171428571428572
1858
+ # ?negDxS = 0.1555874786943343
1859
+ # ?p = _:b6
1860
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
1861
+ # ?s = -0.5445561754301703
1862
+ # ?theta = -0.5758598575998168
1863
+ # ?u = -4.5680175568635235
1864
+ # ?u2 = 20.866784399813394
1865
+ # ?u2Over = 0.541475187369155
1866
+ # ?v = 7.56032550374887
1867
+ # ?v2 = 57.158521722635605
1868
+ # ?v2Over = 3.5244363304276427
1869
+ # ?x = 7.0
1870
+ # ?y = 13.0
1871
+ # Therefore the derived triple above is entailed by the rules and facts.
1872
+ # ----------------------------------------------------------------------
1873
+
1874
+ _:sk_1 :v 7.56032550374887 .
1875
+
1876
+ # ----------------------------------------------------------------------
1877
+ # Proof for derived triple:
1878
+ # _:sk_1 :md2 4.065911517796797 .
1879
+ # It holds because the following instance of the rule body is provable:
1880
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1881
+ # :PCA1 :meanX 6.714285714285714 .
1882
+ # :PCA1 :meanY 4.171428571428572 .
1883
+ # :PCA1 :thetaRad -0.5758598575998168 .
1884
+ # :PCA1 :lambda1 38.53691708607748 .
1885
+ # :PCA1 :lambda2 16.217776791473543 .
1886
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
1887
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
1888
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b6 .
1889
+ # _:b6 :x 7.0 .
1890
+ # _:b6 :y 13.0 .
1891
+ # (7.0 6.714285714285714) math:difference 0.2857142857142856 .
1892
+ # (13.0 4.171428571428572) math:difference 8.82857142857143 .
1893
+ # (0.2857142857142856 0.8387243717699311) math:product 0.23963553479140878 .
1894
+ # (8.82857142857143 -0.5445561754301703) math:product -4.807653091654933 .
1895
+ # (0.23963553479140878 -4.807653091654933) math:sum -4.5680175568635235 .
1896
+ # (0.2857142857142856 -0.5445561754301703) math:product -0.1555874786943343 .
1897
+ # (0.0 -0.1555874786943343) math:difference 0.1555874786943343 .
1898
+ # (8.82857142857143 0.8387243717699311) math:product 7.404738025054535 .
1899
+ # (0.1555874786943343 7.404738025054535) math:sum 7.56032550374887 .
1900
+ # (-4.5680175568635235 2.0) math:exponentiation 20.866784399813394 .
1901
+ # (7.56032550374887 2.0) math:exponentiation 57.158521722635605 .
1902
+ # (20.866784399813394 38.53691708607748) math:quotient 0.541475187369155 .
1903
+ # (57.158521722635605 16.217776791473543) math:quotient 3.5244363304276427 .
1904
+ # (0.541475187369155 3.5244363304276427) math:sum 4.065911517796797 .
1905
+ # via the schematic forward rule:
1906
+ # {
1907
+ # :PCA1 :points ?pts .
1908
+ # :PCA1 :meanX ?mx .
1909
+ # :PCA1 :meanY ?my .
1910
+ # :PCA1 :thetaRad ?theta .
1911
+ # :PCA1 :lambda1 ?l1 .
1912
+ # :PCA1 :lambda2 ?l2 .
1913
+ # ?theta math:cos ?c .
1914
+ # ?theta math:sin ?s .
1915
+ # ?pts list:member ?p .
1916
+ # ?p :x ?x .
1917
+ # ?p :y ?y .
1918
+ # (?x ?mx) math:difference ?dx .
1919
+ # (?y ?my) math:difference ?dy .
1920
+ # (?dx ?c) math:product ?dxC .
1921
+ # (?dy ?s) math:product ?dyS .
1922
+ # (?dxC ?dyS) math:sum ?u .
1923
+ # (?dx ?s) math:product ?dxS .
1924
+ # (0.0 ?dxS) math:difference ?negDxS .
1925
+ # (?dy ?c) math:product ?dyC .
1926
+ # (?negDxS ?dyC) math:sum ?v .
1927
+ # (?u 2.0) math:exponentiation ?u2 .
1928
+ # (?v 2.0) math:exponentiation ?v2 .
1929
+ # (?u2 ?l1) math:quotient ?u2Over .
1930
+ # (?v2 ?l2) math:quotient ?v2Over .
1931
+ # (?u2Over ?v2Over) math:sum ?md2 .
1932
+ # } => {
1933
+ # _:b8 :point ?p .
1934
+ # _:b8 :u ?u .
1935
+ # _:b8 :v ?v .
1936
+ # _:b8 :md2 ?md2 .
1937
+ # :PCA1 :score _:b8 .
1938
+ # } .
1939
+ # with substitution (on rule variables):
1940
+ # ?c = 0.8387243717699311
1941
+ # ?dx = 0.2857142857142856
1942
+ # ?dxC = 0.23963553479140878
1943
+ # ?dxS = -0.1555874786943343
1944
+ # ?dy = 8.82857142857143
1945
+ # ?dyC = 7.404738025054535
1946
+ # ?dyS = -4.807653091654933
1947
+ # ?l1 = 38.53691708607748
1948
+ # ?l2 = 16.217776791473543
1949
+ # ?md2 = 4.065911517796797
1950
+ # ?mx = 6.714285714285714
1951
+ # ?my = 4.171428571428572
1952
+ # ?negDxS = 0.1555874786943343
1953
+ # ?p = _:b6
1954
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
1955
+ # ?s = -0.5445561754301703
1956
+ # ?theta = -0.5758598575998168
1957
+ # ?u = -4.5680175568635235
1958
+ # ?u2 = 20.866784399813394
1959
+ # ?u2Over = 0.541475187369155
1960
+ # ?v = 7.56032550374887
1961
+ # ?v2 = 57.158521722635605
1962
+ # ?v2Over = 3.5244363304276427
1963
+ # ?x = 7.0
1964
+ # ?y = 13.0
1965
+ # Therefore the derived triple above is entailed by the rules and facts.
1966
+ # ----------------------------------------------------------------------
1967
+
1968
+ _:sk_1 :md2 4.065911517796797 .
1969
+
1970
+ # ----------------------------------------------------------------------
1971
+ # Proof for derived triple:
1972
+ # :PCA1 :score _:sk_1 .
1973
+ # It holds because the following instance of the rule body is provable:
1974
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1975
+ # :PCA1 :meanX 6.714285714285714 .
1976
+ # :PCA1 :meanY 4.171428571428572 .
1977
+ # :PCA1 :thetaRad -0.5758598575998168 .
1978
+ # :PCA1 :lambda1 38.53691708607748 .
1979
+ # :PCA1 :lambda2 16.217776791473543 .
1980
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
1981
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
1982
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b6 .
1983
+ # _:b6 :x 7.0 .
1984
+ # _:b6 :y 13.0 .
1985
+ # (7.0 6.714285714285714) math:difference 0.2857142857142856 .
1986
+ # (13.0 4.171428571428572) math:difference 8.82857142857143 .
1987
+ # (0.2857142857142856 0.8387243717699311) math:product 0.23963553479140878 .
1988
+ # (8.82857142857143 -0.5445561754301703) math:product -4.807653091654933 .
1989
+ # (0.23963553479140878 -4.807653091654933) math:sum -4.5680175568635235 .
1990
+ # (0.2857142857142856 -0.5445561754301703) math:product -0.1555874786943343 .
1991
+ # (0.0 -0.1555874786943343) math:difference 0.1555874786943343 .
1992
+ # (8.82857142857143 0.8387243717699311) math:product 7.404738025054535 .
1993
+ # (0.1555874786943343 7.404738025054535) math:sum 7.56032550374887 .
1994
+ # (-4.5680175568635235 2.0) math:exponentiation 20.866784399813394 .
1995
+ # (7.56032550374887 2.0) math:exponentiation 57.158521722635605 .
1996
+ # (20.866784399813394 38.53691708607748) math:quotient 0.541475187369155 .
1997
+ # (57.158521722635605 16.217776791473543) math:quotient 3.5244363304276427 .
1998
+ # (0.541475187369155 3.5244363304276427) math:sum 4.065911517796797 .
1999
+ # via the schematic forward rule:
2000
+ # {
2001
+ # :PCA1 :points ?pts .
2002
+ # :PCA1 :meanX ?mx .
2003
+ # :PCA1 :meanY ?my .
2004
+ # :PCA1 :thetaRad ?theta .
2005
+ # :PCA1 :lambda1 ?l1 .
2006
+ # :PCA1 :lambda2 ?l2 .
2007
+ # ?theta math:cos ?c .
2008
+ # ?theta math:sin ?s .
2009
+ # ?pts list:member ?p .
2010
+ # ?p :x ?x .
2011
+ # ?p :y ?y .
2012
+ # (?x ?mx) math:difference ?dx .
2013
+ # (?y ?my) math:difference ?dy .
2014
+ # (?dx ?c) math:product ?dxC .
2015
+ # (?dy ?s) math:product ?dyS .
2016
+ # (?dxC ?dyS) math:sum ?u .
2017
+ # (?dx ?s) math:product ?dxS .
2018
+ # (0.0 ?dxS) math:difference ?negDxS .
2019
+ # (?dy ?c) math:product ?dyC .
2020
+ # (?negDxS ?dyC) math:sum ?v .
2021
+ # (?u 2.0) math:exponentiation ?u2 .
2022
+ # (?v 2.0) math:exponentiation ?v2 .
2023
+ # (?u2 ?l1) math:quotient ?u2Over .
2024
+ # (?v2 ?l2) math:quotient ?v2Over .
2025
+ # (?u2Over ?v2Over) math:sum ?md2 .
2026
+ # } => {
2027
+ # _:b8 :point ?p .
2028
+ # _:b8 :u ?u .
2029
+ # _:b8 :v ?v .
2030
+ # _:b8 :md2 ?md2 .
2031
+ # :PCA1 :score _:b8 .
2032
+ # } .
2033
+ # with substitution (on rule variables):
2034
+ # ?c = 0.8387243717699311
2035
+ # ?dx = 0.2857142857142856
2036
+ # ?dxC = 0.23963553479140878
2037
+ # ?dxS = -0.1555874786943343
2038
+ # ?dy = 8.82857142857143
2039
+ # ?dyC = 7.404738025054535
2040
+ # ?dyS = -4.807653091654933
2041
+ # ?l1 = 38.53691708607748
2042
+ # ?l2 = 16.217776791473543
2043
+ # ?md2 = 4.065911517796797
2044
+ # ?mx = 6.714285714285714
2045
+ # ?my = 4.171428571428572
2046
+ # ?negDxS = 0.1555874786943343
2047
+ # ?p = _:b6
2048
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2049
+ # ?s = -0.5445561754301703
2050
+ # ?theta = -0.5758598575998168
2051
+ # ?u = -4.5680175568635235
2052
+ # ?u2 = 20.866784399813394
2053
+ # ?u2Over = 0.541475187369155
2054
+ # ?v = 7.56032550374887
2055
+ # ?v2 = 57.158521722635605
2056
+ # ?v2Over = 3.5244363304276427
2057
+ # ?x = 7.0
2058
+ # ?y = 13.0
2059
+ # Therefore the derived triple above is entailed by the rules and facts.
2060
+ # ----------------------------------------------------------------------
2061
+
2062
+ :PCA1 :score _:sk_1 .
2063
+
2064
+ # ----------------------------------------------------------------------
2065
+ # Proof for derived triple:
2066
+ # _:sk_2 :point _:b5 .
2067
+ # It holds because the following instance of the rule body is provable:
2068
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2069
+ # :PCA1 :meanX 6.714285714285714 .
2070
+ # :PCA1 :meanY 4.171428571428572 .
2071
+ # :PCA1 :thetaRad -0.5758598575998168 .
2072
+ # :PCA1 :lambda1 38.53691708607748 .
2073
+ # :PCA1 :lambda2 16.217776791473543 .
2074
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
2075
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
2076
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b5 .
2077
+ # _:b5 :x 6.0 .
2078
+ # _:b5 :y 7.9 .
2079
+ # (6.0 6.714285714285714) math:difference -0.7142857142857144 .
2080
+ # (7.9 4.171428571428572) math:difference 3.7285714285714286 .
2081
+ # (-0.7142857142857144 0.8387243717699311) math:product -0.5990888369785223 .
2082
+ # (3.7285714285714286 -0.5445561754301703) math:product -2.0304165969610635 .
2083
+ # (-0.5990888369785223 -2.0304165969610635) math:sum -2.6295054339395856 .
2084
+ # (-0.7142857142857144 -0.5445561754301703) math:product 0.388968696735836 .
2085
+ # (0.0 0.388968696735836) math:difference -0.388968696735836 .
2086
+ # (3.7285714285714286 0.8387243717699311) math:product 3.127243729027886 .
2087
+ # (-0.388968696735836 3.127243729027886) math:sum 2.73827503229205 .
2088
+ # (-2.6295054339395856 2.0) math:exponentiation 6.9142988271178085 .
2089
+ # (2.73827503229205 2.0) math:exponentiation 7.498150152474028 .
2090
+ # (6.9142988271178085 38.53691708607748) math:quotient 0.17942013398928033 .
2091
+ # (7.498150152474028 16.217776791473543) math:quotient 0.4623414324222394 .
2092
+ # (0.17942013398928033 0.4623414324222394) math:sum 0.6417615664115197 .
2093
+ # via the schematic forward rule:
2094
+ # {
2095
+ # :PCA1 :points ?pts .
2096
+ # :PCA1 :meanX ?mx .
2097
+ # :PCA1 :meanY ?my .
2098
+ # :PCA1 :thetaRad ?theta .
2099
+ # :PCA1 :lambda1 ?l1 .
2100
+ # :PCA1 :lambda2 ?l2 .
2101
+ # ?theta math:cos ?c .
2102
+ # ?theta math:sin ?s .
2103
+ # ?pts list:member ?p .
2104
+ # ?p :x ?x .
2105
+ # ?p :y ?y .
2106
+ # (?x ?mx) math:difference ?dx .
2107
+ # (?y ?my) math:difference ?dy .
2108
+ # (?dx ?c) math:product ?dxC .
2109
+ # (?dy ?s) math:product ?dyS .
2110
+ # (?dxC ?dyS) math:sum ?u .
2111
+ # (?dx ?s) math:product ?dxS .
2112
+ # (0.0 ?dxS) math:difference ?negDxS .
2113
+ # (?dy ?c) math:product ?dyC .
2114
+ # (?negDxS ?dyC) math:sum ?v .
2115
+ # (?u 2.0) math:exponentiation ?u2 .
2116
+ # (?v 2.0) math:exponentiation ?v2 .
2117
+ # (?u2 ?l1) math:quotient ?u2Over .
2118
+ # (?v2 ?l2) math:quotient ?v2Over .
2119
+ # (?u2Over ?v2Over) math:sum ?md2 .
2120
+ # } => {
2121
+ # _:b8 :point ?p .
2122
+ # _:b8 :u ?u .
2123
+ # _:b8 :v ?v .
2124
+ # _:b8 :md2 ?md2 .
2125
+ # :PCA1 :score _:b8 .
2126
+ # } .
2127
+ # with substitution (on rule variables):
2128
+ # ?c = 0.8387243717699311
2129
+ # ?dx = -0.7142857142857144
2130
+ # ?dxC = -0.5990888369785223
2131
+ # ?dxS = 0.388968696735836
2132
+ # ?dy = 3.7285714285714286
2133
+ # ?dyC = 3.127243729027886
2134
+ # ?dyS = -2.0304165969610635
2135
+ # ?l1 = 38.53691708607748
2136
+ # ?l2 = 16.217776791473543
2137
+ # ?md2 = 0.6417615664115197
2138
+ # ?mx = 6.714285714285714
2139
+ # ?my = 4.171428571428572
2140
+ # ?negDxS = -0.388968696735836
2141
+ # ?p = _:b5
2142
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2143
+ # ?s = -0.5445561754301703
2144
+ # ?theta = -0.5758598575998168
2145
+ # ?u = -2.6295054339395856
2146
+ # ?u2 = 6.9142988271178085
2147
+ # ?u2Over = 0.17942013398928033
2148
+ # ?v = 2.73827503229205
2149
+ # ?v2 = 7.498150152474028
2150
+ # ?v2Over = 0.4623414324222394
2151
+ # ?x = 6.0
2152
+ # ?y = 7.9
2153
+ # Therefore the derived triple above is entailed by the rules and facts.
2154
+ # ----------------------------------------------------------------------
2155
+
2156
+ _:sk_2 :point _:b5 .
2157
+
2158
+ # ----------------------------------------------------------------------
2159
+ # Proof for derived triple:
2160
+ # _:sk_2 :u -2.6295054339395856 .
2161
+ # It holds because the following instance of the rule body is provable:
2162
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2163
+ # :PCA1 :meanX 6.714285714285714 .
2164
+ # :PCA1 :meanY 4.171428571428572 .
2165
+ # :PCA1 :thetaRad -0.5758598575998168 .
2166
+ # :PCA1 :lambda1 38.53691708607748 .
2167
+ # :PCA1 :lambda2 16.217776791473543 .
2168
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
2169
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
2170
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b5 .
2171
+ # _:b5 :x 6.0 .
2172
+ # _:b5 :y 7.9 .
2173
+ # (6.0 6.714285714285714) math:difference -0.7142857142857144 .
2174
+ # (7.9 4.171428571428572) math:difference 3.7285714285714286 .
2175
+ # (-0.7142857142857144 0.8387243717699311) math:product -0.5990888369785223 .
2176
+ # (3.7285714285714286 -0.5445561754301703) math:product -2.0304165969610635 .
2177
+ # (-0.5990888369785223 -2.0304165969610635) math:sum -2.6295054339395856 .
2178
+ # (-0.7142857142857144 -0.5445561754301703) math:product 0.388968696735836 .
2179
+ # (0.0 0.388968696735836) math:difference -0.388968696735836 .
2180
+ # (3.7285714285714286 0.8387243717699311) math:product 3.127243729027886 .
2181
+ # (-0.388968696735836 3.127243729027886) math:sum 2.73827503229205 .
2182
+ # (-2.6295054339395856 2.0) math:exponentiation 6.9142988271178085 .
2183
+ # (2.73827503229205 2.0) math:exponentiation 7.498150152474028 .
2184
+ # (6.9142988271178085 38.53691708607748) math:quotient 0.17942013398928033 .
2185
+ # (7.498150152474028 16.217776791473543) math:quotient 0.4623414324222394 .
2186
+ # (0.17942013398928033 0.4623414324222394) math:sum 0.6417615664115197 .
2187
+ # via the schematic forward rule:
2188
+ # {
2189
+ # :PCA1 :points ?pts .
2190
+ # :PCA1 :meanX ?mx .
2191
+ # :PCA1 :meanY ?my .
2192
+ # :PCA1 :thetaRad ?theta .
2193
+ # :PCA1 :lambda1 ?l1 .
2194
+ # :PCA1 :lambda2 ?l2 .
2195
+ # ?theta math:cos ?c .
2196
+ # ?theta math:sin ?s .
2197
+ # ?pts list:member ?p .
2198
+ # ?p :x ?x .
2199
+ # ?p :y ?y .
2200
+ # (?x ?mx) math:difference ?dx .
2201
+ # (?y ?my) math:difference ?dy .
2202
+ # (?dx ?c) math:product ?dxC .
2203
+ # (?dy ?s) math:product ?dyS .
2204
+ # (?dxC ?dyS) math:sum ?u .
2205
+ # (?dx ?s) math:product ?dxS .
2206
+ # (0.0 ?dxS) math:difference ?negDxS .
2207
+ # (?dy ?c) math:product ?dyC .
2208
+ # (?negDxS ?dyC) math:sum ?v .
2209
+ # (?u 2.0) math:exponentiation ?u2 .
2210
+ # (?v 2.0) math:exponentiation ?v2 .
2211
+ # (?u2 ?l1) math:quotient ?u2Over .
2212
+ # (?v2 ?l2) math:quotient ?v2Over .
2213
+ # (?u2Over ?v2Over) math:sum ?md2 .
2214
+ # } => {
2215
+ # _:b8 :point ?p .
2216
+ # _:b8 :u ?u .
2217
+ # _:b8 :v ?v .
2218
+ # _:b8 :md2 ?md2 .
2219
+ # :PCA1 :score _:b8 .
2220
+ # } .
2221
+ # with substitution (on rule variables):
2222
+ # ?c = 0.8387243717699311
2223
+ # ?dx = -0.7142857142857144
2224
+ # ?dxC = -0.5990888369785223
2225
+ # ?dxS = 0.388968696735836
2226
+ # ?dy = 3.7285714285714286
2227
+ # ?dyC = 3.127243729027886
2228
+ # ?dyS = -2.0304165969610635
2229
+ # ?l1 = 38.53691708607748
2230
+ # ?l2 = 16.217776791473543
2231
+ # ?md2 = 0.6417615664115197
2232
+ # ?mx = 6.714285714285714
2233
+ # ?my = 4.171428571428572
2234
+ # ?negDxS = -0.388968696735836
2235
+ # ?p = _:b5
2236
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2237
+ # ?s = -0.5445561754301703
2238
+ # ?theta = -0.5758598575998168
2239
+ # ?u = -2.6295054339395856
2240
+ # ?u2 = 6.9142988271178085
2241
+ # ?u2Over = 0.17942013398928033
2242
+ # ?v = 2.73827503229205
2243
+ # ?v2 = 7.498150152474028
2244
+ # ?v2Over = 0.4623414324222394
2245
+ # ?x = 6.0
2246
+ # ?y = 7.9
2247
+ # Therefore the derived triple above is entailed by the rules and facts.
2248
+ # ----------------------------------------------------------------------
2249
+
2250
+ _:sk_2 :u -2.6295054339395856 .
2251
+
2252
+ # ----------------------------------------------------------------------
2253
+ # Proof for derived triple:
2254
+ # _:sk_2 :v 2.73827503229205 .
2255
+ # It holds because the following instance of the rule body is provable:
2256
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2257
+ # :PCA1 :meanX 6.714285714285714 .
2258
+ # :PCA1 :meanY 4.171428571428572 .
2259
+ # :PCA1 :thetaRad -0.5758598575998168 .
2260
+ # :PCA1 :lambda1 38.53691708607748 .
2261
+ # :PCA1 :lambda2 16.217776791473543 .
2262
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
2263
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
2264
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b5 .
2265
+ # _:b5 :x 6.0 .
2266
+ # _:b5 :y 7.9 .
2267
+ # (6.0 6.714285714285714) math:difference -0.7142857142857144 .
2268
+ # (7.9 4.171428571428572) math:difference 3.7285714285714286 .
2269
+ # (-0.7142857142857144 0.8387243717699311) math:product -0.5990888369785223 .
2270
+ # (3.7285714285714286 -0.5445561754301703) math:product -2.0304165969610635 .
2271
+ # (-0.5990888369785223 -2.0304165969610635) math:sum -2.6295054339395856 .
2272
+ # (-0.7142857142857144 -0.5445561754301703) math:product 0.388968696735836 .
2273
+ # (0.0 0.388968696735836) math:difference -0.388968696735836 .
2274
+ # (3.7285714285714286 0.8387243717699311) math:product 3.127243729027886 .
2275
+ # (-0.388968696735836 3.127243729027886) math:sum 2.73827503229205 .
2276
+ # (-2.6295054339395856 2.0) math:exponentiation 6.9142988271178085 .
2277
+ # (2.73827503229205 2.0) math:exponentiation 7.498150152474028 .
2278
+ # (6.9142988271178085 38.53691708607748) math:quotient 0.17942013398928033 .
2279
+ # (7.498150152474028 16.217776791473543) math:quotient 0.4623414324222394 .
2280
+ # (0.17942013398928033 0.4623414324222394) math:sum 0.6417615664115197 .
2281
+ # via the schematic forward rule:
2282
+ # {
2283
+ # :PCA1 :points ?pts .
2284
+ # :PCA1 :meanX ?mx .
2285
+ # :PCA1 :meanY ?my .
2286
+ # :PCA1 :thetaRad ?theta .
2287
+ # :PCA1 :lambda1 ?l1 .
2288
+ # :PCA1 :lambda2 ?l2 .
2289
+ # ?theta math:cos ?c .
2290
+ # ?theta math:sin ?s .
2291
+ # ?pts list:member ?p .
2292
+ # ?p :x ?x .
2293
+ # ?p :y ?y .
2294
+ # (?x ?mx) math:difference ?dx .
2295
+ # (?y ?my) math:difference ?dy .
2296
+ # (?dx ?c) math:product ?dxC .
2297
+ # (?dy ?s) math:product ?dyS .
2298
+ # (?dxC ?dyS) math:sum ?u .
2299
+ # (?dx ?s) math:product ?dxS .
2300
+ # (0.0 ?dxS) math:difference ?negDxS .
2301
+ # (?dy ?c) math:product ?dyC .
2302
+ # (?negDxS ?dyC) math:sum ?v .
2303
+ # (?u 2.0) math:exponentiation ?u2 .
2304
+ # (?v 2.0) math:exponentiation ?v2 .
2305
+ # (?u2 ?l1) math:quotient ?u2Over .
2306
+ # (?v2 ?l2) math:quotient ?v2Over .
2307
+ # (?u2Over ?v2Over) math:sum ?md2 .
2308
+ # } => {
2309
+ # _:b8 :point ?p .
2310
+ # _:b8 :u ?u .
2311
+ # _:b8 :v ?v .
2312
+ # _:b8 :md2 ?md2 .
2313
+ # :PCA1 :score _:b8 .
2314
+ # } .
2315
+ # with substitution (on rule variables):
2316
+ # ?c = 0.8387243717699311
2317
+ # ?dx = -0.7142857142857144
2318
+ # ?dxC = -0.5990888369785223
2319
+ # ?dxS = 0.388968696735836
2320
+ # ?dy = 3.7285714285714286
2321
+ # ?dyC = 3.127243729027886
2322
+ # ?dyS = -2.0304165969610635
2323
+ # ?l1 = 38.53691708607748
2324
+ # ?l2 = 16.217776791473543
2325
+ # ?md2 = 0.6417615664115197
2326
+ # ?mx = 6.714285714285714
2327
+ # ?my = 4.171428571428572
2328
+ # ?negDxS = -0.388968696735836
2329
+ # ?p = _:b5
2330
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2331
+ # ?s = -0.5445561754301703
2332
+ # ?theta = -0.5758598575998168
2333
+ # ?u = -2.6295054339395856
2334
+ # ?u2 = 6.9142988271178085
2335
+ # ?u2Over = 0.17942013398928033
2336
+ # ?v = 2.73827503229205
2337
+ # ?v2 = 7.498150152474028
2338
+ # ?v2Over = 0.4623414324222394
2339
+ # ?x = 6.0
2340
+ # ?y = 7.9
2341
+ # Therefore the derived triple above is entailed by the rules and facts.
2342
+ # ----------------------------------------------------------------------
2343
+
2344
+ _:sk_2 :v 2.73827503229205 .
2345
+
2346
+ # ----------------------------------------------------------------------
2347
+ # Proof for derived triple:
2348
+ # _:sk_2 :md2 0.6417615664115197 .
2349
+ # It holds because the following instance of the rule body is provable:
2350
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2351
+ # :PCA1 :meanX 6.714285714285714 .
2352
+ # :PCA1 :meanY 4.171428571428572 .
2353
+ # :PCA1 :thetaRad -0.5758598575998168 .
2354
+ # :PCA1 :lambda1 38.53691708607748 .
2355
+ # :PCA1 :lambda2 16.217776791473543 .
2356
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
2357
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
2358
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b5 .
2359
+ # _:b5 :x 6.0 .
2360
+ # _:b5 :y 7.9 .
2361
+ # (6.0 6.714285714285714) math:difference -0.7142857142857144 .
2362
+ # (7.9 4.171428571428572) math:difference 3.7285714285714286 .
2363
+ # (-0.7142857142857144 0.8387243717699311) math:product -0.5990888369785223 .
2364
+ # (3.7285714285714286 -0.5445561754301703) math:product -2.0304165969610635 .
2365
+ # (-0.5990888369785223 -2.0304165969610635) math:sum -2.6295054339395856 .
2366
+ # (-0.7142857142857144 -0.5445561754301703) math:product 0.388968696735836 .
2367
+ # (0.0 0.388968696735836) math:difference -0.388968696735836 .
2368
+ # (3.7285714285714286 0.8387243717699311) math:product 3.127243729027886 .
2369
+ # (-0.388968696735836 3.127243729027886) math:sum 2.73827503229205 .
2370
+ # (-2.6295054339395856 2.0) math:exponentiation 6.9142988271178085 .
2371
+ # (2.73827503229205 2.0) math:exponentiation 7.498150152474028 .
2372
+ # (6.9142988271178085 38.53691708607748) math:quotient 0.17942013398928033 .
2373
+ # (7.498150152474028 16.217776791473543) math:quotient 0.4623414324222394 .
2374
+ # (0.17942013398928033 0.4623414324222394) math:sum 0.6417615664115197 .
2375
+ # via the schematic forward rule:
2376
+ # {
2377
+ # :PCA1 :points ?pts .
2378
+ # :PCA1 :meanX ?mx .
2379
+ # :PCA1 :meanY ?my .
2380
+ # :PCA1 :thetaRad ?theta .
2381
+ # :PCA1 :lambda1 ?l1 .
2382
+ # :PCA1 :lambda2 ?l2 .
2383
+ # ?theta math:cos ?c .
2384
+ # ?theta math:sin ?s .
2385
+ # ?pts list:member ?p .
2386
+ # ?p :x ?x .
2387
+ # ?p :y ?y .
2388
+ # (?x ?mx) math:difference ?dx .
2389
+ # (?y ?my) math:difference ?dy .
2390
+ # (?dx ?c) math:product ?dxC .
2391
+ # (?dy ?s) math:product ?dyS .
2392
+ # (?dxC ?dyS) math:sum ?u .
2393
+ # (?dx ?s) math:product ?dxS .
2394
+ # (0.0 ?dxS) math:difference ?negDxS .
2395
+ # (?dy ?c) math:product ?dyC .
2396
+ # (?negDxS ?dyC) math:sum ?v .
2397
+ # (?u 2.0) math:exponentiation ?u2 .
2398
+ # (?v 2.0) math:exponentiation ?v2 .
2399
+ # (?u2 ?l1) math:quotient ?u2Over .
2400
+ # (?v2 ?l2) math:quotient ?v2Over .
2401
+ # (?u2Over ?v2Over) math:sum ?md2 .
2402
+ # } => {
2403
+ # _:b8 :point ?p .
2404
+ # _:b8 :u ?u .
2405
+ # _:b8 :v ?v .
2406
+ # _:b8 :md2 ?md2 .
2407
+ # :PCA1 :score _:b8 .
2408
+ # } .
2409
+ # with substitution (on rule variables):
2410
+ # ?c = 0.8387243717699311
2411
+ # ?dx = -0.7142857142857144
2412
+ # ?dxC = -0.5990888369785223
2413
+ # ?dxS = 0.388968696735836
2414
+ # ?dy = 3.7285714285714286
2415
+ # ?dyC = 3.127243729027886
2416
+ # ?dyS = -2.0304165969610635
2417
+ # ?l1 = 38.53691708607748
2418
+ # ?l2 = 16.217776791473543
2419
+ # ?md2 = 0.6417615664115197
2420
+ # ?mx = 6.714285714285714
2421
+ # ?my = 4.171428571428572
2422
+ # ?negDxS = -0.388968696735836
2423
+ # ?p = _:b5
2424
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2425
+ # ?s = -0.5445561754301703
2426
+ # ?theta = -0.5758598575998168
2427
+ # ?u = -2.6295054339395856
2428
+ # ?u2 = 6.9142988271178085
2429
+ # ?u2Over = 0.17942013398928033
2430
+ # ?v = 2.73827503229205
2431
+ # ?v2 = 7.498150152474028
2432
+ # ?v2Over = 0.4623414324222394
2433
+ # ?x = 6.0
2434
+ # ?y = 7.9
2435
+ # Therefore the derived triple above is entailed by the rules and facts.
2436
+ # ----------------------------------------------------------------------
2437
+
2438
+ _:sk_2 :md2 0.6417615664115197 .
2439
+
2440
+ # ----------------------------------------------------------------------
2441
+ # Proof for derived triple:
2442
+ # :PCA1 :score _:sk_2 .
2443
+ # It holds because the following instance of the rule body is provable:
2444
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2445
+ # :PCA1 :meanX 6.714285714285714 .
2446
+ # :PCA1 :meanY 4.171428571428572 .
2447
+ # :PCA1 :thetaRad -0.5758598575998168 .
2448
+ # :PCA1 :lambda1 38.53691708607748 .
2449
+ # :PCA1 :lambda2 16.217776791473543 .
2450
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
2451
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
2452
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b5 .
2453
+ # _:b5 :x 6.0 .
2454
+ # _:b5 :y 7.9 .
2455
+ # (6.0 6.714285714285714) math:difference -0.7142857142857144 .
2456
+ # (7.9 4.171428571428572) math:difference 3.7285714285714286 .
2457
+ # (-0.7142857142857144 0.8387243717699311) math:product -0.5990888369785223 .
2458
+ # (3.7285714285714286 -0.5445561754301703) math:product -2.0304165969610635 .
2459
+ # (-0.5990888369785223 -2.0304165969610635) math:sum -2.6295054339395856 .
2460
+ # (-0.7142857142857144 -0.5445561754301703) math:product 0.388968696735836 .
2461
+ # (0.0 0.388968696735836) math:difference -0.388968696735836 .
2462
+ # (3.7285714285714286 0.8387243717699311) math:product 3.127243729027886 .
2463
+ # (-0.388968696735836 3.127243729027886) math:sum 2.73827503229205 .
2464
+ # (-2.6295054339395856 2.0) math:exponentiation 6.9142988271178085 .
2465
+ # (2.73827503229205 2.0) math:exponentiation 7.498150152474028 .
2466
+ # (6.9142988271178085 38.53691708607748) math:quotient 0.17942013398928033 .
2467
+ # (7.498150152474028 16.217776791473543) math:quotient 0.4623414324222394 .
2468
+ # (0.17942013398928033 0.4623414324222394) math:sum 0.6417615664115197 .
2469
+ # via the schematic forward rule:
2470
+ # {
2471
+ # :PCA1 :points ?pts .
2472
+ # :PCA1 :meanX ?mx .
2473
+ # :PCA1 :meanY ?my .
2474
+ # :PCA1 :thetaRad ?theta .
2475
+ # :PCA1 :lambda1 ?l1 .
2476
+ # :PCA1 :lambda2 ?l2 .
2477
+ # ?theta math:cos ?c .
2478
+ # ?theta math:sin ?s .
2479
+ # ?pts list:member ?p .
2480
+ # ?p :x ?x .
2481
+ # ?p :y ?y .
2482
+ # (?x ?mx) math:difference ?dx .
2483
+ # (?y ?my) math:difference ?dy .
2484
+ # (?dx ?c) math:product ?dxC .
2485
+ # (?dy ?s) math:product ?dyS .
2486
+ # (?dxC ?dyS) math:sum ?u .
2487
+ # (?dx ?s) math:product ?dxS .
2488
+ # (0.0 ?dxS) math:difference ?negDxS .
2489
+ # (?dy ?c) math:product ?dyC .
2490
+ # (?negDxS ?dyC) math:sum ?v .
2491
+ # (?u 2.0) math:exponentiation ?u2 .
2492
+ # (?v 2.0) math:exponentiation ?v2 .
2493
+ # (?u2 ?l1) math:quotient ?u2Over .
2494
+ # (?v2 ?l2) math:quotient ?v2Over .
2495
+ # (?u2Over ?v2Over) math:sum ?md2 .
2496
+ # } => {
2497
+ # _:b8 :point ?p .
2498
+ # _:b8 :u ?u .
2499
+ # _:b8 :v ?v .
2500
+ # _:b8 :md2 ?md2 .
2501
+ # :PCA1 :score _:b8 .
2502
+ # } .
2503
+ # with substitution (on rule variables):
2504
+ # ?c = 0.8387243717699311
2505
+ # ?dx = -0.7142857142857144
2506
+ # ?dxC = -0.5990888369785223
2507
+ # ?dxS = 0.388968696735836
2508
+ # ?dy = 3.7285714285714286
2509
+ # ?dyC = 3.127243729027886
2510
+ # ?dyS = -2.0304165969610635
2511
+ # ?l1 = 38.53691708607748
2512
+ # ?l2 = 16.217776791473543
2513
+ # ?md2 = 0.6417615664115197
2514
+ # ?mx = 6.714285714285714
2515
+ # ?my = 4.171428571428572
2516
+ # ?negDxS = -0.388968696735836
2517
+ # ?p = _:b5
2518
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2519
+ # ?s = -0.5445561754301703
2520
+ # ?theta = -0.5758598575998168
2521
+ # ?u = -2.6295054339395856
2522
+ # ?u2 = 6.9142988271178085
2523
+ # ?u2Over = 0.17942013398928033
2524
+ # ?v = 2.73827503229205
2525
+ # ?v2 = 7.498150152474028
2526
+ # ?v2Over = 0.4623414324222394
2527
+ # ?x = 6.0
2528
+ # ?y = 7.9
2529
+ # Therefore the derived triple above is entailed by the rules and facts.
2530
+ # ----------------------------------------------------------------------
2531
+
2532
+ :PCA1 :score _:sk_2 .
2533
+
2534
+ # ----------------------------------------------------------------------
2535
+ # Proof for derived triple:
2536
+ # _:sk_3 :point _:b4 .
2537
+ # It holds because the following instance of the rule body is provable:
2538
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2539
+ # :PCA1 :meanX 6.714285714285714 .
2540
+ # :PCA1 :meanY 4.171428571428572 .
2541
+ # :PCA1 :thetaRad -0.5758598575998168 .
2542
+ # :PCA1 :lambda1 38.53691708607748 .
2543
+ # :PCA1 :lambda2 16.217776791473543 .
2544
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
2545
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
2546
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b4 .
2547
+ # _:b4 :x 5.0 .
2548
+ # _:b4 :y 5.1 .
2549
+ # (5.0 6.714285714285714) math:difference -1.7142857142857144 .
2550
+ # (5.1 4.171428571428572) math:difference 0.9285714285714279 .
2551
+ # (-1.7142857142857144 0.8387243717699311) math:product -1.4378132087484534 .
2552
+ # (0.9285714285714279 -0.5445561754301703) math:product -0.5056593057565864 .
2553
+ # (-1.4378132087484534 -0.5056593057565864) math:sum -1.9434725145050398 .
2554
+ # (-1.7142857142857144 -0.5445561754301703) math:product 0.9335248721660063 .
2555
+ # (0.0 0.9335248721660063) math:difference -0.9335248721660063 .
2556
+ # (0.9285714285714279 0.8387243717699311) math:product 0.7788154880720783 .
2557
+ # (-0.9335248721660063 0.7788154880720783) math:sum -0.15470938409392798 .
2558
+ # (-1.9434725145050398 2.0) math:exponentiation 3.777085414636542 .
2559
+ # (-0.15470938409392798 2.0) math:exponentiation 0.023934993526722535 .
2560
+ # (3.777085414636542 38.53691708607748) math:quotient 0.0980121322678694 .
2561
+ # (0.023934993526722535 16.217776791473543) math:quotient 0.0014758492384299123 .
2562
+ # (0.0980121322678694 0.0014758492384299123) math:sum 0.09948798150629931 .
2563
+ # via the schematic forward rule:
2564
+ # {
2565
+ # :PCA1 :points ?pts .
2566
+ # :PCA1 :meanX ?mx .
2567
+ # :PCA1 :meanY ?my .
2568
+ # :PCA1 :thetaRad ?theta .
2569
+ # :PCA1 :lambda1 ?l1 .
2570
+ # :PCA1 :lambda2 ?l2 .
2571
+ # ?theta math:cos ?c .
2572
+ # ?theta math:sin ?s .
2573
+ # ?pts list:member ?p .
2574
+ # ?p :x ?x .
2575
+ # ?p :y ?y .
2576
+ # (?x ?mx) math:difference ?dx .
2577
+ # (?y ?my) math:difference ?dy .
2578
+ # (?dx ?c) math:product ?dxC .
2579
+ # (?dy ?s) math:product ?dyS .
2580
+ # (?dxC ?dyS) math:sum ?u .
2581
+ # (?dx ?s) math:product ?dxS .
2582
+ # (0.0 ?dxS) math:difference ?negDxS .
2583
+ # (?dy ?c) math:product ?dyC .
2584
+ # (?negDxS ?dyC) math:sum ?v .
2585
+ # (?u 2.0) math:exponentiation ?u2 .
2586
+ # (?v 2.0) math:exponentiation ?v2 .
2587
+ # (?u2 ?l1) math:quotient ?u2Over .
2588
+ # (?v2 ?l2) math:quotient ?v2Over .
2589
+ # (?u2Over ?v2Over) math:sum ?md2 .
2590
+ # } => {
2591
+ # _:b8 :point ?p .
2592
+ # _:b8 :u ?u .
2593
+ # _:b8 :v ?v .
2594
+ # _:b8 :md2 ?md2 .
2595
+ # :PCA1 :score _:b8 .
2596
+ # } .
2597
+ # with substitution (on rule variables):
2598
+ # ?c = 0.8387243717699311
2599
+ # ?dx = -1.7142857142857144
2600
+ # ?dxC = -1.4378132087484534
2601
+ # ?dxS = 0.9335248721660063
2602
+ # ?dy = 0.9285714285714279
2603
+ # ?dyC = 0.7788154880720783
2604
+ # ?dyS = -0.5056593057565864
2605
+ # ?l1 = 38.53691708607748
2606
+ # ?l2 = 16.217776791473543
2607
+ # ?md2 = 0.09948798150629931
2608
+ # ?mx = 6.714285714285714
2609
+ # ?my = 4.171428571428572
2610
+ # ?negDxS = -0.9335248721660063
2611
+ # ?p = _:b4
2612
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2613
+ # ?s = -0.5445561754301703
2614
+ # ?theta = -0.5758598575998168
2615
+ # ?u = -1.9434725145050398
2616
+ # ?u2 = 3.777085414636542
2617
+ # ?u2Over = 0.0980121322678694
2618
+ # ?v = -0.15470938409392798
2619
+ # ?v2 = 0.023934993526722535
2620
+ # ?v2Over = 0.0014758492384299123
2621
+ # ?x = 5.0
2622
+ # ?y = 5.1
2623
+ # Therefore the derived triple above is entailed by the rules and facts.
2624
+ # ----------------------------------------------------------------------
2625
+
2626
+ _:sk_3 :point _:b4 .
2627
+
2628
+ # ----------------------------------------------------------------------
2629
+ # Proof for derived triple:
2630
+ # _:sk_3 :u -1.9434725145050398 .
2631
+ # It holds because the following instance of the rule body is provable:
2632
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2633
+ # :PCA1 :meanX 6.714285714285714 .
2634
+ # :PCA1 :meanY 4.171428571428572 .
2635
+ # :PCA1 :thetaRad -0.5758598575998168 .
2636
+ # :PCA1 :lambda1 38.53691708607748 .
2637
+ # :PCA1 :lambda2 16.217776791473543 .
2638
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
2639
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
2640
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b4 .
2641
+ # _:b4 :x 5.0 .
2642
+ # _:b4 :y 5.1 .
2643
+ # (5.0 6.714285714285714) math:difference -1.7142857142857144 .
2644
+ # (5.1 4.171428571428572) math:difference 0.9285714285714279 .
2645
+ # (-1.7142857142857144 0.8387243717699311) math:product -1.4378132087484534 .
2646
+ # (0.9285714285714279 -0.5445561754301703) math:product -0.5056593057565864 .
2647
+ # (-1.4378132087484534 -0.5056593057565864) math:sum -1.9434725145050398 .
2648
+ # (-1.7142857142857144 -0.5445561754301703) math:product 0.9335248721660063 .
2649
+ # (0.0 0.9335248721660063) math:difference -0.9335248721660063 .
2650
+ # (0.9285714285714279 0.8387243717699311) math:product 0.7788154880720783 .
2651
+ # (-0.9335248721660063 0.7788154880720783) math:sum -0.15470938409392798 .
2652
+ # (-1.9434725145050398 2.0) math:exponentiation 3.777085414636542 .
2653
+ # (-0.15470938409392798 2.0) math:exponentiation 0.023934993526722535 .
2654
+ # (3.777085414636542 38.53691708607748) math:quotient 0.0980121322678694 .
2655
+ # (0.023934993526722535 16.217776791473543) math:quotient 0.0014758492384299123 .
2656
+ # (0.0980121322678694 0.0014758492384299123) math:sum 0.09948798150629931 .
2657
+ # via the schematic forward rule:
2658
+ # {
2659
+ # :PCA1 :points ?pts .
2660
+ # :PCA1 :meanX ?mx .
2661
+ # :PCA1 :meanY ?my .
2662
+ # :PCA1 :thetaRad ?theta .
2663
+ # :PCA1 :lambda1 ?l1 .
2664
+ # :PCA1 :lambda2 ?l2 .
2665
+ # ?theta math:cos ?c .
2666
+ # ?theta math:sin ?s .
2667
+ # ?pts list:member ?p .
2668
+ # ?p :x ?x .
2669
+ # ?p :y ?y .
2670
+ # (?x ?mx) math:difference ?dx .
2671
+ # (?y ?my) math:difference ?dy .
2672
+ # (?dx ?c) math:product ?dxC .
2673
+ # (?dy ?s) math:product ?dyS .
2674
+ # (?dxC ?dyS) math:sum ?u .
2675
+ # (?dx ?s) math:product ?dxS .
2676
+ # (0.0 ?dxS) math:difference ?negDxS .
2677
+ # (?dy ?c) math:product ?dyC .
2678
+ # (?negDxS ?dyC) math:sum ?v .
2679
+ # (?u 2.0) math:exponentiation ?u2 .
2680
+ # (?v 2.0) math:exponentiation ?v2 .
2681
+ # (?u2 ?l1) math:quotient ?u2Over .
2682
+ # (?v2 ?l2) math:quotient ?v2Over .
2683
+ # (?u2Over ?v2Over) math:sum ?md2 .
2684
+ # } => {
2685
+ # _:b8 :point ?p .
2686
+ # _:b8 :u ?u .
2687
+ # _:b8 :v ?v .
2688
+ # _:b8 :md2 ?md2 .
2689
+ # :PCA1 :score _:b8 .
2690
+ # } .
2691
+ # with substitution (on rule variables):
2692
+ # ?c = 0.8387243717699311
2693
+ # ?dx = -1.7142857142857144
2694
+ # ?dxC = -1.4378132087484534
2695
+ # ?dxS = 0.9335248721660063
2696
+ # ?dy = 0.9285714285714279
2697
+ # ?dyC = 0.7788154880720783
2698
+ # ?dyS = -0.5056593057565864
2699
+ # ?l1 = 38.53691708607748
2700
+ # ?l2 = 16.217776791473543
2701
+ # ?md2 = 0.09948798150629931
2702
+ # ?mx = 6.714285714285714
2703
+ # ?my = 4.171428571428572
2704
+ # ?negDxS = -0.9335248721660063
2705
+ # ?p = _:b4
2706
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2707
+ # ?s = -0.5445561754301703
2708
+ # ?theta = -0.5758598575998168
2709
+ # ?u = -1.9434725145050398
2710
+ # ?u2 = 3.777085414636542
2711
+ # ?u2Over = 0.0980121322678694
2712
+ # ?v = -0.15470938409392798
2713
+ # ?v2 = 0.023934993526722535
2714
+ # ?v2Over = 0.0014758492384299123
2715
+ # ?x = 5.0
2716
+ # ?y = 5.1
2717
+ # Therefore the derived triple above is entailed by the rules and facts.
2718
+ # ----------------------------------------------------------------------
2719
+
2720
+ _:sk_3 :u -1.9434725145050398 .
2721
+
2722
+ # ----------------------------------------------------------------------
2723
+ # Proof for derived triple:
2724
+ # _:sk_3 :v -0.15470938409392798 .
2725
+ # It holds because the following instance of the rule body is provable:
2726
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2727
+ # :PCA1 :meanX 6.714285714285714 .
2728
+ # :PCA1 :meanY 4.171428571428572 .
2729
+ # :PCA1 :thetaRad -0.5758598575998168 .
2730
+ # :PCA1 :lambda1 38.53691708607748 .
2731
+ # :PCA1 :lambda2 16.217776791473543 .
2732
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
2733
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
2734
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b4 .
2735
+ # _:b4 :x 5.0 .
2736
+ # _:b4 :y 5.1 .
2737
+ # (5.0 6.714285714285714) math:difference -1.7142857142857144 .
2738
+ # (5.1 4.171428571428572) math:difference 0.9285714285714279 .
2739
+ # (-1.7142857142857144 0.8387243717699311) math:product -1.4378132087484534 .
2740
+ # (0.9285714285714279 -0.5445561754301703) math:product -0.5056593057565864 .
2741
+ # (-1.4378132087484534 -0.5056593057565864) math:sum -1.9434725145050398 .
2742
+ # (-1.7142857142857144 -0.5445561754301703) math:product 0.9335248721660063 .
2743
+ # (0.0 0.9335248721660063) math:difference -0.9335248721660063 .
2744
+ # (0.9285714285714279 0.8387243717699311) math:product 0.7788154880720783 .
2745
+ # (-0.9335248721660063 0.7788154880720783) math:sum -0.15470938409392798 .
2746
+ # (-1.9434725145050398 2.0) math:exponentiation 3.777085414636542 .
2747
+ # (-0.15470938409392798 2.0) math:exponentiation 0.023934993526722535 .
2748
+ # (3.777085414636542 38.53691708607748) math:quotient 0.0980121322678694 .
2749
+ # (0.023934993526722535 16.217776791473543) math:quotient 0.0014758492384299123 .
2750
+ # (0.0980121322678694 0.0014758492384299123) math:sum 0.09948798150629931 .
2751
+ # via the schematic forward rule:
2752
+ # {
2753
+ # :PCA1 :points ?pts .
2754
+ # :PCA1 :meanX ?mx .
2755
+ # :PCA1 :meanY ?my .
2756
+ # :PCA1 :thetaRad ?theta .
2757
+ # :PCA1 :lambda1 ?l1 .
2758
+ # :PCA1 :lambda2 ?l2 .
2759
+ # ?theta math:cos ?c .
2760
+ # ?theta math:sin ?s .
2761
+ # ?pts list:member ?p .
2762
+ # ?p :x ?x .
2763
+ # ?p :y ?y .
2764
+ # (?x ?mx) math:difference ?dx .
2765
+ # (?y ?my) math:difference ?dy .
2766
+ # (?dx ?c) math:product ?dxC .
2767
+ # (?dy ?s) math:product ?dyS .
2768
+ # (?dxC ?dyS) math:sum ?u .
2769
+ # (?dx ?s) math:product ?dxS .
2770
+ # (0.0 ?dxS) math:difference ?negDxS .
2771
+ # (?dy ?c) math:product ?dyC .
2772
+ # (?negDxS ?dyC) math:sum ?v .
2773
+ # (?u 2.0) math:exponentiation ?u2 .
2774
+ # (?v 2.0) math:exponentiation ?v2 .
2775
+ # (?u2 ?l1) math:quotient ?u2Over .
2776
+ # (?v2 ?l2) math:quotient ?v2Over .
2777
+ # (?u2Over ?v2Over) math:sum ?md2 .
2778
+ # } => {
2779
+ # _:b8 :point ?p .
2780
+ # _:b8 :u ?u .
2781
+ # _:b8 :v ?v .
2782
+ # _:b8 :md2 ?md2 .
2783
+ # :PCA1 :score _:b8 .
2784
+ # } .
2785
+ # with substitution (on rule variables):
2786
+ # ?c = 0.8387243717699311
2787
+ # ?dx = -1.7142857142857144
2788
+ # ?dxC = -1.4378132087484534
2789
+ # ?dxS = 0.9335248721660063
2790
+ # ?dy = 0.9285714285714279
2791
+ # ?dyC = 0.7788154880720783
2792
+ # ?dyS = -0.5056593057565864
2793
+ # ?l1 = 38.53691708607748
2794
+ # ?l2 = 16.217776791473543
2795
+ # ?md2 = 0.09948798150629931
2796
+ # ?mx = 6.714285714285714
2797
+ # ?my = 4.171428571428572
2798
+ # ?negDxS = -0.9335248721660063
2799
+ # ?p = _:b4
2800
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2801
+ # ?s = -0.5445561754301703
2802
+ # ?theta = -0.5758598575998168
2803
+ # ?u = -1.9434725145050398
2804
+ # ?u2 = 3.777085414636542
2805
+ # ?u2Over = 0.0980121322678694
2806
+ # ?v = -0.15470938409392798
2807
+ # ?v2 = 0.023934993526722535
2808
+ # ?v2Over = 0.0014758492384299123
2809
+ # ?x = 5.0
2810
+ # ?y = 5.1
2811
+ # Therefore the derived triple above is entailed by the rules and facts.
2812
+ # ----------------------------------------------------------------------
2813
+
2814
+ _:sk_3 :v -0.15470938409392798 .
2815
+
2816
+ # ----------------------------------------------------------------------
2817
+ # Proof for derived triple:
2818
+ # _:sk_3 :md2 0.09948798150629931 .
2819
+ # It holds because the following instance of the rule body is provable:
2820
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2821
+ # :PCA1 :meanX 6.714285714285714 .
2822
+ # :PCA1 :meanY 4.171428571428572 .
2823
+ # :PCA1 :thetaRad -0.5758598575998168 .
2824
+ # :PCA1 :lambda1 38.53691708607748 .
2825
+ # :PCA1 :lambda2 16.217776791473543 .
2826
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
2827
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
2828
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b4 .
2829
+ # _:b4 :x 5.0 .
2830
+ # _:b4 :y 5.1 .
2831
+ # (5.0 6.714285714285714) math:difference -1.7142857142857144 .
2832
+ # (5.1 4.171428571428572) math:difference 0.9285714285714279 .
2833
+ # (-1.7142857142857144 0.8387243717699311) math:product -1.4378132087484534 .
2834
+ # (0.9285714285714279 -0.5445561754301703) math:product -0.5056593057565864 .
2835
+ # (-1.4378132087484534 -0.5056593057565864) math:sum -1.9434725145050398 .
2836
+ # (-1.7142857142857144 -0.5445561754301703) math:product 0.9335248721660063 .
2837
+ # (0.0 0.9335248721660063) math:difference -0.9335248721660063 .
2838
+ # (0.9285714285714279 0.8387243717699311) math:product 0.7788154880720783 .
2839
+ # (-0.9335248721660063 0.7788154880720783) math:sum -0.15470938409392798 .
2840
+ # (-1.9434725145050398 2.0) math:exponentiation 3.777085414636542 .
2841
+ # (-0.15470938409392798 2.0) math:exponentiation 0.023934993526722535 .
2842
+ # (3.777085414636542 38.53691708607748) math:quotient 0.0980121322678694 .
2843
+ # (0.023934993526722535 16.217776791473543) math:quotient 0.0014758492384299123 .
2844
+ # (0.0980121322678694 0.0014758492384299123) math:sum 0.09948798150629931 .
2845
+ # via the schematic forward rule:
2846
+ # {
2847
+ # :PCA1 :points ?pts .
2848
+ # :PCA1 :meanX ?mx .
2849
+ # :PCA1 :meanY ?my .
2850
+ # :PCA1 :thetaRad ?theta .
2851
+ # :PCA1 :lambda1 ?l1 .
2852
+ # :PCA1 :lambda2 ?l2 .
2853
+ # ?theta math:cos ?c .
2854
+ # ?theta math:sin ?s .
2855
+ # ?pts list:member ?p .
2856
+ # ?p :x ?x .
2857
+ # ?p :y ?y .
2858
+ # (?x ?mx) math:difference ?dx .
2859
+ # (?y ?my) math:difference ?dy .
2860
+ # (?dx ?c) math:product ?dxC .
2861
+ # (?dy ?s) math:product ?dyS .
2862
+ # (?dxC ?dyS) math:sum ?u .
2863
+ # (?dx ?s) math:product ?dxS .
2864
+ # (0.0 ?dxS) math:difference ?negDxS .
2865
+ # (?dy ?c) math:product ?dyC .
2866
+ # (?negDxS ?dyC) math:sum ?v .
2867
+ # (?u 2.0) math:exponentiation ?u2 .
2868
+ # (?v 2.0) math:exponentiation ?v2 .
2869
+ # (?u2 ?l1) math:quotient ?u2Over .
2870
+ # (?v2 ?l2) math:quotient ?v2Over .
2871
+ # (?u2Over ?v2Over) math:sum ?md2 .
2872
+ # } => {
2873
+ # _:b8 :point ?p .
2874
+ # _:b8 :u ?u .
2875
+ # _:b8 :v ?v .
2876
+ # _:b8 :md2 ?md2 .
2877
+ # :PCA1 :score _:b8 .
2878
+ # } .
2879
+ # with substitution (on rule variables):
2880
+ # ?c = 0.8387243717699311
2881
+ # ?dx = -1.7142857142857144
2882
+ # ?dxC = -1.4378132087484534
2883
+ # ?dxS = 0.9335248721660063
2884
+ # ?dy = 0.9285714285714279
2885
+ # ?dyC = 0.7788154880720783
2886
+ # ?dyS = -0.5056593057565864
2887
+ # ?l1 = 38.53691708607748
2888
+ # ?l2 = 16.217776791473543
2889
+ # ?md2 = 0.09948798150629931
2890
+ # ?mx = 6.714285714285714
2891
+ # ?my = 4.171428571428572
2892
+ # ?negDxS = -0.9335248721660063
2893
+ # ?p = _:b4
2894
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2895
+ # ?s = -0.5445561754301703
2896
+ # ?theta = -0.5758598575998168
2897
+ # ?u = -1.9434725145050398
2898
+ # ?u2 = 3.777085414636542
2899
+ # ?u2Over = 0.0980121322678694
2900
+ # ?v = -0.15470938409392798
2901
+ # ?v2 = 0.023934993526722535
2902
+ # ?v2Over = 0.0014758492384299123
2903
+ # ?x = 5.0
2904
+ # ?y = 5.1
2905
+ # Therefore the derived triple above is entailed by the rules and facts.
2906
+ # ----------------------------------------------------------------------
2907
+
2908
+ _:sk_3 :md2 0.09948798150629931 .
2909
+
2910
+ # ----------------------------------------------------------------------
2911
+ # Proof for derived triple:
2912
+ # :PCA1 :score _:sk_3 .
2913
+ # It holds because the following instance of the rule body is provable:
2914
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2915
+ # :PCA1 :meanX 6.714285714285714 .
2916
+ # :PCA1 :meanY 4.171428571428572 .
2917
+ # :PCA1 :thetaRad -0.5758598575998168 .
2918
+ # :PCA1 :lambda1 38.53691708607748 .
2919
+ # :PCA1 :lambda2 16.217776791473543 .
2920
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
2921
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
2922
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b4 .
2923
+ # _:b4 :x 5.0 .
2924
+ # _:b4 :y 5.1 .
2925
+ # (5.0 6.714285714285714) math:difference -1.7142857142857144 .
2926
+ # (5.1 4.171428571428572) math:difference 0.9285714285714279 .
2927
+ # (-1.7142857142857144 0.8387243717699311) math:product -1.4378132087484534 .
2928
+ # (0.9285714285714279 -0.5445561754301703) math:product -0.5056593057565864 .
2929
+ # (-1.4378132087484534 -0.5056593057565864) math:sum -1.9434725145050398 .
2930
+ # (-1.7142857142857144 -0.5445561754301703) math:product 0.9335248721660063 .
2931
+ # (0.0 0.9335248721660063) math:difference -0.9335248721660063 .
2932
+ # (0.9285714285714279 0.8387243717699311) math:product 0.7788154880720783 .
2933
+ # (-0.9335248721660063 0.7788154880720783) math:sum -0.15470938409392798 .
2934
+ # (-1.9434725145050398 2.0) math:exponentiation 3.777085414636542 .
2935
+ # (-0.15470938409392798 2.0) math:exponentiation 0.023934993526722535 .
2936
+ # (3.777085414636542 38.53691708607748) math:quotient 0.0980121322678694 .
2937
+ # (0.023934993526722535 16.217776791473543) math:quotient 0.0014758492384299123 .
2938
+ # (0.0980121322678694 0.0014758492384299123) math:sum 0.09948798150629931 .
2939
+ # via the schematic forward rule:
2940
+ # {
2941
+ # :PCA1 :points ?pts .
2942
+ # :PCA1 :meanX ?mx .
2943
+ # :PCA1 :meanY ?my .
2944
+ # :PCA1 :thetaRad ?theta .
2945
+ # :PCA1 :lambda1 ?l1 .
2946
+ # :PCA1 :lambda2 ?l2 .
2947
+ # ?theta math:cos ?c .
2948
+ # ?theta math:sin ?s .
2949
+ # ?pts list:member ?p .
2950
+ # ?p :x ?x .
2951
+ # ?p :y ?y .
2952
+ # (?x ?mx) math:difference ?dx .
2953
+ # (?y ?my) math:difference ?dy .
2954
+ # (?dx ?c) math:product ?dxC .
2955
+ # (?dy ?s) math:product ?dyS .
2956
+ # (?dxC ?dyS) math:sum ?u .
2957
+ # (?dx ?s) math:product ?dxS .
2958
+ # (0.0 ?dxS) math:difference ?negDxS .
2959
+ # (?dy ?c) math:product ?dyC .
2960
+ # (?negDxS ?dyC) math:sum ?v .
2961
+ # (?u 2.0) math:exponentiation ?u2 .
2962
+ # (?v 2.0) math:exponentiation ?v2 .
2963
+ # (?u2 ?l1) math:quotient ?u2Over .
2964
+ # (?v2 ?l2) math:quotient ?v2Over .
2965
+ # (?u2Over ?v2Over) math:sum ?md2 .
2966
+ # } => {
2967
+ # _:b8 :point ?p .
2968
+ # _:b8 :u ?u .
2969
+ # _:b8 :v ?v .
2970
+ # _:b8 :md2 ?md2 .
2971
+ # :PCA1 :score _:b8 .
2972
+ # } .
2973
+ # with substitution (on rule variables):
2974
+ # ?c = 0.8387243717699311
2975
+ # ?dx = -1.7142857142857144
2976
+ # ?dxC = -1.4378132087484534
2977
+ # ?dxS = 0.9335248721660063
2978
+ # ?dy = 0.9285714285714279
2979
+ # ?dyC = 0.7788154880720783
2980
+ # ?dyS = -0.5056593057565864
2981
+ # ?l1 = 38.53691708607748
2982
+ # ?l2 = 16.217776791473543
2983
+ # ?md2 = 0.09948798150629931
2984
+ # ?mx = 6.714285714285714
2985
+ # ?my = 4.171428571428572
2986
+ # ?negDxS = -0.9335248721660063
2987
+ # ?p = _:b4
2988
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2989
+ # ?s = -0.5445561754301703
2990
+ # ?theta = -0.5758598575998168
2991
+ # ?u = -1.9434725145050398
2992
+ # ?u2 = 3.777085414636542
2993
+ # ?u2Over = 0.0980121322678694
2994
+ # ?v = -0.15470938409392798
2995
+ # ?v2 = 0.023934993526722535
2996
+ # ?v2Over = 0.0014758492384299123
2997
+ # ?x = 5.0
2998
+ # ?y = 5.1
2999
+ # Therefore the derived triple above is entailed by the rules and facts.
3000
+ # ----------------------------------------------------------------------
3001
+
3002
+ :PCA1 :score _:sk_3 .
3003
+
3004
+ # ----------------------------------------------------------------------
3005
+ # Proof for derived triple:
3006
+ # _:sk_4 :point _:b3 .
3007
+ # It holds because the following instance of the rule body is provable:
3008
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3009
+ # :PCA1 :meanX 6.714285714285714 .
3010
+ # :PCA1 :meanY 4.171428571428572 .
3011
+ # :PCA1 :thetaRad -0.5758598575998168 .
3012
+ # :PCA1 :lambda1 38.53691708607748 .
3013
+ # :PCA1 :lambda2 16.217776791473543 .
3014
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
3015
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
3016
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b3 .
3017
+ # _:b3 :x 4.0 .
3018
+ # _:b3 :y 3.2 .
3019
+ # (4.0 6.714285714285714) math:difference -2.7142857142857144 .
3020
+ # (3.2 4.171428571428572) math:difference -0.9714285714285715 .
3021
+ # (-2.7142857142857144 0.8387243717699311) math:product -2.2765375805183843 .
3022
+ # (-0.9714285714285715 -0.5445561754301703) math:product 0.528997427560737 .
3023
+ # (-2.2765375805183843 0.528997427560737) math:sum -1.7475401529576473 .
3024
+ # (-2.7142857142857144 -0.5445561754301703) math:product 1.4780810475961768 .
3025
+ # (0.0 1.4780810475961768) math:difference -1.4780810475961768 .
3026
+ # (-0.9714285714285715 0.8387243717699311) math:product -0.8147608182907903 .
3027
+ # (-1.4780810475961768 -0.8147608182907903) math:sum -2.292841865886967 .
3028
+ # (-1.7475401529576473 2.0) math:exponentiation 3.0538965861992375 .
3029
+ # (-2.292841865886967 2.0) math:exponentiation 5.257123821964029 .
3030
+ # (3.0538965861992375 38.53691708607748) math:quotient 0.07924600142190777 .
3031
+ # (5.257123821964029 16.217776791473543) math:quotient 0.3241581068453198 .
3032
+ # (0.07924600142190777 0.3241581068453198) math:sum 0.4034041082672276 .
3033
+ # via the schematic forward rule:
3034
+ # {
3035
+ # :PCA1 :points ?pts .
3036
+ # :PCA1 :meanX ?mx .
3037
+ # :PCA1 :meanY ?my .
3038
+ # :PCA1 :thetaRad ?theta .
3039
+ # :PCA1 :lambda1 ?l1 .
3040
+ # :PCA1 :lambda2 ?l2 .
3041
+ # ?theta math:cos ?c .
3042
+ # ?theta math:sin ?s .
3043
+ # ?pts list:member ?p .
3044
+ # ?p :x ?x .
3045
+ # ?p :y ?y .
3046
+ # (?x ?mx) math:difference ?dx .
3047
+ # (?y ?my) math:difference ?dy .
3048
+ # (?dx ?c) math:product ?dxC .
3049
+ # (?dy ?s) math:product ?dyS .
3050
+ # (?dxC ?dyS) math:sum ?u .
3051
+ # (?dx ?s) math:product ?dxS .
3052
+ # (0.0 ?dxS) math:difference ?negDxS .
3053
+ # (?dy ?c) math:product ?dyC .
3054
+ # (?negDxS ?dyC) math:sum ?v .
3055
+ # (?u 2.0) math:exponentiation ?u2 .
3056
+ # (?v 2.0) math:exponentiation ?v2 .
3057
+ # (?u2 ?l1) math:quotient ?u2Over .
3058
+ # (?v2 ?l2) math:quotient ?v2Over .
3059
+ # (?u2Over ?v2Over) math:sum ?md2 .
3060
+ # } => {
3061
+ # _:b8 :point ?p .
3062
+ # _:b8 :u ?u .
3063
+ # _:b8 :v ?v .
3064
+ # _:b8 :md2 ?md2 .
3065
+ # :PCA1 :score _:b8 .
3066
+ # } .
3067
+ # with substitution (on rule variables):
3068
+ # ?c = 0.8387243717699311
3069
+ # ?dx = -2.7142857142857144
3070
+ # ?dxC = -2.2765375805183843
3071
+ # ?dxS = 1.4780810475961768
3072
+ # ?dy = -0.9714285714285715
3073
+ # ?dyC = -0.8147608182907903
3074
+ # ?dyS = 0.528997427560737
3075
+ # ?l1 = 38.53691708607748
3076
+ # ?l2 = 16.217776791473543
3077
+ # ?md2 = 0.4034041082672276
3078
+ # ?mx = 6.714285714285714
3079
+ # ?my = 4.171428571428572
3080
+ # ?negDxS = -1.4780810475961768
3081
+ # ?p = _:b3
3082
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3083
+ # ?s = -0.5445561754301703
3084
+ # ?theta = -0.5758598575998168
3085
+ # ?u = -1.7475401529576473
3086
+ # ?u2 = 3.0538965861992375
3087
+ # ?u2Over = 0.07924600142190777
3088
+ # ?v = -2.292841865886967
3089
+ # ?v2 = 5.257123821964029
3090
+ # ?v2Over = 0.3241581068453198
3091
+ # ?x = 4.0
3092
+ # ?y = 3.2
3093
+ # Therefore the derived triple above is entailed by the rules and facts.
3094
+ # ----------------------------------------------------------------------
3095
+
3096
+ _:sk_4 :point _:b3 .
3097
+
3098
+ # ----------------------------------------------------------------------
3099
+ # Proof for derived triple:
3100
+ # _:sk_4 :u -1.7475401529576473 .
3101
+ # It holds because the following instance of the rule body is provable:
3102
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3103
+ # :PCA1 :meanX 6.714285714285714 .
3104
+ # :PCA1 :meanY 4.171428571428572 .
3105
+ # :PCA1 :thetaRad -0.5758598575998168 .
3106
+ # :PCA1 :lambda1 38.53691708607748 .
3107
+ # :PCA1 :lambda2 16.217776791473543 .
3108
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
3109
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
3110
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b3 .
3111
+ # _:b3 :x 4.0 .
3112
+ # _:b3 :y 3.2 .
3113
+ # (4.0 6.714285714285714) math:difference -2.7142857142857144 .
3114
+ # (3.2 4.171428571428572) math:difference -0.9714285714285715 .
3115
+ # (-2.7142857142857144 0.8387243717699311) math:product -2.2765375805183843 .
3116
+ # (-0.9714285714285715 -0.5445561754301703) math:product 0.528997427560737 .
3117
+ # (-2.2765375805183843 0.528997427560737) math:sum -1.7475401529576473 .
3118
+ # (-2.7142857142857144 -0.5445561754301703) math:product 1.4780810475961768 .
3119
+ # (0.0 1.4780810475961768) math:difference -1.4780810475961768 .
3120
+ # (-0.9714285714285715 0.8387243717699311) math:product -0.8147608182907903 .
3121
+ # (-1.4780810475961768 -0.8147608182907903) math:sum -2.292841865886967 .
3122
+ # (-1.7475401529576473 2.0) math:exponentiation 3.0538965861992375 .
3123
+ # (-2.292841865886967 2.0) math:exponentiation 5.257123821964029 .
3124
+ # (3.0538965861992375 38.53691708607748) math:quotient 0.07924600142190777 .
3125
+ # (5.257123821964029 16.217776791473543) math:quotient 0.3241581068453198 .
3126
+ # (0.07924600142190777 0.3241581068453198) math:sum 0.4034041082672276 .
3127
+ # via the schematic forward rule:
3128
+ # {
3129
+ # :PCA1 :points ?pts .
3130
+ # :PCA1 :meanX ?mx .
3131
+ # :PCA1 :meanY ?my .
3132
+ # :PCA1 :thetaRad ?theta .
3133
+ # :PCA1 :lambda1 ?l1 .
3134
+ # :PCA1 :lambda2 ?l2 .
3135
+ # ?theta math:cos ?c .
3136
+ # ?theta math:sin ?s .
3137
+ # ?pts list:member ?p .
3138
+ # ?p :x ?x .
3139
+ # ?p :y ?y .
3140
+ # (?x ?mx) math:difference ?dx .
3141
+ # (?y ?my) math:difference ?dy .
3142
+ # (?dx ?c) math:product ?dxC .
3143
+ # (?dy ?s) math:product ?dyS .
3144
+ # (?dxC ?dyS) math:sum ?u .
3145
+ # (?dx ?s) math:product ?dxS .
3146
+ # (0.0 ?dxS) math:difference ?negDxS .
3147
+ # (?dy ?c) math:product ?dyC .
3148
+ # (?negDxS ?dyC) math:sum ?v .
3149
+ # (?u 2.0) math:exponentiation ?u2 .
3150
+ # (?v 2.0) math:exponentiation ?v2 .
3151
+ # (?u2 ?l1) math:quotient ?u2Over .
3152
+ # (?v2 ?l2) math:quotient ?v2Over .
3153
+ # (?u2Over ?v2Over) math:sum ?md2 .
3154
+ # } => {
3155
+ # _:b8 :point ?p .
3156
+ # _:b8 :u ?u .
3157
+ # _:b8 :v ?v .
3158
+ # _:b8 :md2 ?md2 .
3159
+ # :PCA1 :score _:b8 .
3160
+ # } .
3161
+ # with substitution (on rule variables):
3162
+ # ?c = 0.8387243717699311
3163
+ # ?dx = -2.7142857142857144
3164
+ # ?dxC = -2.2765375805183843
3165
+ # ?dxS = 1.4780810475961768
3166
+ # ?dy = -0.9714285714285715
3167
+ # ?dyC = -0.8147608182907903
3168
+ # ?dyS = 0.528997427560737
3169
+ # ?l1 = 38.53691708607748
3170
+ # ?l2 = 16.217776791473543
3171
+ # ?md2 = 0.4034041082672276
3172
+ # ?mx = 6.714285714285714
3173
+ # ?my = 4.171428571428572
3174
+ # ?negDxS = -1.4780810475961768
3175
+ # ?p = _:b3
3176
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3177
+ # ?s = -0.5445561754301703
3178
+ # ?theta = -0.5758598575998168
3179
+ # ?u = -1.7475401529576473
3180
+ # ?u2 = 3.0538965861992375
3181
+ # ?u2Over = 0.07924600142190777
3182
+ # ?v = -2.292841865886967
3183
+ # ?v2 = 5.257123821964029
3184
+ # ?v2Over = 0.3241581068453198
3185
+ # ?x = 4.0
3186
+ # ?y = 3.2
3187
+ # Therefore the derived triple above is entailed by the rules and facts.
3188
+ # ----------------------------------------------------------------------
3189
+
3190
+ _:sk_4 :u -1.7475401529576473 .
3191
+
3192
+ # ----------------------------------------------------------------------
3193
+ # Proof for derived triple:
3194
+ # _:sk_4 :v -2.292841865886967 .
3195
+ # It holds because the following instance of the rule body is provable:
3196
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3197
+ # :PCA1 :meanX 6.714285714285714 .
3198
+ # :PCA1 :meanY 4.171428571428572 .
3199
+ # :PCA1 :thetaRad -0.5758598575998168 .
3200
+ # :PCA1 :lambda1 38.53691708607748 .
3201
+ # :PCA1 :lambda2 16.217776791473543 .
3202
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
3203
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
3204
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b3 .
3205
+ # _:b3 :x 4.0 .
3206
+ # _:b3 :y 3.2 .
3207
+ # (4.0 6.714285714285714) math:difference -2.7142857142857144 .
3208
+ # (3.2 4.171428571428572) math:difference -0.9714285714285715 .
3209
+ # (-2.7142857142857144 0.8387243717699311) math:product -2.2765375805183843 .
3210
+ # (-0.9714285714285715 -0.5445561754301703) math:product 0.528997427560737 .
3211
+ # (-2.2765375805183843 0.528997427560737) math:sum -1.7475401529576473 .
3212
+ # (-2.7142857142857144 -0.5445561754301703) math:product 1.4780810475961768 .
3213
+ # (0.0 1.4780810475961768) math:difference -1.4780810475961768 .
3214
+ # (-0.9714285714285715 0.8387243717699311) math:product -0.8147608182907903 .
3215
+ # (-1.4780810475961768 -0.8147608182907903) math:sum -2.292841865886967 .
3216
+ # (-1.7475401529576473 2.0) math:exponentiation 3.0538965861992375 .
3217
+ # (-2.292841865886967 2.0) math:exponentiation 5.257123821964029 .
3218
+ # (3.0538965861992375 38.53691708607748) math:quotient 0.07924600142190777 .
3219
+ # (5.257123821964029 16.217776791473543) math:quotient 0.3241581068453198 .
3220
+ # (0.07924600142190777 0.3241581068453198) math:sum 0.4034041082672276 .
3221
+ # via the schematic forward rule:
3222
+ # {
3223
+ # :PCA1 :points ?pts .
3224
+ # :PCA1 :meanX ?mx .
3225
+ # :PCA1 :meanY ?my .
3226
+ # :PCA1 :thetaRad ?theta .
3227
+ # :PCA1 :lambda1 ?l1 .
3228
+ # :PCA1 :lambda2 ?l2 .
3229
+ # ?theta math:cos ?c .
3230
+ # ?theta math:sin ?s .
3231
+ # ?pts list:member ?p .
3232
+ # ?p :x ?x .
3233
+ # ?p :y ?y .
3234
+ # (?x ?mx) math:difference ?dx .
3235
+ # (?y ?my) math:difference ?dy .
3236
+ # (?dx ?c) math:product ?dxC .
3237
+ # (?dy ?s) math:product ?dyS .
3238
+ # (?dxC ?dyS) math:sum ?u .
3239
+ # (?dx ?s) math:product ?dxS .
3240
+ # (0.0 ?dxS) math:difference ?negDxS .
3241
+ # (?dy ?c) math:product ?dyC .
3242
+ # (?negDxS ?dyC) math:sum ?v .
3243
+ # (?u 2.0) math:exponentiation ?u2 .
3244
+ # (?v 2.0) math:exponentiation ?v2 .
3245
+ # (?u2 ?l1) math:quotient ?u2Over .
3246
+ # (?v2 ?l2) math:quotient ?v2Over .
3247
+ # (?u2Over ?v2Over) math:sum ?md2 .
3248
+ # } => {
3249
+ # _:b8 :point ?p .
3250
+ # _:b8 :u ?u .
3251
+ # _:b8 :v ?v .
3252
+ # _:b8 :md2 ?md2 .
3253
+ # :PCA1 :score _:b8 .
3254
+ # } .
3255
+ # with substitution (on rule variables):
3256
+ # ?c = 0.8387243717699311
3257
+ # ?dx = -2.7142857142857144
3258
+ # ?dxC = -2.2765375805183843
3259
+ # ?dxS = 1.4780810475961768
3260
+ # ?dy = -0.9714285714285715
3261
+ # ?dyC = -0.8147608182907903
3262
+ # ?dyS = 0.528997427560737
3263
+ # ?l1 = 38.53691708607748
3264
+ # ?l2 = 16.217776791473543
3265
+ # ?md2 = 0.4034041082672276
3266
+ # ?mx = 6.714285714285714
3267
+ # ?my = 4.171428571428572
3268
+ # ?negDxS = -1.4780810475961768
3269
+ # ?p = _:b3
3270
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3271
+ # ?s = -0.5445561754301703
3272
+ # ?theta = -0.5758598575998168
3273
+ # ?u = -1.7475401529576473
3274
+ # ?u2 = 3.0538965861992375
3275
+ # ?u2Over = 0.07924600142190777
3276
+ # ?v = -2.292841865886967
3277
+ # ?v2 = 5.257123821964029
3278
+ # ?v2Over = 0.3241581068453198
3279
+ # ?x = 4.0
3280
+ # ?y = 3.2
3281
+ # Therefore the derived triple above is entailed by the rules and facts.
3282
+ # ----------------------------------------------------------------------
3283
+
3284
+ _:sk_4 :v -2.292841865886967 .
3285
+
3286
+ # ----------------------------------------------------------------------
3287
+ # Proof for derived triple:
3288
+ # _:sk_4 :md2 0.4034041082672276 .
3289
+ # It holds because the following instance of the rule body is provable:
3290
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3291
+ # :PCA1 :meanX 6.714285714285714 .
3292
+ # :PCA1 :meanY 4.171428571428572 .
3293
+ # :PCA1 :thetaRad -0.5758598575998168 .
3294
+ # :PCA1 :lambda1 38.53691708607748 .
3295
+ # :PCA1 :lambda2 16.217776791473543 .
3296
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
3297
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
3298
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b3 .
3299
+ # _:b3 :x 4.0 .
3300
+ # _:b3 :y 3.2 .
3301
+ # (4.0 6.714285714285714) math:difference -2.7142857142857144 .
3302
+ # (3.2 4.171428571428572) math:difference -0.9714285714285715 .
3303
+ # (-2.7142857142857144 0.8387243717699311) math:product -2.2765375805183843 .
3304
+ # (-0.9714285714285715 -0.5445561754301703) math:product 0.528997427560737 .
3305
+ # (-2.2765375805183843 0.528997427560737) math:sum -1.7475401529576473 .
3306
+ # (-2.7142857142857144 -0.5445561754301703) math:product 1.4780810475961768 .
3307
+ # (0.0 1.4780810475961768) math:difference -1.4780810475961768 .
3308
+ # (-0.9714285714285715 0.8387243717699311) math:product -0.8147608182907903 .
3309
+ # (-1.4780810475961768 -0.8147608182907903) math:sum -2.292841865886967 .
3310
+ # (-1.7475401529576473 2.0) math:exponentiation 3.0538965861992375 .
3311
+ # (-2.292841865886967 2.0) math:exponentiation 5.257123821964029 .
3312
+ # (3.0538965861992375 38.53691708607748) math:quotient 0.07924600142190777 .
3313
+ # (5.257123821964029 16.217776791473543) math:quotient 0.3241581068453198 .
3314
+ # (0.07924600142190777 0.3241581068453198) math:sum 0.4034041082672276 .
3315
+ # via the schematic forward rule:
3316
+ # {
3317
+ # :PCA1 :points ?pts .
3318
+ # :PCA1 :meanX ?mx .
3319
+ # :PCA1 :meanY ?my .
3320
+ # :PCA1 :thetaRad ?theta .
3321
+ # :PCA1 :lambda1 ?l1 .
3322
+ # :PCA1 :lambda2 ?l2 .
3323
+ # ?theta math:cos ?c .
3324
+ # ?theta math:sin ?s .
3325
+ # ?pts list:member ?p .
3326
+ # ?p :x ?x .
3327
+ # ?p :y ?y .
3328
+ # (?x ?mx) math:difference ?dx .
3329
+ # (?y ?my) math:difference ?dy .
3330
+ # (?dx ?c) math:product ?dxC .
3331
+ # (?dy ?s) math:product ?dyS .
3332
+ # (?dxC ?dyS) math:sum ?u .
3333
+ # (?dx ?s) math:product ?dxS .
3334
+ # (0.0 ?dxS) math:difference ?negDxS .
3335
+ # (?dy ?c) math:product ?dyC .
3336
+ # (?negDxS ?dyC) math:sum ?v .
3337
+ # (?u 2.0) math:exponentiation ?u2 .
3338
+ # (?v 2.0) math:exponentiation ?v2 .
3339
+ # (?u2 ?l1) math:quotient ?u2Over .
3340
+ # (?v2 ?l2) math:quotient ?v2Over .
3341
+ # (?u2Over ?v2Over) math:sum ?md2 .
3342
+ # } => {
3343
+ # _:b8 :point ?p .
3344
+ # _:b8 :u ?u .
3345
+ # _:b8 :v ?v .
3346
+ # _:b8 :md2 ?md2 .
3347
+ # :PCA1 :score _:b8 .
3348
+ # } .
3349
+ # with substitution (on rule variables):
3350
+ # ?c = 0.8387243717699311
3351
+ # ?dx = -2.7142857142857144
3352
+ # ?dxC = -2.2765375805183843
3353
+ # ?dxS = 1.4780810475961768
3354
+ # ?dy = -0.9714285714285715
3355
+ # ?dyC = -0.8147608182907903
3356
+ # ?dyS = 0.528997427560737
3357
+ # ?l1 = 38.53691708607748
3358
+ # ?l2 = 16.217776791473543
3359
+ # ?md2 = 0.4034041082672276
3360
+ # ?mx = 6.714285714285714
3361
+ # ?my = 4.171428571428572
3362
+ # ?negDxS = -1.4780810475961768
3363
+ # ?p = _:b3
3364
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3365
+ # ?s = -0.5445561754301703
3366
+ # ?theta = -0.5758598575998168
3367
+ # ?u = -1.7475401529576473
3368
+ # ?u2 = 3.0538965861992375
3369
+ # ?u2Over = 0.07924600142190777
3370
+ # ?v = -2.292841865886967
3371
+ # ?v2 = 5.257123821964029
3372
+ # ?v2Over = 0.3241581068453198
3373
+ # ?x = 4.0
3374
+ # ?y = 3.2
3375
+ # Therefore the derived triple above is entailed by the rules and facts.
3376
+ # ----------------------------------------------------------------------
3377
+
3378
+ _:sk_4 :md2 0.4034041082672276 .
3379
+
3380
+ # ----------------------------------------------------------------------
3381
+ # Proof for derived triple:
3382
+ # :PCA1 :score _:sk_4 .
3383
+ # It holds because the following instance of the rule body is provable:
3384
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3385
+ # :PCA1 :meanX 6.714285714285714 .
3386
+ # :PCA1 :meanY 4.171428571428572 .
3387
+ # :PCA1 :thetaRad -0.5758598575998168 .
3388
+ # :PCA1 :lambda1 38.53691708607748 .
3389
+ # :PCA1 :lambda2 16.217776791473543 .
3390
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
3391
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
3392
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b3 .
3393
+ # _:b3 :x 4.0 .
3394
+ # _:b3 :y 3.2 .
3395
+ # (4.0 6.714285714285714) math:difference -2.7142857142857144 .
3396
+ # (3.2 4.171428571428572) math:difference -0.9714285714285715 .
3397
+ # (-2.7142857142857144 0.8387243717699311) math:product -2.2765375805183843 .
3398
+ # (-0.9714285714285715 -0.5445561754301703) math:product 0.528997427560737 .
3399
+ # (-2.2765375805183843 0.528997427560737) math:sum -1.7475401529576473 .
3400
+ # (-2.7142857142857144 -0.5445561754301703) math:product 1.4780810475961768 .
3401
+ # (0.0 1.4780810475961768) math:difference -1.4780810475961768 .
3402
+ # (-0.9714285714285715 0.8387243717699311) math:product -0.8147608182907903 .
3403
+ # (-1.4780810475961768 -0.8147608182907903) math:sum -2.292841865886967 .
3404
+ # (-1.7475401529576473 2.0) math:exponentiation 3.0538965861992375 .
3405
+ # (-2.292841865886967 2.0) math:exponentiation 5.257123821964029 .
3406
+ # (3.0538965861992375 38.53691708607748) math:quotient 0.07924600142190777 .
3407
+ # (5.257123821964029 16.217776791473543) math:quotient 0.3241581068453198 .
3408
+ # (0.07924600142190777 0.3241581068453198) math:sum 0.4034041082672276 .
3409
+ # via the schematic forward rule:
3410
+ # {
3411
+ # :PCA1 :points ?pts .
3412
+ # :PCA1 :meanX ?mx .
3413
+ # :PCA1 :meanY ?my .
3414
+ # :PCA1 :thetaRad ?theta .
3415
+ # :PCA1 :lambda1 ?l1 .
3416
+ # :PCA1 :lambda2 ?l2 .
3417
+ # ?theta math:cos ?c .
3418
+ # ?theta math:sin ?s .
3419
+ # ?pts list:member ?p .
3420
+ # ?p :x ?x .
3421
+ # ?p :y ?y .
3422
+ # (?x ?mx) math:difference ?dx .
3423
+ # (?y ?my) math:difference ?dy .
3424
+ # (?dx ?c) math:product ?dxC .
3425
+ # (?dy ?s) math:product ?dyS .
3426
+ # (?dxC ?dyS) math:sum ?u .
3427
+ # (?dx ?s) math:product ?dxS .
3428
+ # (0.0 ?dxS) math:difference ?negDxS .
3429
+ # (?dy ?c) math:product ?dyC .
3430
+ # (?negDxS ?dyC) math:sum ?v .
3431
+ # (?u 2.0) math:exponentiation ?u2 .
3432
+ # (?v 2.0) math:exponentiation ?v2 .
3433
+ # (?u2 ?l1) math:quotient ?u2Over .
3434
+ # (?v2 ?l2) math:quotient ?v2Over .
3435
+ # (?u2Over ?v2Over) math:sum ?md2 .
3436
+ # } => {
3437
+ # _:b8 :point ?p .
3438
+ # _:b8 :u ?u .
3439
+ # _:b8 :v ?v .
3440
+ # _:b8 :md2 ?md2 .
3441
+ # :PCA1 :score _:b8 .
3442
+ # } .
3443
+ # with substitution (on rule variables):
3444
+ # ?c = 0.8387243717699311
3445
+ # ?dx = -2.7142857142857144
3446
+ # ?dxC = -2.2765375805183843
3447
+ # ?dxS = 1.4780810475961768
3448
+ # ?dy = -0.9714285714285715
3449
+ # ?dyC = -0.8147608182907903
3450
+ # ?dyS = 0.528997427560737
3451
+ # ?l1 = 38.53691708607748
3452
+ # ?l2 = 16.217776791473543
3453
+ # ?md2 = 0.4034041082672276
3454
+ # ?mx = 6.714285714285714
3455
+ # ?my = 4.171428571428572
3456
+ # ?negDxS = -1.4780810475961768
3457
+ # ?p = _:b3
3458
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3459
+ # ?s = -0.5445561754301703
3460
+ # ?theta = -0.5758598575998168
3461
+ # ?u = -1.7475401529576473
3462
+ # ?u2 = 3.0538965861992375
3463
+ # ?u2Over = 0.07924600142190777
3464
+ # ?v = -2.292841865886967
3465
+ # ?v2 = 5.257123821964029
3466
+ # ?v2Over = 0.3241581068453198
3467
+ # ?x = 4.0
3468
+ # ?y = 3.2
3469
+ # Therefore the derived triple above is entailed by the rules and facts.
3470
+ # ----------------------------------------------------------------------
3471
+
3472
+ :PCA1 :score _:sk_4 .
3473
+
3474
+ # ----------------------------------------------------------------------
3475
+ # Proof for derived triple:
3476
+ # _:sk_5 :point _:b2 .
3477
+ # It holds because the following instance of the rule body is provable:
3478
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3479
+ # :PCA1 :meanX 6.714285714285714 .
3480
+ # :PCA1 :meanY 4.171428571428572 .
3481
+ # :PCA1 :thetaRad -0.5758598575998168 .
3482
+ # :PCA1 :lambda1 38.53691708607748 .
3483
+ # :PCA1 :lambda2 16.217776791473543 .
3484
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
3485
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
3486
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b2 .
3487
+ # _:b2 :x 3.0 .
3488
+ # _:b2 :y 2.0 .
3489
+ # (3.0 6.714285714285714) math:difference -3.7142857142857144 .
3490
+ # (2.0 4.171428571428572) math:difference -2.1714285714285717 .
3491
+ # (-3.7142857142857144 0.8387243717699311) math:product -3.1152619522883156 .
3492
+ # (-2.1714285714285717 -0.5445561754301703) math:product 1.1824648380769414 .
3493
+ # (-3.1152619522883156 1.1824648380769414) math:sum -1.9327971142113742 .
3494
+ # (-3.7142857142857144 -0.5445561754301703) math:product 2.022637223026347 .
3495
+ # (0.0 2.022637223026347) math:difference -2.022637223026347 .
3496
+ # (-2.1714285714285717 0.8387243717699311) math:product -1.8212300644147077 .
3497
+ # (-2.022637223026347 -1.8212300644147077) math:sum -3.843867287441055 .
3498
+ # (-1.9327971142113742 2.0) math:exponentiation 3.735704684703816 .
3499
+ # (-3.843867287441055 2.0) math:exponentiation 14.775315723459453 .
3500
+ # (3.735704684703816 38.53691708607748) math:quotient 0.09693833775959837 .
3501
+ # (14.775315723459453 16.217776791473543) math:quotient 0.9110567936307731 .
3502
+ # (0.09693833775959837 0.9110567936307731) math:sum 1.0079951313903714 .
3503
+ # via the schematic forward rule:
3504
+ # {
3505
+ # :PCA1 :points ?pts .
3506
+ # :PCA1 :meanX ?mx .
3507
+ # :PCA1 :meanY ?my .
3508
+ # :PCA1 :thetaRad ?theta .
3509
+ # :PCA1 :lambda1 ?l1 .
3510
+ # :PCA1 :lambda2 ?l2 .
3511
+ # ?theta math:cos ?c .
3512
+ # ?theta math:sin ?s .
3513
+ # ?pts list:member ?p .
3514
+ # ?p :x ?x .
3515
+ # ?p :y ?y .
3516
+ # (?x ?mx) math:difference ?dx .
3517
+ # (?y ?my) math:difference ?dy .
3518
+ # (?dx ?c) math:product ?dxC .
3519
+ # (?dy ?s) math:product ?dyS .
3520
+ # (?dxC ?dyS) math:sum ?u .
3521
+ # (?dx ?s) math:product ?dxS .
3522
+ # (0.0 ?dxS) math:difference ?negDxS .
3523
+ # (?dy ?c) math:product ?dyC .
3524
+ # (?negDxS ?dyC) math:sum ?v .
3525
+ # (?u 2.0) math:exponentiation ?u2 .
3526
+ # (?v 2.0) math:exponentiation ?v2 .
3527
+ # (?u2 ?l1) math:quotient ?u2Over .
3528
+ # (?v2 ?l2) math:quotient ?v2Over .
3529
+ # (?u2Over ?v2Over) math:sum ?md2 .
3530
+ # } => {
3531
+ # _:b8 :point ?p .
3532
+ # _:b8 :u ?u .
3533
+ # _:b8 :v ?v .
3534
+ # _:b8 :md2 ?md2 .
3535
+ # :PCA1 :score _:b8 .
3536
+ # } .
3537
+ # with substitution (on rule variables):
3538
+ # ?c = 0.8387243717699311
3539
+ # ?dx = -3.7142857142857144
3540
+ # ?dxC = -3.1152619522883156
3541
+ # ?dxS = 2.022637223026347
3542
+ # ?dy = -2.1714285714285717
3543
+ # ?dyC = -1.8212300644147077
3544
+ # ?dyS = 1.1824648380769414
3545
+ # ?l1 = 38.53691708607748
3546
+ # ?l2 = 16.217776791473543
3547
+ # ?md2 = 1.0079951313903714
3548
+ # ?mx = 6.714285714285714
3549
+ # ?my = 4.171428571428572
3550
+ # ?negDxS = -2.022637223026347
3551
+ # ?p = _:b2
3552
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3553
+ # ?s = -0.5445561754301703
3554
+ # ?theta = -0.5758598575998168
3555
+ # ?u = -1.9327971142113742
3556
+ # ?u2 = 3.735704684703816
3557
+ # ?u2Over = 0.09693833775959837
3558
+ # ?v = -3.843867287441055
3559
+ # ?v2 = 14.775315723459453
3560
+ # ?v2Over = 0.9110567936307731
3561
+ # ?x = 3.0
3562
+ # ?y = 2.0
3563
+ # Therefore the derived triple above is entailed by the rules and facts.
3564
+ # ----------------------------------------------------------------------
3565
+
3566
+ _:sk_5 :point _:b2 .
3567
+
3568
+ # ----------------------------------------------------------------------
3569
+ # Proof for derived triple:
3570
+ # _:sk_5 :u -1.9327971142113742 .
3571
+ # It holds because the following instance of the rule body is provable:
3572
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3573
+ # :PCA1 :meanX 6.714285714285714 .
3574
+ # :PCA1 :meanY 4.171428571428572 .
3575
+ # :PCA1 :thetaRad -0.5758598575998168 .
3576
+ # :PCA1 :lambda1 38.53691708607748 .
3577
+ # :PCA1 :lambda2 16.217776791473543 .
3578
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
3579
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
3580
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b2 .
3581
+ # _:b2 :x 3.0 .
3582
+ # _:b2 :y 2.0 .
3583
+ # (3.0 6.714285714285714) math:difference -3.7142857142857144 .
3584
+ # (2.0 4.171428571428572) math:difference -2.1714285714285717 .
3585
+ # (-3.7142857142857144 0.8387243717699311) math:product -3.1152619522883156 .
3586
+ # (-2.1714285714285717 -0.5445561754301703) math:product 1.1824648380769414 .
3587
+ # (-3.1152619522883156 1.1824648380769414) math:sum -1.9327971142113742 .
3588
+ # (-3.7142857142857144 -0.5445561754301703) math:product 2.022637223026347 .
3589
+ # (0.0 2.022637223026347) math:difference -2.022637223026347 .
3590
+ # (-2.1714285714285717 0.8387243717699311) math:product -1.8212300644147077 .
3591
+ # (-2.022637223026347 -1.8212300644147077) math:sum -3.843867287441055 .
3592
+ # (-1.9327971142113742 2.0) math:exponentiation 3.735704684703816 .
3593
+ # (-3.843867287441055 2.0) math:exponentiation 14.775315723459453 .
3594
+ # (3.735704684703816 38.53691708607748) math:quotient 0.09693833775959837 .
3595
+ # (14.775315723459453 16.217776791473543) math:quotient 0.9110567936307731 .
3596
+ # (0.09693833775959837 0.9110567936307731) math:sum 1.0079951313903714 .
3597
+ # via the schematic forward rule:
3598
+ # {
3599
+ # :PCA1 :points ?pts .
3600
+ # :PCA1 :meanX ?mx .
3601
+ # :PCA1 :meanY ?my .
3602
+ # :PCA1 :thetaRad ?theta .
3603
+ # :PCA1 :lambda1 ?l1 .
3604
+ # :PCA1 :lambda2 ?l2 .
3605
+ # ?theta math:cos ?c .
3606
+ # ?theta math:sin ?s .
3607
+ # ?pts list:member ?p .
3608
+ # ?p :x ?x .
3609
+ # ?p :y ?y .
3610
+ # (?x ?mx) math:difference ?dx .
3611
+ # (?y ?my) math:difference ?dy .
3612
+ # (?dx ?c) math:product ?dxC .
3613
+ # (?dy ?s) math:product ?dyS .
3614
+ # (?dxC ?dyS) math:sum ?u .
3615
+ # (?dx ?s) math:product ?dxS .
3616
+ # (0.0 ?dxS) math:difference ?negDxS .
3617
+ # (?dy ?c) math:product ?dyC .
3618
+ # (?negDxS ?dyC) math:sum ?v .
3619
+ # (?u 2.0) math:exponentiation ?u2 .
3620
+ # (?v 2.0) math:exponentiation ?v2 .
3621
+ # (?u2 ?l1) math:quotient ?u2Over .
3622
+ # (?v2 ?l2) math:quotient ?v2Over .
3623
+ # (?u2Over ?v2Over) math:sum ?md2 .
3624
+ # } => {
3625
+ # _:b8 :point ?p .
3626
+ # _:b8 :u ?u .
3627
+ # _:b8 :v ?v .
3628
+ # _:b8 :md2 ?md2 .
3629
+ # :PCA1 :score _:b8 .
3630
+ # } .
3631
+ # with substitution (on rule variables):
3632
+ # ?c = 0.8387243717699311
3633
+ # ?dx = -3.7142857142857144
3634
+ # ?dxC = -3.1152619522883156
3635
+ # ?dxS = 2.022637223026347
3636
+ # ?dy = -2.1714285714285717
3637
+ # ?dyC = -1.8212300644147077
3638
+ # ?dyS = 1.1824648380769414
3639
+ # ?l1 = 38.53691708607748
3640
+ # ?l2 = 16.217776791473543
3641
+ # ?md2 = 1.0079951313903714
3642
+ # ?mx = 6.714285714285714
3643
+ # ?my = 4.171428571428572
3644
+ # ?negDxS = -2.022637223026347
3645
+ # ?p = _:b2
3646
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3647
+ # ?s = -0.5445561754301703
3648
+ # ?theta = -0.5758598575998168
3649
+ # ?u = -1.9327971142113742
3650
+ # ?u2 = 3.735704684703816
3651
+ # ?u2Over = 0.09693833775959837
3652
+ # ?v = -3.843867287441055
3653
+ # ?v2 = 14.775315723459453
3654
+ # ?v2Over = 0.9110567936307731
3655
+ # ?x = 3.0
3656
+ # ?y = 2.0
3657
+ # Therefore the derived triple above is entailed by the rules and facts.
3658
+ # ----------------------------------------------------------------------
3659
+
3660
+ _:sk_5 :u -1.9327971142113742 .
3661
+
3662
+ # ----------------------------------------------------------------------
3663
+ # Proof for derived triple:
3664
+ # _:sk_5 :v -3.843867287441055 .
3665
+ # It holds because the following instance of the rule body is provable:
3666
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3667
+ # :PCA1 :meanX 6.714285714285714 .
3668
+ # :PCA1 :meanY 4.171428571428572 .
3669
+ # :PCA1 :thetaRad -0.5758598575998168 .
3670
+ # :PCA1 :lambda1 38.53691708607748 .
3671
+ # :PCA1 :lambda2 16.217776791473543 .
3672
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
3673
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
3674
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b2 .
3675
+ # _:b2 :x 3.0 .
3676
+ # _:b2 :y 2.0 .
3677
+ # (3.0 6.714285714285714) math:difference -3.7142857142857144 .
3678
+ # (2.0 4.171428571428572) math:difference -2.1714285714285717 .
3679
+ # (-3.7142857142857144 0.8387243717699311) math:product -3.1152619522883156 .
3680
+ # (-2.1714285714285717 -0.5445561754301703) math:product 1.1824648380769414 .
3681
+ # (-3.1152619522883156 1.1824648380769414) math:sum -1.9327971142113742 .
3682
+ # (-3.7142857142857144 -0.5445561754301703) math:product 2.022637223026347 .
3683
+ # (0.0 2.022637223026347) math:difference -2.022637223026347 .
3684
+ # (-2.1714285714285717 0.8387243717699311) math:product -1.8212300644147077 .
3685
+ # (-2.022637223026347 -1.8212300644147077) math:sum -3.843867287441055 .
3686
+ # (-1.9327971142113742 2.0) math:exponentiation 3.735704684703816 .
3687
+ # (-3.843867287441055 2.0) math:exponentiation 14.775315723459453 .
3688
+ # (3.735704684703816 38.53691708607748) math:quotient 0.09693833775959837 .
3689
+ # (14.775315723459453 16.217776791473543) math:quotient 0.9110567936307731 .
3690
+ # (0.09693833775959837 0.9110567936307731) math:sum 1.0079951313903714 .
3691
+ # via the schematic forward rule:
3692
+ # {
3693
+ # :PCA1 :points ?pts .
3694
+ # :PCA1 :meanX ?mx .
3695
+ # :PCA1 :meanY ?my .
3696
+ # :PCA1 :thetaRad ?theta .
3697
+ # :PCA1 :lambda1 ?l1 .
3698
+ # :PCA1 :lambda2 ?l2 .
3699
+ # ?theta math:cos ?c .
3700
+ # ?theta math:sin ?s .
3701
+ # ?pts list:member ?p .
3702
+ # ?p :x ?x .
3703
+ # ?p :y ?y .
3704
+ # (?x ?mx) math:difference ?dx .
3705
+ # (?y ?my) math:difference ?dy .
3706
+ # (?dx ?c) math:product ?dxC .
3707
+ # (?dy ?s) math:product ?dyS .
3708
+ # (?dxC ?dyS) math:sum ?u .
3709
+ # (?dx ?s) math:product ?dxS .
3710
+ # (0.0 ?dxS) math:difference ?negDxS .
3711
+ # (?dy ?c) math:product ?dyC .
3712
+ # (?negDxS ?dyC) math:sum ?v .
3713
+ # (?u 2.0) math:exponentiation ?u2 .
3714
+ # (?v 2.0) math:exponentiation ?v2 .
3715
+ # (?u2 ?l1) math:quotient ?u2Over .
3716
+ # (?v2 ?l2) math:quotient ?v2Over .
3717
+ # (?u2Over ?v2Over) math:sum ?md2 .
3718
+ # } => {
3719
+ # _:b8 :point ?p .
3720
+ # _:b8 :u ?u .
3721
+ # _:b8 :v ?v .
3722
+ # _:b8 :md2 ?md2 .
3723
+ # :PCA1 :score _:b8 .
3724
+ # } .
3725
+ # with substitution (on rule variables):
3726
+ # ?c = 0.8387243717699311
3727
+ # ?dx = -3.7142857142857144
3728
+ # ?dxC = -3.1152619522883156
3729
+ # ?dxS = 2.022637223026347
3730
+ # ?dy = -2.1714285714285717
3731
+ # ?dyC = -1.8212300644147077
3732
+ # ?dyS = 1.1824648380769414
3733
+ # ?l1 = 38.53691708607748
3734
+ # ?l2 = 16.217776791473543
3735
+ # ?md2 = 1.0079951313903714
3736
+ # ?mx = 6.714285714285714
3737
+ # ?my = 4.171428571428572
3738
+ # ?negDxS = -2.022637223026347
3739
+ # ?p = _:b2
3740
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3741
+ # ?s = -0.5445561754301703
3742
+ # ?theta = -0.5758598575998168
3743
+ # ?u = -1.9327971142113742
3744
+ # ?u2 = 3.735704684703816
3745
+ # ?u2Over = 0.09693833775959837
3746
+ # ?v = -3.843867287441055
3747
+ # ?v2 = 14.775315723459453
3748
+ # ?v2Over = 0.9110567936307731
3749
+ # ?x = 3.0
3750
+ # ?y = 2.0
3751
+ # Therefore the derived triple above is entailed by the rules and facts.
3752
+ # ----------------------------------------------------------------------
3753
+
3754
+ _:sk_5 :v -3.843867287441055 .
3755
+
3756
+ # ----------------------------------------------------------------------
3757
+ # Proof for derived triple:
3758
+ # _:sk_5 :md2 1.0079951313903714 .
3759
+ # It holds because the following instance of the rule body is provable:
3760
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3761
+ # :PCA1 :meanX 6.714285714285714 .
3762
+ # :PCA1 :meanY 4.171428571428572 .
3763
+ # :PCA1 :thetaRad -0.5758598575998168 .
3764
+ # :PCA1 :lambda1 38.53691708607748 .
3765
+ # :PCA1 :lambda2 16.217776791473543 .
3766
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
3767
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
3768
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b2 .
3769
+ # _:b2 :x 3.0 .
3770
+ # _:b2 :y 2.0 .
3771
+ # (3.0 6.714285714285714) math:difference -3.7142857142857144 .
3772
+ # (2.0 4.171428571428572) math:difference -2.1714285714285717 .
3773
+ # (-3.7142857142857144 0.8387243717699311) math:product -3.1152619522883156 .
3774
+ # (-2.1714285714285717 -0.5445561754301703) math:product 1.1824648380769414 .
3775
+ # (-3.1152619522883156 1.1824648380769414) math:sum -1.9327971142113742 .
3776
+ # (-3.7142857142857144 -0.5445561754301703) math:product 2.022637223026347 .
3777
+ # (0.0 2.022637223026347) math:difference -2.022637223026347 .
3778
+ # (-2.1714285714285717 0.8387243717699311) math:product -1.8212300644147077 .
3779
+ # (-2.022637223026347 -1.8212300644147077) math:sum -3.843867287441055 .
3780
+ # (-1.9327971142113742 2.0) math:exponentiation 3.735704684703816 .
3781
+ # (-3.843867287441055 2.0) math:exponentiation 14.775315723459453 .
3782
+ # (3.735704684703816 38.53691708607748) math:quotient 0.09693833775959837 .
3783
+ # (14.775315723459453 16.217776791473543) math:quotient 0.9110567936307731 .
3784
+ # (0.09693833775959837 0.9110567936307731) math:sum 1.0079951313903714 .
3785
+ # via the schematic forward rule:
3786
+ # {
3787
+ # :PCA1 :points ?pts .
3788
+ # :PCA1 :meanX ?mx .
3789
+ # :PCA1 :meanY ?my .
3790
+ # :PCA1 :thetaRad ?theta .
3791
+ # :PCA1 :lambda1 ?l1 .
3792
+ # :PCA1 :lambda2 ?l2 .
3793
+ # ?theta math:cos ?c .
3794
+ # ?theta math:sin ?s .
3795
+ # ?pts list:member ?p .
3796
+ # ?p :x ?x .
3797
+ # ?p :y ?y .
3798
+ # (?x ?mx) math:difference ?dx .
3799
+ # (?y ?my) math:difference ?dy .
3800
+ # (?dx ?c) math:product ?dxC .
3801
+ # (?dy ?s) math:product ?dyS .
3802
+ # (?dxC ?dyS) math:sum ?u .
3803
+ # (?dx ?s) math:product ?dxS .
3804
+ # (0.0 ?dxS) math:difference ?negDxS .
3805
+ # (?dy ?c) math:product ?dyC .
3806
+ # (?negDxS ?dyC) math:sum ?v .
3807
+ # (?u 2.0) math:exponentiation ?u2 .
3808
+ # (?v 2.0) math:exponentiation ?v2 .
3809
+ # (?u2 ?l1) math:quotient ?u2Over .
3810
+ # (?v2 ?l2) math:quotient ?v2Over .
3811
+ # (?u2Over ?v2Over) math:sum ?md2 .
3812
+ # } => {
3813
+ # _:b8 :point ?p .
3814
+ # _:b8 :u ?u .
3815
+ # _:b8 :v ?v .
3816
+ # _:b8 :md2 ?md2 .
3817
+ # :PCA1 :score _:b8 .
3818
+ # } .
3819
+ # with substitution (on rule variables):
3820
+ # ?c = 0.8387243717699311
3821
+ # ?dx = -3.7142857142857144
3822
+ # ?dxC = -3.1152619522883156
3823
+ # ?dxS = 2.022637223026347
3824
+ # ?dy = -2.1714285714285717
3825
+ # ?dyC = -1.8212300644147077
3826
+ # ?dyS = 1.1824648380769414
3827
+ # ?l1 = 38.53691708607748
3828
+ # ?l2 = 16.217776791473543
3829
+ # ?md2 = 1.0079951313903714
3830
+ # ?mx = 6.714285714285714
3831
+ # ?my = 4.171428571428572
3832
+ # ?negDxS = -2.022637223026347
3833
+ # ?p = _:b2
3834
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3835
+ # ?s = -0.5445561754301703
3836
+ # ?theta = -0.5758598575998168
3837
+ # ?u = -1.9327971142113742
3838
+ # ?u2 = 3.735704684703816
3839
+ # ?u2Over = 0.09693833775959837
3840
+ # ?v = -3.843867287441055
3841
+ # ?v2 = 14.775315723459453
3842
+ # ?v2Over = 0.9110567936307731
3843
+ # ?x = 3.0
3844
+ # ?y = 2.0
3845
+ # Therefore the derived triple above is entailed by the rules and facts.
3846
+ # ----------------------------------------------------------------------
3847
+
3848
+ _:sk_5 :md2 1.0079951313903714 .
3849
+
3850
+ # ----------------------------------------------------------------------
3851
+ # Proof for derived triple:
3852
+ # :PCA1 :score _:sk_5 .
3853
+ # It holds because the following instance of the rule body is provable:
3854
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3855
+ # :PCA1 :meanX 6.714285714285714 .
3856
+ # :PCA1 :meanY 4.171428571428572 .
3857
+ # :PCA1 :thetaRad -0.5758598575998168 .
3858
+ # :PCA1 :lambda1 38.53691708607748 .
3859
+ # :PCA1 :lambda2 16.217776791473543 .
3860
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
3861
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
3862
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b2 .
3863
+ # _:b2 :x 3.0 .
3864
+ # _:b2 :y 2.0 .
3865
+ # (3.0 6.714285714285714) math:difference -3.7142857142857144 .
3866
+ # (2.0 4.171428571428572) math:difference -2.1714285714285717 .
3867
+ # (-3.7142857142857144 0.8387243717699311) math:product -3.1152619522883156 .
3868
+ # (-2.1714285714285717 -0.5445561754301703) math:product 1.1824648380769414 .
3869
+ # (-3.1152619522883156 1.1824648380769414) math:sum -1.9327971142113742 .
3870
+ # (-3.7142857142857144 -0.5445561754301703) math:product 2.022637223026347 .
3871
+ # (0.0 2.022637223026347) math:difference -2.022637223026347 .
3872
+ # (-2.1714285714285717 0.8387243717699311) math:product -1.8212300644147077 .
3873
+ # (-2.022637223026347 -1.8212300644147077) math:sum -3.843867287441055 .
3874
+ # (-1.9327971142113742 2.0) math:exponentiation 3.735704684703816 .
3875
+ # (-3.843867287441055 2.0) math:exponentiation 14.775315723459453 .
3876
+ # (3.735704684703816 38.53691708607748) math:quotient 0.09693833775959837 .
3877
+ # (14.775315723459453 16.217776791473543) math:quotient 0.9110567936307731 .
3878
+ # (0.09693833775959837 0.9110567936307731) math:sum 1.0079951313903714 .
3879
+ # via the schematic forward rule:
3880
+ # {
3881
+ # :PCA1 :points ?pts .
3882
+ # :PCA1 :meanX ?mx .
3883
+ # :PCA1 :meanY ?my .
3884
+ # :PCA1 :thetaRad ?theta .
3885
+ # :PCA1 :lambda1 ?l1 .
3886
+ # :PCA1 :lambda2 ?l2 .
3887
+ # ?theta math:cos ?c .
3888
+ # ?theta math:sin ?s .
3889
+ # ?pts list:member ?p .
3890
+ # ?p :x ?x .
3891
+ # ?p :y ?y .
3892
+ # (?x ?mx) math:difference ?dx .
3893
+ # (?y ?my) math:difference ?dy .
3894
+ # (?dx ?c) math:product ?dxC .
3895
+ # (?dy ?s) math:product ?dyS .
3896
+ # (?dxC ?dyS) math:sum ?u .
3897
+ # (?dx ?s) math:product ?dxS .
3898
+ # (0.0 ?dxS) math:difference ?negDxS .
3899
+ # (?dy ?c) math:product ?dyC .
3900
+ # (?negDxS ?dyC) math:sum ?v .
3901
+ # (?u 2.0) math:exponentiation ?u2 .
3902
+ # (?v 2.0) math:exponentiation ?v2 .
3903
+ # (?u2 ?l1) math:quotient ?u2Over .
3904
+ # (?v2 ?l2) math:quotient ?v2Over .
3905
+ # (?u2Over ?v2Over) math:sum ?md2 .
3906
+ # } => {
3907
+ # _:b8 :point ?p .
3908
+ # _:b8 :u ?u .
3909
+ # _:b8 :v ?v .
3910
+ # _:b8 :md2 ?md2 .
3911
+ # :PCA1 :score _:b8 .
3912
+ # } .
3913
+ # with substitution (on rule variables):
3914
+ # ?c = 0.8387243717699311
3915
+ # ?dx = -3.7142857142857144
3916
+ # ?dxC = -3.1152619522883156
3917
+ # ?dxS = 2.022637223026347
3918
+ # ?dy = -2.1714285714285717
3919
+ # ?dyC = -1.8212300644147077
3920
+ # ?dyS = 1.1824648380769414
3921
+ # ?l1 = 38.53691708607748
3922
+ # ?l2 = 16.217776791473543
3923
+ # ?md2 = 1.0079951313903714
3924
+ # ?mx = 6.714285714285714
3925
+ # ?my = 4.171428571428572
3926
+ # ?negDxS = -2.022637223026347
3927
+ # ?p = _:b2
3928
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3929
+ # ?s = -0.5445561754301703
3930
+ # ?theta = -0.5758598575998168
3931
+ # ?u = -1.9327971142113742
3932
+ # ?u2 = 3.735704684703816
3933
+ # ?u2Over = 0.09693833775959837
3934
+ # ?v = -3.843867287441055
3935
+ # ?v2 = 14.775315723459453
3936
+ # ?v2Over = 0.9110567936307731
3937
+ # ?x = 3.0
3938
+ # ?y = 2.0
3939
+ # Therefore the derived triple above is entailed by the rules and facts.
3940
+ # ----------------------------------------------------------------------
3941
+
3942
+ :PCA1 :score _:sk_5 .
3943
+
3944
+ # ----------------------------------------------------------------------
3945
+ # Proof for derived triple:
3946
+ # _:sk_6 :point _:b1 .
3947
+ # It holds because the following instance of the rule body is provable:
3948
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3949
+ # :PCA1 :meanX 6.714285714285714 .
3950
+ # :PCA1 :meanY 4.171428571428572 .
3951
+ # :PCA1 :thetaRad -0.5758598575998168 .
3952
+ # :PCA1 :lambda1 38.53691708607748 .
3953
+ # :PCA1 :lambda2 16.217776791473543 .
3954
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
3955
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
3956
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b1 .
3957
+ # _:b1 :x 2.0 .
3958
+ # _:b1 :y 1.0 .
3959
+ # (2.0 6.714285714285714) math:difference -4.714285714285714 .
3960
+ # (1.0 4.171428571428572) math:difference -3.1714285714285717 .
3961
+ # (-4.714285714285714 0.8387243717699311) math:product -3.9539863240582465 .
3962
+ # (-3.1714285714285717 -0.5445561754301703) math:product 1.7270210135071118 .
3963
+ # (-3.9539863240582465 1.7270210135071118) math:sum -2.226965310551135 .
3964
+ # (-4.714285714285714 -0.5445561754301703) math:product 2.567193398456517 .
3965
+ # (0.0 2.567193398456517) math:difference -2.567193398456517 .
3966
+ # (-3.1714285714285717 0.8387243717699311) math:product -2.659954436184639 .
3967
+ # (-2.567193398456517 -2.659954436184639) math:sum -5.227147834641157 .
3968
+ # (-2.226965310551135 2.0) math:exponentiation 4.959374494398113 .
3969
+ # (-5.227147834641157 2.0) math:exponentiation 27.323074485193732 .
3970
+ # (4.959374494398113 38.53691708607748) math:quotient 0.1286915215174237 .
3971
+ # (27.323074485193732 16.217776791473543) math:quotient 1.6847607928331318 .
3972
+ # (0.1286915215174237 1.6847607928331318) math:sum 1.8134523143505556 .
3973
+ # via the schematic forward rule:
3974
+ # {
3975
+ # :PCA1 :points ?pts .
3976
+ # :PCA1 :meanX ?mx .
3977
+ # :PCA1 :meanY ?my .
3978
+ # :PCA1 :thetaRad ?theta .
3979
+ # :PCA1 :lambda1 ?l1 .
3980
+ # :PCA1 :lambda2 ?l2 .
3981
+ # ?theta math:cos ?c .
3982
+ # ?theta math:sin ?s .
3983
+ # ?pts list:member ?p .
3984
+ # ?p :x ?x .
3985
+ # ?p :y ?y .
3986
+ # (?x ?mx) math:difference ?dx .
3987
+ # (?y ?my) math:difference ?dy .
3988
+ # (?dx ?c) math:product ?dxC .
3989
+ # (?dy ?s) math:product ?dyS .
3990
+ # (?dxC ?dyS) math:sum ?u .
3991
+ # (?dx ?s) math:product ?dxS .
3992
+ # (0.0 ?dxS) math:difference ?negDxS .
3993
+ # (?dy ?c) math:product ?dyC .
3994
+ # (?negDxS ?dyC) math:sum ?v .
3995
+ # (?u 2.0) math:exponentiation ?u2 .
3996
+ # (?v 2.0) math:exponentiation ?v2 .
3997
+ # (?u2 ?l1) math:quotient ?u2Over .
3998
+ # (?v2 ?l2) math:quotient ?v2Over .
3999
+ # (?u2Over ?v2Over) math:sum ?md2 .
4000
+ # } => {
4001
+ # _:b8 :point ?p .
4002
+ # _:b8 :u ?u .
4003
+ # _:b8 :v ?v .
4004
+ # _:b8 :md2 ?md2 .
4005
+ # :PCA1 :score _:b8 .
4006
+ # } .
4007
+ # with substitution (on rule variables):
4008
+ # ?c = 0.8387243717699311
4009
+ # ?dx = -4.714285714285714
4010
+ # ?dxC = -3.9539863240582465
4011
+ # ?dxS = 2.567193398456517
4012
+ # ?dy = -3.1714285714285717
4013
+ # ?dyC = -2.659954436184639
4014
+ # ?dyS = 1.7270210135071118
4015
+ # ?l1 = 38.53691708607748
4016
+ # ?l2 = 16.217776791473543
4017
+ # ?md2 = 1.8134523143505556
4018
+ # ?mx = 6.714285714285714
4019
+ # ?my = 4.171428571428572
4020
+ # ?negDxS = -2.567193398456517
4021
+ # ?p = _:b1
4022
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
4023
+ # ?s = -0.5445561754301703
4024
+ # ?theta = -0.5758598575998168
4025
+ # ?u = -2.226965310551135
4026
+ # ?u2 = 4.959374494398113
4027
+ # ?u2Over = 0.1286915215174237
4028
+ # ?v = -5.227147834641157
4029
+ # ?v2 = 27.323074485193732
4030
+ # ?v2Over = 1.6847607928331318
4031
+ # ?x = 2.0
4032
+ # ?y = 1.0
4033
+ # Therefore the derived triple above is entailed by the rules and facts.
4034
+ # ----------------------------------------------------------------------
4035
+
4036
+ _:sk_6 :point _:b1 .
4037
+
4038
+ # ----------------------------------------------------------------------
4039
+ # Proof for derived triple:
4040
+ # _:sk_6 :u -2.226965310551135 .
4041
+ # It holds because the following instance of the rule body is provable:
4042
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
4043
+ # :PCA1 :meanX 6.714285714285714 .
4044
+ # :PCA1 :meanY 4.171428571428572 .
4045
+ # :PCA1 :thetaRad -0.5758598575998168 .
4046
+ # :PCA1 :lambda1 38.53691708607748 .
4047
+ # :PCA1 :lambda2 16.217776791473543 .
4048
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
4049
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
4050
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b1 .
4051
+ # _:b1 :x 2.0 .
4052
+ # _:b1 :y 1.0 .
4053
+ # (2.0 6.714285714285714) math:difference -4.714285714285714 .
4054
+ # (1.0 4.171428571428572) math:difference -3.1714285714285717 .
4055
+ # (-4.714285714285714 0.8387243717699311) math:product -3.9539863240582465 .
4056
+ # (-3.1714285714285717 -0.5445561754301703) math:product 1.7270210135071118 .
4057
+ # (-3.9539863240582465 1.7270210135071118) math:sum -2.226965310551135 .
4058
+ # (-4.714285714285714 -0.5445561754301703) math:product 2.567193398456517 .
4059
+ # (0.0 2.567193398456517) math:difference -2.567193398456517 .
4060
+ # (-3.1714285714285717 0.8387243717699311) math:product -2.659954436184639 .
4061
+ # (-2.567193398456517 -2.659954436184639) math:sum -5.227147834641157 .
4062
+ # (-2.226965310551135 2.0) math:exponentiation 4.959374494398113 .
4063
+ # (-5.227147834641157 2.0) math:exponentiation 27.323074485193732 .
4064
+ # (4.959374494398113 38.53691708607748) math:quotient 0.1286915215174237 .
4065
+ # (27.323074485193732 16.217776791473543) math:quotient 1.6847607928331318 .
4066
+ # (0.1286915215174237 1.6847607928331318) math:sum 1.8134523143505556 .
4067
+ # via the schematic forward rule:
4068
+ # {
4069
+ # :PCA1 :points ?pts .
4070
+ # :PCA1 :meanX ?mx .
4071
+ # :PCA1 :meanY ?my .
4072
+ # :PCA1 :thetaRad ?theta .
4073
+ # :PCA1 :lambda1 ?l1 .
4074
+ # :PCA1 :lambda2 ?l2 .
4075
+ # ?theta math:cos ?c .
4076
+ # ?theta math:sin ?s .
4077
+ # ?pts list:member ?p .
4078
+ # ?p :x ?x .
4079
+ # ?p :y ?y .
4080
+ # (?x ?mx) math:difference ?dx .
4081
+ # (?y ?my) math:difference ?dy .
4082
+ # (?dx ?c) math:product ?dxC .
4083
+ # (?dy ?s) math:product ?dyS .
4084
+ # (?dxC ?dyS) math:sum ?u .
4085
+ # (?dx ?s) math:product ?dxS .
4086
+ # (0.0 ?dxS) math:difference ?negDxS .
4087
+ # (?dy ?c) math:product ?dyC .
4088
+ # (?negDxS ?dyC) math:sum ?v .
4089
+ # (?u 2.0) math:exponentiation ?u2 .
4090
+ # (?v 2.0) math:exponentiation ?v2 .
4091
+ # (?u2 ?l1) math:quotient ?u2Over .
4092
+ # (?v2 ?l2) math:quotient ?v2Over .
4093
+ # (?u2Over ?v2Over) math:sum ?md2 .
4094
+ # } => {
4095
+ # _:b8 :point ?p .
4096
+ # _:b8 :u ?u .
4097
+ # _:b8 :v ?v .
4098
+ # _:b8 :md2 ?md2 .
4099
+ # :PCA1 :score _:b8 .
4100
+ # } .
4101
+ # with substitution (on rule variables):
4102
+ # ?c = 0.8387243717699311
4103
+ # ?dx = -4.714285714285714
4104
+ # ?dxC = -3.9539863240582465
4105
+ # ?dxS = 2.567193398456517
4106
+ # ?dy = -3.1714285714285717
4107
+ # ?dyC = -2.659954436184639
4108
+ # ?dyS = 1.7270210135071118
4109
+ # ?l1 = 38.53691708607748
4110
+ # ?l2 = 16.217776791473543
4111
+ # ?md2 = 1.8134523143505556
4112
+ # ?mx = 6.714285714285714
4113
+ # ?my = 4.171428571428572
4114
+ # ?negDxS = -2.567193398456517
4115
+ # ?p = _:b1
4116
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
4117
+ # ?s = -0.5445561754301703
4118
+ # ?theta = -0.5758598575998168
4119
+ # ?u = -2.226965310551135
4120
+ # ?u2 = 4.959374494398113
4121
+ # ?u2Over = 0.1286915215174237
4122
+ # ?v = -5.227147834641157
4123
+ # ?v2 = 27.323074485193732
4124
+ # ?v2Over = 1.6847607928331318
4125
+ # ?x = 2.0
4126
+ # ?y = 1.0
4127
+ # Therefore the derived triple above is entailed by the rules and facts.
4128
+ # ----------------------------------------------------------------------
4129
+
4130
+ _:sk_6 :u -2.226965310551135 .
4131
+
4132
+ # ----------------------------------------------------------------------
4133
+ # Proof for derived triple:
4134
+ # _:sk_6 :v -5.227147834641157 .
4135
+ # It holds because the following instance of the rule body is provable:
4136
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
4137
+ # :PCA1 :meanX 6.714285714285714 .
4138
+ # :PCA1 :meanY 4.171428571428572 .
4139
+ # :PCA1 :thetaRad -0.5758598575998168 .
4140
+ # :PCA1 :lambda1 38.53691708607748 .
4141
+ # :PCA1 :lambda2 16.217776791473543 .
4142
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
4143
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
4144
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b1 .
4145
+ # _:b1 :x 2.0 .
4146
+ # _:b1 :y 1.0 .
4147
+ # (2.0 6.714285714285714) math:difference -4.714285714285714 .
4148
+ # (1.0 4.171428571428572) math:difference -3.1714285714285717 .
4149
+ # (-4.714285714285714 0.8387243717699311) math:product -3.9539863240582465 .
4150
+ # (-3.1714285714285717 -0.5445561754301703) math:product 1.7270210135071118 .
4151
+ # (-3.9539863240582465 1.7270210135071118) math:sum -2.226965310551135 .
4152
+ # (-4.714285714285714 -0.5445561754301703) math:product 2.567193398456517 .
4153
+ # (0.0 2.567193398456517) math:difference -2.567193398456517 .
4154
+ # (-3.1714285714285717 0.8387243717699311) math:product -2.659954436184639 .
4155
+ # (-2.567193398456517 -2.659954436184639) math:sum -5.227147834641157 .
4156
+ # (-2.226965310551135 2.0) math:exponentiation 4.959374494398113 .
4157
+ # (-5.227147834641157 2.0) math:exponentiation 27.323074485193732 .
4158
+ # (4.959374494398113 38.53691708607748) math:quotient 0.1286915215174237 .
4159
+ # (27.323074485193732 16.217776791473543) math:quotient 1.6847607928331318 .
4160
+ # (0.1286915215174237 1.6847607928331318) math:sum 1.8134523143505556 .
4161
+ # via the schematic forward rule:
4162
+ # {
4163
+ # :PCA1 :points ?pts .
4164
+ # :PCA1 :meanX ?mx .
4165
+ # :PCA1 :meanY ?my .
4166
+ # :PCA1 :thetaRad ?theta .
4167
+ # :PCA1 :lambda1 ?l1 .
4168
+ # :PCA1 :lambda2 ?l2 .
4169
+ # ?theta math:cos ?c .
4170
+ # ?theta math:sin ?s .
4171
+ # ?pts list:member ?p .
4172
+ # ?p :x ?x .
4173
+ # ?p :y ?y .
4174
+ # (?x ?mx) math:difference ?dx .
4175
+ # (?y ?my) math:difference ?dy .
4176
+ # (?dx ?c) math:product ?dxC .
4177
+ # (?dy ?s) math:product ?dyS .
4178
+ # (?dxC ?dyS) math:sum ?u .
4179
+ # (?dx ?s) math:product ?dxS .
4180
+ # (0.0 ?dxS) math:difference ?negDxS .
4181
+ # (?dy ?c) math:product ?dyC .
4182
+ # (?negDxS ?dyC) math:sum ?v .
4183
+ # (?u 2.0) math:exponentiation ?u2 .
4184
+ # (?v 2.0) math:exponentiation ?v2 .
4185
+ # (?u2 ?l1) math:quotient ?u2Over .
4186
+ # (?v2 ?l2) math:quotient ?v2Over .
4187
+ # (?u2Over ?v2Over) math:sum ?md2 .
4188
+ # } => {
4189
+ # _:b8 :point ?p .
4190
+ # _:b8 :u ?u .
4191
+ # _:b8 :v ?v .
4192
+ # _:b8 :md2 ?md2 .
4193
+ # :PCA1 :score _:b8 .
4194
+ # } .
4195
+ # with substitution (on rule variables):
4196
+ # ?c = 0.8387243717699311
4197
+ # ?dx = -4.714285714285714
4198
+ # ?dxC = -3.9539863240582465
4199
+ # ?dxS = 2.567193398456517
4200
+ # ?dy = -3.1714285714285717
4201
+ # ?dyC = -2.659954436184639
4202
+ # ?dyS = 1.7270210135071118
4203
+ # ?l1 = 38.53691708607748
4204
+ # ?l2 = 16.217776791473543
4205
+ # ?md2 = 1.8134523143505556
4206
+ # ?mx = 6.714285714285714
4207
+ # ?my = 4.171428571428572
4208
+ # ?negDxS = -2.567193398456517
4209
+ # ?p = _:b1
4210
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
4211
+ # ?s = -0.5445561754301703
4212
+ # ?theta = -0.5758598575998168
4213
+ # ?u = -2.226965310551135
4214
+ # ?u2 = 4.959374494398113
4215
+ # ?u2Over = 0.1286915215174237
4216
+ # ?v = -5.227147834641157
4217
+ # ?v2 = 27.323074485193732
4218
+ # ?v2Over = 1.6847607928331318
4219
+ # ?x = 2.0
4220
+ # ?y = 1.0
4221
+ # Therefore the derived triple above is entailed by the rules and facts.
4222
+ # ----------------------------------------------------------------------
4223
+
4224
+ _:sk_6 :v -5.227147834641157 .
4225
+
4226
+ # ----------------------------------------------------------------------
4227
+ # Proof for derived triple:
4228
+ # _:sk_6 :md2 1.8134523143505556 .
4229
+ # It holds because the following instance of the rule body is provable:
4230
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
4231
+ # :PCA1 :meanX 6.714285714285714 .
4232
+ # :PCA1 :meanY 4.171428571428572 .
4233
+ # :PCA1 :thetaRad -0.5758598575998168 .
4234
+ # :PCA1 :lambda1 38.53691708607748 .
4235
+ # :PCA1 :lambda2 16.217776791473543 .
4236
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
4237
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
4238
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b1 .
4239
+ # _:b1 :x 2.0 .
4240
+ # _:b1 :y 1.0 .
4241
+ # (2.0 6.714285714285714) math:difference -4.714285714285714 .
4242
+ # (1.0 4.171428571428572) math:difference -3.1714285714285717 .
4243
+ # (-4.714285714285714 0.8387243717699311) math:product -3.9539863240582465 .
4244
+ # (-3.1714285714285717 -0.5445561754301703) math:product 1.7270210135071118 .
4245
+ # (-3.9539863240582465 1.7270210135071118) math:sum -2.226965310551135 .
4246
+ # (-4.714285714285714 -0.5445561754301703) math:product 2.567193398456517 .
4247
+ # (0.0 2.567193398456517) math:difference -2.567193398456517 .
4248
+ # (-3.1714285714285717 0.8387243717699311) math:product -2.659954436184639 .
4249
+ # (-2.567193398456517 -2.659954436184639) math:sum -5.227147834641157 .
4250
+ # (-2.226965310551135 2.0) math:exponentiation 4.959374494398113 .
4251
+ # (-5.227147834641157 2.0) math:exponentiation 27.323074485193732 .
4252
+ # (4.959374494398113 38.53691708607748) math:quotient 0.1286915215174237 .
4253
+ # (27.323074485193732 16.217776791473543) math:quotient 1.6847607928331318 .
4254
+ # (0.1286915215174237 1.6847607928331318) math:sum 1.8134523143505556 .
4255
+ # via the schematic forward rule:
4256
+ # {
4257
+ # :PCA1 :points ?pts .
4258
+ # :PCA1 :meanX ?mx .
4259
+ # :PCA1 :meanY ?my .
4260
+ # :PCA1 :thetaRad ?theta .
4261
+ # :PCA1 :lambda1 ?l1 .
4262
+ # :PCA1 :lambda2 ?l2 .
4263
+ # ?theta math:cos ?c .
4264
+ # ?theta math:sin ?s .
4265
+ # ?pts list:member ?p .
4266
+ # ?p :x ?x .
4267
+ # ?p :y ?y .
4268
+ # (?x ?mx) math:difference ?dx .
4269
+ # (?y ?my) math:difference ?dy .
4270
+ # (?dx ?c) math:product ?dxC .
4271
+ # (?dy ?s) math:product ?dyS .
4272
+ # (?dxC ?dyS) math:sum ?u .
4273
+ # (?dx ?s) math:product ?dxS .
4274
+ # (0.0 ?dxS) math:difference ?negDxS .
4275
+ # (?dy ?c) math:product ?dyC .
4276
+ # (?negDxS ?dyC) math:sum ?v .
4277
+ # (?u 2.0) math:exponentiation ?u2 .
4278
+ # (?v 2.0) math:exponentiation ?v2 .
4279
+ # (?u2 ?l1) math:quotient ?u2Over .
4280
+ # (?v2 ?l2) math:quotient ?v2Over .
4281
+ # (?u2Over ?v2Over) math:sum ?md2 .
4282
+ # } => {
4283
+ # _:b8 :point ?p .
4284
+ # _:b8 :u ?u .
4285
+ # _:b8 :v ?v .
4286
+ # _:b8 :md2 ?md2 .
4287
+ # :PCA1 :score _:b8 .
4288
+ # } .
4289
+ # with substitution (on rule variables):
4290
+ # ?c = 0.8387243717699311
4291
+ # ?dx = -4.714285714285714
4292
+ # ?dxC = -3.9539863240582465
4293
+ # ?dxS = 2.567193398456517
4294
+ # ?dy = -3.1714285714285717
4295
+ # ?dyC = -2.659954436184639
4296
+ # ?dyS = 1.7270210135071118
4297
+ # ?l1 = 38.53691708607748
4298
+ # ?l2 = 16.217776791473543
4299
+ # ?md2 = 1.8134523143505556
4300
+ # ?mx = 6.714285714285714
4301
+ # ?my = 4.171428571428572
4302
+ # ?negDxS = -2.567193398456517
4303
+ # ?p = _:b1
4304
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
4305
+ # ?s = -0.5445561754301703
4306
+ # ?theta = -0.5758598575998168
4307
+ # ?u = -2.226965310551135
4308
+ # ?u2 = 4.959374494398113
4309
+ # ?u2Over = 0.1286915215174237
4310
+ # ?v = -5.227147834641157
4311
+ # ?v2 = 27.323074485193732
4312
+ # ?v2Over = 1.6847607928331318
4313
+ # ?x = 2.0
4314
+ # ?y = 1.0
4315
+ # Therefore the derived triple above is entailed by the rules and facts.
4316
+ # ----------------------------------------------------------------------
4317
+
4318
+ _:sk_6 :md2 1.8134523143505556 .
4319
+
4320
+ # ----------------------------------------------------------------------
4321
+ # Proof for derived triple:
4322
+ # :PCA1 :score _:sk_6 .
4323
+ # It holds because the following instance of the rule body is provable:
4324
+ # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
4325
+ # :PCA1 :meanX 6.714285714285714 .
4326
+ # :PCA1 :meanY 4.171428571428572 .
4327
+ # :PCA1 :thetaRad -0.5758598575998168 .
4328
+ # :PCA1 :lambda1 38.53691708607748 .
4329
+ # :PCA1 :lambda2 16.217776791473543 .
4330
+ # -0.5758598575998168 math:cos 0.8387243717699311 .
4331
+ # -0.5758598575998168 math:sin -0.5445561754301703 .
4332
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b1 .
4333
+ # _:b1 :x 2.0 .
4334
+ # _:b1 :y 1.0 .
4335
+ # (2.0 6.714285714285714) math:difference -4.714285714285714 .
4336
+ # (1.0 4.171428571428572) math:difference -3.1714285714285717 .
4337
+ # (-4.714285714285714 0.8387243717699311) math:product -3.9539863240582465 .
4338
+ # (-3.1714285714285717 -0.5445561754301703) math:product 1.7270210135071118 .
4339
+ # (-3.9539863240582465 1.7270210135071118) math:sum -2.226965310551135 .
4340
+ # (-4.714285714285714 -0.5445561754301703) math:product 2.567193398456517 .
4341
+ # (0.0 2.567193398456517) math:difference -2.567193398456517 .
4342
+ # (-3.1714285714285717 0.8387243717699311) math:product -2.659954436184639 .
4343
+ # (-2.567193398456517 -2.659954436184639) math:sum -5.227147834641157 .
4344
+ # (-2.226965310551135 2.0) math:exponentiation 4.959374494398113 .
4345
+ # (-5.227147834641157 2.0) math:exponentiation 27.323074485193732 .
4346
+ # (4.959374494398113 38.53691708607748) math:quotient 0.1286915215174237 .
4347
+ # (27.323074485193732 16.217776791473543) math:quotient 1.6847607928331318 .
4348
+ # (0.1286915215174237 1.6847607928331318) math:sum 1.8134523143505556 .
4349
+ # via the schematic forward rule:
4350
+ # {
4351
+ # :PCA1 :points ?pts .
4352
+ # :PCA1 :meanX ?mx .
4353
+ # :PCA1 :meanY ?my .
4354
+ # :PCA1 :thetaRad ?theta .
4355
+ # :PCA1 :lambda1 ?l1 .
4356
+ # :PCA1 :lambda2 ?l2 .
4357
+ # ?theta math:cos ?c .
4358
+ # ?theta math:sin ?s .
4359
+ # ?pts list:member ?p .
4360
+ # ?p :x ?x .
4361
+ # ?p :y ?y .
4362
+ # (?x ?mx) math:difference ?dx .
4363
+ # (?y ?my) math:difference ?dy .
4364
+ # (?dx ?c) math:product ?dxC .
4365
+ # (?dy ?s) math:product ?dyS .
4366
+ # (?dxC ?dyS) math:sum ?u .
4367
+ # (?dx ?s) math:product ?dxS .
4368
+ # (0.0 ?dxS) math:difference ?negDxS .
4369
+ # (?dy ?c) math:product ?dyC .
4370
+ # (?negDxS ?dyC) math:sum ?v .
4371
+ # (?u 2.0) math:exponentiation ?u2 .
4372
+ # (?v 2.0) math:exponentiation ?v2 .
4373
+ # (?u2 ?l1) math:quotient ?u2Over .
4374
+ # (?v2 ?l2) math:quotient ?v2Over .
4375
+ # (?u2Over ?v2Over) math:sum ?md2 .
4376
+ # } => {
4377
+ # _:b8 :point ?p .
4378
+ # _:b8 :u ?u .
4379
+ # _:b8 :v ?v .
4380
+ # _:b8 :md2 ?md2 .
4381
+ # :PCA1 :score _:b8 .
4382
+ # } .
4383
+ # with substitution (on rule variables):
4384
+ # ?c = 0.8387243717699311
4385
+ # ?dx = -4.714285714285714
4386
+ # ?dxC = -3.9539863240582465
4387
+ # ?dxS = 2.567193398456517
4388
+ # ?dy = -3.1714285714285717
4389
+ # ?dyC = -2.659954436184639
4390
+ # ?dyS = 1.7270210135071118
4391
+ # ?l1 = 38.53691708607748
4392
+ # ?l2 = 16.217776791473543
4393
+ # ?md2 = 1.8134523143505556
4394
+ # ?mx = 6.714285714285714
4395
+ # ?my = 4.171428571428572
4396
+ # ?negDxS = -2.567193398456517
4397
+ # ?p = _:b1
4398
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
4399
+ # ?s = -0.5445561754301703
4400
+ # ?theta = -0.5758598575998168
4401
+ # ?u = -2.226965310551135
4402
+ # ?u2 = 4.959374494398113
4403
+ # ?u2Over = 0.1286915215174237
4404
+ # ?v = -5.227147834641157
4405
+ # ?v2 = 27.323074485193732
4406
+ # ?v2Over = 1.6847607928331318
4407
+ # ?x = 2.0
4408
+ # ?y = 1.0
4409
+ # Therefore the derived triple above is entailed by the rules and facts.
4410
+ # ----------------------------------------------------------------------
4411
+
4412
+ :PCA1 :score _:sk_6 .
4413
+
4414
+ # ----------------------------------------------------------------------
4415
+ # Proof for derived triple:
4416
+ # :PCA1 :sigma1 6.207810973771469 .
4417
+ # It holds because the following instance of the rule body is provable:
4418
+ # :PCA1 :lambda1 38.53691708607748 .
4419
+ # :PCA1 :lambda2 16.217776791473543 .
4420
+ # (38.53691708607748 0.5) math:exponentiation 6.207810973771469 .
4421
+ # (16.217776791473543 0.5) math:exponentiation 4.027130093686265 .
4422
+ # (5.991 0.5) math:exponentiation 2.4476519360399265 .
4423
+ # (2.4476519360399265 6.207810973771469) math:product 15.194560548521638 .
4424
+ # (2.4476519360399265 4.027130093686265) math:product 9.857012770495835 .
4425
+ # (3.141592653589793 15.194560548521638) math:product 47.73511979376087 .
4426
+ # (47.73511979376087 9.857012770495835) math:product 470.52568540824944 .
4427
+ # via the schematic forward rule:
4428
+ # {
4429
+ # :PCA1 :lambda1 ?l1 .
4430
+ # :PCA1 :lambda2 ?l2 .
4431
+ # (?l1 0.5) math:exponentiation ?sigma1 .
4432
+ # (?l2 0.5) math:exponentiation ?sigma2 .
4433
+ # (5.991 0.5) math:exponentiation ?k95 .
4434
+ # (?k95 ?sigma1) math:product ?a95 .
4435
+ # (?k95 ?sigma2) math:product ?b95 .
4436
+ # (3.141592653589793 ?a95) math:product ?piA .
4437
+ # (?piA ?b95) math:product ?area95 .
4438
+ # } => {
4439
+ # :PCA1 :sigma1 ?sigma1 .
4440
+ # :PCA1 :sigma2 ?sigma2 .
4441
+ # _:b11 :k ?k95 .
4442
+ # _:b11 :a ?a95 .
4443
+ # _:b11 :b ?b95 .
4444
+ # _:b11 :area ?area95 .
4445
+ # :PCA1 :ellipse95 _:b11 .
4446
+ # } .
4447
+ # with substitution (on rule variables):
4448
+ # ?a95 = 15.194560548521638
4449
+ # ?area95 = 470.52568540824944
4450
+ # ?b95 = 9.857012770495835
4451
+ # ?k95 = 2.4476519360399265
4452
+ # ?l1 = 38.53691708607748
4453
+ # ?l2 = 16.217776791473543
4454
+ # ?piA = 47.73511979376087
4455
+ # ?sigma1 = 6.207810973771469
4456
+ # ?sigma2 = 4.027130093686265
4457
+ # Therefore the derived triple above is entailed by the rules and facts.
4458
+ # ----------------------------------------------------------------------
4459
+
4460
+ :PCA1 :sigma1 6.207810973771469 .
4461
+
4462
+ # ----------------------------------------------------------------------
4463
+ # Proof for derived triple:
4464
+ # :PCA1 :sigma2 4.027130093686265 .
4465
+ # It holds because the following instance of the rule body is provable:
4466
+ # :PCA1 :lambda1 38.53691708607748 .
4467
+ # :PCA1 :lambda2 16.217776791473543 .
4468
+ # (38.53691708607748 0.5) math:exponentiation 6.207810973771469 .
4469
+ # (16.217776791473543 0.5) math:exponentiation 4.027130093686265 .
4470
+ # (5.991 0.5) math:exponentiation 2.4476519360399265 .
4471
+ # (2.4476519360399265 6.207810973771469) math:product 15.194560548521638 .
4472
+ # (2.4476519360399265 4.027130093686265) math:product 9.857012770495835 .
4473
+ # (3.141592653589793 15.194560548521638) math:product 47.73511979376087 .
4474
+ # (47.73511979376087 9.857012770495835) math:product 470.52568540824944 .
4475
+ # via the schematic forward rule:
4476
+ # {
4477
+ # :PCA1 :lambda1 ?l1 .
4478
+ # :PCA1 :lambda2 ?l2 .
4479
+ # (?l1 0.5) math:exponentiation ?sigma1 .
4480
+ # (?l2 0.5) math:exponentiation ?sigma2 .
4481
+ # (5.991 0.5) math:exponentiation ?k95 .
4482
+ # (?k95 ?sigma1) math:product ?a95 .
4483
+ # (?k95 ?sigma2) math:product ?b95 .
4484
+ # (3.141592653589793 ?a95) math:product ?piA .
4485
+ # (?piA ?b95) math:product ?area95 .
4486
+ # } => {
4487
+ # :PCA1 :sigma1 ?sigma1 .
4488
+ # :PCA1 :sigma2 ?sigma2 .
4489
+ # _:b11 :k ?k95 .
4490
+ # _:b11 :a ?a95 .
4491
+ # _:b11 :b ?b95 .
4492
+ # _:b11 :area ?area95 .
4493
+ # :PCA1 :ellipse95 _:b11 .
4494
+ # } .
4495
+ # with substitution (on rule variables):
4496
+ # ?a95 = 15.194560548521638
4497
+ # ?area95 = 470.52568540824944
4498
+ # ?b95 = 9.857012770495835
4499
+ # ?k95 = 2.4476519360399265
4500
+ # ?l1 = 38.53691708607748
4501
+ # ?l2 = 16.217776791473543
4502
+ # ?piA = 47.73511979376087
4503
+ # ?sigma1 = 6.207810973771469
4504
+ # ?sigma2 = 4.027130093686265
4505
+ # Therefore the derived triple above is entailed by the rules and facts.
4506
+ # ----------------------------------------------------------------------
4507
+
4508
+ :PCA1 :sigma2 4.027130093686265 .
4509
+
4510
+ # ----------------------------------------------------------------------
4511
+ # Proof for derived triple:
4512
+ # _:sk_7 :k 2.4476519360399265 .
4513
+ # It holds because the following instance of the rule body is provable:
4514
+ # :PCA1 :lambda1 38.53691708607748 .
4515
+ # :PCA1 :lambda2 16.217776791473543 .
4516
+ # (38.53691708607748 0.5) math:exponentiation 6.207810973771469 .
4517
+ # (16.217776791473543 0.5) math:exponentiation 4.027130093686265 .
4518
+ # (5.991 0.5) math:exponentiation 2.4476519360399265 .
4519
+ # (2.4476519360399265 6.207810973771469) math:product 15.194560548521638 .
4520
+ # (2.4476519360399265 4.027130093686265) math:product 9.857012770495835 .
4521
+ # (3.141592653589793 15.194560548521638) math:product 47.73511979376087 .
4522
+ # (47.73511979376087 9.857012770495835) math:product 470.52568540824944 .
4523
+ # via the schematic forward rule:
4524
+ # {
4525
+ # :PCA1 :lambda1 ?l1 .
4526
+ # :PCA1 :lambda2 ?l2 .
4527
+ # (?l1 0.5) math:exponentiation ?sigma1 .
4528
+ # (?l2 0.5) math:exponentiation ?sigma2 .
4529
+ # (5.991 0.5) math:exponentiation ?k95 .
4530
+ # (?k95 ?sigma1) math:product ?a95 .
4531
+ # (?k95 ?sigma2) math:product ?b95 .
4532
+ # (3.141592653589793 ?a95) math:product ?piA .
4533
+ # (?piA ?b95) math:product ?area95 .
4534
+ # } => {
4535
+ # :PCA1 :sigma1 ?sigma1 .
4536
+ # :PCA1 :sigma2 ?sigma2 .
4537
+ # _:b11 :k ?k95 .
4538
+ # _:b11 :a ?a95 .
4539
+ # _:b11 :b ?b95 .
4540
+ # _:b11 :area ?area95 .
4541
+ # :PCA1 :ellipse95 _:b11 .
4542
+ # } .
4543
+ # with substitution (on rule variables):
4544
+ # ?a95 = 15.194560548521638
4545
+ # ?area95 = 470.52568540824944
4546
+ # ?b95 = 9.857012770495835
4547
+ # ?k95 = 2.4476519360399265
4548
+ # ?l1 = 38.53691708607748
4549
+ # ?l2 = 16.217776791473543
4550
+ # ?piA = 47.73511979376087
4551
+ # ?sigma1 = 6.207810973771469
4552
+ # ?sigma2 = 4.027130093686265
4553
+ # Therefore the derived triple above is entailed by the rules and facts.
4554
+ # ----------------------------------------------------------------------
4555
+
4556
+ _:sk_7 :k 2.4476519360399265 .
4557
+
4558
+ # ----------------------------------------------------------------------
4559
+ # Proof for derived triple:
4560
+ # _:sk_7 :a 15.194560548521638 .
4561
+ # It holds because the following instance of the rule body is provable:
4562
+ # :PCA1 :lambda1 38.53691708607748 .
4563
+ # :PCA1 :lambda2 16.217776791473543 .
4564
+ # (38.53691708607748 0.5) math:exponentiation 6.207810973771469 .
4565
+ # (16.217776791473543 0.5) math:exponentiation 4.027130093686265 .
4566
+ # (5.991 0.5) math:exponentiation 2.4476519360399265 .
4567
+ # (2.4476519360399265 6.207810973771469) math:product 15.194560548521638 .
4568
+ # (2.4476519360399265 4.027130093686265) math:product 9.857012770495835 .
4569
+ # (3.141592653589793 15.194560548521638) math:product 47.73511979376087 .
4570
+ # (47.73511979376087 9.857012770495835) math:product 470.52568540824944 .
4571
+ # via the schematic forward rule:
4572
+ # {
4573
+ # :PCA1 :lambda1 ?l1 .
4574
+ # :PCA1 :lambda2 ?l2 .
4575
+ # (?l1 0.5) math:exponentiation ?sigma1 .
4576
+ # (?l2 0.5) math:exponentiation ?sigma2 .
4577
+ # (5.991 0.5) math:exponentiation ?k95 .
4578
+ # (?k95 ?sigma1) math:product ?a95 .
4579
+ # (?k95 ?sigma2) math:product ?b95 .
4580
+ # (3.141592653589793 ?a95) math:product ?piA .
4581
+ # (?piA ?b95) math:product ?area95 .
4582
+ # } => {
4583
+ # :PCA1 :sigma1 ?sigma1 .
4584
+ # :PCA1 :sigma2 ?sigma2 .
4585
+ # _:b11 :k ?k95 .
4586
+ # _:b11 :a ?a95 .
4587
+ # _:b11 :b ?b95 .
4588
+ # _:b11 :area ?area95 .
4589
+ # :PCA1 :ellipse95 _:b11 .
4590
+ # } .
4591
+ # with substitution (on rule variables):
4592
+ # ?a95 = 15.194560548521638
4593
+ # ?area95 = 470.52568540824944
4594
+ # ?b95 = 9.857012770495835
4595
+ # ?k95 = 2.4476519360399265
4596
+ # ?l1 = 38.53691708607748
4597
+ # ?l2 = 16.217776791473543
4598
+ # ?piA = 47.73511979376087
4599
+ # ?sigma1 = 6.207810973771469
4600
+ # ?sigma2 = 4.027130093686265
4601
+ # Therefore the derived triple above is entailed by the rules and facts.
4602
+ # ----------------------------------------------------------------------
4603
+
4604
+ _:sk_7 :a 15.194560548521638 .
4605
+
4606
+ # ----------------------------------------------------------------------
4607
+ # Proof for derived triple:
4608
+ # _:sk_7 :b 9.857012770495835 .
4609
+ # It holds because the following instance of the rule body is provable:
4610
+ # :PCA1 :lambda1 38.53691708607748 .
4611
+ # :PCA1 :lambda2 16.217776791473543 .
4612
+ # (38.53691708607748 0.5) math:exponentiation 6.207810973771469 .
4613
+ # (16.217776791473543 0.5) math:exponentiation 4.027130093686265 .
4614
+ # (5.991 0.5) math:exponentiation 2.4476519360399265 .
4615
+ # (2.4476519360399265 6.207810973771469) math:product 15.194560548521638 .
4616
+ # (2.4476519360399265 4.027130093686265) math:product 9.857012770495835 .
4617
+ # (3.141592653589793 15.194560548521638) math:product 47.73511979376087 .
4618
+ # (47.73511979376087 9.857012770495835) math:product 470.52568540824944 .
4619
+ # via the schematic forward rule:
4620
+ # {
4621
+ # :PCA1 :lambda1 ?l1 .
4622
+ # :PCA1 :lambda2 ?l2 .
4623
+ # (?l1 0.5) math:exponentiation ?sigma1 .
4624
+ # (?l2 0.5) math:exponentiation ?sigma2 .
4625
+ # (5.991 0.5) math:exponentiation ?k95 .
4626
+ # (?k95 ?sigma1) math:product ?a95 .
4627
+ # (?k95 ?sigma2) math:product ?b95 .
4628
+ # (3.141592653589793 ?a95) math:product ?piA .
4629
+ # (?piA ?b95) math:product ?area95 .
4630
+ # } => {
4631
+ # :PCA1 :sigma1 ?sigma1 .
4632
+ # :PCA1 :sigma2 ?sigma2 .
4633
+ # _:b11 :k ?k95 .
4634
+ # _:b11 :a ?a95 .
4635
+ # _:b11 :b ?b95 .
4636
+ # _:b11 :area ?area95 .
4637
+ # :PCA1 :ellipse95 _:b11 .
4638
+ # } .
4639
+ # with substitution (on rule variables):
4640
+ # ?a95 = 15.194560548521638
4641
+ # ?area95 = 470.52568540824944
4642
+ # ?b95 = 9.857012770495835
4643
+ # ?k95 = 2.4476519360399265
4644
+ # ?l1 = 38.53691708607748
4645
+ # ?l2 = 16.217776791473543
4646
+ # ?piA = 47.73511979376087
4647
+ # ?sigma1 = 6.207810973771469
4648
+ # ?sigma2 = 4.027130093686265
4649
+ # Therefore the derived triple above is entailed by the rules and facts.
4650
+ # ----------------------------------------------------------------------
4651
+
4652
+ _:sk_7 :b 9.857012770495835 .
4653
+
4654
+ # ----------------------------------------------------------------------
4655
+ # Proof for derived triple:
4656
+ # _:sk_7 :area 470.52568540824944 .
4657
+ # It holds because the following instance of the rule body is provable:
4658
+ # :PCA1 :lambda1 38.53691708607748 .
4659
+ # :PCA1 :lambda2 16.217776791473543 .
4660
+ # (38.53691708607748 0.5) math:exponentiation 6.207810973771469 .
4661
+ # (16.217776791473543 0.5) math:exponentiation 4.027130093686265 .
4662
+ # (5.991 0.5) math:exponentiation 2.4476519360399265 .
4663
+ # (2.4476519360399265 6.207810973771469) math:product 15.194560548521638 .
4664
+ # (2.4476519360399265 4.027130093686265) math:product 9.857012770495835 .
4665
+ # (3.141592653589793 15.194560548521638) math:product 47.73511979376087 .
4666
+ # (47.73511979376087 9.857012770495835) math:product 470.52568540824944 .
4667
+ # via the schematic forward rule:
4668
+ # {
4669
+ # :PCA1 :lambda1 ?l1 .
4670
+ # :PCA1 :lambda2 ?l2 .
4671
+ # (?l1 0.5) math:exponentiation ?sigma1 .
4672
+ # (?l2 0.5) math:exponentiation ?sigma2 .
4673
+ # (5.991 0.5) math:exponentiation ?k95 .
4674
+ # (?k95 ?sigma1) math:product ?a95 .
4675
+ # (?k95 ?sigma2) math:product ?b95 .
4676
+ # (3.141592653589793 ?a95) math:product ?piA .
4677
+ # (?piA ?b95) math:product ?area95 .
4678
+ # } => {
4679
+ # :PCA1 :sigma1 ?sigma1 .
4680
+ # :PCA1 :sigma2 ?sigma2 .
4681
+ # _:b11 :k ?k95 .
4682
+ # _:b11 :a ?a95 .
4683
+ # _:b11 :b ?b95 .
4684
+ # _:b11 :area ?area95 .
4685
+ # :PCA1 :ellipse95 _:b11 .
4686
+ # } .
4687
+ # with substitution (on rule variables):
4688
+ # ?a95 = 15.194560548521638
4689
+ # ?area95 = 470.52568540824944
4690
+ # ?b95 = 9.857012770495835
4691
+ # ?k95 = 2.4476519360399265
4692
+ # ?l1 = 38.53691708607748
4693
+ # ?l2 = 16.217776791473543
4694
+ # ?piA = 47.73511979376087
4695
+ # ?sigma1 = 6.207810973771469
4696
+ # ?sigma2 = 4.027130093686265
4697
+ # Therefore the derived triple above is entailed by the rules and facts.
4698
+ # ----------------------------------------------------------------------
4699
+
4700
+ _:sk_7 :area 470.52568540824944 .
4701
+
4702
+ # ----------------------------------------------------------------------
4703
+ # Proof for derived triple:
4704
+ # :PCA1 :ellipse95 _:sk_7 .
4705
+ # It holds because the following instance of the rule body is provable:
4706
+ # :PCA1 :lambda1 38.53691708607748 .
4707
+ # :PCA1 :lambda2 16.217776791473543 .
4708
+ # (38.53691708607748 0.5) math:exponentiation 6.207810973771469 .
4709
+ # (16.217776791473543 0.5) math:exponentiation 4.027130093686265 .
4710
+ # (5.991 0.5) math:exponentiation 2.4476519360399265 .
4711
+ # (2.4476519360399265 6.207810973771469) math:product 15.194560548521638 .
4712
+ # (2.4476519360399265 4.027130093686265) math:product 9.857012770495835 .
4713
+ # (3.141592653589793 15.194560548521638) math:product 47.73511979376087 .
4714
+ # (47.73511979376087 9.857012770495835) math:product 470.52568540824944 .
4715
+ # via the schematic forward rule:
4716
+ # {
4717
+ # :PCA1 :lambda1 ?l1 .
4718
+ # :PCA1 :lambda2 ?l2 .
4719
+ # (?l1 0.5) math:exponentiation ?sigma1 .
4720
+ # (?l2 0.5) math:exponentiation ?sigma2 .
4721
+ # (5.991 0.5) math:exponentiation ?k95 .
4722
+ # (?k95 ?sigma1) math:product ?a95 .
4723
+ # (?k95 ?sigma2) math:product ?b95 .
4724
+ # (3.141592653589793 ?a95) math:product ?piA .
4725
+ # (?piA ?b95) math:product ?area95 .
4726
+ # } => {
4727
+ # :PCA1 :sigma1 ?sigma1 .
4728
+ # :PCA1 :sigma2 ?sigma2 .
4729
+ # _:b11 :k ?k95 .
4730
+ # _:b11 :a ?a95 .
4731
+ # _:b11 :b ?b95 .
4732
+ # _:b11 :area ?area95 .
4733
+ # :PCA1 :ellipse95 _:b11 .
4734
+ # } .
4735
+ # with substitution (on rule variables):
4736
+ # ?a95 = 15.194560548521638
4737
+ # ?area95 = 470.52568540824944
4738
+ # ?b95 = 9.857012770495835
4739
+ # ?k95 = 2.4476519360399265
4740
+ # ?l1 = 38.53691708607748
4741
+ # ?l2 = 16.217776791473543
4742
+ # ?piA = 47.73511979376087
4743
+ # ?sigma1 = 6.207810973771469
4744
+ # ?sigma2 = 4.027130093686265
4745
+ # Therefore the derived triple above is entailed by the rules and facts.
4746
+ # ----------------------------------------------------------------------
4747
+
4748
+ :PCA1 :ellipse95 _:sk_7 .
4749
+